

Leptonic and semileptonic decays with taus at the Belle II experiment

ICHEP 2020 | PR

The second second

Belle II

<u>Marco Milesi</u>, on behalf of the Belle II collaboration School of Physics - The University of Melbourne

ICHEP 2020, Prague, July, 31st 2020

Motivation for $B \to \tau \nu, B \to (X) \tau \nu$

u

=

1.(

0.2

α

CKM fitter

sol. w/ cos $2\beta < 0$

0.8

(excl. at CL > 0.95)

ε_κ

 $V_{td} V_{tb}^*$

0.6

1. Powerful test for lepton flavour universality violation $\rightarrow b \rightarrow c \tau \bar{\nu}$ portal to new physics:

- Two-Higgs doublet models (stronger coupling to τ leptons).
- Leptoquarks.

 $sin 2\beta$

-0.2

2. Complementary measurements of V_{ub} to light lepton ($\ell = e, \mu$) semileptonic channels \rightarrow input to CKM global fits.

γ

 $V_{ud}V_{ub}^*$

0.0

 \overline{V}_{cd}

 $\Delta m_d \& \Delta m_e$

(V_{ub})

0.4

ρ

 $R(D^*) = 0.258 \pm 0.005$

0.3

0.4

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.4

0.2

R(D)

 $P(\chi^2) = 27\%$

0.5

SuperKEKB and the Belle II detector

- SuperKEKB: 40x higher instantaneous luminosity than KEKB $\rightarrow \mathscr{L} = 6 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- Belle II: major upgrade of Belle detector to cope with harsher beam background conditions.
- Improvements in reconstruction algorithm, esp. tracking, vertexing and particle identification.

Current Belle II dataset and projected luminosity

• Present data sample too limited for performing B (semi)tauonic physics measurements.

 \rightarrow Studied data/MC comparisons to demonstrate understanding of detector performance.

• Expecting first measurements with τ 's with $\mathcal{O}(200 \text{ fb}^{-1})$ in 2021.

MELBOURNE

Event reconstruction strategy

Information

Semileptonic Tag $\epsilon = \mathcal{O}(1)\%$ B_{tag} ℓ Knowledge of B_{tag}

 • Exploit flavour and kinematic constraints on "signal" *B* system by *tagging* the other.

 $* \rightarrow C.M.$ frame

$$M_{bc} = \sqrt{\left(\frac{\sqrt{s}}{2}\right)^2 - p_{B_{tag}}^{*2}} = \sqrt{E_{beam}^{*2} - p_{B_{tag}}^{*2}} \qquad \Delta E = E_{B_{tag}}^* - E_{beam}^*$$

• B_{sig} most often reconstructed through leptonic decays of the $\tau \left(\mathscr{B}(\tau \to \ell \nu \nu) \approx 34\% \right)$ to further minimise background.

 $\boldsymbol{\mathbb{U}}$

Efficiency

Full Event Interpretation algorithm for B_{tag} reconstruction

• Full Event Interpretation (FEI) algorithm developed in Belle II software $\rightarrow O(200)$ BDT classifiers trained on O(10,000) B decay channels to identify the B_{tag}

W. Sutcliffe's talk

• FEI successfully exploited in $R(D^{(*)})$ "semileptonic tag" analysis on Belle data analysed with the Belle II software.

G. Caria et al. (Belle Collaboration), Phys. Rev. Lett. 124, 161803

Experiment	Tag method	τ mode	R(D)	R(D*)	
Babar '12	Hadronic	ενν	0.440 ± 0.058 ± 0.042	0.332 ± 0.024 ± 0.018	
Belle '15	Hadronic	٤vv	0.375 ± 0.064 ± 0.026	0.293 ± 0.038 ± 0.015	
LHCb '15	-	٤vv	-	0.336 ± 0.027 ± 0.030	
Belle '16	Semileptonic	ενν	-	0.302 ± 0.030 ± 0.011	B ⁰
Belle '17	Hadronic	πν, ρν	-	0.270 ± 0.035 ± 0.027	
LHCb '18	-	πππν	-	$0.291 \pm 0.019 \pm 0.029$	
Belle '19	Semileptonic	٤vv	0.307 ± 0.037 ± 0.016	0.283 ± 0.018 ± 0.014	₿⁰,₿
Average (2018)	-	-	0.407 ± 0.039 ± 0.024	0.306 ± 0.013 ± 0.007	
Average (2019)	-	-	0.340 ± 0.027 ± 0.013	0.295 ± 0.011 ± 0.008	
SM			0.299 ± 0.003	0.258 ± 0.005	

Relevant observables for B decays with τ 's

• p_{ℓ}^* (in B_{sig} r.f.) \rightarrow crucially dependent on good lepton identification performance.

• Challenging due to low momentum of lepton daughters.

• $m_{miss}^2 \rightarrow$ separates signal from $B \rightarrow X \ell \nu$, pure hadronic final states.

Belle simulationBelle simulationP/Gev

• $E_{ECL} \rightarrow$ energy in the calorimeter of neutral particles not used in the reconstruction of the signal or tag.

