Recent V<sub>cb</sub>, charm and tau measurements at Belle II

Navid K. Rad (DESY) on behalf of the Belle II collaboration

Rencontres de Moriond: Electroweak Interactions & Unified Theories March 20-27, 2021







### SuperKEKB and the Belle II detector

#### • SuperKEKB

- energy-asymmetric e<sup>+</sup>e<sup>-</sup> collider in Tsukuba, Japan
- center-of-mass energy at (and near)  $m(\Upsilon(4S))=10.58 \text{ GeV}$
- Target:
  - instantaneous lumi of 6x10<sup>35</sup>cm<sup>-2</sup>s<sup>-1</sup> (30 larger than KEKB)
  - integrated lumi: 50 ab<sup>-1</sup> (50 times larger than KEKB)
- improvement achieved via the nanobeam scheme

### Belle II detector

- upgraded Belle for higher luminosities (and its challenges)
- inner track detectors system (VXD) fully replaced
  - 2 (currently 1+2/12) new layers of DEPFET pixel detector (PXD)
  - 4 layers of double-sided silicon strip detector
- new drift chamber (CDC)
- upgraded electronic readouts for the EM calorimeter (ECL)
- Cherenkov detectors for particle ID (PID) (TOP and ARICH)
- K<sub>1</sub> and muon detector (KLM)

### ⇒ Nearly 100/fb of data collected since 2019!



### **Physics at Belle II**

- Not *just* a B-factory!
  - $\tau$ , c, and b pairs have similar cross sections at  $\sqrt{s} = 10.58$  GeV

 $\sigma(e^+e^- \rightarrow \Upsilon(4S)) = 1.11 \text{ nb}$   $\sigma(e^+e^- \rightarrow c\overline{c}) = 1.3 \text{ nb}$  $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$ 

- Wide physics program
  - precision measurements of time-dependent CPV and CKM parameters
  - searches for lepton flavor universality/number violations
  - dark-sector searches
  - and many more



- Shown today:
  - recent results towards V<sub>ch</sub>
  - New: time-indep.  $\chi_d$  measurement
  - New: Rediscovery of  $B \rightarrow \eta' K$
  - D<sup>0</sup> lifetime measurement
  - New:  $D^{*+} \rightarrow D^0 (\rightarrow \pi^+ \pi^- \pi^0) \pi^+_{s}$
  - tau mass measurement

### **V**<sub>cb</sub> **Current situation...**

- Precision measurement of CKM matrix:
  - one of the main focuses of any flavor factory
- Long-standing tension: *inclusive* vs. *exclusive* measurements |V<sub>cb</sub>| and |V<sub>ub</sub>|
- Semileptonic decays of B-meson leading |V<sub>cb</sub> and |V<sub>ub</sub>| measurements

#### Exclusive approach:

- reconstruct the semi-leptonic decays of the B meson
- can be tagged or untagged





#### arXiv:2008.07198

#### arXiv:2009.04493



## Time-integrated mixing probability $\chi_d$

• Measuring  $\chi_d$  can help constrain  $B^0-\overline{B}^0$  mixing parameters  $x_d$  and  $y_d$ :

$$x_d = \Delta m_d / \Gamma_d \,, \qquad y_d = \Delta \Gamma_d / \Gamma_d \,,$$

 Measure by counting number of same-sign (N<sub>ss</sub>) and opposite-sign (N<sub>os</sub>) semileptonic\* BB decay:

$$\chi_d = \frac{N_{\rm SS}}{N_{\rm SS} + N_{\rm OS} \cdot \left(\epsilon_{OS}/\epsilon_{SS}\right)^{-1}} \cdot (1 + r_B)$$

 $r_{\rm B}: \quad {\rm accounts \ for \ contribution \ due \ to \ charged \ B-mesons} \\ \epsilon_{\rm OS}/\epsilon_{\rm SS} \ \ {\rm ratio \ of \ OS \ and \ SS \ signal \ efficiencies}$ 

\*here only electrons are used



- Infer the B flavor from the lepton charge
  - <u>same sign leptons may indicate mixing</u>
  - But not if it is a secondary lepton
  - or if both leptons from the same B
  - ⇒ in MC classify event as as signal only if both leptons daughters of different B's

### • Reconstructing the candidates:

- 2 high momentum electrons
- tight electron ID requirements

### • Backgrounds:

- veto events with a track pair compatible w J/ $\Psi$ , photo-conversions,  $\pi^0$  decays
- continuum background described by 'off-resonance' data
- and suppressed using Fox-Wolfram moments (R<sub>2</sub>) and track multiplicity

