

LFV, lepton universality, and rare decay searches at e⁺e⁻ colliders

Mario Merola (Università di Napoli Federico II and INFN) On behalf of the Belle II Collaboration **BLV2019, 21-24 October 2019, Madrid**

N F N

Babar and Belle achievements

' **N F N**

SuperKEKB

- Electron-positron collider situated at KEK (Tsukuba, Japan), upgrade of KEKB
- e^+e^- (4 GeV + 7 GeV) $\rightarrow \mathbf{B}\overline{\mathbf{B}}$ mainly at $\sqrt{s_{cm}}=10.58$ GeV (peak of $\Upsilon(4S)$ resonance)

- **B-factory** (10⁹ pairs per ab⁻¹)
- tau and charm factory (10⁹ pairs per ab⁻¹)

From KEKB to SuperKEKB

4

Belle Upgrade:

- Extended VXD region: PXD and SVD (silicon pixel and strips detectors)

- Extended Drift Chamber region

- **ECL:** CsI(Tl) crystals. **New** electronics (waveform sampling and fitting)

- **TOP and ARICH detectors: better hermeticity** with new PID detector in the forward region

- KLM detector: RPCs and scintillators (some RPCs layers substituted with scintillators to resist neutron background)

- improved IP and secondary vertex resolution
- \bullet better K/π separation and flavor tagging
- robust against machine background
- higher K_S , π^0 and slow pions reconstruction efficiency

Unique capabilities of e⁺e⁻ B factories

- Beam energy constraint: can be adjusted for different resonances $\Upsilon(nS)$
- Clean experimental environment: high B, D, K, τ lepton and neutral final states reconstruction efficiency.
- BB produced in quantum correlated state: high flavour tagging efficiencies (36% vs 3% @LHCb)

The full reconstruction of one B (B_{tag}) constraints the 4-momentum of the other (B_{sig})

Reconstruction of channels with missing energy

$$p_{\nu} = p_{e^+e^-} - p_{B_{tag}} - p_{B_{sig}}$$

Tag side reconstruction: Full Event Interpretation (FEI)

• It is a development of the Full Reconstruction (FR) used in Belle, and uses a multivariate technique to reconstruct the B-tag side (semileptonic or hadronic) through $O(10^3)$ decay modes in a Y(4S) decay.

• Tested on Belle II early data

Performances with hadronic tag

Belle FR: NIM A 654, 432-440 (2011) **Belle II FEI:** Keck, T., Abudinén, F., Bernlochner, F.U. et al. Comput Softw Big Sci (2019) 3: 6. <u>https://doi.org/10.1007/s41781-019-0021-8</u>

 $B \rightarrow D^0 K$

0.05

rediscovery

0.1

150

100 50

In

0.15

 ΔE (GeV)

2.95

2.95

3

3.05

3.05

3.1

3.1

3.15

3.15

 $M(\mu^+\mu^-)$ (GeV/c²)

3.2

Belle II status and recent results

8

60

50

40

30

20

10

-8.15

-0.1

-0.05

0

Relle Ti

Exp: 7-8 - All runs

Belle II online luminosity ated luminosity [fb⁻¹]

Day per Day

21/10/19

- Semileptonic B decays with missing energy
 - $B \to X \ell \nu$, measurement of $R(D), R(D^*)$
- FCNC B decays with leptons in the final state
 - $B \to X_s \ell^+ \ell^-$, measurement of $R(K), R(K^*), P'_5$
- Tau lepton decays
 - $\tau \rightarrow 3\ell, \tau \rightarrow \ell\gamma, \tau \rightarrow \ell h$

Other channels as $B \to K^{(*)} \nu \overline{\nu}, B \to \ell \nu (\gamma)$ in the backup slides

Belle II physics reach projections summarized in the Belle II Physics Book (<u>https://arxiv.org/abs/1808.10567</u>, soon available on PTEP)

Semileptonic decays: $B \rightarrow D^{(*)}\tau v$ and $B \rightarrow D^{(*)} l \nu$

