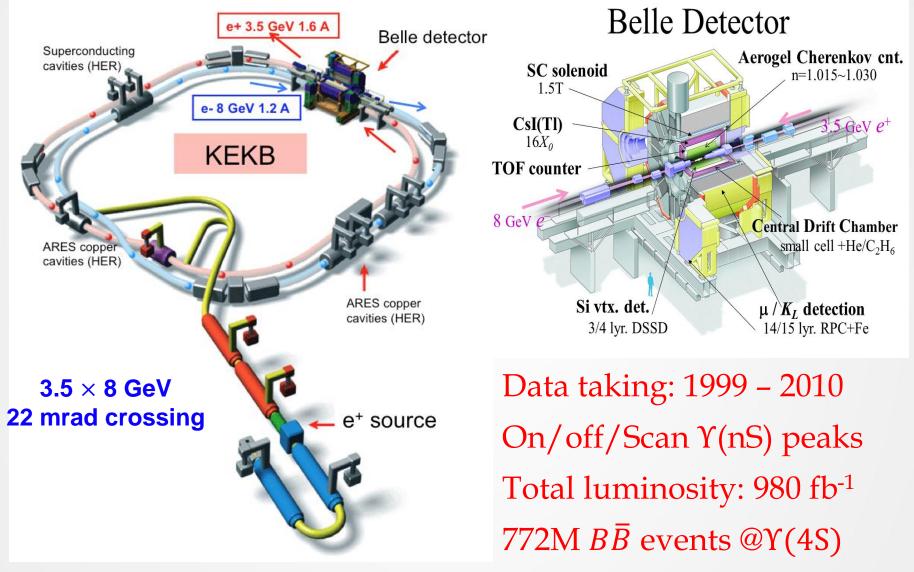
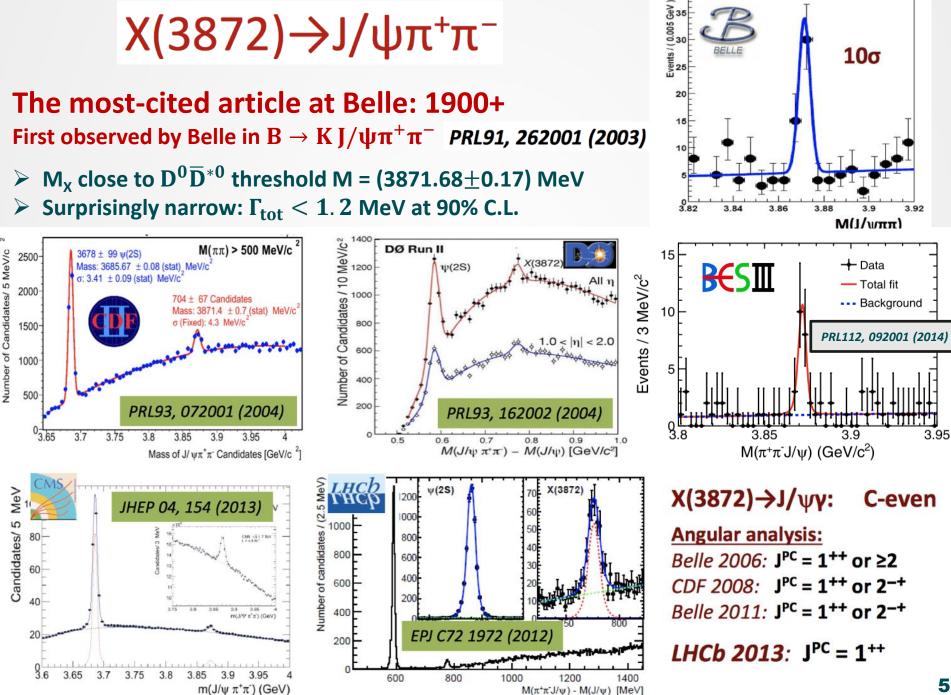


Belle(II) XYZ results in charm sector

Chengping Shen

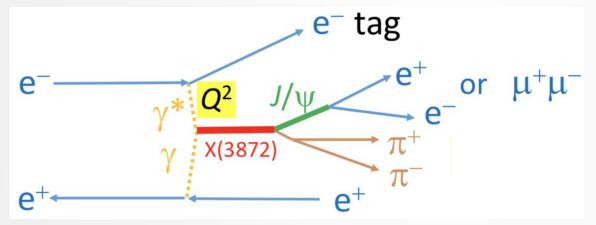
shencp@fudan.edu.cn


Outline

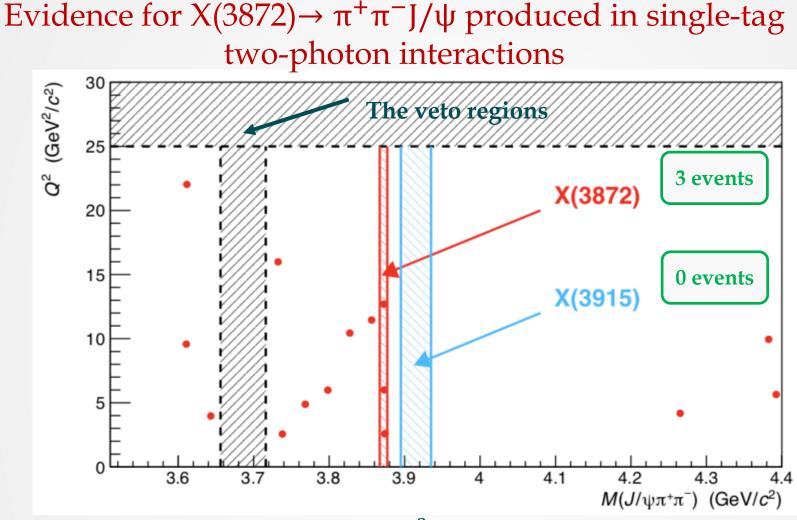

- -Recent results on XYZ results at Belle
- -Belle II status
- -Potential XYZ results in charm sector at Belle II
- -Summary

