

Missing energy and electroweak penguin modes in (early) Belle II data

Akimasa Ishikawa (KEK)

October 3-4, 2019, National Taiwan University, Taipei October 5-6, 2019, National Center for Theoretical Sciences, Hsinchu

Two Anomalies in B decays

- Two anomalies are found in missing energy mode and electroweak penguin mode
 - $b \rightarrow c\tau v$ claimed by Babar, Belle and LHCb.
 - b \rightarrow sl⁺l⁻ claimed by LHCb
- These two modes are important guidelines for Belle II physics program

Belle II @ SuperKEKB

- Highest luminosity collider experiment
 - L=8x10³⁵ cm⁻²s⁻¹
 - E_{CM}=10.58GeV on Y(4S)
 - Energy-asymmetric collisions 7.0GeV x 4.0GeV
 - To boost B mesons to measure time dependent CPV
 - 50ab⁻¹ will be accumulated by 2027
 - Contain 1×10^{11} B mesons, 1.4×10^{11} charm hadrons, and 0.9×10^{11} τ

Belle II by summer 2019

- We started data taking with almost full Belle II detector
 - 2nd Pixel layer was partially installed.
- Reached 1.2x 10³⁴ cm⁻²s⁻¹ (1/2 of KEKB) luminosity while background is higher due to vacuum level in LER beam pipe. Need scrubbing.
- 6.5fb⁻¹ data (1/100 of Belle) were accumulated by this summer.

Rediscoveries of B decays

- With 2.6fb⁻¹
 - We observed $B \rightarrow J/psi K(*)$ which are used for calibration of $b \rightarrow sl+l$ -
 - We rediscovered the penguin mode $B \rightarrow K^* \gamma$.

B Decays with Multiple $\boldsymbol{\nu}$

- We need to tag the other B meson due to final states having multiple neutrinos.
- Three tagging methods
 - Inclusive tag
 - Hadronic B tag
 - Semileptonic B tag

Improvement of Tagging

- Full Event Interpretation (FEI)
 - Tagging method using multivariate technique
 - Hierarchical reconstruction
 - More tagging modes than Belle 1
 - Both hadronic decays and semileptonic decays can be used
- About 2 times better tagging efficiency than Belle 1 (FR).

FEI with real data

FEI successfully reconstructed ۲ hadronic B decays

- Missing mass distributions 101
 B→Xe⁺v with the tagged B meson
 Can be used for |Vcb| measurement and extraction of HQE parameters

B→D(*)τν

$B \rightarrow D(*)\tau v$

- A hint of LFUV are found in $b \rightarrow c\tau v$
 - claimed by LHCb, Babar and Belle. ~3.1σ
 - ~15% deviation from the SM predictions

• Leptoquarks, flavorful W' and/or exotic Higgs could explain the deviation

 ν_{τ}

 W^+

Prospects on R(D^(*))

- We could observe 5σ deviation in R(D) VS R(D*) in 2022 if central value unchanged
 - Sensitivity of R(D*) is 0.006 in 2027.

	5 ab^{-1}	50 ab^{-1}
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

1year delay, Blue one is nominal scenario

Polarizations

- Polarizations of tau and D* are also sensitive to NP
- Together with R(D) and R(D*), model discrimination can be performed
 - Scalar, vector or tensor couplings

E. Kou et al.	1808.10567
---------------	------------

	5 ab^{-1}	50 ab^{-1}
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

$B \rightarrow \tau v$

- BF(B $\rightarrow \tau v$) in SM
 - Helicity suppression : $Amp \propto m_{\tau}$

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

- BF(B $\rightarrow \tau \nu$) in 2HDM type-II _{W. S. Hou, PRD48, 2342 (1993)}
 - No helicity suppression with Higgs exchange
 - Higgs coupling $\propto m_{\tau}$

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\mathsf{SM}} \times r_H$$
$$r_H = (1)$$

- BF only dependent on r_{H} (function of $tan\beta/m_{H}$)
- Belle II
 - Tagging efficiency twice than Belle
 - Observation with ~1ab⁻¹
 - With 50ab⁻¹, about 4% precision can be achieved

		Integrated Luminosity (ab^{-1})	1	5	50
		statistical uncertainty (%)	29	13	4
	hadronic tag	systematic uncertainty $(\%)$	13	7	5
Interpretation later		total uncertainty (%)	32	15	6
		statistical uncertainty (%)	19	8	3
	semileptonic tag	systematic uncertainty $(\%)$	18	9	5
		total uncertainty (%)	26	12	5

