55th Rencontres de Moriond 2021-QCD and High Energy Interactions

Moriond @ home

Rencontres de Moriono

New Phenomena Session

Latest results on τ and dark sector physics at Belle II

European Research Council Established by the European Commission

31/03/2021 Gianluca Inguglia

gianluca.inguglia@oeaw.ac.at

Der Wissenschaftsfonds.

Belle I

Belle II Detector Elements

What happens in e⁺e⁻ collisions at SuperKEKB?

$\sigma[e^+e^- \rightarrow \mu^+\mu^-(\gamma)] = 1.15 nb$ $\sigma[e^+e^- \rightarrow \Upsilon(4S)] = 1.05 nb \qquad (0.80\%) \qquad \sigma[e^+e^- \rightarrow c \overline{c}(\gamma)] = 1.3 nb$ $(0.73\%) \qquad (0.91\%)$		See The Belle II Physics Book		
		ess Cross section [nb]	Cuts	
$\sigma[e^+e^- \rightarrow \tau^+ \tau^-(\gamma)] = 0.92 nb$	$\Upsilon(4S)$	1.05 ± 0.10	-	
$\sigma[e^+e^{-2}d\overline{d}(y)] = 0.40\text{pb} \qquad (0.64\%) \qquad (1.13\%)$	$uar{u}(\gamma)$	1.61	-	
$(0.28\%) \qquad \qquad$	$dar{d}(\gamma)$	0.40	-	
$\sigma[e^+e^- \rightarrow s\overline{s}(\gamma)] = 0.38nb \qquad (2.31\%)$	$sar{s}(\gamma)$	0.38	-	
(0.27%)	$car{c}(\gamma)$	1.30	-	
$\sigma[e^+e^- \rightarrow e^+e^-(\gamma)] = 74.4 nb$	$e^+e^-(\gamma)$	$300\pm3~({\rm MC~stat.})$	$10^{\circ} < \theta^*_{e's} < 170^{\circ},$	
(51.99%)			$E^*_{e's} > 0.15 \text{ GeV}$	
	$e^+e^-(\gamma)$	74.4	e's $(p > 0.5 GeV)$ in ECL	
	$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC~stat.})$	$10^{\circ} < \theta^*_{\gamma's} < 170^{\circ},$	
			$E^*_{\gamma's} > 0.15 \mathrm{GeV}$	
$\sigma[e^+e^- \rightarrow e^+e^-e^+] = 39.$	7 nb $\gamma\gamma(\gamma)$	3.30	$\gamma {\rm ``s} \ (p > 0.5 {\rm GeV})$ in ECL	
(27.74%)	$\mu^+\mu^-(\gamma)$	1.148	-	
	$\mu^+\mu^-(\gamma)$	0.831	μ 's $(p>\!0.5{\rm GeV})$ in CDC	
	$\mu^+\mu^-\gamma(\gamma)$	0.242	μ 's ($p > 0.5$ GeV) in CDC,	
			\geq 1 $\gamma~(E_{\gamma} > 0.5 {\rm GeV})$ in ECL	
	$\tau^+ \tau^-(\gamma)$	0.919	-	
	$ uar u(\gamma)$	0.25×10^{-3}	-	
	$e^+e^-e^+e^-$	$39.7\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5 { m GeV}$	
	$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5 { m GeV}$	

σ : cross-section of the process to be studied in the specific experiment

 $\mathbf{N} = \mathbf{L} \times \boldsymbol{\sigma} \times \boldsymbol{\varepsilon}$

Number of events

of a process

 ε: total efficiency, including trigger.
 @ Belle II many new triggers developed specifically for low multiplicity events

A **SuperB** factory is also a **Super-charm** factory, a **Super-\tau** factory, etc.. This is a great feature of this collision scheme that we can take advantage of.

L: luminosity of

an experiment

As of today @ Belle II $\int L dt = O(100 \text{ fb}^{-1})$

4

Physics with τ at Belle II

 τ as a probe of new physics and of detector performance

Some ongoing physics analyses

- τ mass/lifetime measurements
- LFV $\tau \rightarrow I\gamma$
- LFV $\tau \rightarrow III$
- LFV $\tau \rightarrow I\pi^0$
- LFV & LNV $\tau \rightarrow$ lhh
- LFUV $\tau^+ \rightarrow I^+ \nu_1 \overline{\nu_\tau}, \tau \rightarrow h \nu$
- $|V_{us}|$ from $\tau \rightarrow h\nu$
- Absolute BF measurements for $\tau^+ \rightarrow l^+ \nu_l \overline{\nu_\tau}$
- Dalitz analysis of $\tau \rightarrow 3\pi v$
- Search for $\tau \rightarrow I\alpha$

Some technical studies

- Tracking efficiency
 [BELLE2-NOTE-PL-2020-014]
- Trigger efficiency
 [BELLE2-NOTE-PL-2020-015]
- Particle (mis-)identification [BELLE2-CONF-PH-2021-002]
- Etc.