Advantages of measuring R(D^(*)):

- **experimentally** we eliminate the uncertainties on the tagging efficiencies
- **theoretically** we eliminate the uncertainties on $|V_{cb}|$ and on the semileptonic form factors \rightarrow complementary to the inclusive / exclusive searches

Signal and **normalization** separation is based mainly on the missing mass and the angle between B meson and D^(*)l system

$$\mathcal{R}(D^*) = \frac{1}{2\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)} \cdot \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \cdot \frac{N_{\text{sig}}}{N_{\text{norm}}}$$

21/10/19

 2σ from the SM

R(D^(*)) Belle II projections

12

pions, yield of fake D* candidates. Studies of $B \rightarrow D^{**lv}$ and $B \rightarrow D^{**\tau v}$ planned

FCNC $B \rightarrow X_s \ell \ell$

Sensitivity to new physics

- Very rare in the SM: $\mathfrak{B}(B \rightarrow K^{(*)}ll) \sim 10^{-(6-8)}$
- Sensitive to NP (supersymmetry, 2HDM models, fourth generation, extra dimensions...)
- Experimentally we measure the ratios:

 $R_K^{(*)} = \frac{\mathfrak{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathfrak{B}(B \to K^{(*)}e^+e^-)}$

• Effective, model independent, hamiltonian:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i O_i$

 C_i : Wilson coefficients, encode short distance physics O_i : Operators describing long-distance physics

• Measurement of parameters related to angular distributions of the decay products $(P'_5, Q_5 = P'^e_5 - P'^\mu_5)$ (see Ben Grinstein's plenary talk for details)

$B \to K^* \ell \ell$

arXiv:1904.02440 (Belle 2019)

- Signal extraction with fit to M_{bc} distributions
- Dominant background: combinatorial
- Peaking background: charmonium $J/\psi K^*$
- Main systematics: lepton efficiency and peaking background

<u>arXiv:1908.01848 (Belle 2019)</u>

- Signal extraction with 3D fit to M_{bc} , ΔE , NN discriminant
- NN discriminant built using kinematic and angular variables
- Main systematics: lepton identification, B counting, NN discriminant

FCNC B \rightarrow K* $\ell\ell$: summary and projections

- Differential distributions in q² (dilepton invariant mass squared)
- Latest Belle result closer to the SM expectation (~1)
- Measurements still dominated by statistical uncertainty
- Inclusive studies of $B \rightarrow X_s \ell \ell$ possible: reduce hadronic uncertainties

FCNC B $\rightarrow X_{s}\ell\ell$: perspectives on C_9 , P_5 '

1

- Angular variables sensitive to NP
- LHCb measurement dominated by systematics
- Exploit Full Event Interpretation to perform fully inclusive searches

[ab⁻¹]

- LFV in tau decays is a clear test of the SM: expected BR ~ 10⁻⁴⁵ (NP predicts BR up to 10⁻⁸)

 Searches in different channels may provide discrimination among NP models

(M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al., PLB547, 252 (2002))

	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z' boson
$\left(\frac{\tau \to \mu \mu \mu}{\tau \to \mu \gamma}\right)$	$\sim 2 \times 10^{-3}$	0.06~0.1	0.4~2.3	~16
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	$\sim 1 \times 10^{-2}$	$\sim 1 \times 10^{-2}$	0.3~1.6	~16
Br ($ au ightarrow \mu \gamma$)	< 10 ⁻⁷	< 10 ⁻¹⁰	< 10 ⁻¹⁰	< 10 ⁻⁹

17

At Belle II an improvement of **2 orders of magnitude** is expected with full dataset

Conclusions

- Within the next three-five years of data taking Belle II will collect 5-20 ab⁻¹ and will be able to address the Lepton Flavour Universality Violation by precisely measuring **R**(**D**^(*)), **R**(**K**^(*)), **P**₅'
- With **full dataset** Belle II will also be able to potentially discover LFV in the tau lepton sector
- In addition Belle II will also have the sensitivity to shed light on anomalies in the $B \rightarrow X_u \ell \nu$ decays and investigate other rare processes suppressed in the SM $(B \rightarrow \ell \nu, B \rightarrow K^{(*)} \nu \overline{\nu}, B \rightarrow \nu \overline{\nu}$, etc.)