		B		800 600 400 200		Data $B \rightarrow \mu \nu$ $B \rightarrow \pi l \nu$ $B \rightarrow \rho l \nu$ $B\overline{B}$ $q\overline{q}+QED$ $B \rightarrow \mu \nu \times 10$
• $B \rightarrow \mu \nu$ can - Observat	be searche tion of B→μν	d with inclus with 5ab ⁻¹	ive tagging	0 ¹ 2.4	2.5 2.6 2.7 2.8 2.9	${}^{3}_{p_{\mu}^{*}} {}^{3.1}_{(\text{GeV/}c)}$
– 7% preci	sion with full o	data	Result (thi	is) (5.	3 \pm 2.0 \pm 0.9) $ imes$ 10 $^{-7}$	$@$ 2.8 σ
 Test of I 	_FU possible	with $B \rightarrow \tau v$			Belle Moriono	1 2019
$R_{\rm pl} = \frac{\mathcal{B}(B)}{\mathcal{B}(B)}$ $R_{\rm pl}^{\rm NP} = \frac{m_{\tau}^2}{m_{\mu}^2}$	$\frac{\overline{-} \rightarrow \tau^- \bar{\nu}_\tau}{\overline{-} \rightarrow \mu^- \bar{\nu}_\mu}$ $\frac{(1 - m_\tau^2 / m_B^2)}{(1 - m_\mu^2 / m_B^2)}$	$\frac{)^2}{)^2} 1 + r_{\rm NP}^{\tau} ^2 \simeq$	$222.37 \left 1 + r_{\rm NP}^{\tau} \right $	$2 \frac{\ell}{\mu}$	\mathcal{B}_{SM} (7.71 ± 0.62) × 1 (3.46 ± 0.28) × 1 (0.811 ± 0.065) × 2	0^{-5} 0^{-7} 10^{-11}
Observables	Belle				Belle II	_
	(2014)			5 ab^{-1}	50 ab^{-1}	
$\mathcal{B}(B \to \tau \nu) [1]$	0^{-6}] 91(1 ±	24%)		9%	4%	
$\mathcal{B}(B \to \mu \nu) \ [1]$	$0^{-6}] < 1.7$			20%	7%	
- 2018/3/22	$\begin{array}{c} \text{Luminosity} \\ 5\text{ab}^{-1} \\ 50\text{ab}^{-1} \end{array}$	$\frac{R_{\rm ps}}{[-0.22, 0.20]}$ $[-0.11, 0.12]$	$\frac{r_{\rm NP}^{\bm{\tau}}}{[-0.42, 0.29]}\\ [-0.12, 0.11]$			16

b→sl+l-

- Angular analysis in $B \rightarrow K^*I+I-$
- B→Xs|+|-
- LFU Violation

Wilson Coefficients in b \rightarrow s processes

- In the SM
 - $b \rightarrow s\gamma : C_7$
 - − b \rightarrow sll : C₇, C₉ and C₁₀
 - C₇ ~ -0.3, C₉ ~ 4, C₁₀ ~ -4
- If NP contributes,
 - Deviation from the SM values
 - − Lepton flavor dependent $C_{9e} \neq C_{9\mu}$
 - New coefficients appear
 - $Im(C_i), C'_i, C_S, C_P, C_T and C_{T5}$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

$$\mathcal{O}_{\text{eff}} = -\frac{e}{\sqrt{2}} m_i \left(\bar{s} \sigma^{\mu\nu} P_{\text{eff}} \right) F$$

$$\mathcal{O}_7 = \frac{16\pi^2}{16\pi^2} m_b (s\sigma^{\mu\nu} P_R b) F_{\mu\nu},$$
$$\mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s}\gamma^{\mu} P_L b) (\bar{\ell}\gamma_{\mu}\ell),$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma^\mu P_L b) (\bar{\ell}\gamma_\mu \gamma_5 \ell)$$

Anomalies in $b \rightarrow sl+l-$

• Claimed by LHCb

- LFU violation
 - Theoretically clean
 - Naïve combination of R_{κ} and $R_{\kappa*} \sim 4\sigma$
 - ~30% deviation from the SM

$$R_H = \frac{\mathcal{B}(B \to H\mu^+\mu^-)}{B(B \to He^+e^-)}$$
$$H = K, K^*, X_s, \dots$$