Physics with τ at Belle II

 τ as a probe of new physics and of detector performance

Some ongoing physics analyses

- τ mass/lifetime measurements
- LFV $\tau \rightarrow I\gamma$
- LFV $\tau \rightarrow \parallel \parallel$
- LFV $\tau \rightarrow I\pi^0$
- LFV & LNV $\tau \rightarrow$ lhh
- LFUV $\tau^+ \rightarrow I^+ \nu_1 \overline{\nu_\tau}, \tau \rightarrow h \nu$
- $|V_{us}|$ from $\tau \rightarrow h\nu$
- Absolute BF measurements for $\tau^+ \rightarrow l^+ \nu_l \overline{\nu_{\tau}}$
- Dalitz analysis of $\tau \rightarrow 3\pi v$
- Search for $\tau \rightarrow I\alpha$

Some technical studies

- Tracking efficiency
 [BELLE2-NOTE-PL-2020-014]
- Trigger efficiency [BELLE2-NOTE-PL-2020-015]
- Particle (mis-)identification [BELLE2-CONF-PH-2021-002]
- Etc.

τ mass measurement at Belle II

- τ mass poorly known compared to e or μ (a few orders of magnitude less precise)
- Important parameter in lepton universality tests

$$B_{\tau \to l}^{SM} \propto B_{\mu \to e} \frac{\tau_{\tau}}{\tau_{\mu}} \frac{m_{\tau}^{5}}{m_{\mu}^{5}}$$

"Pseudomass" calculated from the 4-momentum of the 3-pion system

Signal: $\tau \rightarrow \pi^{+} \pi^{-} \pi^{-} v_{\tau} (BF \sim 9.3\%)$ Tag: $\tau \rightarrow l^{-} \overline{v_{l}} v_{\tau}, \pi^{-} v_{\tau}, \pi^{-} \pi^{0} v_{\tau}$ $(\sum BF \sim 71.52\%)$

τ mass measurement at Belle II

Perform an unbinned maximum likelihood fit to the data using an empirical fit function

$$F(M_{min}|\overline{P}) = (P_3 + P_4 M_{min}) \tan^{-1}(\frac{M_{min} - P_1}{P_2}) + P_5 M_{min} + 2$$

 $m_{\tau} = 1777.28 \pm 0.75_{stat} \pm 0.33_{sys} MeV/c^2$

Main source of systematic uncertainties due to tracking corrections \rightarrow expected to improve as we understand our detector better

As of today @ Belle II $\int L dt = O(100 \text{ fb}^{-1})$

Search for $\tau \to I \alpha$ at Belle II

- Possible new light boson α in tau decays
- Previous search from ARGUS (1995, 476/pb) and MARK III (1985, 9.4/pb)

Search for $\tau \rightarrow I\alpha$ at Belle II

- Possible new light boson α in tau decays •
- Previous search from ARGUS (1995, 476/pb) and MARK III (1985, 9.4/pb) •

See BELLE2-NOTE-PL-2020-018

https://arxiv.org/pdf/1607.06832.pdf

Dark matter?

DISTRIBUTION OF DARK MATTER IN NGC 3198

Dark matter?

DISTRIBUTION OF DARK MATTER IN NGC 3198

Searching for Dark Matter and Forces @ Belle/Belle II

Search for events with missing energy, particle disappearance, dark forces, single/multi-photon final state events, etc.

Some ongoing searches

Belle II

- Dark photon, visible and invisible decays
- Light Z' boson, visible and invisible decays
- Dark higgs boson
- Magnetic monopoles
- Axion like particles
- Long lived particles

From Symmetry Magazine .

Belle II

Searching for Dark Matter and Forces @ Belle/Belle II

Search for events with missing energy, particle disappearance, dark forces, single/multi-photon final state events, etc.