#### New from Belle II Time-integrated mixing probability $\chi_d$

- Signal yield extraction:
  - sum of lepton momenta used:

 $p_{ee}^{*} = |p_{e1}^{*}| + |p_{e2}^{*}|$ 

- six-component binned-likelihood fit
- from extracted signal yields calculate  $\chi_d$
- Result:
  - systematics dominated by electron ID

 $\chi_{\rm d}^{\rm meas.} = 0.193 \pm 0.010 \text{ (stat)} \pm 0.016 \text{ (syst)}$ 

current world average:

 $\chi_{\rm d}^{\rm PDG}$  = 0.1858 ± 0.0011

current time-independent average:  $\chi_{d}^{\text{time-in}} = 0.182 \pm 0.015$ 

- $\Rightarrow$  compatible with world-average
- ⇒ and comparable uncertainty to the world-average of time-integrated measurements!



Navid K. Rad

## New from Belle II Rediscovery of $B \rightarrow \eta' K$

- Motivation
  - rare charmless B-decay, mediated by hadronic penguin diagram
  - sensitive to new physics contributions
  - theoretically clean mode to calculate
- towards time-dependent analysis:
  - rediscovery of the decay and BR measurement
- Reconstruct <u>charge and neutral</u> modes:

 $B^+ \rightarrow \eta' K^+$ 

 $\mathbf{B^0} \rightarrow \mathbf{\eta'K^0} \text{ (only } \mathbf{K_s} \rightarrow \pi^+\pi^-)$ 

- Included η' decays:
  - $\circ \qquad \mathsf{\eta'} \to \mathsf{\eta} (\to \gamma \gamma) \ \pi^{+} \pi^{-}$
  - $\circ \qquad \mathbf{\eta'} \to \boldsymbol{\rho} (\to \pi^+ \pi^-) \gamma$
- Background
  - signal self-cross-feed (SxF)
    - wrong  $\pi$ ,  $\gamma$  or a combination
  - continuum suppression dedicated BDT (CS<sub>var</sub>)
  - validated on off-resonance data



- Signal extraction:
  - three components:
    - signal+SxF
    - ---- continuum
    - M peaking background
  - observables:

$$M_{\rm bc} = \sqrt{\frac{M_{\rm bc},\Delta \rm E,CS_{\rm var}}{E_{\rm beam}^{*2}/c^4 - p_B^{*2}/c^2}}$$

$$\Delta E = E_B^* - E_{beam}$$

Navid K. Rad

#### New from Belle II Rediscovery of $B \rightarrow \eta' K$

### • Fit results:

- PDF's for each observable and component modelled independently
- fit seen to have no bias in toy MC validation

### • Systematics:

depending on the channel dominated by continuum suppression, SxF contamination, or K<sub>s</sub> efficiency

### Results

- BR's are obtained from signal yields in each of the four channels.
- Results consistent within channels, and with Belle, BaBar and world-average

$$\mathcal{B}\left(B^{\pm} \to \eta' K\right) = \left(63.4 \ ^{+3.4}_{-3.3} \,(\text{stat}) \pm 3.2 \,(\text{syst})\right) \times 10^{-6}$$
$$\mathcal{B}\left(B^{0} \to \eta' K^{0}\right) = \left(59.9 \ ^{+5.8}_{-5.5} \,(\text{stat}) \pm 2.9 \,(\text{syst})\right) \times 10^{-6}$$



⇒ work toward the time-dependent CPV analysis!

### **D<sup>0</sup> lifetime**

- Measurement done in 3 D\*-tagged D<sup>0</sup> channels:
  - $\circ \qquad \mathsf{D}^0 \longrightarrow \mathsf{K}^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}, \quad \mathsf{D}^0 \longrightarrow \mathsf{K}^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^0 \text{ , } \mathsf{D}^0 \longrightarrow \mathsf{K}^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
  - veto D\* candidates from B decay (require  $p^*(D^*) \ge 2.5 \text{ GeV}$ )
  - **decay-vertex:** From K and  $\pi$ 's
  - **production-vertex:** extrapolate from  $D^0$  to  $\pi_s$  with beamspot as a constraint
  - from vertex fit the decay-time (t) and decay-time uncertainty ( $\sigma_{_{\scriptscriptstyle T}}$ ) are obtained





BELLE2 NOTE PL 2020 008

#### Challenge:

average D<sup>0</sup> flight distance around
 220 μm

#### Advantages w.r.t Belle

- nanobeam scheme of SuperKEKB
- innermost layer of vertex detector
   1.4 cm from IP (half of Belle)

#### ⇒ proper-time resolution 2x better than Belle!

#### • What to expect next:

- Full-fledged blinded analysis currently ongoing with 72/fb
- precision expected to be competitive with world average!
- $D^{\pm}$ ,  $D_{s}$  and  $\Lambda_{c}$  lifetimes also on the way!
- ⇒ already with 72/fb Belle II life-time measurements expected to be competitive with world-averages!