Anomalies in $b \rightarrow sI+I-$

• Claimed by LHCb

- Angular Observable P₅'
 - Theoretically dirty (charm loop)
 - About ~ 4σ deviation q²=[4,8]GeV2
 - ~50% deviation

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_\ell \right]$$
$$-F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi$$
$$+S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$$
$$+S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right], \qquad 20$$

Global Fit to $b \rightarrow s$

• NP effect in C_{9}^{μ}

21

P_5' in $B \rightarrow K^*I+I-$

- LHCb can observe the deviation with data already in hand.
- In 2022, Belle II can reach current LHCb sensitivity
 - Belle II can confirm or deny LHCb anomaly in P₅' with
- Statistically dominated even with 50ab⁻¹
 - With 50ab⁻¹, the sensitivity is competitive to LHCb with 50fb⁻¹

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
P_5' ([1.0, 2.5] GeV ²)	0.47	0.17	0.054
$P_5'~([2.5, 4.0]{ m GeV^2})$	0.42	0.15	0.049
$P_5'~([4.0, 6.0]{ m GeV^2})$	0.34	0.12	0.040
$P_5' \ (> 14.2 {\rm GeV^2})$	0.23	0.088	0.027

Reconstruction of $B \rightarrow XsI+I-$

- We will use sum-of-exclusive method
 - Xs is reconstructed from $Kn\pi$ (0<=n<=4).
 - We can add three kaon modes and η modes (two pi0 modes?)
 - then combined with dilepton
- Reconstruction efficiencies for electron and muon modes are almost similar
 - Good for LFU test
- Backgrounds
 - Dominated by $B \rightarrow XIv$ and $B \rightarrow YIv$
 - Can be suppressed with missing energy and vertex information.
 - Second largest is ee→cc
 - event shape information can suppress the background so much.
- We could also use fully inclusive dilepton but need dedicated simulation study.

BF and A_{FB} in $B \rightarrow XsI+I-$

- The uncertainty of BF is dominated by systematic one with ~15ab⁻¹.
 - Largest one is due to fragmentation modeling which could be improved by adding decay modes and data driven PYTHIA tuning.
 - We can use finner binning of 1GeV² with 50ab⁻¹ or can go higher M_{xs} cut of ~2.5GeV.
- A_{FB} is still statistically dominated thanks to the ratio observable.
 - We can also measure CP difference (or asymmetry) of Forward-backward asymmetry

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV}^2)$	26%	9.7~%	3.1~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9~%	2.6~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	21%	8.1 %	2.6~%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV^2})$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	19%	7.3%	2.4%
$\Delta_{\rm CP}(A_{\rm FB}) \; ([1.0, 3.5] {\rm GeV^2})$	52%	19%	6.1%
$\Delta_{\rm CP}(A_{\rm FB})~([3.5, 6.0]{\rm GeV^2})$	42%	16%	5.2%
$\Delta_{\rm CP}(A_{\rm FB}) \ (> 14.4 \ {\rm GeV^2})$	38%	15%	4.8%

LFU Violation

- In the SM, LFU holds.
 - Well tested
- While LHCb reported anomalies in the rate, $R_{K(*)}$.
 - Belle and Babar also measured the $R_{K(*)}$
 - consistent with both SM and central values by LHCb due to large uncertainties.
- Belle also measured angular observables for the first time, $Q_5 = P_5'^e P_5'^{\mu}$
 - Consistent with both SM and a NP model inspired by $R_{K(*)}$ anomalies
- Belle will measure the R_{Xs} with inclusive decays
- Belle II can measure everything, rate and angular observables

R_{κ} , $R_{\kappa*}$ and R_{\kappas}

- Belle II is an ideal place to measure the R
 - Bremsstralung recovery not difficult
 - Dominant systematics from lepton ID ~0.4%.
 - Statistically dominated even with 50/ab
- About 20/ab (2022) is needed to observe the NP in $R_{K(*)}$ if central values unchange Observables
- \sim 3% for both high and low q² with 50/ab

[%] 10² H % 40

40

30

20

10

4

3

2

included

Belle $0.71 \,\mathrm{ab}^{-1}$

Belle II $5 \, \mathrm{ab}^{-1}$

Belle II 50 ab⁻

$Q_5 = P_5'^{\mu} - P_5'^{e}$

- $Q_5 = P_5'^{\mu} P_5'^{e}$
 - 5.3% with 50/ab
 - Can disentangle the NP effect
- We can also measure A_{FB} difference between electron and muon modes with inclusive decays.

