First Results on Vub and Vcb with the Belle II experiment

Racha Cheaib University of British Columbia On behalf of the Belle II Collaboration

Belle II experiment

- A B meson factory in Tsukuba, Japan based on the SuperKEKB accelerator complex.
- Upgrade of its predecessor Belle and KEKB.

Current Belle II dataset

Results presented today with 34.6 fb⁻¹ of reprocessed data.

Tension between exclusive and inclusive V_{ub} and V_{cb} measurements along with other related B -anomalies

Exclusive $B^0 \to D^{*+} \ell \nu_{\ell}$

 $B^- \to D^0 \ell \nu_\ell$

⊳_⊳,

Flagship decay for exclusive V_{cb} measurements!

Reconstruct $D^0 \to K^- \pi^+$. Identify lepton using PID algorithms. Suppress $e^+e^- \to q\bar{q}$ events using p_{D*}<2.4 GeV/c and R₂ <0.3

First measurement at Belle II !

 ℓ^+

 D^0

 ν_{ℓ}

 K^{-}

 π^+

 e^+

 $\Gamma(4S)$

sig

 B^{-}

e

Untagged

 $\sqrt{\pi}$

 D^0

Inclusive $B \to X \ell \nu_{\ell}$

Inclusive $B \to X_u e \bar{\nu}_e$

- Measurement of V_{ub} in the lepton endpoint momentum spectrum.
 - Identify one lepton in the event using PID algorithms.
 - Suppress continuum using MVA trained with event shape variables.
 - Subtract continuum and other $B\bar{B}$ contributions.

10

Tagged Exclusive $B^0 \rightarrow \pi^+ \ell \nu_\ell$

Tagging Algorithm	Had B+/B ⁰	$SL B^+/B^0$
Full Reconstruction Belle	0.28/0.18	0.67/0.63
FEI Belle	0.78/0.46	1.80/2.04
	10	

MC Tagging efficiency at 10% purity!

Tagged Exclusive $B^0 \to \pi^- \ell \nu_\ell$

- FEI hadronic tagging to measure $\mathscr{B}(B^0 \to \pi^- \ell \nu)$ with
- Identify oppositely charged lepton, $p_e > 0.3$ and $p_{\mu} > 0.6$ GeV/c, and pion using PID algorithms.
- Suppress continuum using FoxWolfram moment R2.
- Apply E_{miss} >0.3 and $E_{residual}$ <1.0 GeV.

$$p_{miss} \equiv (E_{miss}, \vec{p}_{miss}) = p_{Bsig} - p_Y$$

• Analysis performed blinded in the signal region $M_{miss}^2 \le 1 \text{ GeV}^2/c^4$.

$N_{ m sig}^{ m data}$	20.79 ± 5.68
$f_{\pm 0}$	1.058 ± 0.024
$\mathrm{CF}_{\mathrm{FEI}}$	0.8301 ± 0.0286
$N_{B\bar{B}}$	$(37.711 \pm 0.602) \times 10^{6}$
ϵ	$(0.216 \pm 0.001)\%$
$\overline{\mathcal{B}(B^0 \to \pi^- \ell \nu)}$	$(1.58 \pm 0.43_{\rm stat} \pm 0.07_{\rm sys}) \times 10^{-4}$

In agreement with world average!

Observed signal significance: 5.69 σ

Tagged Exclusive $B^0 \to D^{*+} \ell \nu_{\ell}$

Tagged Exclusive $B^0 \to D^{*+} \ell \nu_{\ell}$

- Identify B_{tag} candidate with $M_{bc}>5.27 \text{ GeV/c}^2$ -0.15 < ΔE < 0.1 and FEI signal probability >0.001.
- Reconstruct D^0 meson from oppositely charged tracks with $1.858 < M_D < 1.878 \ GeV/c^2$.
- Combine D⁰ and π_s to form D^{*+} with 0.143 < ΔM < 0.148 GeV/c²
- Identify high momentum lepton with $p_l^* > 1.0$ GeV and combine with D*+ .
- Apply $E_{miss} > 0.3$ GeV and determine M_{miss}^2
- Extract signal yield using a fit to signal + background:

