Status and outlook for R(D(*))

Koji Hara (KEK)

Sep. 12, 2020 Anomalies 2020

Semi-tauonic B decay: $B \rightarrow D^{(*)} \tau v$

Sensitive to new physics

Ratio of τ to μ,e could be reduced/enhanced

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \quad \text{L=e,}\mu$$

SM R(D) = 0.299 ± 0.003 , R(D*)= 0.258 ± 0.005 [HFLAV2019]

Polarizations of τ and D* can probe the NP model

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}} \quad F_{L}^{D^{*}} = \frac{\Gamma(D_{L}^{*})}{\Gamma(D_{L}^{*}) + \Gamma(D_{T}^{*})}$$

NP type (vector, scalar, tensor) dependence

[M. Tanaka and R. Watanabe PRD 87, 034028 (2013)]

R(D) and R(D*) Experiments

B factory experiments

- o Produce BB pairs via e+e-→Y(4s)
- Only one BB pair in an event
- \circ 4 π detector surrounding the IP
- Belle + BaBar have accumulated >~1ab-1
- **Belle II** started physics data taking in 2019 and will accumulate **50 ab**-1

Collision point SPD/PS HCAL Wertex Locator Sm 10m 15m 20m z

LHCb

- Experiment dedicated to B physics at LHC
- Many b hadrons produced in pp collisions
- Single arm detector covering the forward region
- Large boost → good separation of vertices:
 primary vertex, B, D, T
- Collected Run 1 + Run 2 ~ 9fb⁻¹
- Now in long shutdown for upgrade

These experiments are complementary

$B \rightarrow D^{(*)}\tau\nu$ Analysis at B factories

Utilize the B factory specific feature: only one B-meson pair is produced

Tag B pair event by reconstructing one B meson in hadronic or semileptonic B Decay

→ Provide pure single B event

- Require <u>no</u> particle remains after removing tagging B and signal B candidates
 - \rightarrow Remaining energy in the calorimeter (E_{FCL})
- Multiple missing neutrinos \rightarrow (Missing mass)² > 0

Tagging Methods

Hadronic Tag

Exclusive tag

- Fully reconstruct in B→DX decays
 - ~1100 exclusive decay channels (Belle) [NIM A 654, 432 (2011)]
- o Tagging efficiency ~ 0.2 %
- Less background

Inclusive tag

- Reconstruct tag-side B with all particles except signal-side
- Higher efficiency than exclusive tag
- Need clean signal-side final state
- Used for first observation of B→D*τν by Belle
 [PRL99, 191807(2007)]

Anomalies 2020

Semileptonic Tag

- o Reconstruct B→D(*)|v
 - Partial reconstruction with
 - o $E_B = E_{beam}$
 - Undetected neutrino mass ~ 0
- Tagging efficiency ~ 0.5%
- More background

Belle B→TV analysis [PRD 82, 071101(R) (2010)]

$$\cos \theta_{B,D^{(*)}\ell} = \frac{2E_{\text{beam}}^{\text{cms}} E_{D^{(*)}\ell}^{\text{cms}} - m_B^2 - M_{D^{(*)}\ell}^2}{2P_B^{\text{cms}} \cdot P_{D^{(*)}\ell}^{\text{cms}}} \frac{1}{5}$$

Results with Hadronic Tag by BaBar

[PRL109, 101802 (2012)] [PRD88, 072012 (2013)]

- 471 M BB sample
- Leptonic tau decays are used

$$\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$$

$$\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$$

Both are larger than SM expectations

Results with Hadronic Tag by Belle (leptonic τ decays)

[PRD92,072014(2015)]

- 772 M BB sample
- Leptonic tau decays are used

$$R(D) = 0.375 \pm 0.064 \pm 0.026$$

 $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

Belle R(D^(*)) Measurement with Semileptonic Tag

- Previous Analysis [PRD94,072007(2016)]
 Measure R(D*) with B⁰ → D*-T*v (and charge conjugate) decays
 - ∘ Good signal purity by using clean D^{*-} → D^0 π^- decays
- Recent Update [PRL124,161803 (2020)]
 - Full Event Interpretation (FEI) tool developed in Bellell software framework
 [Comput. Softw. Big. Sci. (2019) 3:6]
 - Multivariate analysis with Boosted-Decision Tree classifier
 - → Better efficiency and enable to use more signal decay modes
 - o Both R(D) and R(D*) with both B^0 and $B^+ \rightarrow D^*\tau v$
 - $_{\circ}$ 2D extended maximum-likelihood fit on <u>"classifier"</u> and <u>E_{ECL}</u>

Classifier: Boosted decision tree output of $\cos\theta_{B,D(^*)I}$, M_{miss2} , E_{vis}