## Dalitz analysis $D^{*+} \rightarrow D^0 (\rightarrow \pi^+ \pi^- \pi^0) \pi^+_{s}$

- Target: time-integrated Dalitz analysis to study CPV in D<sup>0</sup> decay
  - <u>for now</u>: demonstrate ability to extract yields
- Reconstruction:
  - pion ID used to reduce mis-ID Kaons
  - veto D\*'s from B: require  $p^*(D^*) > 2.5 \text{ GeV}$
  - Vertex fit on D\* using IP and mass of and  $\pi^0$  as constraints
  - allow up to two D\* candidates per event
- Results:
  - extract yield/fb<sup>-1</sup> from the  $\Delta M$  distribution  $\Delta M = M(D^*) - M(D^0)$
  - Fit using a gaussian sum as signal and threshold pdf for background
  - Fit result corrected for peaking-background contribution

$$N_{sig}/fb^{-1} = 305 \pm 15^{\circ}$$

\*includes stat and impact of peaking-background-correction





### **Summary**

- We're constantly improving our understanding of the detector
- Many systematics already comparable to Belle and BaBar
  - impressive since Belle II is still at an early stage
- Many more exciting results expected in the coming months and years!
- For more from Belle II see:

Dark Sector searches by Giacomo



Dark Sector searches at Belle II

Giacomo De Pietro





55th Rencontres de Moriond Electroweak Interactions and Unified Theories 20-27 March 2021

### Search for $B^+ \rightarrow K^+ \nu \overline{\nu}$ by Filippo

Search for  $B^+ \to K^+ \nu \bar{\nu}$  decays with an inclusive tagging method at the Belle II experiment

55th Rencontres de Moriond Electroweak Interactions & Unified Theories March 24, 2021

Filippo Dattola on behalf of the Belle II Collaboration







### Luminosity status and plans

- Nearly 100/fb of data collected since 2019!
- Challenges in the pandemic:

10

8

6

2019/1

2021/1

Peak luminosity [x10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>]

data taking efficiency largely unaffected

Before IR upgrade

After IR upgrade

PXD

2023/1

2025/1

• thanks to extra remote shifts, socially distanced in-person ones

RF [partial] IR (QCS\*)

(Tuning)

2027/1

2029/1

Int. Luminosity

• most importantly, super hard work from local colleagues





## More on V<sub>cb</sub> results:

### **Exclusive B^0 \rightarrow D^\* \ell \nu (untagged)**

#### • Exclusively reconstruct the $B \rightarrow D^{*}\ell v$ decay

- first identify lepton using a PID algorithm
- reconstruct  $D^0$  from K and  $\pi$
- combine the D<sup>0</sup> with a  $\pi_s$  (slow pion)
- Continuum background suppression:
  - apply cuts on momentum of D\* and ratio of the Fox-Wolfram moments (R<sub>2</sub>)
- Signal yield
  - extracted by fitting cos(θ<sub>BY</sub>)
     (Y: D\*l system)

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|},$$

Branching fraction measured as:

$$\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_l) = (4.60 \pm 0.05_{\text{stat}} \pm 0.17_{\text{syst}} \pm 0.45_{\pi_s}) \%,$$



#### arXiv:2008.07198



- Ratio of  $\mu$  and e BRs:
  - $\circ$  consistent with the SM expectation

$$R_{e\mu} = \frac{\mathcal{B}(\overline{B}{}^0 \to D^{*+}e^-\overline{\nu}_e)}{\mathcal{B}(\overline{B}{}^0 \to D^{*+}\mu^-\overline{\nu}_\mu)} = 0.99 \pm 0.03$$

Navid K. Rad

### **Exclusive B^0 \rightarrow D^\* \ell \nu (untagged)**

• Hadronic recoil parameter (w)

$$w = \frac{m_B^2 + m_{D^{*+}}^2 - q^2}{2m_B m_{D^{*+}}} = v_B \cdot v_{D^{*+}}$$

- q: momentum transfer (B to D\*)
- partial branching fractions in bins of w
- $\circ$  signal yields in each bin measured from the  $cos(\theta_{_{BY}})$  fit
- results unfolded to account for resolution and efficiency effects
- Important step towards precision measurements of |V<sub>cb</sub>|
- Systematics:
  - dominated by tracking of slow pions.
  - expected to improve with larger control samples