Success=X+Y+Z=XYZ states

Belle experiment and data samples

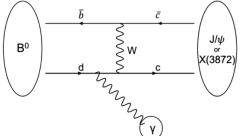


Evidence for X(3872) $\rightarrow \pi^+\pi^- J/\psi$ produced in single-tag two-photon interactions


Phys. Rev. Lett. 126, 122001 (2021)

- X(3872) with $J^{PC} = 1^{++}$ is not permitted in $\gamma\gamma \rightarrow X(3872)$, here γ is real.
- X(3872) with J^{PC} = 1⁺⁺ could be produced if one or both photons are highly virtual [Nucl. Phys. B 523, 423 (1998)], i.e. $\gamma\gamma^* \rightarrow X(3872)$, here γ^* is virtual.
- The measurement of X(3872) in two-photon reactions help to understand its internal structure.
- Data sample: 825 fb⁻¹ in e⁺e⁻ collisions near 10.6 GeV

 $-Q^2$ is the invariant mass-squared of the virtual photon.


If the X(3872) has a molecular component in its structure, it must have a steeper Q^2 dependence than the regular c cbar state. Hence, the single-tag two-photon interactions provide information on the structure of this state. [from discussion with Marek Karliner]

- $M(X(3872)) = (3.8723 \pm 0.0012) \text{ GeV}/c^2$
- With 0.11±0.10 background events, the number of signal events is N_{sig} = 2.9^{+2.2}_{-2.0}(stat.) ± 0.1(syst.) with a significance of 3.2σ (Feldman-Cousins method applied [Phys. Rev. D 57, 3873 (1998)]).
- $\tilde{\Gamma}_{\gamma\gamma}\mathcal{B}(X(3872) \rightarrow \pi^+\pi^-J/\psi) = 5.5^{+4.1}_{-3.8}(\text{stat.}) \pm 0.7(\text{syst.}) \text{ eV}$ using the Q² dependence expected from a $c\overline{c}$ meson model.

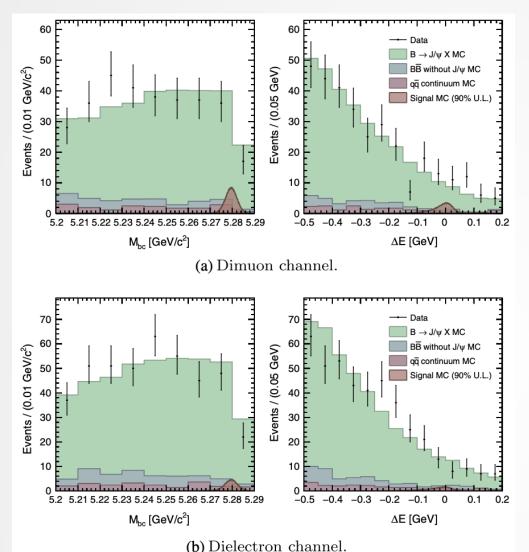
Search for $B^0 \rightarrow X(3872)\gamma$

- In the SM, the decay $B^0 \rightarrow c\overline{c}\gamma$ proceeds dominantly through an exchange of a W boson and the radiation of a photon from the *d* quark of the B meson.
- Currently, the upper limit for $B^0 \rightarrow J/\psi\gamma$ is 1.5×10^{-6} at 90% confidence level.

 Considering X(3872) may be not a pure cc̄ state, the branching fraction of B⁰ → X(3872)γ is larger?

To suppress generic BB spherical events and the jet-like $q\overline{q}$ continuum events, we do

(1) multivariate analysis based on the neural network package named NEUROBAYES [Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006)] to distinguish the signal and $FOM = \frac{efficiency}{0.5n \pm \sqrt{N_{eff}}}$


background with 33 input variables;

(2) optimize a figure of merit (FOM).

X(3872) decays to $J/\psi\pi^+\pi^-$ entirely via $J/\psi\rho$.

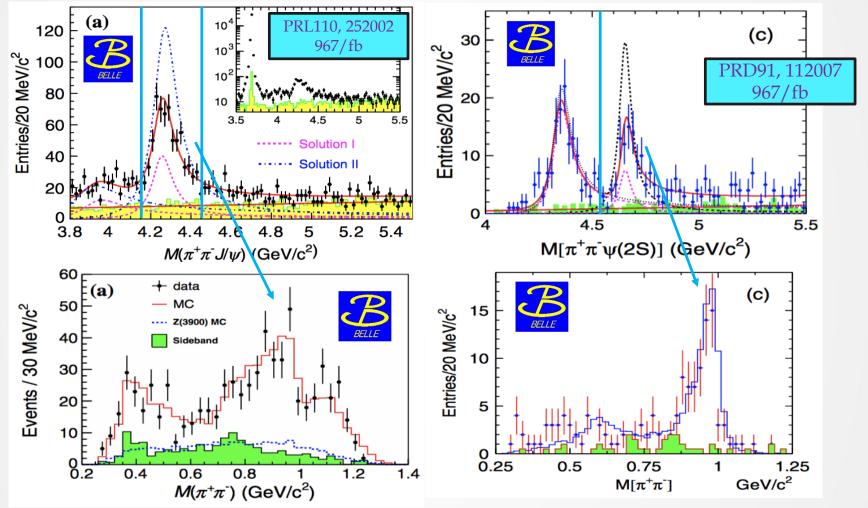
 $M = \frac{1}{0.5n + \sqrt{N_{bkg}}}$ Total luminosity:

711 fb⁻¹; 772 \times 10⁶ BB pairs

[PRD 100, 012002 (2019)]

$$\Delta E = E_{recon}^* - E_{beam}^*$$
$$M_{bc} = \sqrt{E_{beam}^2 - (\sum_i p_i)^2}$$

We count the numbers of signal and background events in regions of M_{bc} > 5.27 GeV/c² and -0.15 < ΔE < 0.1 GeV.


The upper limit on $\mathcal{B}(B^0 \rightarrow X(3872)\gamma) \times \mathcal{B}(X(3872)\rightarrow J/\psi\pi^+\pi^-)$ is obtained with the Feldman-Cousins counting method.