Belle R(D*) Semileptonic Tag Result

Anomalies 2020

 $B \to D^{**} \ell \nu$

Fake D^*

Other

 406 ± 64

 $1993 \pm 122 \text{ (Fixed)}$

 $187 \pm 7 \text{ (Fived)}$

Belle R(D(*)) Results

Belle combined result at about 1.6 σ from SM

$R(D^*)$ with $\tau \rightarrow \mu \nu \nu$ by LHCb

E_{µ*} (MeV)

 m_{miss}^2 (GeV²/c⁴)

m_{miss} (GeV²/c⁴)

 $6.10 < q^2 < 9.35 \text{ GeV}^2/c^4$

[PRL 115, 111803 (2015)]

- 3.0 fb⁻¹ Data
- $B^0 \rightarrow D^* TV, T \rightarrow \mu VV$
- 3D Fit to (Missing mass)², E₁₁*, q²
- Primary and B vertices
 - → P_R direction
- | P_R | is approximated by $(P_B)_z = m_B/m_{D*u} (P_{D*u})_z$

$$\mathcal{R}(D^*) = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{syst})$$

$R(D^*)$ with $\tau \rightarrow 3\pi \nu$ by LHCb

[PRD97, 072013 (2018)]

- 3.0 fb⁻¹ Data
- Obtain Ratio

$$K(D^*) = Br(B^0 \rightarrow D^*TV)/Br(B^0 \rightarrow D^*3\pi)$$

Reconstruct Pt Direction

• 3D fit to τ decay time, q², BDT output

$$\mathcal{K}(D^{*-}) = 1.97 \pm 0.13(\text{stat}) \pm 0.18(\text{syst})$$

Multiply $Br(B \rightarrow D^*3\pi)/Br(B \rightarrow D^*l\nu)$

$$R(D^*) = 0.280 \pm 0.018(stat) \pm 0.029(syst)$$

(Update of Br($B \rightarrow D*lv$) by HFLAV2019)

Latest R(D) and R(D*) Situation

Latest R(D)- $R(D^*)$ vs SM

15

More measurements in Addition to R(D(*))

- Polarizations
- Other b→c hadrons

τ Polarization Measurement at Belle

[PRL118, 211801 (2017) PRD97, 012004 (2018)]

- Hadronic tag
- Two body tau decays: $\tau \rightarrow \pi \nu$, $\rho \nu$
 - Helicity angle sensitive to the tau polarization
- $P_{\tau}(D^*)_{SM} = -0.497 \pm 0.013$ [Tanaka, Watanabe, PRD 87, 034028 (2013)]

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} (1 + \alpha \cdot \mathcal{P}_{\tau} \cos\theta_{\text{hel}})$$

$$\alpha = \int_{0}^{1} for \ \tau \to \pi^{-} \nu$$

$$R(D^*) = 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst}),$$

$$P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst}),$$

(R(D*) included in the HFLAV avg)

D* Polarization Measurement at Belle

- Reconstruct B⁰→D*TV
- Utilized <u>inclusive tag</u> method

Fit the helicity angle distribution

preliminary [arXiv:1903.03102]

cf. in SM $-F_L^{D^*} = 0.46 \pm 0.03$ [PRD95, 115038(2017)] $-F_L^{D^*} = 0.441 \pm 0.006$ [arXiv: 1808: 03565]

 $= 0.60 \pm 0.08(stat) \pm 0.04(syst)$

within 2σ of SM

R(J/ψ) Measurement at LHCb HICK

[PRL120, 121801(2018)]

- 3.0 fb⁻¹ Data
- Measure

$$R(J/\psi) = \frac{Br(B_c^+ \to J/\psi \, \tau \nu)}{Br(B_c^+ \to J/\psi \, \mu \nu)}$$

- Same method as muonic R(D*) to estimate P_{BC}
- 3D fit to (missing mass)², B_c
 decay time, category index Z
 for (q², E_{u*})bins

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)}$$
$$= 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst}).$$

 2σ from SM expectation 0.25-0.28

LHCb Future Prospect

[Beatriz Garcia Plana, talk at ICHEP2020]

Future prospects

Beatriz García Plana (IGFAE-USC)

[arXiv:1808.08865]

- * New results are expected from:
 - Run 2 updates with a total uncertainty reduction
 - Ongoing analyses:
 - $R(D^0): B^+ \to D^0 \tau \nu$
 - $R(D^+): \bar{B}^0 \to D^+ \tau \nu$
 - $R(D_S^{(*)}): B_S \to D_S^{(*)} \tau \nu$
 - $R(D^{**}): B^+ \to D^{**}(2420)^0 \tau \nu$
 - $R(\Lambda_c^{(*)}): \Lambda_b \to \Lambda_c^{(*)} \tau \nu$
 - $R(J/\psi): B_c^+ \to J/\psi \tau \nu$
 - $R(p): \Lambda_b \to p\tau\nu$
 - Combined measurement of R(D) and R(D*)
 - Form factor measurements
 - $\Lambda_b \to \Lambda_c l \nu$
 - $\Lambda_b \to \Lambda_c^* l \nu$
 - $B_S \to D_S^{(*)} l \nu$ [arXiv:2003.08453]
 - Angular analyses
- ❖ In the **Upgrade I**, LHCb will collect ~50fb⁻¹ (luminosity ×5)

