Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

55th Rencontres de Moriond Electroweak Interactions & Unified Theories March 24, 2021

Filippo Dattola on behalf of the Belle II Collaboration

In the Standard Model:

- $b \rightarrow s \nu \bar{\nu}$ flavour-changing neutral-current transition;
- occurs at the loop level, **suppressed** by the extended GIM mechanism;
- clean theoretical prediction:

 $BR(B^+ \to K^+ \nu \bar{\nu})_{SM} = (4.6 \pm 0.5) \times 10^{-6}$ [W. Altmannshofer et al. The Belle II Physics Book. 2018.] [David M. Straub et al. Rare B decays as tests of the Standard Model]

• $b \rightarrow s \nu \bar{\nu}$ flavour-changing neutral-current

In the Standard Model:

transition;

- $\frac{v}{v} \qquad \overline{v} \qquad \overline{v$
- occurs at the loop level, **suppressed** by the extended GIM mechanism;
- clean theoretical prediction:

 $BR(B^+ \to K^+ \nu \bar{\nu})_{SM} = (4.6 \pm 0.5) \times 10^{-6}$ [W. Altmannshofer et al. The Belle II Physics Book. 2018.] [David M. Straub et al. Rare B decays as tests of the Standard Model]

Optimal measurement to probe the SM and to constrain scenarios beyond it.

In the Standard Model:

- $b \rightarrow s\nu\bar{\nu}$ flavour-changing neutral-current transition;
- occurs at the loop level, suppressed by the extended GIM mechanism;
- clean theoretical prediction:

 $BR(B^+ \to K^+ \nu \bar{\nu})_{SM} = (4.6 \pm 0.5) \times 10^{-6}$ [W. Altmannshofer et al. The Belle II Physics Book. 2018.] [David M. Straub et al. Rare B decays as tests of the Standard Model]

Optimal measurement to probe the SM and to constrain scenarios beyond it.

- A challenging measurement:
 - decay with 2 neutrinos in the final state leaving no signature in the detector;
 - can be measured at B factories because of the clean event environment and the well defined initial state.

SuperKEKB

SuperKEKB

- Asymmetric-energy e^+e^- collider operating at $\sqrt{s} = 10.58 \text{ GeV} \rightarrow \Upsilon(4S)$ resonance.
- Second generation B factory based on the nanobeam scheme: major upgrade of its predecessor KEKB.
- World highest instantaneous luminosity: $2.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ recorded in June 2020.
- Total integrated luminosity up to now (2021) $\sim 90 \text{ fb}^{-1}$.

SuperKEKB

- Asymmetric-energy e^+e^- collider operating at $\sqrt{s} = 10.58 \text{ GeV} \rightarrow \Upsilon(4\text{S})$ resonance.
- Second generation B factory based on the nanobeam scheme: major upgrade of its predecessor KEKB.
- World highest instantaneous luminosity: $2.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ recorded in June 2020.
- Total integrated luminosity up to now (2021) $\sim 90 \text{ fb}^{-1}$.
- For this study:

The Belle II detector

The Belle II detector

New detector with respect to the predecessor Belle.

The **previous** studies all adopted an **explicit reconstruction of the** B_{tag}

 $e^- \rightarrow \Upsilon(4S) \leftarrow e^+$

The **previous** studies all adopted an **explicit reconstruction of the** B_{tag}

The **previous** studies all adopted an **explicit reconstruction of the** B_{tag}

The **previous** studies all adopted an **explicit reconstruction of the** B_{tag} followed by the signal reconstruction.

Low reconstruction efficiency because of the low tag-reconstruction efficiency:

- hadronic tag $\epsilon_{sig}\cdot\epsilon_{tag}\sim 0.04\,\%$
- semileptonic tag $\epsilon_{sig}\cdot\epsilon_{tag}\sim 0.2~\%$

Only upper limits on the branching ratios were set:

Experiment	Year	Observed limit on ${\rm BR}(B^+\to K^+\nu\bar\nu)$	Approach	Data[fb ⁻¹]
BABAR	2013	< 1.6 × 10 ⁻⁵ [Phys.Rev.D87,112005]	SL + Had tag	429
Belle	2013	< 5.5 × 10 ⁻⁵ [Phys.Rev.D87,111103(R)]	Had tag	711
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tag	711

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

The idea

The idea

• Signal reconstructed as the highest $p_{\rm T}$ track with at least 1 PXD hit (correct match $\sim 80~\%$)

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

The idea

• Signal reconstructed as the highest $p_{\rm T}$ track with at least 1 PXD hit (correct match $\sim 80~\%$)

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

The idea

• Signal reconstructed as the highest $p_{\rm T}$ track with at least 1 PXD hit (correct match $\sim 80~\%$) followed by inclusive reconstruction of the rest of the event (ROE).

