

Towards first CKM measurements at Belle II

Mario Merola (Università di Napoli Federico II and INFN) On behalf of the Belle II Collaboration FPCP2020, 8-12 June 2020

Standard' Unitarity Triangle: sides and angles

Standard' Unitarity Triangle: sides and angles

In this talk will focus on $R_u \sim |V_{ub}|/[V_{cb}]$ and ϕ_3 :

- Semileptonic B decays with missing energy $B \rightarrow X_{u(c)} \ell v$
- Hadronic B decays into charm $B \rightarrow DK$

For ϕ_1, ϕ_2 measurements see Fernando Abudinén's <u>talk</u> today

Belle II physics reach projections summarized in the Belle II Physics Book (PTEP 2019 (2019) 12, 123C01, <u>https://doi.org/10.1093/ptep/ptaa008</u>)

• Reconstruct one B (\mathbf{B}_{tag}) and constrain the 4-momentum of the other (\mathbf{B}_{sig})

$$p_{\nu} = p_{e^+e^-} - p_{B_{tag}} - p_{B_{sig}}$$

• The FEI uses a multivariate technique to reconstruct the B-tag side (semileptonic or hadronic) through $O(10^3)$ decay modes in a Y(4S) decay.

Performances on Belle MC with hadronic tag @10% purity

Tag algorithm	Efficiency B [±] /B ⁰ (%)
Belle algorithm	0.28/0.18
Belle II FEI	0.76/0.46

Belle algorithm: NIM A 654, 432-440 (2011) Belle II FEI: Keck, T., Abudinén, F., Bernlochner, F.U. et al. Comput Softw Big Sci (2019) 3: 6. https://doi.org/10.1007/s41781-019-0021-8

4

FEI on Belle II data

• Tag side reconstructed in hadronic modes

$$M_{bc} = \sqrt{s/4 - (p_B^*)^2}$$

Details in the *talk* by Slavomira Stefkova on Thursday

- Select a lepton and sum the remaining particles' kinematics on the signal side
- Check consistency with the well-known $\mathbf{B} \to \mathbf{X} \boldsymbol{\ell} \mathbf{v}$
- Also used to calibrate FEI

Semileptonic decays: $B \rightarrow X \ell v$

- Current precision is 2% on |V_{cb}| and 5-6% on |V_{ub}|
- Tension between inclusive and exclusive determinations: $\sim 3\sigma$ for $|V_{cb}|$ and $\sim 3.5\sigma$ for $|V_{ub}|$
- X_clv decays are a clear test of the SM LFU: NP (charged Higgs in 2HDM models or Leptoquarks) can affect the BR and |V_{cb}|

• Complementary to the $R(D)/R(D^*)$ measurements which factor out the $|V_{cb}|$ and form factor uncertainties

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell)} \quad (\ell = e, \mu)$$

<u>Talk</u> by Saurabh Sandilya on LFU tomorrow

Semileptonic decays:
$$B \rightarrow X_u \ell v(I)$$
 (I)

Measurement of $|V_{ub}|$ from inclusive and exclusive B decays

Exclusive: $\mathbf{B}^0 \rightarrow \pi \ell \nu$ decay

- Exploit **missing mass** and **extra energy** in the calorimeter
- $\mathcal{B} \sim f_i |V_{ub}|^2$. Form factors f_i computed with LQCD*

7

Belle II Physics Book

Semileptonic decays: $B \rightarrow X_u \ell v$ (II) INFŃ

- Projection of $|V_{ub}|$ uncertainies from $\mathbf{B}^0 \rightarrow \pi \ell \mathbf{v}$ decay
- Takes advantage from improvements in LQCD

Precision of ~1% with full
 Belle II dataset

Vub uncert.	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)
Exclusive	(1.2 ⊕1.7)%	(0.9 \oplus 0.9)%
Inclusive	(2.3 \oplus 2.5-4.5)%	(1.7 \oplus 2.5-4.5)%

Projected errors: (experiment \oplus theory)

Belle II Physics Book

Untagged $B^0 \rightarrow D^* \ell \nu$ (I)

- Flagship decay for the measurement of $|V_{cb}|$
- Inclusive tagging
- $D^* \to D^0 \pi_s, D^0 \to K \pi$

Untagged $B^0 \rightarrow D^* \ell \nu$ (II)

 Angle between the B flight direction and the direction of the (D**l*) system (Y):

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - M_B^2 - m_Y^2}{2p_B^* p_Y^*}$$

• Fit to $\cos\theta_{BY}$ distribution in data to measure the branching ratio

Vcb uncert.	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)
Exclusive	1.8%	1.4%

angle 3

- ϕ_3 is accessible at tree level: theoretically very clean, $\delta \phi_3 / \phi_3 \sim 10^{-7*}$
- Measured via the interference between $B^- \to D^0 K^-$ and $B^- \to \overline{D}^0 K^-$