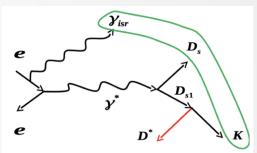
Channel	Dimuon	Dielectron	Total
N _{sig}	9	9	18
N _{bkg}	9.3	12.1	21.4
90% U.L.	9.2×10^{-7}	6.8×10^{-7}	5.1×10^{-7}

9

Y(4626): $e^+e^- \rightarrow D_s^+D_{s1}(2536)^-/D_s^+D_{s2}^*(2573)^- + c.c.$

Motivation: Y(4260) and Y(4660) with $c\overline{c}s\overline{s}$ component

• $Y(4260) \rightarrow f_0(980)(\rightarrow \pi^+\pi^-)J/\psi$, $Y(4660) \rightarrow f_0(980)(\rightarrow \pi^+\pi^-)\psi(2S)$ $f_0(980)$ has a ss component, and ψ has a cc component.

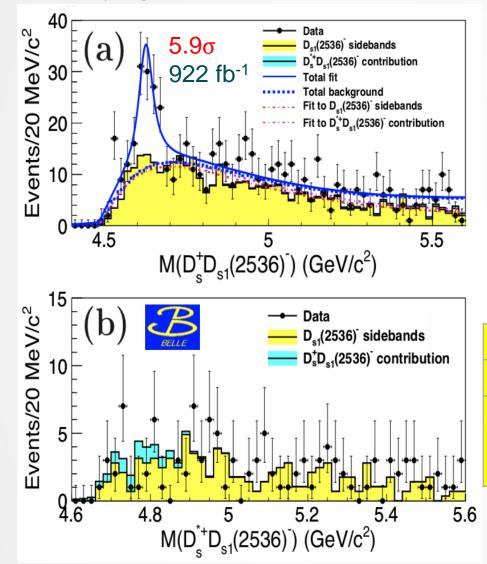

• It is natural to search for such Y states with a quark component of $(c\bar{s})(\bar{c}s)$, e.g., $D_s D_{s1}(2536)$ and $D_s D_{s2}^*(2573)$. Analysis method

Taking $e^+e^- \rightarrow D_s^+D_{s1}(2536)^-$ as an example

 $e^+e^- \rightarrow \gamma_{ISR} D_s^+ D_{s1} (2536)^- (\rightarrow \overline{D}^{*0} K^- / D^{*-} K_S^0)$

We require full reconstruction of the γ_{ISR} , D_s^+ , and K^-/K_S^0 .

• $D_s^+ \rightarrow \phi \pi^+$, $\overline{K}^{*0}K^+$, $K_s^0K^+$, $K^+K^-\pi^+\pi^0$, $K_s^0\pi^0K^+$, $K^{*+}K_s^0$, $\eta \pi^+$, and $\eta' \pi^+$


• For the signals, the spectrum of the mass recoiling against the $D_s^+K^-\gamma_{ISR}$ system should be accumulated at the \overline{D}^{*0}/D^{*-} nominal mass.

$$M_{rec}(\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}) = \sqrt{(E_{c.m.}^{*} - E_{\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}}^{*})^{2} - (p_{\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}}^{*})^{2}}$$

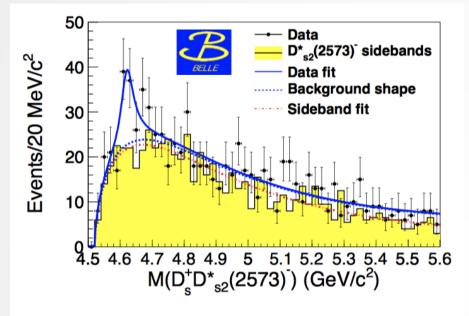
• To improve the $M(D_s^+D_{s1}(2536)^-)$ resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-/K_s^0)$ is constrained to be the nominal mass of the \overline{D}^{*0}/D^{*-} .

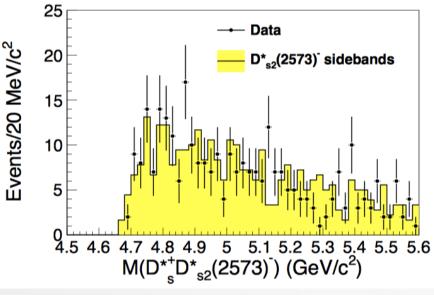
Y(4626): $e^+e^- \rightarrow D_s^+D_{s1}(2536)^-$

After applying the \overline{D}^{*0}/D^{*-} mass constraint

Belle, PRD100, 111103(R) (2019)

An unbinned simultaneous likelihood fit:


- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- D_{s1}(2536)⁻ mass sidebands: a threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^-$ background contribution: a threshold function
- A non-resonant contribution: a twobody phase space form


 $\begin{aligned} \mathsf{M}{=}(4625.9^{+6.2}_{-6.0}(\text{stat.}) \pm 0.4(\text{syst.})) \ \mathsf{MeV/c^2} \\ \Gamma {=} (49.8^{+13.9}_{-11.5}(\text{stat.}) \pm 4.0(\text{syst.})) \ \mathsf{MeV} \\ \Gamma_{\text{ee}} \times \mathcal{B}(Y \to \mathsf{D}_{\text{s}}^{+}\mathsf{D}_{\text{s}1}(2536)^{-}) \times \\ \mathcal{B}(\mathsf{D}_{\text{s}1}(2536)^{-} \to \overline{\mathsf{D}}^{*0}\mathsf{K}^{-}){=} \\ (14.3^{+2.8}_{-2.6}(\text{stat.}) \pm 1.5(\text{syst.})) \ \mathsf{eV} \end{aligned}$

One possible background is from $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$. No obvious structure is observed in the $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$.