The idea

- Signal reconstructed as the highest $p_{\rm T}$ track with at least 1 PXD hit (correct match $\sim 80~\%$) followed by inclusive reconstruction of the rest of the event (ROE).
- Higher signal efficiency $\epsilon_{sig} \sim 4\%$ but larger background contributions from generic B decays and continuum production $(u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s})$.

Signal identification exploiting topological features of $B^+ \to K^+ \nu \bar{\nu}$

Signal identification exploiting topological features of $B^+ \to K^+ \nu \bar{\nu}$.

Signal identification exploiting topological features of $B^+ \to K^+ \nu \bar{\nu}$.

- other variables related to the event features;
- variables related to the kinematics of the signal K candidate;
- variables related to the ROE;
- variables related to the D^0/D^+ suppression.

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

• train BDT₁ on 1.6M signal events and $1.6M \times (B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

• train BDT₁ on 1.6M signal events and 1.6M × $(B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

FIRST SIGNAL IDENTIFICATION

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

• train BDT₁ on 1.6M signal events and $1.6M \times (B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

FIRST SIGNAL IDENTIFICATION

• train BDT_2 - same features - on the events with $BDT_1 > 0.9$ among $100 \ {\rm fb}^{-1}$ events of generic background and 1.6M events of signal:

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

• train BDT₁ on 1.6M signal events and 1.6M × $(B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

FIRST SIGNAL IDENTIFICATION

• train BDT_2 - same features - on the events with $BDT_1 > 0.9$ among $100 \ {\rm fb}^{-1}$ events of generic background and 1.6M events of signal:

IMPROVEMENT OF SIGNAL SENSITIVITY (+10%, up to ~50%) IN THE HIGH PURITY REGION

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

• train BDT₁ on 1.6M signal events and 1.6M × $(B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

FIRST SIGNAL IDENTIFICATION

• train BDT_2 - same features - on the events with $BDT_1 > 0.9$ among $100 \ {\rm fb}^{-1}$ events of generic background and 1.6M events of signal:

IMPROVEMENT OF SIGNAL SENSITIVITY (+10%, up to ~50%) IN THE HIGH PURITY REGION

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

• train BDT₁ on 1.6M signal events and 1.6M × $(B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

FIRST SIGNAL IDENTIFICATION

 $BDT_1 > 0.9$

51 well separating variables are used to train 2 consecutive binary classifiers (FastBDT) BDT_1 and BDT_2 .

• train BDT₁ on 1.6M signal events and 1.6M × $(B^+B^-, B^0\bar{B}^0, u\bar{u}, d\bar{d}, c\bar{c}, s\bar{s}, \tau^+\tau^-)$ events:

FIRST SIGNAL IDENTIFICATION

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Optimised bin boundaries set up in the $p_{T}(K^{+}) \times BDT_{2}$ space:

Bins 4,5,6,7,8,9,10:

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Bins 4,5,6,7,8,9,10:

- Signal Region (SR): fit of data at the $\Upsilon(4S)$ resonance;

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Bins	4,5,6,7,8,9,10:
-	Signal Region (SR): fit of data at the $\Upsilon(4S)$ resonance;
-	Control Region 2 (CR2): fit of off- resonance data.

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Bins 1,2,3:

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Bins 1,2,3:

- Control Region 1 (CR1): fit of data at the $\Upsilon(4S)$ resonance;

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Optimised bin boundaries set up in the $p_T(K^+) \times BDT_2$ space:

Control Region 1-2-3 to constrain bkg's yields.

Mode with large branching ratio characterised by clean experimental signature.

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$ events

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-}$ events

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$ events

• Ignore the $\mu^+\mu^-$ from the selected J/ψ decay.

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-}$ events

Strategy to mimic reconstructed $B^+ \to K^+ \nu \bar{\nu}$ events.