$B \rightarrow K^{(*)} \nu \nu$

- If C₉ is deviated from the SM value, vector current in b→svv might be also affected in some BSM models?
- If so, at Belle II, we can test the deviation with $B \rightarrow K(*)vv$
- The BF is cleanly predicted in the SM.

 $- F_L$ also

Mode	$\mathcal{B} \left[10^{-6} ight]$
$B^+ o K^+ u ar{ u}$	$3.98 \pm 0.43 \pm 0.19$
$B^0 o K^0_{ m S} u ar{ u}$	$1.85 \pm 0.20 \pm 0.09$
$B^+ \to K^{*+} \nu \bar{\nu}$	$9.91 \pm 0.93 \pm 0.54$
$B^0 o K^{*0} u ar{ u}$	$9.19 \pm 0.86 \pm 0.50$

$$F_L^{\rm SM} = 0.47 \pm 0.03$$

Measurements of $B \rightarrow K^{(*)}vv$

- We can observe the B→K^(*)vv at early stage (several ab⁻¹) of Belle II, and the sensitivity of the BF is 10% level with 50ab⁻¹.
- We can measure the F_L(K*), which is less sensitive to form factor uncertainties than BF, with 20% precision with 50ab⁻¹

$$\mathcal{O}_L = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\nu}\gamma^\mu (1-\gamma_5)\nu)$$
$$\mathcal{O}_R = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_R b) (\bar{\nu}\gamma^\mu (1-\gamma_5)\nu)$$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${\rm Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${\rm Br}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\operatorname{Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
${\rm Br}(B^0\to\nu\bar\nu)\times 10^6$	< 14	< 5.0	< 1.5
$\operatorname{Br}(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	—

D. Straub, Belle II Physics Book Inputs from AI and E. Manoni

$BF(B \rightarrow X_{\varsigma} \gamma)$

- Exp and theory are in a good agreement
 - The uncertainties are almost comparable
 - Exp WA ~5% : already systematic dominant
 - Theory ~7%
- Strong constraint on new physics
 - Constraint on $|C_7|^2 + |C_7'|^2$
 - Charged Higgs in 2HDM type-II
 - > 580GeV Misiak and Steinhauser (2018)
 - stop in natural SUSY

Baer, Bager, Nagata and Savoy (2017)

10

10

0.0

0.5

BF(B \rightarrow X_s γ) in Belle II Era

- Exp : Already systematic dominant
 - But large Belle II data can reduce the uncertainty to ~3% (WA ~2.6%)
 - Photon detection etc.
- Theory
 - Part of Non-perturbative uncertainties (5%) : data driven reduction possible
 - Isospin asymmetry

Watanuki, Ishikawa et al (Belle), PRD 99, 032012 (2019) Gunawardana and Paz 1908.02812

- Photon energy spectrum
- HQE parameters from $b \rightarrow clv$ and $b \rightarrow s\gamma$ moments
- Other uncertainties also reducible
- 3.5% in 2025 Private communication with M. Misiak

Some people say that BF($B \rightarrow Xs\gamma$) is already uncertainty limited at B-factories but it is not true!

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.4%	0.94%	0.69%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%

Limit on Charged Higgs

• R_b at LEP

Assuming SM values

- $tan\beta > 2.5$
- BF(B→Xs γ)
 - M_H > 580GeV
 - →>~900GeV in 2027 Ishikawa's private estimation
- BF(B $\rightarrow \tau \nu$) in 2027
 - $\tan\beta/M_{H} < 0.008/GeV$ (4% on BF)
 - − If tan β =60 → M_H>7.5TeV
- And BF(Bs $\rightarrow \mu\mu$) at LHC
 - − ∞ tan⁶β in SUSY!!
- Allowed region in 2017

Before ILC measures Higgs couplings, B physics observables might give the strongest constraint on charged Higgs in 2HDM type-II.

$$\Delta A_{CP}(B \rightarrow X_{s}\gamma)$$

A_{CP}(B→X_sγ) is sensitive to CPV in NP but theoretical uncertainty already dominant