 $\mathscr{B}(\bar{B}^0 \to D^{*+}\ell\nu_{\ell}) = (4.51 \pm 0.41_{stat} \pm 0.27_{syst} \pm 0.45_{\pi_s})\%$

In agreement with world average!

$$\mathcal{B}(\bar{B}^0 \rightarrow D^{*+}\ell\nu_\ell) = (5.05 \pm 0.14)\,\%$$

Hadronic Mass Moments of $B \to X_c \ell \nu_\ell$

π

D

π

- Moments used to determine V_{cb} and the mass of the b quark in HQE.
- Use hadronic FEI tagging and identify one lepton with $p *_l > 0.8$ GeV/c and PID likelihood >0.9.
- 6 signal channels $B^0 \ell^{\pm}, B^+ \ell^-$ and two control $B^+ \ell^+$ to estimate N^i_{bkg}
- Identify X_c system using remaining tracks and clusters in the $\Upsilon(4S)$ rest of event.
- Suppress continuum and require E_{miss} and p_{miss}>0.5 GeV.

Hadronic Mass Moments of $B \to X_c \ell \nu_\ell$

In agreement with previous measurements!

Towards higher luminosities

18

Future prospects

Expect significant improvement with higher luminosities and better understanding of the detector's performance.

Observables	Belle	Bel	lle II
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	_
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91 \cdot (1 \pm 24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D \tau \nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

Summary

- First measurements for tagged and untagged $\mathscr{B}(\bar{B}^0 \to D^{*+}\ell \bar{\nu}_{\ell})$ at the Belle II experiment:
 - Untagged: $\mathscr{B}(\bar{B^0} \to D^{*+}\ell \bar{\nu}_{\ell}) = (4.60 \pm 0.05(stat) \pm 0.18(sys) \pm 0.45\pi_s)\%$
 - Tagged: $\mathscr{B}(\bar{B}^0 \to D^{*+}\ell\bar{\nu}_{\ell}) = (4.51 \pm 0.41_{stat} \pm 0.27_{syst} \pm 0.45_{\pi_s})\%$
- First measurement of hadronic tagged $\mathscr{B}(B^0 \to \pi^- \ell \bar{\nu}_\ell) = (1.58 \pm 0.43_{stat} \pm 0.07_{sys}) \times 10^{-4}$ and evidence of non-zero V_{ub} in the lepton momentum endpoint in $\mathscr{B}(B \to X_u \ell \nu)$ at the Belle II experiment.
- First measurement of the hadronic moments in $\mathscr{B}(B \to X_c \ell \nu)$ at the Belle II experiment.
- Agreement with world average and previous experimental measurements .

More to come with increased luminosity!