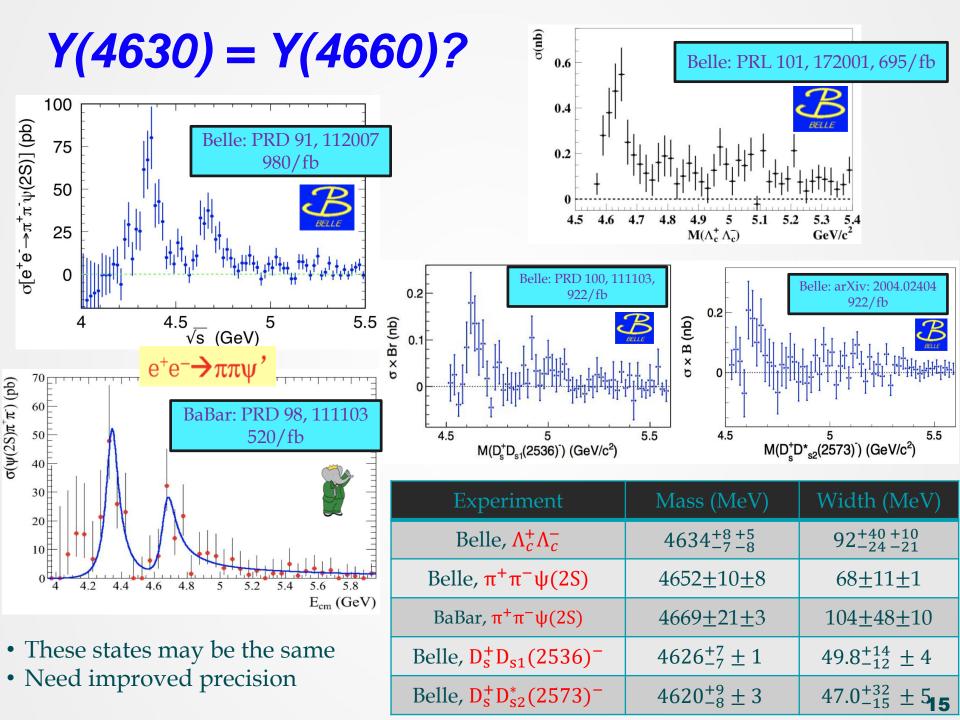
Y(4626): $e^+e^- \rightarrow D_s^+D_{s2}^*(2573)^-$

To improve the $M_{rec}(\gamma_{ISR})$ resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-)$ is constrained to the nominal mass of the \overline{D}^0 .

Belle, PRD101, 091101(R) (2020)

An unbinned simultaneous likelihood fit:

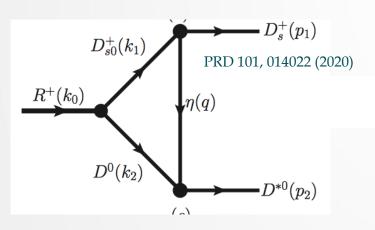
- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- $D_{s2}^{*}(2573)^{-}$ mass sidebands: a threshold function
- A non-resonant contribution: a two-body phase space form


 $M = (4619.8^{+8.9}_{-8.0}(stat.) \pm 2.3(syst.)) MeV/c^2$ $\Gamma = (47.0^{+31.3}_{-14.8}(\text{stat.}) \pm 4.6(\text{syst.})) \text{ MeV}$

 $\Gamma_{ee} \times \mathcal{B}(Y \to D_s^+ D_{s2}^* (2573)^-) \times$ $\mathcal{B}(D^*_{s_2}(2573)^- \to \overline{D}^0 K^-) = (14.7^{+5.9}_{-4.5}(\text{stat.}) \pm$ 3.6(syst.)) eV

Reminder: considering BESIII has had data in this energy region, we need BESIII to cross check. The current error at Belle is large.

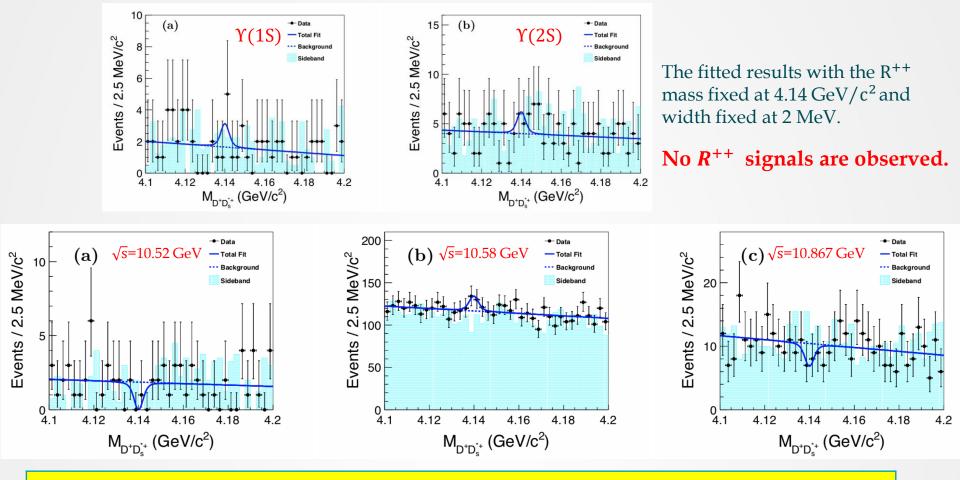
Interpretations of Y(4626)


- A tetraquark state in a chiral constituent quark model with a scaling method [Y.Tan and J. L. Ping, PRD101, 054010 (2020)].
- A P-wave tetraquark state [*cs*][*c̄s̄*] with 1⁻⁻ in the multiquark color fluxtube model [C. R. Deng, H. Cheng and J.L. Ping, PRD 101, 054039 (2020)].
- A hidden-strange molecular state from Λ⁺_cΛ⁻_c interaction [J. T. Zhu, Y. Liu, D. Y. Chen, L. Y. Jiang, and J. He, arXiv:1911.03706 (2020)].
- A molecular state from interaction D^{*}_sD
 _{s1}(2536) D_sD
 _{s1}(2536) [J. He, J. T. Zhu, and D. Y. Chen, EPJC 80, 246 (2020)].
- A tetraquark and etc instead of D^{*}_sD
 _{s1}(2536) molecular within the Bethe-Salpeter framework [H.W.Ke, X.H.Liu, and X.Q.Li, arXiv:2004.03167 (2020)].
- A higher charmonium [J.Z.Wang, R.Q.Qian, X. Liu, and T. Matsuki, PRD 101, 034001 (2020)].
- A hidden-charm exotic mesons in the diquark model [Z. G. He, B. A. Kniehl, and X.P.Wang, PRD 101, 074032 (2020); J.F.Giron, R.F.Lebed arxiv:2005.07100].

