

Dark sector physics at Belle II

Jan Strube (he/him)

On behalf of the Belle II collaboration

Pacific

Northwest

PNNL is operated by Battelle for the U.S. Department of Energy

Introduction – Dark matter at Belle II

- Belle II will accumulate a unique data sample over the next decade
 - Clean environment of e⁺e⁻ collisions
 - Unique collision energy (among the currently running colliders)
- The Belle II detector is well designed to search for dark matter
 - Upgraded particle ID Improved constraints from recoil
 - Better hermeticity than BaBar
 - Special triggers for one- and three-photon signatures (under design)
 - Improved event reconstruction to increase the sensitivity to missing energy signatures
- Searches for dark matter in
 - Direct production
 - LFV decays
 - B decays

Y(4S)b u,d

- Electron positron collision at Y(4S) ٠ resonance produces two B mesons
- Created in an L=1 coherent state

- $\sigma(e^+e^- \rightarrow u\overline{u}) = 1.6 \text{ nb}$
- $\sigma(e^+e^- \rightarrow d\overline{d}) = 0.4 \text{ nb}$
- $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.9 \text{ nb}$

Belle II data sample

SuperKEKB performance

Instantaneous Luminosity world record broken on June 15, 2020: 2.22 x 10³⁴ cm⁻²s⁻¹

Data recorded: passed 100 fb⁻¹ on March 24th, 2021

Updated on 2021/03/25 21:56 JST

Background sources

Touschek scattering

- Intra-bunch scattering
- rate \propto (beam size)⁻¹, (Ebeam)⁻³
- Most dangerous background at SuperKEKB
- Photons upstream hit nuclei and produce ~10¹¹/cm²/year neutrons (1 MeV equivalent)

2-photon process

- Generated electron-positron pair might enter the detector
- 0.2% occupancy on PXD

Radiative Bhabha

- Rate \propto Luminosity (KEKB x 40)
- EM showers from outgoing beam
- Neutrons from photon

$\sigma\sim 50~{\rm nb}$

Invisible Dark Photon Search at Belle II

Detector signature: single photon + missing energy. Background from $e^+e^- \rightarrow \gamma \gamma$

Jan Strube -- A Rainbow of Dark Sectors

Unlike dark matter, mediators from portal interactions can have sizable SM couplings.

See also SIMPs

Pacific

Northwest

(Hochberg, Y., Kuflik, E.& Murayama, H. J. High Energ. Phys. (2016) 2016: 90.)

$L_{\mu} - L_{\tau}$ model: search for an invisible Z'

 $\mathcal{L} = \sum \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell$ Could be related to: dark matter, g-2, R(K) and R(K*) $\ell = \mu, \tau, \nu_{\mu,L}, \nu_{\tau,L}$

Shuve et al., arXiv:1403.2727

Pacific

Northwest

Search for a peak in the recoil mass, using 2018 pilot run data

Outlook: Updated triggers 10 Sensitivity to $(g-2)_{\mu}$ band with data sample on tape

Jan Strube -- A Rainbow of Dark Sectors

First Belle II physics paper: PRL 124 (2020) 141801

Search for Axion-like particles

Belle II is sensitive to new propagators coupling to photons

$$\mathcal{L} = -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

We convert the cross section to a coupling using

$$\sigma_a = \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24} \left(1 - \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24}\right) \left(1 - \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{$$

e

PRL 10^{-2} bean ee→γγ 125 photon *g*_{ayy} [GeV⁻¹] 10₋₁ 10⁻³ proton beam dumps \rightarrow 161806 CMS NA64 $ee \rightarrow \gamma +$ (2020) $g_{a\gamma Z}=0$ electron beam dumps 10^{-5} 10^{-2} 10^{-1} 10-3 10⁰ 10^{1} $m_{\rm a}$ [GeV/ c^2] Jan Strube -- A Rainbow of Dark Sectors