Thanks !

- Belle II first data (22-23)
- FEI Calibration (24)
- B \rightarrow X_{u,c}lnu decays (25-28)
- Leptonic B decays (29-32)
- В -> К*vv (33-35)
- B -> sll (36-39)

Belle II

- Light dark matter and light mediator searches in Belle II:
 - Dark photons, dark higgs, axion-like particles (ALPs), mass scale ~GeV or sub-GeV.
 - * Production, e.g.: $e^+e^- \rightarrow M+X$, $e^+e^- \rightarrow Y(ns) \rightarrow M+X$, $e^+e^- \rightarrow B+X \rightarrow K+M+X$.
- Example: on-shell dark photon decaying to invisible DM:
 - Signal: single, mono-energetic, high-E photon & peak in recoil mass.
 - Single Photon trigger with 1 GeV threshold.

- Particularly relevant with Phase 2 data:
 - Low luminosity and lower beam background allow to open up triggers.
 - Small dataset can still give world best sensitivity.

Belle II calo more hermetic than BaBar

Isabelle Ripp-Baudot

FEI Calibration

FEI validated on Belle real data

Figure 4.18.: The overall efficiency correction calculated by measuring the known branching fractions of 10 control channels on converted Belle data [76].

Thomas Keck's master thesis

Semileptonic decays: $B \rightarrow X_{u} lv$

Measurement of $|V_{ub}|$ from inclusive and exclusive B decays

- Inclusive decays measurement
 - Hadronic tag
 - Exploit kinematic endpoints to

reduce
$$B \rightarrow X_c l v$$
 bkg

$$|V_{ub}|^2 = \Delta \mathcal{B}_{u\ell\nu} / (\tau_B \Delta \mathcal{R})$$

Measured BR in fiducial phase space region

Predicted partial decay rate

Semileptonic decays: $B \rightarrow X_{u} lv$

• $\mathbf{B}^0 \rightarrow \pi \, \mathbf{l} \, \mathbf{v}$ decay

Belle II Full Simulation study

- Untagged or tagged (with FEI)
- Exploit missing mass and extra energy in the calorimeter
- $\mathcal{B} \sim f_i |V_{ub}|^2$; form factors f_i computed with LQCD (PRD 91, 074510 (2015))

Belle II @ 50 ab⁻¹: ~3% (inclusive) / ~2% (exclusive $\pi l \nu$) uncertainty

0.05

9^L

27

Semileptonic decay: $B^0 \rightarrow \pi l \nu$

Table 54: Summary of systematic uncertainties on the branching fractions of $B^0 \to \pi^- \ell^+ \nu_\ell$ decays in hadronic tagged and untagged Belle analyses with 711 fb⁻¹ [271] and 605 fb⁻¹ [269] data samples, respectively. The estimated precision limit for some sources of systematic uncertainties is given in brackets.

Source	Error (L	imit) [%]
	Tagged [%]	Untagged
Tracking efficiency	0.4	2.0
Pion identification	-	1.3
Lepton identification	1.0	2.4
Kaon veto	0.9	_
Continuum description	1.0	1.8
Tag calibration and $N_{B\overline{B}}$	4.5(2.0)	2.0(1.0)
$X_u \ell \nu$ cross-feed	0.9	0.5~(0.5)
$X_c \ell \nu$ background	_	0.2(0.2)
Form factor shapes	1.1	1.0(1.0)
Form factor background	_	0.4(0.4)
Total	5.0	4.5
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)

LQCD: current is the world avergage by FLAG group

- 5 yr w/o EM": We assume a factor of 2 reduction of the lattice QCD uncertainty in the next ve years and that the uncertainty of the EM correction is negligible (e.g. for processes insensitive to the EM correction).