Search for $R^{++} \rightarrow D^+ D_s^{*+}$

Phys. Rev. D 102, 112001 (2020)

- A doubly-charged and doubly-charmed molecule *R*⁺⁺ decays to *D*⁺*D*^{*+} with modest rates according to Refs. [PRD 99, 076017 (2019), PRD 101, 014022 (2020)].
- The mass of R++ is predicted to be in the range of 4.13 to 4.17 GeV/c²; the width is (2.30-2.49) MeV.
- A state decaying to D⁺D^{*+}_s is also a good candidate for a doubly-charged tetraquark according to Ref. [PRL 119, 202001 (2017)].



- $D^+ \to K^- \pi^+ \pi^- / K^0_s (\to \pi^+ \pi^-) \pi^+$
- $D_s^{*-} \rightarrow D_s^- \gamma$
- $D_s^- \rightarrow \phi \pi^- / \overline{K}^{*0} K^+$

Data samples:

\sqrt{s} (GeV)	Luminosity (fb ⁻¹)	Events
9.46 [Y(1S)]	5.74±0.09	(102±3) million
10.023 [Y(2S)]	24.91±0.35	(158±4) million
10.52	89.5±1.3	-
10.58 [Y(4S)]	711±10	-
10.867 [Y(5S)]	121.4±1.7	-

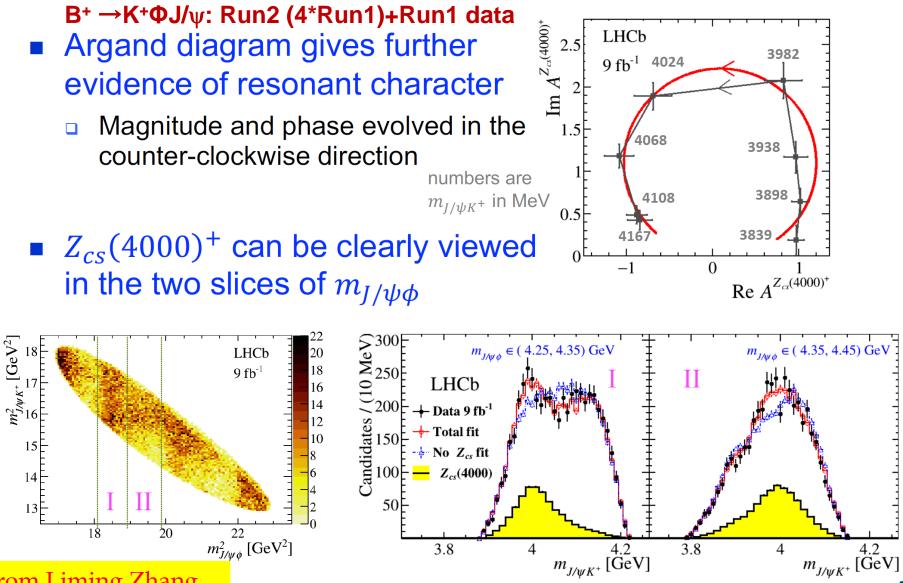
The Punzi parameter $S/(3/2+\sqrt{B})$ [arXiv:physics/0308063] is applied to optimize the mass windows of intermediate states. **16**

90% C. L. Upper limits [M(R⁺⁺) varying from 4.13 to 4.17 GeV/c², Γ(R⁺⁺) varying from 0 to 5 MeV]

 $\mathcal{B}(\Upsilon(1S) \rightarrow R^{++} + anything)\mathcal{B}(R^{++} \rightarrow D^+D_s^{*+}) = (11.8 - 54.5) \times 10^{-5}$

 $\mathcal{B}(\Upsilon(2S) \rightarrow \mathbb{R}^{++} + \text{anything})\mathcal{B}(\mathbb{R}^{++} \rightarrow \mathbb{D}^+\mathbb{D}^{*+}_S) = (16.3 - 68.6) \times 10^{-5}$

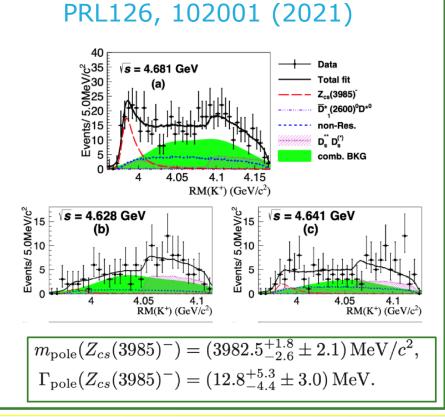
 $\sigma(e^+e^- \to R^{++} + \text{anything})\mathcal{B}(R^{++} \to D^+D_s^{*+}) = (202.8 - 880.4) \text{ fb at } \sqrt{s} = 10.52 \text{ GeV}$


 $\sigma(e^+e^- \to R^{++} + anything)\mathcal{B}(R^{++} \to D^+D_s^{*+}) = (218.9 - 1054.0) \text{ fb at } \sqrt{s} = 10.58 \text{ GeV}$

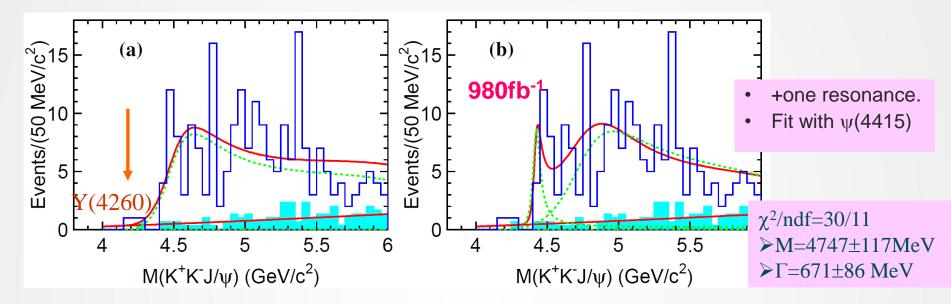
 $\sigma(e^+e^- \to R^{++} + anything)\mathcal{B}(R^{++} \to D^+D_s^{*+}) = (346.6 - 1517.6) \text{ fb at } \sqrt{s} = 10.867 \text{ GeV}$