- Ignore the $\mu^+\mu^-$ from the selected J/ψ decay.
- 2-body \rightarrow 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+ \nu \bar{\nu}$.

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$ events

Strategy to mimic reconstructed $B^+ \to K^+ \nu \bar{\nu}$ events.

- Ignore the $\mu^+\mu^-$ from the selected J/ψ decay.
- 2-body \rightarrow 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+ \nu \bar{\nu}$.
- Reconstruct the modified $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-} \text{ events with the inclusive tagging algorithm.}$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-}$ events

- Ignore the $\mu^+\mu^-$ from the selected J/ψ decay.
- 2-body \rightarrow 3-body kinematics: replace the 4-momentum of the K^+ with the generator-level 4-momentum taken from the K^+ in $B^+ \rightarrow K^+ \nu \bar{\nu}$.
- Reconstruct the modified $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-} \text{ events with the inclusive tagging algorithm.}$

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events default $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events Strategy to mimic reconstructed 2000 $B^+ \to K^+ \nu \bar{\nu}$ events. Belle II preliminary $/\mathcal{L} dt = 63 \, \text{fb}^{-1}$ 400 • Ignore the $\mu^+\mu^-$ from the 1500 selected J/ψ decay. 300 Events 200 • 2-body \rightarrow 3-body kinematics: Events 100 replace the 4-momentum of the 1000 K^+ with the generator-level 0 0.6 0.2 0.40.8 1.0 0.0 4-momentum taken from the K^+ $BDT_2 (BDT_1 > 0.9)$ in $B^+ \to K^+ \nu \bar{\nu}$. 500 \square B⁺ \rightarrow K⁺J/ $\psi_{\rightarrow\mu^+\mu^-}$ MC Φ B⁺ \rightarrow K⁺J/ $\psi_{\rightarrow\mu^{+}\mu^{-}}$ Data $B^+ \rightarrow K^+ J/\psi_{\rightarrow d^+ d^-} MC$ $\Phi B^+ \rightarrow K^+ J/\psi_{\rightarrow d^+ d^-} Data$ • Reconstruct the modified $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-}$ events with the $B^+ \rightarrow K^+ \nu \bar{\nu} MC$ 0 inclusive tagging algorithm. 0.0 0.2 0.4 0.6 0.8 1.0

 BDT_1

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events default $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events Strategy to mimic reconstructed 2000 $B^+ \to K^+ \nu \bar{\nu}$ events. Belle II preliminary $/\mathcal{L} dt = 63 \, \text{fb}^{-1}$ 400 • Ignore the $\mu^+\mu^-$ from the 1500 selected J/ψ decay. 300 Events 200 • 2-body \rightarrow 3-body kinematics: Events 100 replace the 4-momentum of the 1000 K^+ with the generator-level 0 0.6 0.2 0.40.8 1.0 0.0 4-momentum taken from the $K^{\!+}$ $BDT_2 (BDT_1 > 0.9)$ in $B^+ \to K^+ \nu \bar{\nu}$. 500 $\square B^+ \rightarrow K^+ J/\psi_{\rightarrow \mu^+ \mu^-} MC \qquad \ \ \, \mathbf{B}^+ \rightarrow K^+ J/\psi_{\rightarrow \mu^+ \mu^-} Data$ $B^+ \rightarrow K^+ J/\psi_{\rightarrow d^+ d^-} MC$ $\Phi B^+ \rightarrow K^+ J/\psi_{\rightarrow d^+ d^-} Data$ • Reconstruct the modified $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-}$ events with the $B^+ \rightarrow K^+ \nu \bar{\nu} MC$ 0 inclusive tagging algorithm. 0.0 0.2 0.4 0.6 8.0 1.0 BDT_1 $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$ events:

µ⁺µ⁻ ignored;
K⁺ kinematics

updated.