# **Exclusive B**<sup>-</sup> $\rightarrow$ **D**<sup>0</sup> $\ell \nu$ search (untagged) $\stackrel{B^+}{\longrightarrow} \Upsilon^{(4S)} \stackrel{B^-}{\longrightarrow} \chi^-_{\nu_{\ell}} \chi^-_{\nu_{\ell}}$

- Similar to  $B^0 \rightarrow D^* \ell v$ 
  - apply D\* veto:
  - try to reconstruct D\* from D<sup>0</sup> and a soft  $\pi$
  - veto if mass compatible with D\* mass
- Large background contamination from D\*
- Good agreement between data and MC



### Inclusive $B \rightarrow X_c \ell v$ : Hadronic Mass Moments

- Mass moments:
  - can be used to determine  $V_{ch}$  and  $m_{h}$  within the Heavy Ο Quark Expansions (HQE) of QCD

#### Reconstruction

- Signal B selected using a high momentum lepton  $\bigcirc$
- Tag B fully reconstructed using *Full Event Interpretation*  $\bigcirc$
- X<sub>s</sub> system defined as Rest of the Event (ROE) 0

### **Background subtraction:**

- continuum suppression by a dedicated BDT  $\bigcirc$
- Signal probability estimated as a function of M<sub>v</sub> 0
- Verified in the background enriched  $B^+\ell^+$ ,  $B^-\ell^-$  control  $\bigcirc$ samples

### Extraction of moments

- The mass moments are calculated using the weighted Ο means of the M<sub>v</sub> distributions. (weighted by the signal probability)  $\langle M_X^n \rangle = \frac{\sum_i w_i(M_X) M_{X,\text{calib}i}}{\sum_i w_i(M_X)} \times \mathcal{C}_{\text{calib}} \times \mathcal{C}_{\text{true}}.$
- First need to calibrate M<sub>x</sub>





Navid K. Rad

Moriond 2021

22

p<sup>\*</sup> Cut [GeV/c]

### Hadronic Mass Moments: Background subtraction





FIG. 3: The left column shows the  $M_X$  distribution in data and background MC (normalized to the events in data) for  $p_{\ell}^* > 0.8 \,\text{GeV}/c$ . The corresponding background subtraction factors  $w_i$  are shown in the right column together with a fitted Legendre polynomial of degree 7. If the fit has a minimum at the left or right tail, the polynomial is replaced with a constant value. The uncertainties are from statistical uncertainties only.

### **Hadronic Mass moments**

#### arXiv:2009.04493



## Rediscovery of $B{\rightarrow}\,\eta'\,K$

#### New from Belle II Rediscovery of $B \rightarrow \eta' K$

### Systematics:

Navid K. Rad



#### TABLE 2. Summary of systematics uncertainties (in %) by category and channel.

| Channel                     | $B^{\pm} \to \eta' K^{\pm}$ | $B^{\prime\prime} \to \eta^\prime K_S^{\prime\prime}$ | $B^{\pm} \to \eta' K^{\pm}$   | $B^{\prime\prime} 	o \eta^\prime K_S^{\prime\prime}$ |
|-----------------------------|-----------------------------|-------------------------------------------------------|-------------------------------|------------------------------------------------------|
| Source                      | $\eta' 	o \eta \pi^+ \pi^-$ |                                                       | $\eta'  ightarrow  ho \gamma$ |                                                      |
| Tracking efficiency         | 2.1                         | 2.8                                                   | 2.1                           | 2.8                                                  |
| Photon efficiency           | 0.5                         | 0.5                                                   | 0.5                           | 0.5                                                  |
| $K_S^0$ efficiency          | -                           | 4.5                                                   | -                             | 4.5                                                  |
| $\pi^{\pm}$ PID             | -                           | -                                                     | 2.4                           | 2.4                                                  |
| $K^{\pm}$ PID               | 2.5                         | -                                                     | 2.5                           | -                                                    |
| Cont. supp. modelling       | 5.0                         | 1.0                                                   | 5.5                           | 2.3                                                  |
| SxF fraction                | 2.6                         | 1.8                                                   | 5.9                           | 3.2                                                  |
| $\mathrm{N}(B\overline{B})$ |                             |                                                       | 1.4                           |                                                      |
| Total                       | 6.6                         | 5.9                                                   | 9.1                           | 7.2                                                  |

### FIG. 6. Distribution of invariant mass of $\eta'$ , without any mass constraint, for the four channels in the signal-enriched region ( $\mathcal{L}_R > 0.7$ ).