Z_{cs}(4000)⁺at LHCb

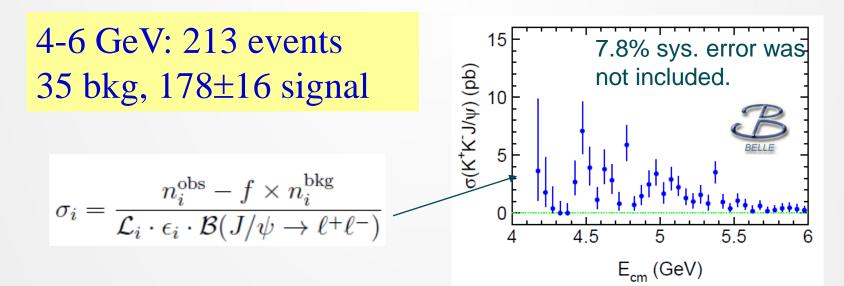
[arXiv:2103.01803]


From Liming Zhang

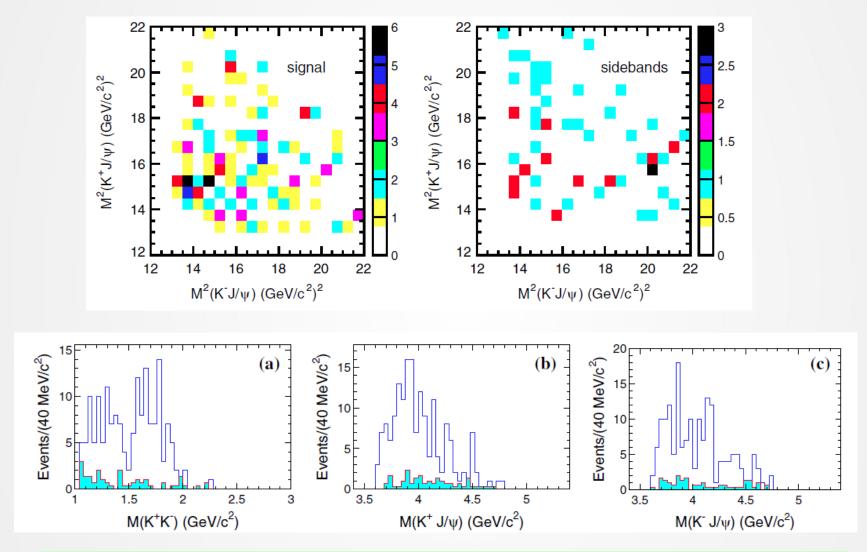
Comparison with BESIII


- BESIII experiment recently reported 5.3σ observation of a very narrow Z_{cs}^- in $D_s^-D^* + DD_s^{*-}$ mass distributions
- Their masses are close, but $Z_{cs}(4000)^+$ is $\sim 10 \times$ broader
- Tests are applied:
 - Fix $Z_{cs}(4000)^+$ to BESIII's result; $2\ln L$ is worse by 160
 - Adding on top of the default model almost doesn't improve the fit likelihood
- No evidence that Z_{cs}(4000)⁺
 is the same as Z_{cs}(3985)⁻
 seen by BESIII

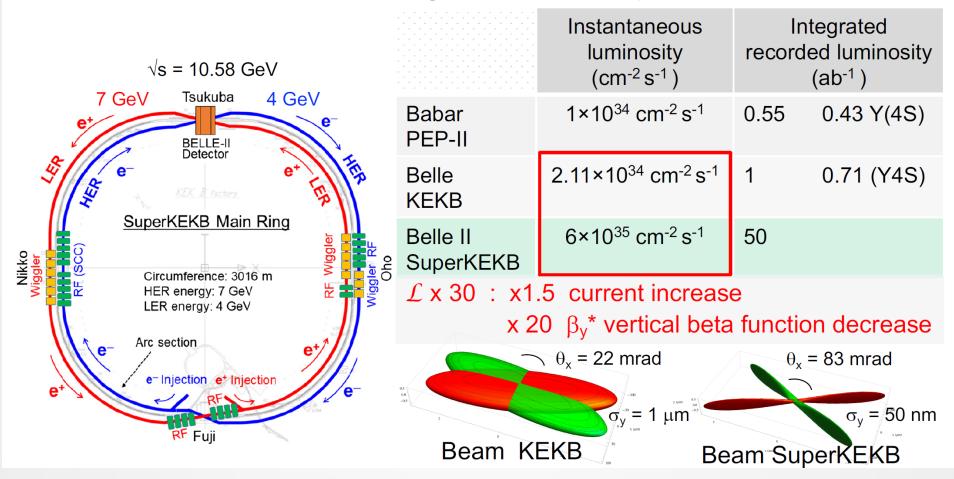
From Liming Zhang



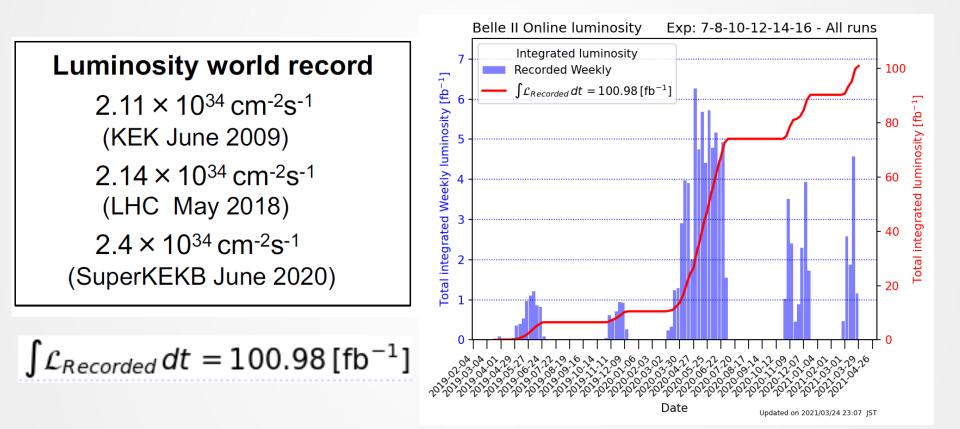
$e^+e^- \rightarrow K^+K^-J/\psi$


PRD 89,072015(2014)