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events default $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events Strategy to mimic reconstructed 2000 $B^+ \to K^+ \nu \bar{\nu}$ events. Belle II preliminary $/\mathcal{L} dt = 63 \, \text{fb}^{-1}$ 400 • Ignore the $\mu^+\mu^-$ from the 1500 selected J/ψ decay. 300 Events 200 • 2-body \rightarrow 3-body kinematics: Events 100 replace the 4-momentum of the 1000 K^+ with the generator-level 0 0.6 0.8 0.2 0.41.0 0.0 4-momentum taken from the K^+ $BDT_2 (BDT_1 > 0.9)$ in $B^+ \to K^+ \nu \bar{\nu}$. 500 \square B⁺ \rightarrow K⁺J/ $\psi_{\rightarrow\mu^+\mu^-}$ MC **b**⁺ \rightarrow K⁺J/ $\psi_{\rightarrow\mu^+\mu^-}$ Data $B^+ \rightarrow K^+ J/\psi_{\rightarrow u^+ u^-} MC$ $\Phi B^+ \rightarrow K^+ J/\psi_{\rightarrow u^+ u^-} Data$ • Reconstruct the modified $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-}$ events with the $B^+ \rightarrow K^+ \nu \bar{\nu} MC$ 0 inclusive tagging algorithm. 0.0 0.2 0.4 0.6 8.0 BDT_1 $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$ events:

µ⁺µ⁻ ignored;
K⁺ kinematics

updated.

1.0

Mode with large branching ratio characterised by clean experimental signature.

Identification of $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events default $B^+ \to K^+ J/\psi_{\to u^+ u^-}$ events Strategy to mimic reconstructed 2000 Belle II preliminary $B^+ \to K^+ \nu \bar{\nu}$ events. $/\mathcal{L} dt = 63 \, \text{fb}^{-1}$ 400 • Ignore the $\mu^+\mu^-$ from the 1500 selected J/ψ decay. 300 Events 200 • 2-body \rightarrow 3-body kinematics: Events 100 replace the 4-momentum of the 1000 K^+ with the generator-level 0 0.6 0.8 0.2 0.41.0 0.0 4-momentum taken from the K^+ $BDT_2 (BDT_1 > 0.9)$ in $B^+ \to K^+ \nu \bar{\nu}$. 500 \square B⁺ \rightarrow K⁺J/ $\psi_{\rightarrow\mu^+\mu^-}$ MC **b**⁺ \rightarrow K⁺J/ $\psi_{\rightarrow\mu^+\mu^-}$ Data $B^+ \rightarrow K^+ J/\psi_{\rightarrow u^+ u^-} MC$ $\Phi B^+ \rightarrow K^+ J/\psi_{\rightarrow u^+ u^-} Data$ • Reconstruct the modified $B^+ \to K^+ J/\psi_{\to \mu^+ \mu^-}$ events with the $B^+ \rightarrow K^+ \nu \bar{\nu} MC$ 0 inclusive tagging algorithm. 0.0 0.2 0.4 0.6 8.0 1.0 BDT_1 $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$ events: • $\mu^+\mu^-$ ignored; Excellent Data-MC agreement for the BDT's. • K^+ kinematics updated.

Investigation of the Data-MC agreement between simulated continuum and off-resonance data in CR2-CR3.

Investigation of the Data-MC agreement between simulated continuum and off-resonance data in CR2-CR3.

Investigation of the Data-MC agreement between simulated continuum and off-resonance data in CR2-CR3.

• Very good Data-MC shape agreement.

Investigation of the Data-MC agreement between simulated continuum and off-resonance data in CR2-CR3.

• Very good Data-MC shape agreement.

• But discrepancy in yields: data/simulation = 1.4 ± 0.1

Investigation of the Data-MC agreement between simulated continuum and off-resonance data in CR2-CR3.

• Very good Data-MC shape agreement.

- But discrepancy in yields: data/simulation = 1.4 ± 0.1 .
- Introduction of conservative 50% normalisation uncertainty in the fit for each bkg yield individually.

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

Statistical interpretation with

[Heinrich, Lukas and Feickert, Matthew and Stark, Giordon. pyhf:v0.5.4.]

Statistical interpretation with O

[Heinrich, Lukas and Feickert, Matthew and Stark, Giordon. pyhf:v0.5.4.]

Extended Maximum Likelihood Binned Fit:	
$f(n, a \mid \eta, \gamma) =$	
$\eta = parameter of interest$	
$\chi =$ nulsance parameters	

Statistical interpretation with

[Heinrich, Lukas and Feickert, Matthew and Stark, Giordon. pyhf:v0.5.4.]

Statistical interpretation with

[Heinrich, Lukas and Feickert, Matthew and Stark, Giordon. pyhf:v0.5.4.]