### invariant mass distribution of **ŋ'**

## New from Belle II Rediscovery of $B \rightarrow \eta' K$

Fit results:  $B^{\pm} \rightarrow \eta' K^{\pm}$ 



Navid K. Rad

New from Belle II Rediscovery of  $B \rightarrow \eta' K$ 

Fit results:  $B^0 \rightarrow \eta' K^0$ 



Navid K. Rad

Moriond 2021

3

### Tau lepton mass measurement:



Navid K. Rad

### **Bonus:**

### Tau lifetime proper-time resolution

Stefano Moneta (EPIPHANY 2021)



### Extracting the mass:

- Mass extracted using an unbinned ML fit
  - An empirical edge function used:

 $F(M_{min} | \vec{P}) = (P_3 + P_4 \cdot M_{min}) \cdot tan^{-1}(\frac{M_{min} - P_1}{P_2}) + P_5 \cdot M_{min} + 1$ 

- The bias in the fit is estimated from dedicated MC 0
- The tau mass is measured in data:  $\bigcirc$

m\_ = 1777.28 ± 0.75 (stat) ± 0.33 (syst) MeV

### Systematics:

- similar to previous measurement using this method
- dominated by tracking corrections Ο
- expected to improve as we gain better  $\bigcirc$ understanding of the detector

#### Future:

0

- Expect to achieve the best precision using the pseudomass technique
  - Eventually perform CPV test as well



Navid K. Rad

1773

### **D<sup>0</sup> lifetime**

- Lifetime extracted with a fit:
  - unbinned 2D ML fit
  - decay-time (t) and decay-time uncertainty ( $\sigma_t$ )
  - PDF: convolution of exponential function and a resolution function.



• Average of the three channels:

 $\tau(D^0) = 412.3 \pm 2.0$  fs (stat. only)

### **Lepton ID**

#### electron and muon identification efficiencies measured in data



### **Trigger Efficiency**

- Measured in 3x1 tau decays:
  - CDC track trigger efficiencies measured w.r.t to ECL trigger

### BELLE2-NOTE-PL-2020-015



Moriond 2021



### **SuperKEKB designed machine parameters**

| Machine Para | ameters |
|--------------|---------|
|--------------|---------|

| 2017/September/1                 | LER                         | HER                         | unit                             |                    |
|----------------------------------|-----------------------------|-----------------------------|----------------------------------|--------------------|
| E                                | 4.000                       | 7.007                       | GeV                              |                    |
| Ι                                | 3.6                         | 2.6                         | А                                |                    |
| Number of bunches                | 2,500                       |                             |                                  |                    |
| Bunch Current                    | 1.44                        | 1.04                        | mA                               |                    |
| Circumference                    | 3,016.315                   |                             | m                                |                    |
| ε <sub>x</sub> /ε <sub>y</sub>   | 3.2(1.9)/8.64(2.8)          | 4.6(4.4)/12.9(1.5)          | nm/pm                            | ():zero current    |
| Coupling                         | 0.27                        | 0.28                        |                                  | includes beam-beam |
| $\beta_x^*/\beta_y^*$            | 32/0.27                     | 25/0.30                     | mm                               |                    |
| Crossing angle                   | 83                          |                             | mrad                             |                    |
| α <sub>p</sub>                   | 3.20x10 <sup>-4</sup>       | 4.55x10 <sup>-4</sup>       |                                  |                    |
| σδ                               | 7.92(7.53)x10 <sup>-4</sup> | 6.37(6.30)x10 <sup>-4</sup> |                                  | ():zero current    |
| Vc                               | 9.4                         | 15.0                        | MV                               |                    |
| σz                               | 6(4.7)                      | 5(4.9)                      | mm                               | ():zero current    |
| Vs                               | -0.0245                     | -0.0280                     |                                  |                    |
| v <sub>x</sub> /v <sub>y</sub>   | 44.53/46.57                 | 45.53/43.57                 |                                  |                    |
| Uo                               | 1.76                        | 2.43                        | MeV                              |                    |
| τ <sub>x,y</sub> /τ <sub>s</sub> | 45.7/22.8                   | 58.0/29.0                   | msec                             |                    |
| ξ <sub>x</sub> /ξ <sub>y</sub>   | 0.0028/0.0881               | 0.0012/0.0807               |                                  |                    |
| Luminosity                       | 8x10 <sup>35</sup>          |                             | cm <sup>-2</sup> s <sup>-1</sup> |                    |

Navid K. Rad