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{X}_s \gamma) - \Gamma(B \to X_s \gamma)}{\Gamma(\bar{B} \to \bar{X}_s \gamma) + \Gamma(B \to X_s \gamma)}$$

• New observable ΔA_{CP} is null in SM and sensitive to NP

$$\begin{split} \Delta A_{CP} &= A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma) \\ &= 4\pi^2 \alpha_s \frac{\tilde{\Lambda}_{78}}{m_b} \mathrm{Im} \left(\frac{C_8}{C_7}\right), \\ &\approx 0.12 \left(\frac{\tilde{\Lambda}_{78}}{100 \text{ MeV}}\right) \mathrm{Im} \left(\frac{C_8}{C_7}\right), \end{split}$$

Recent estimation gives larger uncertainty Gunawardana and Paz 1908.02812

M. Benzke, S. J. Lee, M. Neubert, G. Paz, JHEP 08 (2010) 099

• Belle measured the observable in 2018

$$\Delta A_{CP} = [+3.69 \pm 2.65 (\text{stat.}) \pm 0.76 (\text{syst.})]\%$$

Watanuki, Ishikawa et al (Belle), PRD 99, 032012 (2019)

$\Delta {\rm A_{CP}}$ at Belle II

• The latest Belle result

 $\Delta A_{CP} = [+3.69 \pm 2.65 (\text{stat.}) \pm 0.76 (\text{syst.})]\%$

- We found the systematic uncertainty is much smaller then statistical one
- And also most of the systematic uncertainties are reducible
- At Belle II, we can reduce the uncertainty to 0.3% level
 - $-\,$ If current central value holds, the deviation is about $12\sigma\,from\,zero$
 - If consistent with zero, strong constraints on $Im(C_8/C_7)$
 - Theoretical improvement on $\sim \Lambda_{78}$ is desirable.

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.7%	0.98%	0.30%

• If deviation found

- EW Baryogenesis in G2HDM
- SUSY with FV trilinear coupling

Modak and Senaha Phys.Rev. D99, 11, 115022 (2019)

Endo, Goto, Kitahara, Mishima, Ueda and Yamamoto, JHEP 04 (2038) 019.

Summary

- Belle II has started data taking aiming for 50ab⁻¹ by 2027.
- Missing energy signature is one of the keys at Belle II physics program
 - B→D(*)τν
 - $B \rightarrow \tau v$
 - b→svv
- EW penguin and radiative B decays are very sensitive to NP in the loop
 - b→sl+l-
 - b→svv
 - b→sγ
- Stay tuned

Belle II Detector

- Two significant detector improvements for Radiative and EWP B decays
 - − Better PID → Kaon ID for $B \rightarrow \rho\gamma(I^+I^-)$, $B \rightarrow X_d\gamma(I^+I^-)$, low momentum lepton ID for $b \rightarrow sII$
 - Better and Larger VXD \rightarrow TCPV in B \rightarrow Ks $\pi^0\gamma$, B meson tagging for b \rightarrow svv

$\Delta A_{CP}(B \rightarrow Xs\gamma)$ and EW Baryogensis

 Additional Yukawa coupling ρ appears in general 2HDM (no Z₂ symmetry)

$$\begin{split} y_{hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} s_{\beta-\alpha} + \frac{\rho_{ij}^{f}}{\sqrt{2}} c_{\beta-\alpha}, \\ y_{Hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} c_{\beta-\alpha} - \frac{\rho_{ij}^{f}}{\sqrt{2}} s_{\beta-\alpha}, \\ y_{Aij}^{f} &= \mp \frac{i \rho_{ij}^{f}}{\sqrt{2}}, \end{split}$$

- If ρ has complex phase, this could generate CPV and thus one of the conditions of EW Baryogensis is satisfied.
- ΔA_{CP} is sensitive to phase in ρ
- Combining H→bb coupling measurements at HL-LHC/ILC, additional bottom Yukawa and its phase can be searched for
 - If found it → Higgs self coupling measurements at ILC500 BF

Constraint on Im(C₈/C₇) and a NP model with the Belle Result

• Belle result excludes positive region of $Im(C_8/C_7)$ better than Babar.

 $-0.17 < \text{Im}(C_8/C_7) < 0.86$ for $\tilde{\Lambda}_{78} = 89 \text{ MeV}$

• Exclude parameter space in SUSY.