Statistical interpretation with

[Heinrich, Lukas and Feickert, Matthew and Stark, Giordon. pyhf:v0.5.4.]

Statistical interpretation with

[Heinrich, Lukas and Feickert, Matthew and Stark, Giordon. pyhf:v0.5.4.]

Fit to the Data

Fit to the Data

• Profile likelihood scan for the signal strength μ :
• Profile likelihood scan for the signal strength μ :

Asymmetric uncertainty on μ estimated by fitting the scanned points with an asymmetric parabola $f(x) = (x/\sigma^{-})^{2}$ for x < 0 and $f(x) = (x/\sigma^{+})^{2}$ for x > 0.

• Measured signal strength μ :

Measured signal strength μ :

 $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst}) = 4.2^{+3.4}_{-3.2}$ $BR(B^+ \to K^+ \nu \bar{\nu}) = 1.9^{+1.3}_{-1.3}(\text{stat})^{+0.8}_{-0.7}(\text{syst}) \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$

Measured signal strength μ :

 $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst}) = 4.2^{+3.4}_{-3.2}$ BR($B^+ \to K^+ \nu \bar{\nu}$) = $1.9^{+1.3}_{-1.3}(\text{stat})^{+0.8}_{-0.7}(\text{syst}) \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$

Consistent with the SM expectation ($\mu = 1$) at CL = 1σ .

Measured signal strength μ :

 $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst}) = 4.2^{+3.4}_{-3.2}$ BR($B^+ \to K^+ \nu \bar{\nu}$) = $1.9^{+1.3}_{-1.3}(\text{stat})^{+0.8}_{-0.7}(\text{syst}) \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$

- Consistent with the SM expectation ($\mu = 1$) at CL = 1σ . - Consistent with the bkg-only hypothesis ($\mu = 0$) at CL = 1.3σ .

• Measured signal strength μ :

$$\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst}) = 4.2^{+3.4}_{-3.2}$$

$$BR(B^+ \to K^+ \nu \bar{\nu}) = 1.9^{+1.3}_{-1.3}(\text{stat})^{+0.8}_{-0.7}(\text{syst}) \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$$

$$= 1.9^{+1.6}_{-1.5} \times 10^{-5}$$

- Consistent with the bkg-only hypothesis ($\mu = 0$) at CL = 1.3σ .

• Measured signal strength μ :

$$\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst}) = 4.2^{+3.4}_{-3.2}$$

BR($B^+ \to K^+ \nu \bar{\nu}$) = $1.9^{+1.3}_{-1.3}(\text{stat})^{+0.8}_{-0.7}(\text{syst}) \times 10^{-5} = 1.9^{+1.6}_{-1.5} \times 10^{-5}$

- Consistent with the SM expectation ($\mu = 1$) at CL = 1σ . - Consistent with the bkg-only hypothesis ($\mu = 0$) at CL = 1.3σ .

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

• This measurement represents the first search for $B^+ \to K^+ \nu \bar{\nu}$ performed with an inclusive tag.

- This measurement represents the first search for $B^+ \to K^+ \nu \bar{\nu}$ performed with an inclusive tag.
- No signal observed yet, but an observed upper limit on the branching ratio of 4.1×10^{-5} is set at the 90% CL.

- This measurement represents the first search for $B^+ \to K^+ \nu \bar{\nu}$ performed with an inclusive tag.
- No signal observed yet, but an observed upper limit on the branching ratio of 4.1×10^{-5} is set at the 90% CL.
- With $63 \ fb^{-1}$ of $\Upsilon(4S)$ data recorded by the Belle II experiment, the inclusive tagging is competitive with the previous searches despite the much lower integrated luminosity.

Experiment	Year	Observed limit on ${\rm BR}(B^+\to K^+\nu\bar\nu)$	Approach	Data[fb ⁻¹]
BABAR	2013	< 1.6 × 10 ⁻⁵ [Phys.Rev.D87,112005]	SL + Had tag	429
Belle	2013	< 5.5 × 10 ⁻⁵ [Phys.Rev.D87,111103(R)]	Had tag	711
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tag	711
Belle II	2021	$< 4.1 \times 10^{-5}$	Inclusive tag	63

- This measurement represents the first search for $B^+ \to K^+ \nu \bar{\nu}$ performed with an inclusive tag.
- No signal observed yet, but an observed upper limit on the branching ratio of 4.1×10^{-5} is set at the 90% CL.
- With $63 \ fb^{-1}$ of $\Upsilon(4S)$ data recorded by the Belle II experiment, the inclusive tagging is competitive with the previous searches despite the much lower integrated luminosity.