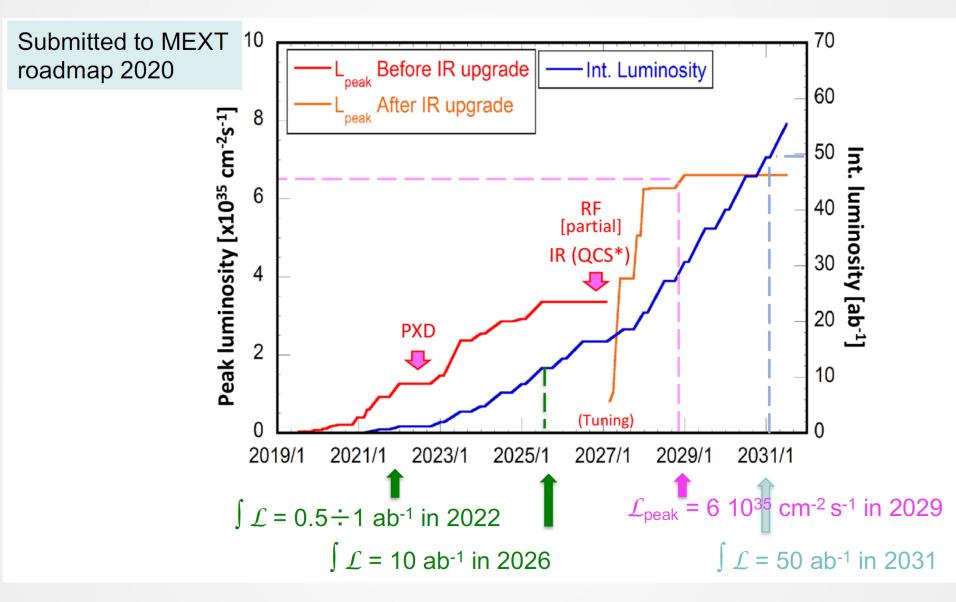
Shaded hist.: J/ψ mass sidebands


Search for $Z_{cs} \rightarrow KJ/\psi$ states in $e^+e^- \rightarrow K^+K^-J/\psi$

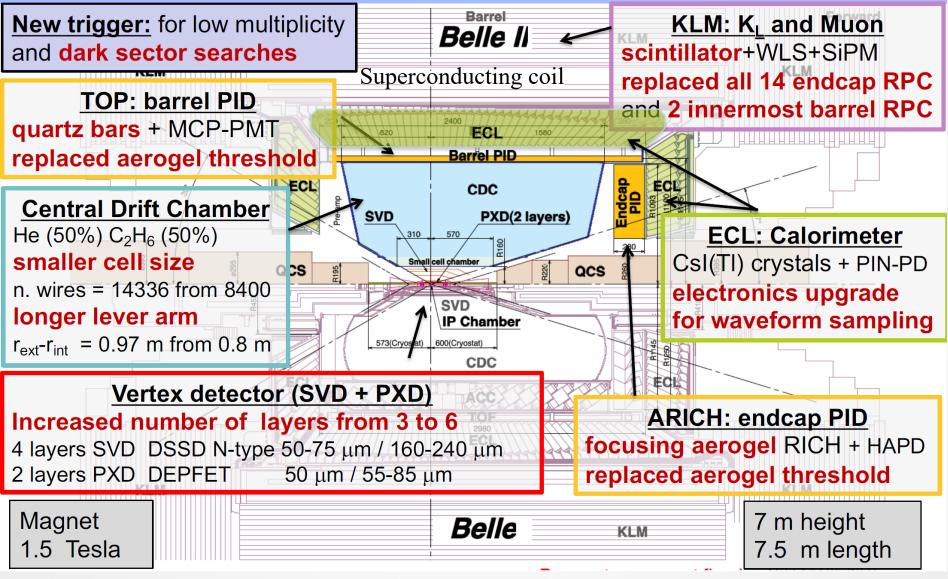
No evident structure in K⁺⁻J/ψ mass distribution under current statistics


SuperKEKB Collider

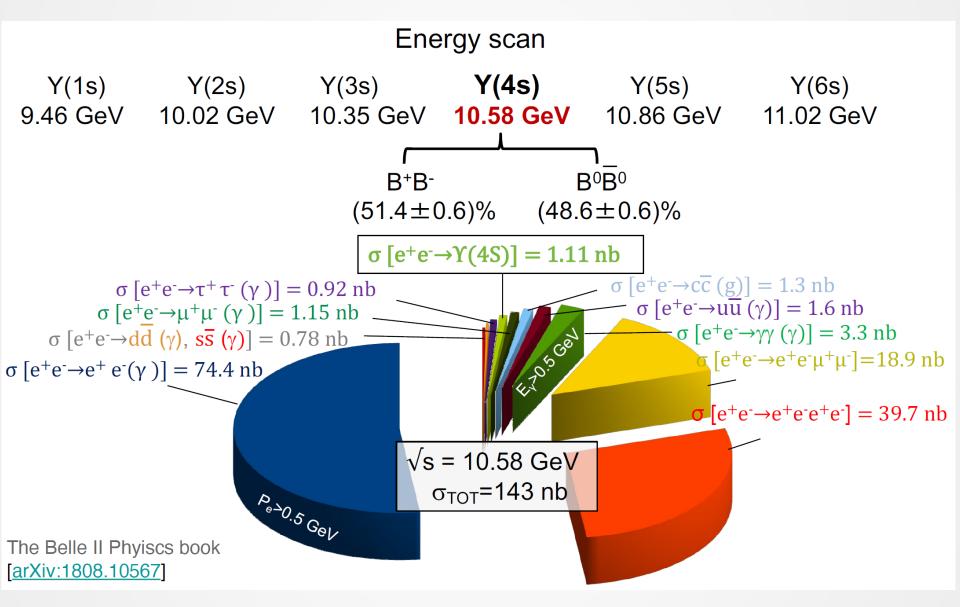
SuperKEKB is a new e⁺e⁻ collider located at KEK (Tsukuba, Japan), it operates in the **intensity frontier** region with a target instantaneous luminosity of 6×10^{35} cm⁻² s⁻¹ which is 30 times larger than that of the previous KEKB collider.


