

Tau physics prospects at Belle II

Kenji Inami (Nagoya univ.) For Belle II collaboration

SuperKEKB and Belle II experiment

- Advanced B factory
- Asymmetric energy e⁺e⁻ collider
 - At √s=10.58GeV

 $\sigma(\tau\tau)$ ~0.9nb, $\sigma(bb)$ ~1.1nb

A B-factory is also a tau-factory!

- Challenges to higher luminosity
 - Narrower beam at IP
 - Higher beam current
 - Detector works with higher beam background and trigger rates

x50 higher than previous B factory

General purpose, forward/backward asymmetric acceptance

- Physics data taking started in March 2019.
 - Performed luminosity tuning during the data taking
- Achieved world record
- $L = 2.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$.
- Data collected stably
 - High beam background env.
- Integrated luminosity; 73fb⁻¹
 - Physics analysis for ICHEP2020;
 ~8.8fb⁻¹

- The world largest number of tau-pair events in e⁺e⁻ collisions offer data for tau physics analyses with high precision.
- Lepton flavor violating decays
 - τ→μγ, eγ, μη, eη, pγ, Λπ, lll, ..., l+α (→ talk by F. Tenchini)
- Electric Dipole Moment (CP/T violation)
- CP violation in tau decay; $\tau \rightarrow K_s \pi v$
- Tau mass, v_{τ} mass, Lifetime
- Test of Universality
- Hadronic decays
 - Search for second class current; $\tau \rightarrow \pi \eta v$
 - Mass spectrum in $\tau \rightarrow \pi \pi^0 v$

- ...

- Performed tau mass analysis using early Belle II data (8.8fb⁻¹)
- Select τ→3πν + 1-prong topology events and measure tau mass using the "pseudomass" technique developed by ARGUS

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \leq m_{ au}$$

- Current best value by Belle; 1776.61 \pm 0.13 \pm 0.35 MeV
 - Phys. Rev. Lett. 99, 011801 (2007)
- Tau pair production at threshold energy shows better result.

BESIII; 1776.91 \pm 0.12 \pm 0.13 MeV

- Phys. Rev. D 90, 012001 (2014)
- Clear shoulder in the data
 - Well rediscovered tau-pair events at Belle II.

Signal: $\tau \to 3\pi$ Tag: $\tau \to e, \pi, \mu, \pi\pi^0$

hadrons

Tau mass measurement

- Extract mass by fitting to a empirical edge function
- Preliminary result;

1777.28 ± 0.75 (stat) ± 0.33 (syst) MeV/c²

- Similar systematic error with previous B factory results
- Can improve using more data and more precise corrections, then achieve best precision among pseudomass measurement.

Systematic uncertainty	MeV/c^2
Momentum shift due to the B-field map	0.29
Estimator bias	0.12
Choice of p.d.f.	0.08
Fit window	0.04
Beam energy shifts	0.03
Mass dependence of bias	0.02
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Decay model	≤ 0.01
Tracking efficiency	≤ 0.01

In the Standard Model, LFV is highly suppressed. Impossible to access; $Br < O(10^{-54})$

Many extensions of the SM predict LFV decays. Their branching fractions are enhanced as high as current experimental sensitivity

8

 \Rightarrow Observation of LFV is a clear signature of New Physics (NP)

Tau lepton : the heaviest charged lepton

Opens many possible LFV decay modes which depend on NP models

• $e^+e^- \rightarrow \tau^+\tau^-$ Br~85% $\downarrow \rightarrow 1 \text{ prong + missing}$ (tag side) $\downarrow \rightarrow \mu\mu\mu$ (LFV mode, signal side) Fully reconstructed

Signal extraction: $M_{3\mu}$ - ΔE plane (or rotated signal plane to reduce correlation) Evaluate background from side band

BG contribution is small for 3lepton modes because of good PID performance, however <u>non-negligible for l+γ modes</u>

$\mathcal{C}_{\text{Belle II}}$ Upper limits on LFV τ decays

90% CL upper limits on τ LFV decays

• Belle, Babar reached O(10⁻⁸) branching ratio, LHCb improving the result

• $\tau \rightarrow$ 3 leptons, l+mesons (to charged particles) show better sensitivity because of less background, compared to $\tau \rightarrow I \gamma$.

Future prospects at Belle II

11

- Will collect 50ab⁻¹ data by ~2031, with upgrading detector and accelerator
- B(τ→µµµ)~O(10⁻¹⁰) at ~50ab⁻¹
- Background suppression is key issue.
 - Understanding of background (beam BG, fake PID etc.)
 - ightarrow Improvement of reconstruction algorisms
 - Intelligent event selection by machine learning technique

- Belle II experiment started
 - Achieved world record luminosity; $L = 2.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Accelerator tuning is on going and more data will be recorded.
- Also started actual physics analyses
 - Tau mass measurement by early data shows clear tau rediscovery signal and promising sensitivity.
 - Preliminary result; M_{τ} =1777.28 ± 0.75 (stat) ± 0.33 (syst) MeV/c²
- Belle II will collect $\sim 5 \times 10^{10} \tau$ pairs
 - Tau LFV searches will reach the higher sensitivity compared to the previous experiments
 - The background free modes, such as $\tau \rightarrow 3$ leptons, can be reached to O(10⁻¹⁰) branching ratio sensitivity.
- More precise result with more data

Search for $\tau \rightarrow 3$ leptons at Belle

ΔE (GeV)

ΔE (GeV)

- Data: ~7x10⁸ ττ
- No event is found in the signal region.
- Br<(1.5-2.7)x10⁻⁸ at 90% CL.
- <u>Almost BG free</u>
 - Because of good lepton ID

- Data: 470fb⁻¹+31fb⁻¹@Y(3S)+15fb⁻¹@Y(2S)
 - $(963 \pm 7) \times 10^6 \tau$ decays
- New kinematical cuts
 + Neural Net discri.
 → Improve S/N
- Dominant BG:

 $\tau \rightarrow Ivv + radiation$ (irreducible BG)

- B(τ→μγ)<4.4x10⁻⁸
- B(τ→eγ)<3.3x10⁻⁸

Decay modes	2σ signal ellipse		ε	UL $(\times 10^{-8})$	
	obs	\exp	(%)	obs	\exp
$\tau^{\pm} \to e^{\pm} \gamma$	0	1.6 ± 0.4	3.9 ± 0.3	3.3	9.8
$\tau^{\pm} \to \mu^{\pm} \gamma$	2	$3.6 {\pm} 0.7$	6.1 ± 0.5	4.4	8.2

15