Supplemental material

Summary of the $B^+ \to K^+ \nu \bar{\nu}$ searches

• Uncertainty on BR: Belle II vs Belle vs Babar.

-BR: measured branching ratio of $B^+ \to K^+ \nu \bar{\nu};$

- $-\sigma$: total symmetric uncertainty on the BR
- -L : integrated luminosity

```
BABAR 2013 - [Phys.Rev.D87,112005]
Belle 2013 - [Phys.Rev.D87,111103(R)]
Belle 2017 - [Phys.Rev.D96,091101(R)]
```

Experiment	Year	Approach	$L[fb^{-1}]$	$BR[\times 10^{-5}]$	$\sigma\left[\times 10^{-5}\right]$	$\sigma \sqrt{\frac{L}{L_{\text{Belle2}}}} \left[\times 10^{-5} \right]$
BABAR(*)	2013	SL + Had tag	429	0.8	0.6	1.7
Belle(**)	2013	Had tag	711	3.0	1.6	5.5
Belle(**)	2017	SL tag	711	1.0	0.6	1.9
Belle II	2021	Inclusive tag	63	1.9	1.6	1.6

(*) Combined central value of $B^+ \to K^+ \nu \bar{\nu} \ / \ B^0 \to K^0 \nu \bar{\nu}$

(**) Computed from $N_{sig}/(\epsilon_{sig}\cdot N_{B\bar{B}})$.

The $B^+ \to K^+ \nu \bar{\nu}$ decay

Scenarios beyond the SM \rightarrow possible contribution of right-handed operators Q_R^l

$$\mathcal{H}_{eff.} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{l} \left(C_L^l Q_L^l + C_R^l Q_R^l \right) \quad \text{where} \quad Q_{L(R)}^l = \left(\bar{s}_{L(R)} \gamma_\mu b_{L(R)} \right) \left(\bar{\nu}_{L(R)}^l \gamma^\mu \nu_{L(R)}^l \right) \quad l = e, \mu, \tau$$

2 combinations of 6 Wilson Coefficients:

Constraint on new-physics contributions: Wilson coefficients $C_{\rm L}{}^{\rm NP}$ and $C_{\rm R}$ normalised to the SM value of $C_{\rm L}$ (Belle II from expected 50 ab⁻¹).

SuperKEKB

• Peak luminosity projections:

• Nano-beam scheme:

Features of $B^+ \to K^+ \nu \bar{\nu}$

• Number of reconstructed tracks in the event.

Features of $B^+ \to K^+ \nu \bar{\nu}$

• Variables related to the signal K^+ candidate.

• Variables related to the event topology.

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

Features of $B^+ \to K^+ \nu \bar{\nu}$

• Variables related to D^0/D^+ suppression.

• Variables related to the ROE.

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

More on multivariate classification

• No overfitting observed neither for BDT1 nor for BDT2.

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

Reweighting of continuum MC

Discrepancies between simulated continuum and off-resonance data.

Data-driven correction by means of an additional fastBDT: BDT_c .

- Select simulated continuum (100 fb^{-1}) with $BDT_1 > 0.9$;
- Select off-resonance data (9 fb⁻¹) with $BDT_1 > 0.9$;
- Train BDT_c with the set of 51 variables using data as signal and simulation as bkg;

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

1.0

Before reweighting: no perfect

overlap at $0.5 \rightarrow \text{mismodelling}$.

Belle II preliminary

 $/\mathcal{L} dt = 9 \, \text{fb}^{-1}$

0.2

0.4

BDT

Data (train)

Simulation (train)

Simulation (test)

0.8

 $\overline{}$

0.6

(normalised)

Entries

3

1

0.0

The fit region

• 1 signal region + 3 control regions.

Bin boundaries in the SR specifically optimised by minimisation of the expected upper limit on the $BR(B^+ \rightarrow K^+ \nu \bar{\nu})$.