BACK UP

 $B^0 \to \pi^+ \ell \nu_\ell$

B to X I nu MC modeling

B	Value B^+	Value B^0
$B \to D \ell^+ \nu_\ell$	$(2.3\pm0.1)\times10^{-2}$	$(2.1\pm0.1)\times10^{-2}$
$B o D^* \ell^+ \nu_\ell$	$(5.5 \pm 0.1) \times 10^{-2}$	$(5.1 \pm 0.1) \times 10^{-2}$
$B \to D_1 \ell^+ \nu_\ell$	$(4.5\pm0.3)\times10^{-3}$	$(4.2 \pm 0.3) \times 10^{-3}$
$(\hookrightarrow D^*\pi)$		
$B o D_1 \ell^+ \nu_\ell$	$(3.2 \pm 1.0) \times 10^{-3}$	$(2.8 \pm 0.9) \times 10^{-3}$
$(\hookrightarrow D\pi\pi)$		
$B o D_2^* \ell^+ \nu_\ell$	$(1.5 \pm 0.1) \times 10^{-3}$	$(1.4 \pm 0.1) \times 10^{-3}$
$(\hookrightarrow D^*\pi)$	2	2
$B o D_2^* \ell^+ u_\ell$	$(2.2 \pm 0.2) \times 10^{-3}$	$(2.1\pm0.2)\times10^{-3}$
$(\hookrightarrow D\pi)$	0	0
$B \to D_0^* \ell^+ \nu_\ell$	$(3.9\pm0.8)\times10^{-3}$	$(3.6 \pm 0.7) \times 10^{-3}$
$(\hookrightarrow D\pi)$	0	
$B \to D_1' \ell^+ \nu_\ell$	$(4.3 \pm 0.8) \times 10^{-3}$	$(4.0\pm0.8)\times10^{-3}$
$(\hookrightarrow D^*\pi)$		
$B \to D\pi \ell^+ \nu_\ell$	$(1.5\pm0.6)\times10^{-3}$	$(1.5\pm0.6)\times10^{-3}$
$B o D^* \pi \ell^+ \nu_\ell$	$(1.5 \pm 1.0) \times 10^{-3}$	$(1.5 \pm 1.0) \times 10^{-3}$
$B \to D\pi\pi \ell^+ \nu_\ell$	$(0.5 \pm 0.5) imes 10^{-3}$	$(0.5 \pm 0.5) imes 10^{-3}$
$B \to D^* \pi \pi \ell^+ \nu_\ell$	$(2.6 \pm 1.0) \times 10^{-3}$	$(2.4 \pm 1.0) \times 10^{-3}$
$B \to D\eta \ell^+ \nu_\ell$	$(2.0 \pm 2.0) \times 10^{-3}$	$(2.2 \pm 2.2) \times 10^{-3}$
$\underline{B \to D^* \eta \ell^+ \nu_\ell}$	$(2.0 \pm 2.0) \times 10^{-3}$	$(2.2 \pm 2.2) \times 10^{-3}$
${ m B} ightarrow { m X_c} \ell u_\ell$	$(10.8 \pm 0.4) \times 10^{-2}$	$(10.0 \pm 0.4) \times 10^{-2}$

Inclusive $B \to X_u e \bar{\nu}_e$

- Measurement of Vub in the lepton endpoint momentum spectrum.
 - Identify one lepton in the event using PID algorithms.
 - Suppress continuum using MVA trained with event shape variables.

 $q(q) \approx 5 \, \text{GeV}/c$

 $p(B) \approx 0.3 \, \text{GeV}/$

24

Tagged Exclusive $B^0 \to \pi^+ \ell \nu_\ell$

• Extract signal yield using a fit with two templates: signal +background.

$$\mathcal{B}(B^0 \to \pi^- \ell \nu) = \frac{N_{\rm sig}^{\rm data}(1+f_{+0})}{4 \times \mathrm{CF}_{\rm FEI} \times N_{B\bar{B}} \times \epsilon}$$

$N_{ m sig}^{ m data}$	20.79 ± 5.68
$f_{\pm 0}$	1.058 ± 0.024
$\mathrm{CF}_{\mathrm{FEI}}$	0.8301 ± 0.0286
$N_{B\bar{B}}$	$(37.711 \pm 0.602) \times 10^{6}$
ϵ	$(0.216 \pm 0.001)\%$
$\mathcal{B}(B^0\to\pi^-\ell\nu)$	$(1.58 \pm 0.43_{\rm stat} \pm 0.07_{\rm sys}) \times 10^{-4}$

Global Vub fit to the full spectrum using all available experimental and theoretical information: Constraints on HQE parameters such as mb and the shape functions.

Tagged Exclusive $B^0 \to D^{*+}_{\mu} \ell \nu_{\ell}$

- Examine beam background contributions to Eres, the sum of energy deposits for all neutral clusters after Bsig+Btag reconstruction, in the Belle II environment.
- Suppress beam backgrounds using MVA trained with cluster shower shape variables.

D

 D^*

Via