 D_3 angle

- ϕ_3 is accessible at tree level: theoretically very clean, $\delta \phi_3 / \phi_3 \sim 10^{-7*}$
- Measured via the interference between $B^- \to D^0 K^-$ and $B^- \to \overline{D}^0 K^-$

Three approaches depending on **D⁰ decay** channels:

- CP eigenstates: K^+K^- , $\pi^+\pi^-$, etc.
- Doubly Cabibbo suppr.: $K^+\pi^-$
- Multi-body (Dalitz analysis): $K_S \pi^+ \pi^-$, $K_S \pi^+ \pi^- \pi^0$. Improving precision: model independent approach and strong phase measurements from BESIII.

* J. Brod, J. Zupan, JHEP 01 (2014) 051

Rediscovery of $B \rightarrow DK$ at Belle II (INFN)

- Exploits multivariate techniques to suppress continuum background and good particle identification performances
- $\Delta E \equiv E_B^* \sqrt{s}/2$
- Observation of the golden 3-body decay as well

Ultimate **Belle II precision on \phi_3 < 1.6^{\circ}** (combining all the approaches)

- Within the next years Belle II will be able to address the inclusive/exclusive
 |V_{cb}| / |V_{ub}| tension by measuring semileptonic B decays with missing energy.
- The use of advanced tagging techniques, i.e. FEI, together with untagged analyses will allow to reach a precision of $\sim 1\%$ on $|V_{ub}|$ and $\sim 1.5\%$ on $|V_{cb}|$.
- Belle II will also deliver a high precision measurement of the ϕ_3 angle, exploiting the Dalitz analysis of multi-body D⁰ decays in the B \rightarrow DK process.

Thanks !

Summary <u>talk</u> on Belle II status and prospects by Phillip Urquijo on Friday

- FEI Calibration (17)
- B -> pilnu decay (18)
- $B \rightarrow D^* lv (19)$
- Leptonic B decays (20-23)
- RD/RD* (24)
- B -> sll (25)
- Semileptonic projections (26)
- ϕ_3 angle (27)

FEI Calibration

FEI validated on Belle data

Figure 4.18.: The overall efficiency correction calculated by measuring the known branching fractions of 10 control channels on converted Belle data [76].

Thomas Keck's Master thesis, DOI: http://dx.doi.org/10.5445/IR/1000078149

Semileptonic decay: $B^0 \rightarrow \pi l v$

Table 53. Summary of systematic uncertainties on the branching fractions of $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$ decays in hadronic
tagged and untagged Belle analyses with 711 fb ⁻¹ [84] and 605 fb ⁻¹ [299] data samples, respectively. The
estimated precision limit for some sources of systematic uncertainties is given in parentheses.

Source	Error (limit) [%]			
	Tagged	Untagged		
Tracking efficiency	0.4	2.0		
Pion identification		1.3		
Lepton identification	1.0	2.4		
Kaon veto	0.9	_		
Continuum description	1.0	1.8		
Tag calibration and N_{BB}	4.5 (2.0)	2.0 (1.0)		
$X_u \ell v$ cross-feed	0.9	0.5 (0.5)		
$X_c \ell v$ background	_	0.2 (0.2)		
Form factor shapes	1.1	1.0 (1.0)		
Form factor background	_	0.4 (0.4)		
Total	5.0	4.5		
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)		

LQCD: current is the world avergage by FLAG group

- 5 yr w/o EM: We assume a factor of 2 reduction of the lattice QCD uncertainty in the next five vears and that the uncertainty of the EM correction is negligible (e.g. for processes insensitive to the EM correction).

- 5 yr w/ EM: The lattice QCD uncertainty is reduced by a factor of 2, but we add in quadrature 1% uncertainty from the EM correction.

- 10 yr w/o EM: We assume a factor of 5 reduction of the lattice QCD uncertainty in the next ten years. It is also assumed that the EM correction will be under control and its uncertainty is negligible. - 10 yr w/ EM: We assume lattice QCD uncertainties reduced by a factor of 5, but add in quadrature 1% uncertainty from the EM correction.