- 5 yr w/ EM": The lattice QCD uncertainty is reduced by a factor of 2, but we add in quadrature 1% uncertainty from the EM correction19.

- 10 yr w/o EM": We assume a factor of 5 reduction of the lattice QCD uncertainty in the next ten years. It is also assumed that the EM correction will be under control and its uncertainty is negligible.
- 10 yr w/ EM": We assume lattice QCD uncertainties reduced by a factor of 5, but add in quadrature 1% uncertainty from the EM correction.

0.6 0.8

Eextra [GeV]

04

R(D^(*)) Belle measurement

Source	$\Delta R(D)$ (%)	$\Delta R(D^*)$ (%)
D^{**} composition	0.76	1.41
Fake $D^{(*)}$ calibration	0.19	0.11
$B_{\rm tag}$ calibration	0.07	0.05
Feed-down factors	1.69	0.44
Efficiency factors	1.93	4.12
Lepton efficiency and fake rate	0.36	0.33
Slow pion efficiency	0.08	0.08
MC statistics	4.39	2.25
B decay form factors	0.55	0.28
Luminosity	0.10	0.04
$\mathcal{B}(B \to D^{(*)} \ell \nu)$	0.05	0.02
$\mathcal{B}(D)$	0.35	0.13
$\mathcal{B}(D^*)$	0.04	0.02
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.15	0.14
Total	5.21	4.94

Clean theoretically, hard experimentally: only $B \rightarrow \tau v$ has been measured

Leptonic B decays: $B \rightarrow \tau v$

Belle II full simulation study

- Hadronic tag with FEI
- 1-prong τ decays ($\mu\nu\nu$, $e\nu\nu$, $\pi\nu$, $\rho\nu$)
- Dedicated study on machine background impact
- ML fit to extra energy E_{ECL}

Main systematic uncertainties:

background E_{Extra} PDF, branching fractions of the peaking backgrounds, tagging efficiency, and K^0_L veto efficiency

	Integrated Luminosity (ab^{-1})	1	5	50
	statistical uncertainty (%)	29.2	13.0	4.1
hadronic tag	systematic uncertainty $(\%)$	12.6	6.8	4.6
	total uncertainty $(\%)$	31.6	(14.7)	6.2
semileptonic tag	statistical uncertainty (%)	19.0	8.5	2.7
	systematic uncertainty $(\%)$	17.9	8.7	4.5
	total uncertainty (%)	26.1	(12.2) 5.3

Observation at $\sim 3 \text{ ab}^{-1}$

Leptonic B decays: $B \rightarrow \mu \nu$ and radiative $B \rightarrow l \nu \gamma$

$B \rightarrow \mu \nu$

- Two body decay: $p_{\mu}^* = m_B/2$ in B rest frame
- Tagging \rightarrow better p_{μ}^{*} resolution but small statistics
- $\sim 2.4\sigma$ measurement

$B \longrightarrow l \nu \gamma$

- Radiative decay lifts the helicity suppression
- Allows a measurement of $\lambda_B \rightarrow$ crucial input to QCD factorization predictions of charmless hadronic B decays

$$\Gamma = \frac{d\Gamma}{dE_{\gamma}} = \frac{\alpha_{em}G_{\rm F}^2 m_B^4 |V_{ub}|^2}{48\pi^2} x_{\gamma}^3 (1-x_{\gamma}) [F_A^2 + F_V^2].$$

$$\begin{aligned} F_{V}(E_{\gamma}) &= \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) + \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} + \frac{Q_{u}m_{B}f_{B}}{(2E_{\gamma})^{2}}\right], \\ F_{A}(E_{\gamma}) &= \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) - \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} - \frac{Q_{u}m_{B}f_{B}}{(2E_{\gamma})^{2}} + \frac{Q_{\ell}f_{B}}{E_{\gamma}}\right], \end{aligned}$$

Beneke and Rohrwild, 2011, https://doi.org/10.1140/epjc/s10052-011-1818-8

21/10/19

Flavour changing neutral current $B \rightarrow K^{(*)} \nu \overline{\nu}$

Belle PRD(R) 96, 091101 (2017)

- Prohibited in the SM at tree level: penguin + box diagrams
- BR ~ $10^{-5} \div 10^{-6}$; NP contribution can increase the BR by factor 50
 - non standard Z-couplings (SUSY)
 - New missing energy sources (DM, extra dim.)

