Full Event Interpretation at Belle II

ICHEP 2020 | PRAGUE

40" INTERNATIONAL DIMERBENCE
CONVERENCE
28 JULY 26 AUGUST 2020
PRAGUE, CONTRIBUNALE

Why we need Full Event Interpretation?

• Interesting physics can be obtained from several challenging modes with missing neutrinos $(B \to D^{(*)} \tau \nu, B \to \ell \nu, B \to X_u \ell \nu, B \to h \nu \bar{\nu}.)$

Why we need Full Event Interpretation?

• Interesting physics can be obtained from several challenging modes with missing neutrinos $(B \to D^{(*)} \tau \nu, B \to \ell \nu, B \to X_u \ell \nu, B \to h \nu \bar{\nu}.)$

• Collide e^+ and e^- at the energy to make $\Upsilon(4S)$ particles.

- Collide e^+ and e^- at the energy to make $\Upsilon(4S)$ particles.
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ over 96% of the time.

- Collide e^+ and e^- at the energy to make $\Upsilon(4S)$ particles.
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ over 96% of the time.
- Reconstruct one B meson as tag-side (B_{tag}) hadronic or SL.

- Collide e^+ and e^- at the energy to make $\Upsilon(4S)$ particles.
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ over 96% of the time.
- Reconstruct one B meson as tag-side (B_{tag}) hadronic or SL.
- Study remaining B meson as signal (B_{sig}) .

- Collide e^+ and e^- at the energy to make $\Upsilon(4S)$ particles.
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ over 96% of the time.
- Reconstruct one B meson as tag-side ($B_{\rm tag}$) hadronic or SL.
- Study remaining B meson as signal (B_{sig}) .
- Flavour constraints: $B_{\mathrm{tag}}^+ \Longrightarrow B_{\mathrm{sig}}^-$ Kinematic constraints:

$$p_{\nu} = p_{e^+e^-} - p_{\ell^-} - p_{B^+}$$

The Full Event Interpretation

- Employs over 200 BDTs to reconstruct 10000 B decay chains.
- Baryonic decays recently added.

Keck, T. et al. Comput Softw Big Sci (2019) 3: 6.

$$M_{bc} = \sqrt{E_{beam}^2/4 - \left(p_{B_{\mathrm{tag}}}^{\mathrm{cm}}\right)^2}$$

Role of the tag-side B classifier.

• B classifier value, $\mathcal{P}_{\mathrm{tag}}$, discriminates correctly reconstructed tag-sides from background.

• Select a high purity sample by cutting on \mathcal{P}_{tag} .

 Determine the correctly reconstructed tag-side yield by fitting M_{bc}.

 Efficiency of the algorithm differs between simulation and data due to the complexity.

Calibrating the FEI

- Can calibrate the FEI by measuring a signal-side.
- Use $B \to X l \nu$ given the large branching fraction ($\sim 20\%$).

• $M_{bc} > 5.27 \; {
m GeV}/c^2$, ${\cal P}_{
m tag} > 0.001$, 0.01, 0.1, Lepton ID, $p_\ell^* > 1 \; {
m GeV}/c$

⇒ B Rest Frame

• Calibration factor, $\epsilon_{cal} = N_{Data}^{X\ell\nu}/N_{MC}^{X\ell\nu}$

Calibrating the FEI

- Can calibrate the FEI by measuring a signal-side.
- Use $B \to X l \nu$ given the large branching fraction ($\sim 20\%$).

• $M_{bc} > 5.27 \; {
m GeV}/c^2$, ${\cal P}_{
m tag} > 0.001$, 0.01, 0.1, Lepton ID, $p_\ell^* > 1 \; {
m GeV}/c$

* \implies B Rest Frame

• Calibration factor, $\epsilon_{cal} = N_{Data}^{X\ell\nu}/N_{MC}^{X\ell\nu}$

Calibration results

Calibration results

$\mathcal{P}_{\mathcal{B}^{+}} >$	ϵ	% uncertainty		
0.001	$\boldsymbol{0.653 \pm 0.020}$	3.02		
0.01	$\textbf{0.605} \pm \textbf{0.019}$	3.13		
0.1	$\textbf{0.644} \pm \textbf{0.021}$	3.30		

7	$\mathcal{P}_{B^0} >$	ϵ	% uncertainty		
_(0.001	$\textbf{0.830} \pm \textbf{0.029}$	3.44		
(0.01	0.777 ± 0.027	3.51		
(0.1	0.719 ± 0.028	3.87		

Sources of uncertainty in %

Channel	Fit Model	$\mathcal{B}(B^{0/+} \to X \ell \nu)$	Lepton ID	Fit Stat.	Tracking	MC Stat.	$D^*\ell u$ FF	$D\ell \nu$ FF
B ⁺ e ⁻	2.67	2.09	0.76	0.93	0.91	0.39	0.41	0.06
$B^{+}\mu^{-}$	2.93	2.1	2.13	0.86	0.91	0.37	0.38	0.06
B^0e^-	3.72	2.1	0.73	1.22	0.91	0.62	0.43	0.07
$B^0\mu^-$	3.17	2.09	2.13	1.19	0.91	0.6	0.41	0.06

- \bullet Tag-side efficiency in simulation against purity corrected by $\epsilon_{\rm cal}.$
- Tag-side efficiency = No. of events with a correctly reconstructed tag-side ($N_{\rm corr}$) / No. of $\Upsilon(4S) \to B\bar{B}$
- Purity = N_{corr} / No. of events with a tag-side

Rediscovering $B \to \pi \ell \nu$ and $B \to D^* \ell \nu$ with tagging

$$m_{ ext{miss}}^2 = ({p_e^+}_e^- - {p_B_{ ext{tag}}} - {p_\ell} - {p_{\pi/D^*}})^2$$

See Racha Cheaib's V_{ub} and V_{cb} talk

Data-simulation comparisons with the calibration applied.

Rediscovering $B o\pi\ell u$ and $B o D^*\ell u$ with tagging

$$m_{\text{miss}}^2 = (p_{e^+e^-} - p_{B_{\text{tag}}} - p_{\ell} - p_{\pi/D^*})^2$$

See Racha Cheaib's V_{ub} and V_{ch} talk

FEI Developments and the Future

• Algorithm has been successfully applied to the $\Upsilon(5S)$ resonance.

Graph networks naturally suit particle decays.

Exploring deep extensions of the FEI.

 We can look forward to exciting physics results from the growing number of B tags at Belle II!

Conclusion

- The FEI is performing well in early Belle II data.
- A first calibration of the FEI has been performed with $B \to X \ell \nu$.
- For a loose tag-side classifier selection the values of the calibration factors are 0.65 ± 0.02 (B^+) and 0.83 ± 0.03 (B^0).
- The decays $B \to \pi \ell \nu$ and $B \to D^* \ell \nu$ have been rediscovered with tagging.
- We are exploring deep learning extensions of the current algorithm.
- More physics with tagging to come soon!