Untagged $B \to D^* l \nu$

Source	Relative uncertainty (%)			
	$\overline{B}{}^0 \to D^{*+} e^- \overline{\nu}_e$	$\overline{B}{}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu}$		
Lepton-ID, PDF	0.09	0.08		
MC statistics, PDF	0.64	0.55		
$\mathcal{B}(\bar{B} \to D^{**}\ell\bar{\nu})$	0.18	0.08		
Efficiency momentum dependence	0.1	0.1		
PDF binning	0.5	0.5		
Lepton-ID, efficiency	1.8	2.2		
MC statistics, efficiency	0.13	0.13		
Tracking of K, π, ℓ	2.5	2.5		
Tracking of π_s	6.0	6.0		
N_{B^0}	3.3	3.3		
Charm branching fractions	1.1	1.1		
Total	7.64	7.73		

• Clean theoretically, hard experimentally: only $B \rightarrow \tau v$ has been measured

Belle combination $\mathcal{B} = [0.91 \pm 0.19(\text{stat.}) \pm 0.11(\text{syst.})] \times 10^{-4}$ (evidence at ~4.6 σ level)

Leptonic B decays: $B \rightarrow \tau v$

Belle II full simulation study

- Hadronic tag with FEI
- 1-prong τ decays ($\mu\nu\nu$, $e\nu\nu$, $\pi\nu$, $\rho\nu$)
- Dedicated study on machine background impact
- ML fit to extra energy E_{ECL}

Main systematic uncertainties:

background E_{Extra} PDF, branching fractions of the peaking backgrounds, tagging efficiency, and K^0_L veto efficiency

	Integrated Luminosity (ab^{-1})	1	5	50
	statistical uncertainty (%)	29.2	13.0	4.1
hadronic tag	systematic uncertainty $(\%)$	12.6	6.8	4.6
	total uncertainty $(\%)$	31.6	(14.7)) 6.2
	statistical uncertainty (%)	19.0	8.5	2.7
semileptonic tag	systematic uncertainty $(\%)$	17.9	8.7	4.5
	total uncertainty (%)	26.1	12.2) 5.3

Observation at $\sim 3 \text{ ab}^{-1}$

Leptonic B decays: $B \rightarrow \mu v$

- Two body decay: $p_{\mu}^* = m_B/2$ in B rest frame
- Tagging \rightarrow better p_{μ}^{*} resolution but small statistics
- Untagged measurement (2020):
 - 2.8σ precision on the BR
 - 20% uncertainty on $|V_{ub}|$

Unc. on $\left \mathbf{V}_{ub} \right $	Belle II @5ab ⁻¹	Belle II @50 ab ⁻¹
$B \to \tau \nu$	5%	1.5 - 2 %
$B \rightarrow \mu \nu$	10%	5%

Leptonic B decays

	ΔR(D) [%]			ΔR(D*) [%]			
	Stat	Sys	Total	Stat	Sys	Total	
Belle 0.7 ab ⁻¹	14	6	16	6	3	7	
Belle II 5 ab-1	5	3	6	2	2	3	
Belle II 50 ab-1	2	3	3	1	2	2	

Main systematics: D^{**} modelling, soft pions, yield of fake D^* candidates. Studies of $B \rightarrow D^{**}lv$ and $B \rightarrow D^{**}\tau v$ planned

 $B \rightarrow sll : R(K^*)$

25

$$R_K^{(*)} = \frac{\mathfrak{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathfrak{B}(B \to K^{(*)}e^+e^-)}$$

LHCb values based on naive run-1 extrapolation (not official) Belle II scenarios due to operating conditions at KEK

** Consider it as a sketch to show Belle II can provide confirmation of any persistent anomaly.

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] \text{GeV}^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%

Projections

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	_
$ V_{cb} $ excl.	$39.0\cdot 10^{-3}\cdot (1\pm 3.0\%_{ m ex.}\pm 1.4\%_{ m th.})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47\cdot 10^{-3}\cdot (1\pm 6.0\%_{ m ex.}\pm 2.5\%_{ m th.})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{ ext{ex.}} \pm 3.0\%_{ ext{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91\cdot(1\pm24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D \tau \nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

				over	x)[ab-1]		
Process	Opservable	Theory	Sys. dom	. (Disca VB LHCp	vs Belle	Anomal	NP NP
$B \to \pi \ell \nu_\ell$	$ V_{ub} $	***	10-20	***	***	**	*
$B \to X_u \ell \nu_\ell$	$ V_{ub} $	**	2-10	***	**	***	*
$B\to \tau\nu$	Br.	***	>50(2)	***	***	*	***
$B ightarrow \mu u$	Br.	***	>50(5)	***	***	*	***
$B o D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**	**	*
$B \to X_c \ell \nu_\ell$	$ V_{cb} $	***	1-5	***	**	**	**
$B ightarrow D^{(*)} au u_{ au}$	$R(D^{(*)})$	***	5 - 10	**	***	***	***
$B \to D^{(*)} \tau \nu_{\tau}$	$P_{ au}$	***	15 - 20	***	***	**	***
$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***	**	-

 ϕ_3 angle

Dalitz plot of $K_S \pi^+ \pi^-$

Combination of measurements