ICHEP 2020

11

Belle II Accumulating Physics Data

- Belle II / SuperKEKB started physics data taking with full detectors in 2019
- Peak luminosity 2.4 x 10³⁴ /cm²/s (WR) exceeded KEKB
 - \circ About half beam currents of KEKB, with β_v^* squeezed to 1.0 mm $(\beta_{v}^{*}=0.3\text{mm} \text{ is the final target})$
 - o good achievement as a start up

More details in Gagan's talk

Hadronic Tag in Early BelleII Data

Belle II analysis software works very well.

Belle II

 Hadronic tag (Full Event Interpretation) performance calibrated with data

[BELLE2-CONF-PH-2020-005, arXiv: 2008.06096]

Reconstructed variables:

$$Mbc = \sqrt{(E_{beam}^2 - p_B^2)}$$

P_{tag}: classifier of purity

Purity dependent efficiency is calibrated

Belle II Prospect

Expected Precision at Belle II for R(D(*)), τ polarization

	5 ab^{-1}	50 ab^{-1}
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

Summary

- B→D(*)TV decays are good probes for New Physics
- Belle, BaBar, LHCb have measured R(D(*)) with various methods and sub-decay modes
 - In addition to R(D(*)), other variables have been also measured
 - т, D* Polarizations
 - R(J/ψ)
- 'Anomaly' exists between measurements and SM
 - \circ Little bit reduced but still there is 3.1 σ difference
- LHCb and Belle II will provide more interesting results in future
 - Verify or reject the current 'anomaly'
 - o Determine the new physics model, if exists

Belle Systematic Errors

	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	+4.00 -2.9 0
$B \to D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic B	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}$ %
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}$ %	5.0%
Total	7.1%	5.2%	+3.4% $-3.5%$	$^{+10.0}_{-9.0}$

τ Hadronic decay: R(D*), τ Polarization

Systematic Errors

TABLE II. The systematic uncertainties in $R(D^*)$ and $P_{\tau}(D^*)$, where the values for $R(D^*)$ are relative errors. The group "common sources" identifies the common systematic uncertainty sources in the signal and the normalization modes, which cancel to a good extent in the ratio of these samples. The reason for the incomplete cancellation is described in the text.

Source	$R(D^*)$	$P_{ au}(D^*)$
Hadronic B composition	+7.7% -6.9%	+0.134 -0.103
MC statistics for PDF shape	-0.9% $+4.0%$ $-2.8%$	$\begin{array}{r} -0.103 \\ +0.146 \\ -0.108 \end{array}$
Fake D^*	3.4%	0.018
$\bar{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$	2.4%	0.048
$\bar{B} o D^{**} au^- \bar{ u}_{ au}$	1.1%	0.001
$\bar{B} \to D^* \ell^- \bar{\nu}_\ell$	2.3%	0.007
τ daughter and ℓ^- efficiency	1.9%	0.019
MC statistics for efficiency estimation	1.0%	0.019
$\mathcal{B}(\tau^- o \pi^- \nu_{ au}, ho^- \nu_{ au})$	0.3%	0.002
$P_{\tau}(D^*)$ correction function	0.0%	0.010
Common sou	rces	
Tagging efficiency correction	1.6%	0.018
D^* reconstruction	1.4%	0.006
Branching fractions of the D meson	0.8%	0.007
Number of $B\bar{B}$ and $\mathcal{B}(\Upsilon(4S) \to B^+B^- \text{ or } B^0\bar{B}^0)$	0.5%	0.006
Total systematic uncertainty	$^{+10.4\%}_{-9.4\%}$	+0.21 -0.16

D* Polarization Systematic Errors

TABLE I. Summary of systematic uncertainties				
Source		$\Delta F_L^{D^*}$		
Monte Carlo	AR shape and peaking background	± 0.032		
statistics	CB shape	± 0.010		
	Background scale factors	± 0.001		
Background	$B \to D^{**}\ell\nu$	±0.003		
modeling	$B \to D^{**} \tau \nu$	± 0.011		
	$B \to \text{hadrons}$	± 0.005		
	$B \to \bar{D}^*M$	± 0.004		
Signal modeling	Form factors	±0.002		
	$\cos \theta_{ m hel}$ resolution	± 0.003		
	Acceptance non-uniformity	$+0.015 \\ -0.005$		
Total		+0.039 -0.037		