Current status, using 445 pb⁻¹ of 2018 data

Full Event Interpretation in Belle II

Comput Softw Big Sci 3, 6 (2019), arXiv:2008.06096

- Y(4S) decays to a pair of B mesons
- The detector covers nearly 4 π \rightarrow use the well-known collision energy and reconstruct one B meson to apply constraints on invisible decays of the other B meson $B \rightarrow \mu \nu, B \rightarrow \tau \nu, B \rightarrow K(^*)\nu \nu$

π^+ $\overline{D^0}$ τ	B_{tag}^{-} $\Upsilon(4S)$ $e^{}$ \overline{b}	
I Belle II	u v	h
6%		
5%	×	
8%		

ragging ϵ on MC									
Tag	Belle	Belle w/ FEI		FEI Belle II					
Hadronic B^+	0.28%	0.76%		0.66%					
SL B ⁺	0.67%	1.80%		1.45%					
Hadronic B ⁰	0.18%	0.46%		0.38%					
SL B ⁰	0.63%	2.04%		1.94%					
-									

Incl. Belle II background

					~									
ency	$N_{\text{Backg.}}$	$N_{\rm Sig-exp.}$	$N_{\text{Backg.}}$	$N_{\rm Sig-exp.}$	Statistica	l'Iotal	5]	Efficiency	NDeeler	Notin	$N_{\mathbf{D}}$, also	N_{C}	Statistical	Total
	711 fb^{-1}	711 fb^{-1}	50 ab^{-1}	50 ab^{-1}	error	Error]	Lincicity	- Backg.	- Sig-exp.	- Backg.	- Sig-exp.	5 uuus uu uu	
	Belle	Belle	Belle II	Belle II	50 ab^{-1}			Belle	711 fb^{-1}	711 fb^{-1}	50 ab^{-1}	50 ab^{-1}	error	Error
	21	3.5	2960	245	20%	22%		[10-4]	D.11.	D - 11 -	Dalla II	Dalla II	r_{0} $h = 1$	
	4	0.24	560	22	94%	94%			Belle	Belle	Belle 11	Belle II	50 ab -	
	7	2.2	985	158	21%	22%		5.68	21	3.5	2960	245	20%	22%
	5	2.0	704	143	20%	22%		0.04	4	0.04	F 0.0	22	0.404	0.107
					15%	17%		0.84	4	0.24	560	22	94%	94%
[BELLE2-MEMO-2016-007]								1.47	7	2.2	985	158	21%	$\overline{22\%}$
													04	04
								1.44	5	2.0	704	143	20%	22%
						-							15%	$\overline{17\%}$

16-007. HINT2016

31

lichoff and D. M. Straub, JHEP **1502**, 184 (2015) [arXiv:1409.4557

Northwes

Current status of K⁺*vv*

http://moriond.in2p3.fr/2021/EW/slides/3 flavour 10 dattola.pdf

• New idea: inclusive tagging

 $B^+ \to K^+ \nu \bar{\nu}$

- Select the track with the highest p_T
- Signal efficiency increases to $\sim 4\%_{4.1 \times 10^{-5}}$
- We apply a multivariate classifier on therest of the event to reduce background
- Competitive measurement with a fraction of the data $Br(B^+ \rightarrow K^+ \nu \overline{\nu}) < 4.1 \times 10^{-5} (90\% \text{ CL})$

"Baryogenesis and Dark Matter from B Mesons" Gilly Elor, Miguel Escudero, Ann E. Nelson *Phys. Rev. D* 99, 035031 (2019)

Search for $B_d^0 \to \Lambda^0 \psi_{\rm DM}$

Summary

- Dark sector searches are increasingly moving to lower energies.
- Belle II will make important contributions to the search(es) for a dark sector.
 - The accelerator will accumulate a unique data sample
 - The detector has unique capabilities compared to previous experiments
 - \checkmark Improved triggers and reconstruction compared to Belle
 - ✓ Improved hermeticity compared to BaBar
- The collaboration is starting to exploit the data and first physics analysis related to dark sector searches have been published.
 - Axion-like particles
 - Invisible Z'
- We have lots more in the pipeline, but we're always looking for new ideas. If you have a model that you think Belle II might be sensitive to, please get in touch.

Thank you for your attention

Jan Strube -- A Rainbow of Dark Sectors