Current integrated luminosity

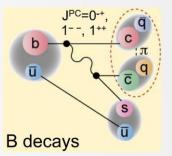
We kept SuperKEKB and Belle II running in 2020/2021 during the COVID-19 crisis, with extra effort from the local crew and the help of remote shifters



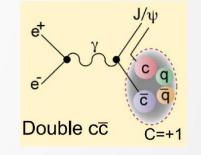
23


Luminosity Plan

Belle II detector


Belle II energy points

Potential XYZ results in charm sector at Belle II


B decays: Competition from LHCb, advantages for modes with neutrals

- Confirm Zc states and search for neutral partners
- Absolute branching fractions $B \rightarrow X(3872,3915) K$
- Confirmation of X(3872) width measurement with $D^0 \overline{D}{}^0 \pi^0$ mode
- Absolute branching fractions are unique for Belle II

ISR processes:

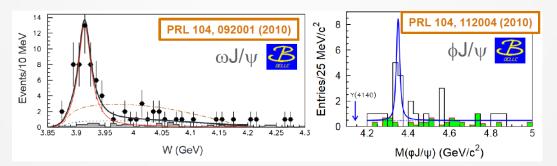
- Continuous mass range to investigate fine structures
- Higher mass region
- Confirm Zc states and search for neutral partners
- Higher mass region (>4.7 GeV) is unique for Belle II

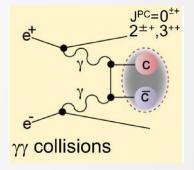
Potential XYZ results in charm sector at Belle II

50

n_(2S)

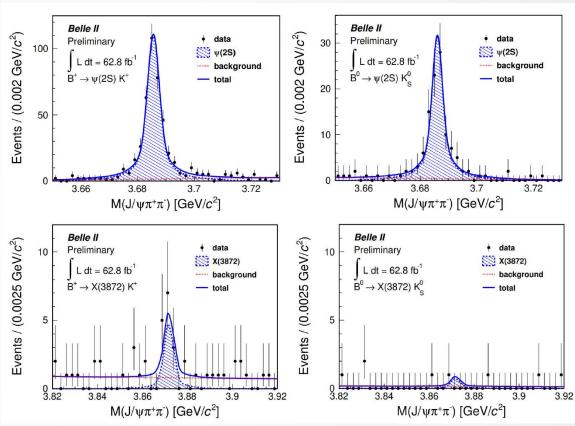
3.5


M_{recoil}(J/ψ)



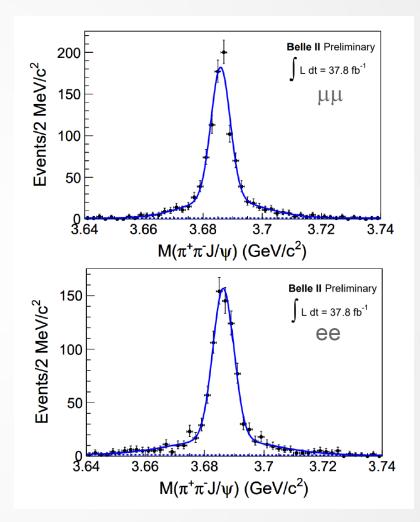
- $e^+e^- \rightarrow (c\bar{c})_{J=1}(c\bar{c})_{J=0}$ production rule
- Rediscovery of X(3940, 4160)
- Expand to other $c\bar{c}$, search for new states

- Determine J^P values for some confirmed states, like X(3915)
- Higher mass region
- Confirm some states with evidence, like X(4350)
- Check more modes, like $D^{(*)}\overline{D}^{(*)}(n)\pi$



Double cc

4.5 GeV/c² J/W


Rediscover the X(3872)

- Reconstruct final states:
 - $B^{\pm} \rightarrow \pi^{+}\pi^{-}J/\psi(\ell^{+}\ell^{-}) K^{\pm}$
 - $B^0 \rightarrow \pi^+\pi^- J/\psi(\ell^+\ell^-) K_S$
- "Standard" selection criteria
 - Particle identification
 - Continuum: nTracks, R₂
 - Kinematics: $M_{\pi+\pi-}$, M_{BC} , $|\Delta E|$
- Observe $B \to \psi(2S)~K$
- First X(3872) at Belle II
 - 14.4±4.6 events (4.6σ)

ISR preliminary studies at Belle II

- $e^+e^-\gamma_{ISR} \rightarrow \pi^+\pi^-J/\psi(\ell^+\ell^-)$ final states
 - Nominal PID requirements
 - |M(J/ψ)-M(PDG)| < 75 MeV
 - ISR photon not required (high efficiency)
 - $|MM^2(\pi^+\pi^-J/\psi)| < 2 \text{ GeV}^2$
- Clear observation of ISR $\psi(\text{2S})$ signals
- Next step: "Y(4260)" rediscovery
 - Expect ~60 total events per 100 fb⁻¹

Summary

- We are still producing interesting XYZ results using Belle data
- The expected Belle II data sample of 50 ab⁻¹ will provide a lot of new opportunities for physics analyses
- Some of them, for example, double charmonium production, charmonium in two-photon processes, are unique for Belle II.
- Several quarkonium states and exclusive B decays to charmonium and other particles were "rediscovered" using the currently available data. Thanks a lot!

Thanks for your attention

沈成平

shencp@buaa.edu.cn