Some ongoing searches

- Dark photon, visible and invisible decays
- Light Z' boson, visible and invisible decays
- Dark higgs boson
- Magnetic monopoles
- Axion like particles
- Long lived particles

From Symmetry Magazine .

Lepton non-universal coupling: the L_{μ} - L_{τ} model and a dark Z'

The model is a new gauge boson, Z', which couples to $L_{\mu} - L_{\tau}$. The interaction Lagrangian is

$$\mathcal{L} = -g'\bar{\mu}\gamma^{\mu}Z'_{\mu}\mu + g'\bar{\tau}\gamma^{\mu}Z'_{\mu}\tau - g'\bar{\nu}_{\mu,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\mu,\mathrm{L}} + g'\bar{\nu}_{\tau,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\tau,\mathrm{L}}$$

The equations for the partial widths are,

Lepton non-universal coupling: the L_{u} - L_{τ} model and a dark Z'

The model is a new gauge boson, Z', which couples to $L_{\mu} - L_{\tau}$. The interaction Lagrangian is

$$\mathcal{L} = -g'\bar{\mu}\gamma^{\mu}Z'_{\mu}\mu + g'\bar{\tau}\gamma^{\mu}Z'_{\mu}\tau - g'\bar{\nu}_{\mu,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\mu,\mathrm{L}} + g'\bar{\nu}_{\tau,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\tau,\mathrm{L}}$$

The equations for the partial widths are,

First physics paper @Belle II, PRL **124**, 141801 (2020), arXiv:1912.11276

Lepton non-universal coupling: the L_{u} - L_{τ} model and a dark Z'

The model is a new gauge boson, Z', which couples to $L_{\mu} - L_{\tau}$. The interaction Lagrangian is

$$\mathcal{L} = -g'\bar{\mu}\gamma^{\mu}Z'_{\mu}\mu + g'\bar{\tau}\gamma^{\mu}Z'_{\mu}\tau - g'\bar{\nu}_{\mu,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\mu,\mathrm{L}} + g'\bar{\nu}_{\tau,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\tau,\mathrm{L}}$$

The equations for the partial widths are,

Z

$$\begin{split} \mathbf{\chi} & \Gamma(Z' \to \ell^+ \ell^-) \ = \ \frac{(g')^2 M_{Z'}}{12\pi} \left(1 + \frac{2M_\ell^2}{M_{Z'}^2} \right) \sqrt{1 - \frac{4M_\ell^2}{M_{Z'}^2}} \, \theta(M_{Z'} - 2M_\ell), \\ & \Gamma(Z' \to \nu_\ell \bar{\nu}_\ell) \ = \ \frac{(g')^2 M_{Z'}}{24\pi}. \\ \mathbf{\chi} & BR(Z' \to invisible) = \frac{2\Gamma(Z' \to \nu_l \overline{\nu}_l)}{2\Gamma(Z' \to \nu_l \overline{\nu}_l) + \Gamma(Z' \to \mathbf{\mu} \overline{\mathbf{\mu}}) + \Gamma(Z' \to \mathbf{\tau} \overline{\mathbf{\tau}})} \end{split}$$

New and improved PID system (KLM) and new machine learning analysis techniques based on artificial neural networksANNs, provide better selection and better sensitivities

Lepton non-universal coupling: the L_{u} - L_{t} model and a dark Z'

The model is a new gauge boson, Z', which couples to $L_{\mu} - L_{\tau}$. The interaction Lagrangian is

$$\mathcal{L} = -g'\bar{\mu}\gamma^{\mu}Z'_{\mu}\mu + g'\bar{\tau}\gamma^{\mu}Z'_{\mu}\tau - g'\bar{\nu}_{\mu,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\mu,\mathrm{L}} + g'\bar{\nu}_{\tau,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\tau,\mathrm{L}}$$

The equations for the partial widths are,

$$\begin{split} \bullet^{\chi} & \Gamma(Z' \to \ell^+ \ell^-) = \frac{(g')^2 M_{Z'}}{12\pi} \left(1 + \frac{2M_{\ell}^2}{M_{Z'}^2} \right) \sqrt{1 - \frac{4M_{\ell}^2}{M_{Z'}^2}} \, \theta(M_{Z'} - 2M_{\ell}), \\ & \Gamma(Z' \to \nu_{\ell} \bar{\nu}_{\ell}) = \frac{(g')^2 M_{Z'}}{24\pi}. \\ \bullet_{\overline{\chi}} & BR(Z' \to invisible) = \frac{2\Gamma(Z' \to \nu_l \overline{\nu}_l)}{2\Gamma(Z' \to \nu_l \overline{\nu}_l) + \Gamma(Z' \to \mu \overline{\mu}) + \Gamma(Z' \to \tau \overline{\tau})} \end{split}$$