Flavour changing neutral current $B \rightarrow K^{(*)} \nu \overline{\nu}$

Belle II full simulation study

- Hadronic tag with FEI
- $K^* \rightarrow K \pi^0$
- Powerful discriminating variable $E^*_{miss} + cp^*_{miss}$
- Projections performed with a cut and count analysis in extra energy signal window

Flavour changing neutral current

$$B \rightarrow K^{(*)}\nu\overline{\nu}$$

In BSM right handed operator for neutrinos $Q_R^{\ell} = (\bar{s}_R \gamma_\mu b_R)(\bar{\nu}_{\ell L} \gamma^\mu \nu_{\ell L})$

$$\frac{\operatorname{Br}(B \to K \nu \bar{\nu})}{\operatorname{Br}(B \to K \nu \bar{\nu})_{\mathrm{SM}}} = \frac{1}{3} \sum_{\ell} (1 - 2\eta_{\ell}) \epsilon_{\ell}^{2} ,$$
$$\frac{\operatorname{Br}(B \to K^{*} \nu \bar{\nu})}{\operatorname{Br}(B \to K^{*} \nu \bar{\nu})_{\mathrm{SM}}} = \frac{1}{3} \sum_{\ell} (1 + \kappa_{\eta} \eta_{\ell}) \epsilon_{\ell}^{2} ,$$

$$\epsilon_{\ell} = \frac{\sqrt{|C_L^{\ell}|^2 + |C_R^{\ell}|^2}}{|C_L^{\text{SM}}|},$$
$$\eta_{\ell} = \frac{-\text{Re}\left(C_L^{\ell}C_R^{\ell*}\right)}{|C_L^{\ell}|^2 + |C_R^{\ell}|^2}.$$

21/10/19

 $B \rightarrow sll : R(K^*)$

LHCb values based on naive run-1 extrapolation (not official) Belle II scenarios due to operating conditions at KEK

** Consider it as a sketch to show Belle II can provide confirmation of any persistent anomaly.

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%

 $B \rightarrow sll : R(K^*)$

Differential rate

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right],$$

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}},$$

Observables	Belle II 5 ab^{-1}	Belle II 50 ab ⁻¹
$Br(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 6.5	< 2.0
$\operatorname{Br}(B^0 \to \tau^+ \tau^-) \cdot 10^5$	< 30	< 9.6
$\operatorname{Br}(B_s^0 \to \tau^+ \tau^-) \cdot 10^4$	< 8.1	_
$Br(B^+ \to K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	_	< 2.1
$\mathrm{Br}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) \cdot 10^6$	_	< 3.3
$\operatorname{Br}(B^0 \to \tau^{\pm} e^{\mp}) \cdot 10^5$	_	< 1.6
$\operatorname{Br}(B^0 \to \tau^{\pm} \mu^{\mp}) \cdot 10^5$	_	< 1.3

 $B \rightarrow K^{(*)}\tau^{+}\tau^{-}$ hard to measure even with 50 ab⁻¹ at Belle II (SM BR ~10⁻⁷)