Region	2D Bin Boundary Definition	Physics Processes	\sqrt{s}
Signal	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c	signal +	$\Upsilon(4S)$
Region (SR)	$BDT_2 \in [0.95, 0.97, 0.99, 1.0]$	all backgrounds	
Control	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5] \text{ GeV/c}$	signal +	$\Upsilon(4S)$
Region 1 (CR1)	$BDT_2 \in [0.93, 0.95]$	all backgrounds	
Control	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5] \text{ GeV/c}$	continuum	off-resonance
Region 2 (CR2)	$BDT_2 \in [0.95, 0.97, 0.99, 1.0]$	backgrounds	(-60 MeV/c^2)
Control	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5] \text{ GeV/c}$	continuum	off-resonance
Region 3 (CR3)	$BDT_2 \in [0.93, 0.95]$	backgrounds	(-60 MeV/c^2)

CR 1-2-3 to constrain bkg yields.

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

Identification of $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$ events

1720 data events from 63 fb^{-1} + bkg suppressed to percent level.

Results of the validation on $B^+ \to K^+ J/\psi_{\to \mu^+\mu^-}$

Background composition in the fit region

• $B^0 \bar{B}^0$ signal side:

simulation

• $B^0 \bar{B}^0$ tag side:

Belle II preliminary simulation

• B^+B^- signal side:

• $B^+\bar{B}^-$ tag side:

Filippo Dattola | Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment

Validation in the BDT sideband

• Agreement between $\Upsilon(4S)$ on-resonance data and simulation in the sideband $0.9 < BDT_1 < 0.99$ and $BDT_2 < 0.7$:

• Only if the continuum background is scaled by a factor of 1.22 as obtained from the comparison with off-resonance data, the data/MC ratio is then 1.00 in the moderate BDT sideband.

SM form factor vs q2

• q^2 spectrum from PHSP simulation compared to the SM form factor from [J. High Energ. Phys. 2015, 184 (2015)] as a function of q^2 .

Fit procedure

• pyhf modifiers and constraints:

Description	Modification	Constraint Term c_{χ}	Input
Uncorrelated Shape	$\kappa_{scb}(\gamma_b) = \gamma_b$	$\prod_{b} \operatorname{Pois}\left(r_{b} = \sigma_{b}^{-2} \middle \rho_{b} = \sigma_{b}^{-2} \gamma_{b}\right)$	σ_b
Correlated Shape	$\Delta_{scb}(\alpha) = f_p\left(\alpha \middle \Delta_{scb,\alpha=-1}, \Delta_{scb,\alpha=1}\right)$	Gaus ($a = 0 \alpha, \sigma = 1$)	$\Delta_{scb,\alpha=\pm 1}$
Normalisation Unc.	$\kappa_{scb}(\alpha) = g_p\left(\alpha \middle \kappa_{scb,\alpha=-1}, \kappa_{scb,\alpha=1}\right)$	Gaus ($a = 0 \alpha, \sigma = 1$)	$\kappa_{scb,\alpha=\pm 1}$
MC Stat. Uncertainty	$\kappa_{scb}(\gamma_b) = \gamma_b$	$\prod_{b} \operatorname{Gaus} \left(a_{\gamma_{b}} = 1 \gamma_{b}, \delta_{b} \right)$	$\delta_b^2 = \sum_s \delta_{sb}^2$
Luminosity	$\kappa_{scb}(\lambda) = \lambda$	Gaus $(l = \lambda_0 \lambda, \sigma_\lambda)$	$\lambda_0, \sigma_\lambda$
Normalisation	$\kappa_{scb}(\mu_b) = \mu_b$		
Data-driven Shape	$\kappa_{scb}(\gamma_b) = \gamma_b$		

Cross validation of PyHf with a simplified Gaussian model

• Post-fit shifts of the bkg's normalisations.

- 50% pre-fit uncertainty attached to each of the bkg's normalisations.
- No post-fit shift wrt to expectations for B^+B^- and $B^0\bar{B}^0$ that are the larger bkg's.
- Post-fit shift of $\sim 1\sigma$ wrt to the expectations for some continuum sources $(c\bar{c}, s\bar{s})$ consistent with the observed Data-MC normalisation discrepancy.

• Post-fit predictions for continuum vs off-resonance data.

• Correlation of post-fit shifts of the bkg's normalisations.

Limit vs uncertainties