Lepton identification performance in 2020 data

• Lepton identification & hadron mis-id performance in simulation calibrated to data using several "standard candles" to cover broad p range.

Lepton identification performance in 2020 data

• Results for a representative bin in the detector "barrel" region.

Electrons

Muons

- e, $\mathscr{L}_{ratio} > 0.9$, p > 1 GeV/c \rightarrow \langle efficiency \rangle of 94% for 2% pion mis-id probability.
- μ , $\mathscr{L}_{ratio} > 0.9$, p > 1 GeV/c \rightarrow \langle efficiency \rangle of 90% for 4% pion mis-id probability.

Upgrades to lepton identification using the ECL

• At low momentum, limit in KLM acceptance and large energy losses for electrons before the ECL make lepton identification a challenge.

 \rightarrow Combine several calorimetric observables (lateral shower shapes, extrapolated track depth in the ECL...) in a BDT to improve lepton-hadron separation.

• Factor 10 reduction in $\pi - e$ fake rate, and a factor 2 in $\pi - \mu$ fake rate for p < 1 GeV/c (MC)

muon system

ECL

Full leptonic $B^- \to \tau^- (\to e^- \bar{\nu_e} \nu_{\tau}) \bar{\nu}_{\tau}$ - Preliminary results

- \bullet First pure tauonic result of Belle II \rightarrow test-bench for event reconstruction capability.
- Only $\tau \rightarrow e \nu_e \nu_{\tau}$ channel considered. Use hadronic FEI tagging.

BELLE2-NOTE-PL-2020-023

Full leptonic $B^- \to \tau^- (\to e^- \bar{\nu_e} \nu_{\tau}) \bar{\nu}_{\tau}$ - Preliminary results

ightarrow demonstrate potential for observation of B
ightarrow au
u with larger dataset.

Beam background suppression algorithm for E_{ECL}

- Tail in E_{ECL} distribution:
 - Background $(B, q\bar{q}) \rightarrow$ mis-assigned K_L 's and γ 's.
 - \bullet Signal \rightarrow resolution effects, *beam background*.

- BDT developed to reduce beam background neutrals on E_{ECL} in the $\bar{B}^0 \to D^{*+} \ell^- \nu$ analysis, based on 6 calorimetric clusters shower shapes and angular positions ($E_{cluster} > 100 \text{ MeV}$).
- Algorithm trained on $e^+e^- \rightarrow \mu^+\mu^-$ control sample.

Prospects for (semi)leptonic B decays with au leptons

• $B \rightarrow \tau \nu$:

- expecting 5σ observation with 2.6 ab^{-1}
- $\mathscr{B}(B \to \tau \nu)$ tot. uncertainty of (10%) with 5 ab^{-1}
- $B \rightarrow D^{(*)} \tau \nu \ (R(D^{(*)}))$:
 - $\mathcal{O}(5\%)$ precision (tot. uncertainty) with 5 ab^{-1}
- Measure observables sensitive to NP effects in $b \to \ c \tau \nu$:
 - Polarisations: $P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}, P_{D^{*}} = \frac{\Gamma_{L}}{\Gamma_{L} + \Gamma_{T}}$
 - Kinematic distributions (q^2, p_ℓ)

Belle II (SM, 50 ab⁻¹), type II 2HDM

The Belle II Physics Book, PTEP 2019 no. 12, 123C01

	Integrated Luminosity (ab^{-1})	1	5	50
	statistical uncertainty (%)		13	4
hadronic tag	systematic uncertainty (%)		7	5
	total uncertainty (%)	32	15	6
	statistical uncertainty (%)	19	8	3
semileptonic tag	systematic uncertainty (%)		9	5
	total uncertainty (%)	26	12	5

Experimental challenges

• Background from $B \to D^{**}\ell\nu_{\ell}$:

 \rightarrow Measure branching ratios with higher precision.

- ightarrow (For exclusive analyses) improve π^0 reconstruction efficiency.
- Fake lepton suppression at low momenta, and improved LID calibration.
- Furthermore, for *inclusive* $B \rightarrow X \tau \nu$ analysis:

 \rightarrow Handle background from leptonic charm decays $B \rightarrow D \rightarrow \ell$

 \rightarrow large background yield implies *all* MC processes' \mathscr{B} 's must be measured with high precision.

Belle hadronic tag $B \rightarrow D\tau\nu \ (\tau \rightarrow \ell \nu_{\ell} \nu_{\tau})$ analysis, $M_{miss}^2 > 2.0 \text{ GeV}^2/c^4$ Phys. Rev., D92(7), 072014 (2015)

	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}\%$
$B \rightarrow D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic ${\cal B}$	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}\%$
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%
Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}\%$

Conclusions

- Belle II operations are in full swing, with $\approx 70 \text{ fb}^{-1}$ of data collected to date.
- First analyses on B (semi)leptonic decays with tau leptons successfully test improved techniques for event reconstruction (FEI).
- Preliminary studies of lepton identication in multiple channels show good performance, and exciting new developments will soon be tested in physics analyses.
- More intriguing results on B tauonic final states are on the way for 2021.