Physics prospects: Belle II vs LHCb

40

Expected th. accuracy	Expected exp. uncer-	Facility (2025)		Observables	Belle or LHCb [*]	Bel	le II	LHCb
	tainty				(2014)	5 ab^{-1}	$50 \ {\rm ab}^{-1}$	$2018 \ 50 \ {\rm fb}^{-1}$
ded at			Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%	
***	0.4	Belle II		$\mathcal{B}(D_{-} \rightarrow \tau \nu)$	$5.70 \cdot 10^{-3}(1 + 3.7\% + 5.4\%)$	3.5%	2.3%	
**	1.0	Belle II		$\mathcal{B}(D^0 \to \infty)$ [10–6]	< 1.5	30%	95%	
***	1.0	Belle II/LHCb		$D(D \rightarrow \gamma\gamma)$ [10]	< 1.5	3070	2070	
***	1%	Belle II	Charm CP	$A_{CP}(D^0 \to K^+ K^-)$ [10 ⁻⁴]	$-32\pm21\pm9$	11	6	
**	1.5%	Belle II D-ll- II		$\Delta A_{CP}(D^0 \rightarrow K^+ K^-)$ [10 ⁻³]	3.4*			0.5 0.1
**	3% 9%	Belle II/LHCb		$A_{\rm P} [10^{-2}]$	0.22	0.1	0.03	0.02 0.005
	270			$A_{CP}(D^0 \rightarrow \pi^0 \pi^0) [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09	
***	0.02	Belle II		$A_{}(D^0 \to K^0 - 0) [10^{-2}]$	$0.00 \pm 0.04 \pm 0.10$	0.09	0.09	
***	0.01	Belle II		$A_{CP}(D \rightarrow K_S \pi) [10]$	$-0.21 \pm 0.10 \pm 0.09$	0.08	0.03	
***	4	Belle II	Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	0.14	0.11	
***	0.20	LHCb/Belle II		$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.05}{0.08}$	0.08	0.05	
				$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	$0.90 \pm 0.16 \pm 0.08$	0.10	0.07	
**	3%	Belle II		$\phi(D^0 \to K^0_c \pi^+ \pi^-)$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	6	4	
**	7%	Belle II			5		_	
***	3%	Belle II	Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7	
***	2%	Belle II/LHCb		$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12	
				$\tau \rightarrow \mu \mu \mu [10^{-9}]$	< 21.0	< 3.0	< 0.3	
**	4%	Belle II						
***	0.005	Belle II						
***	0.03	Belle II						
**	0.07	Belle II						
**	0.3	Belle II						
***	15%	Belle II						
***	20%	Belle II						
**	0.03	Belle II/LHCb						
	Expected th. accuracy *** *** *** *** *** *** *** *** *** *	Expected th. accuracy taintyExpected exp. uncer- tainty*** 0.4 *** 1.0 *** 1.0 *** 1.0 *** 1.0 *** 1.5% *** 3% *** 0.02 *** 0.02 *** 0.01 *** 0.01 *** 0.20 *** 0.20 ** 3% *** 2% *** 0.005 *** 0.005 *** 0.03 *** 0.3 *** 15% *** 20% *** 0.03	Expected th. accuracy Expected exp. uncertainty Facility (2025) *** 0.4 Belle II *** 1.0 Belle II *** 1.5% Belle II *** 3% Belle II *** 2% Belle II *** 0.02 Belle II *** 0.01 Belle II *** 0.20 LHCb/Belle II *** 3% Belle II *** 0.20 LHCb/Belle II *** 3% Belle II *** 0.03 Belle II *** 0.03 Belle II *** 0.3 Belle II *** 0.03 Belle II ***	Expected th. accuracy Expected exp. uncertainty Facility (2025) tainty The construction of the	Expected th. accuracy tainty Expected exp. uncertainty Facility (2025) Observables *** 0.4 Belle II Belle II	Expected th. accuracy tainty Expected exp. uncertainty (2025) tainty Observables Belle or LHCb* **** 0.4 Belle II (2014) (2014) **** 1.0 Belle II (B(D_a \to \mu\nu)) 5.31 · 10^{-3}(1 \pm 5.3\% \pm 3.8\%) (B(D_a \to \tau\nu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) **** 1.0 Belle II (B(D_a \to \tau\nu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\nu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) **** 1.0 Belle II (B(D_a \to \tau\nu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\nu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) **** 1.5% Belle II (B(D_a \to \tau\nu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\nu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) *** 1.5% Belle II (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) *** 0.02 Belle II (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (B(D_a \to \tau\mu)) 5.70 · 10^{-3}(1 \pm 3.7\% \pm 5.4\%) (D(D_a \to \tau\mu))	Expected th. accuracy tainty Expected exp. uncertainty (2025) tainty Generalize (2014) Belle of LHCb* Bell (2014) Belle	Expected th. accuracy tainty Expected exp. uncertainty (2025) tainty Balle II (2014) Balle II **** 0.4 Belle II (2014) 5 ab ⁻¹ 50 ab ⁻¹ **** 0.4 Belle II (2014) 5 ab ⁻¹ 50 ab ⁻¹ **** 1.0 Belle II $(B(D_a \rightarrow \mu\nu)$ 5.31 · 10 ⁻³ (1 ± 5.3% ± 3.8%) 2.9% 0.9% **** 1.0 Belle II (LHCb) $B(D_a \rightarrow \mu\nu)$ 5.31 · 10 ⁻³ (1 ± 5.3% ± 3.8%) 2.5% 2.3% **** 1.0 Belle II $B(D_a \rightarrow \mu\nu)$ 5.31 · 10 ⁻³ (1 ± 5.3% ± 3.8%) 2.5% 2.3% **** 1.0 Belle II (LHCb) Belle II $B(D_a \rightarrow \tau\nu)$ 5.70 · 10 ⁻³ (1 ± 5.3% ± 3.8%) 2.5% 2.3% **** 2% Belle II $B(D_a \rightarrow \mu\nu)$ 5.31 · 10 ⁻⁶ (1 ± 5.3% ± 3.8%) 2.5% 2.3% **** 0.02 Belle II $A_{CP}(D^0 \rightarrow K^+K^-) [10^{-3}]$ $A_{CP}(D^0 \rightarrow K^+K^-) [10^{-3}]$ $A_{CP}(D^0 \rightarrow K^0_{S} n^+ \pi^-)$ $O.3 \pm 0.64 \pm 0.10$ $O.29$ $O.90$ **** 0.01 Belle II $A_{CP}(D^0 \rightarrow K^0_{S} n^+ \pi^-) [10^{-2}]$ $O.24 \pm 0.16 \pm 0.09$ $O.8$ $O.8$ $O.8$ **** 3% Belle II A