PRL 124, 141801 (2020),

New and improved PID system (KLM) and new machine learning analysis techniques based on artificial neural networksANNs, provide better selection and better sensitivities

Dark Higgs-strahlung @ Belle II

See B. Batell, M. Pospelov, and A. Ritz Phys. Rev. D 79, 356 115008 (2009), arXiv:0903.0363

Thanks to (small) kinetic mixing with the standard model photon, the dark photon A' can decay to standard model final states

Higgs-strahlung process

h'= dark Higgs,

A'= dark photon

Higgs-strahlung: h' decays depending on $M_{h'}$ and M_A . Measures the coupling constant of the dark photon to the dark Higgs, α_{D} .

 $M_{h'} > 2M_{A'}$: h' \rightarrow A'A', Very low background.

Exclusive: 3 charged tracks pairs with same invariant mass and total energy of the event.

Inclusive: 2 charged tracks pairs, same invariant mass, third A' from 4-mom.

of e⁺e⁻ system

 $M_{A'} \leq M_{h'} \leq 2M_{A'} \colon h' \to A'A'^*$

 $M_{h'} < M_{A'}$: h' (very) **long-lived**

Dark Higgs-strahlung @ Belle II

See B. Batell, M. Pospelov, and A. Ritz Phys. Rev. D 79, 356 115008 (2009), arXiv:0903.0363

Higgs-strahlung process

h'= dark Higgs,

A'= dark photon

Higgs-strahlung: h' decays depending on $M_{h'}$ and M_A . Measures the coupling constant of the dark photon to the dark Higgs, α_{D} .

 $M_{h'} > 2M_{A'}$: h' \rightarrow A'A', Very low background.

Exclusive: 3 charged tracks pairs with same invariant mass and total energy of the event.

Inclusive: 2 charged tracks pairs, same invariant mass, third A' from 4-mom.

of e⁺e⁻ system

 $M_{A'} \leq M_{h'} \leq 2M_{A'} \colon h' \to A'A''$

 $M_{h'} < M_{A'}$: h' (very) long lived

Dark Higgs-strahlung @ Belle II

See B. Batell, M. Pospelov, and A. Ritz Phys. Rev. D 79, 356 115008 (2009), arXiv:0903.0363

Higgs-strahlung process

h'= dark Higgs,

A'= dark photon

Higgs-strahlung: h' decays depending on $M_{h'}$ and M_A . Measures the coupling constant of the dark photon to the dark Higgs, α_D .

 $M_{h'} > 2M_{A'}$: h' \rightarrow A'A', Very low background.

Exclusive: 3 charged tracks pairs with same invariant mass and total energy of the event.

Inclusive: 2 charged tracks pairs, same invariant mass, third A' from 4-mom.

of e⁺e⁻ system

 $M_{A'} \leq M_{h'} \leq 2M_{A'} \colon h' \to A'A'^*$

 $M_{h'} < M_{A'}$: h' (very) long lived

Dark Higgs-strahlung @ Belle II with 10/fb

See B. Batell, M. Pospelov, and A. Ritz Phys. Rev. D 79, 356 115008 (2009), arXiv:0903.0363

Axion Like Particles (ALPs) at Belle II

ALPstrahalung at Belle II

- Three photons that add up to the beam energy + bump on diphoton mass.
- SM background: $e^+e^- \rightarrow \gamma\gamma(\gamma)$, $e^+e^- \rightarrow e^+e^-(\gamma)$, and $e^+e^- \rightarrow scalar+\gamma(\gamma)$

55th Rentres de Moriond 2021 - QCD: Moriond @ home

New Phenomena Session

Latest results on τ and dark sector physics at Belle II Summary

- Presented a selection of recent results and ongoing analyses
- We are accumulating data at unprecedented luminosity
- Many new results to be expected in the near future

Der Wissenschaftsfonds

Moriond QCD 2021: very unusual conference settings... Still an amazing event!

Thank you for your attention!

European Research Council Established by the European Commission

31/03/2021 Gianluca Inguglia

gianluca.inguglia@oeaw.ac.at

Der Wissenschaftsfonds.