Belle II Physics Book

- B2TiP Report (600p)
 - <u>https://confluence.desy.de/</u> <u>display/BI/B2TiP+ReportStatus</u>
- To be published in PTEP / Oxford University Press & printed.
 - Belle II Detector, Simulation, Reconstruction, Analysis tools
 - Physics working groups
 - New physics prospects and global fit code

Prog. Theor. Exp. Phys. 2015, 00000 (319 pages) DOI: 10.1093/ptep/000000000 The Belle II Physics Book Emi Kou¹, Phillip Urquijo², The Belle II collaboration³, and The B2TiP theory community⁴ ¹LAL *E-mail: kou@lal.in2p3.fr ²Melbourne *E-mail: purquijo@unimelb.edu.au

³Addresses of authors ⁴Addresses of authors

The report of the Belle II Theory Interface Platform is presented in this document.

		Contents	PAGE
1	Intro	duction	6
	1.1	Goals	6
	1.2	Particle physics after the B-factories and LHC run I (and run II	first
	data)		7
	1.3	Flavour physics questions to be addressed by Belle II	7
	1.4	Advantages of SuperKEKB and Belle II	8
	1.5	Overview of SuperKEKB	9
	1.6	Data taking overview	10
	1.7	The Belle II Golden channels	10
2	Belle	II Simulation	11
	2.1	Introduction	11
	2.2	Cross Sections	11
	2.3	Generators	11
	2.4	Beam-induced background	15
	2.5	Detector Simulation	17