M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, JHEP 04 (2018) 019.

Constraints on Wilson Coefficients

- With BF and A_{FB}
 - We can test the anomaly in exclusive decays with inclusive decays

- Helicity decomposition gives third observables
 - $\begin{array}{ll} & \mathbf{H}_{\mathsf{T}}, \, \mathbf{H}_{\mathsf{L}}, \, \mathbf{H}_{\mathsf{A}} \\ & \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\,\mathrm{d}z} = \frac{3}{8} \big[(1+z^{2})H_{T}(q^{2}) + 2zH_{A}(q^{2}) & \frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} = H_{T}(q^{2}) + H_{L}(q^{2}) \,, \\ & \quad + 2(1-z^{2})H_{L}(q^{2}) \big] \,. & \frac{\mathrm{d}A_{\mathrm{FB}}}{\mathrm{d}q^{2}} = \frac{3}{4}H_{A}(q^{2}) \,. \end{array}$

 $z = \cos \theta$

Lee, Ligeti Stewart and Tackmann, PRD 75, 034016 (2007)

Photon Polarization in $b \rightarrow s\gamma$

- In the SM, photon is predominantly left-handed $b \rightarrow s_{L}\gamma_{L}$.
 - Right-handed is suppressed by $O(m_s/m_b)$

$$\mathcal{O}_{7\gamma} = \frac{e}{16\pi^2} m_b \overline{s}_{\alpha L} \sigma^{\mu\nu} b_{\alpha R} F_{\mu\nu} \qquad \text{Left handed} \\ \mathcal{O}_{7\gamma}' = \frac{e}{16\pi^2} m_b \overline{s}_{\alpha R} \sigma^{\mu\nu} b_{\alpha L} F_{\mu\nu} \qquad \text{Right handed} \end{cases}$$

- If new physics has right-handed current, fraction of right-handed polarized photon could be larger than SM.
 - Ex. LRSM, SUSY
- There are four methods to measure photon polarization on Y(4S)
 - Time dependent CPV in $B \rightarrow f_{CP} \gamma \leftarrow$ Golden modes at Belle II
 - − A_{UD} in $B \rightarrow K_1(K\pi\pi)\gamma$
 - − Very low q^2 analysis in $B \rightarrow K^*ee$
 - Photon conversion

Atwood, Gronau, and Soni (1997) Atwood, Gersion, Hazumi and Soni (2005)

Time Dependent CPV in $B^0 \rightarrow K^*(K_s \pi^0)\gamma$

• Time dependent CPV in $B^0 \rightarrow K^{*0}\gamma$ is small in the SM.

$$|S_{CP}| \approx \frac{2m_s}{m_b} \sin 2\phi_1 \sim \text{a few \%}$$

• If right-handed new physics contributes to the decay, larger CPV is possible

$$\mathcal{S} \approx \xi \frac{2\mathcal{I}m[e^{-i\phi_q} \, \mathcal{C}_{_{7}}\mathcal{C}_{_{7}}'|}{|\mathcal{C}_{_{7}}|^2 + |\mathcal{C}_{_{7}}'|^2}$$

• Theoretical uncertainty cancels out by taking a sum of S in exclusive $B \rightarrow K^* \gamma$ and $B \rightarrow K_1 \gamma$

Gratrex and Zwicky (2018)

dotted : helicity flip suppressed by m_s/m_b

red : helicity flip + NP

Measurement of $S(B^0 \rightarrow K^{*0}\gamma)$

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 + q \left[\mathcal{S}\sin(\Delta m_d \Delta t) + \mathcal{A}\cos(\Delta m_d \Delta t) \right] \right\}$$

• Both Belle and Babar performed the analysis with 535M and 467M BB pairs.

 $S_{K^{*0}\gamma} = -0.32^{+0.36}_{-0.33} \pm 0.05$ (Belle) $S_{K^{*}\gamma} = -0.03 \pm 0.29 \text{ (stat)} \pm 0.03 \text{ (syst)} \text{ (Babar)}$

 Belle result is slightly worse than Babar's since # of Ks with vertex detector hits, which can be used for TCPV analysis, are smaller due to smaller vertex detector.

$S(B^0 \rightarrow K^{*0}\gamma)$ at Belle II

- Belle II vertex detector becomes larger
 - R of second outmost layer is 11.5cm (was 6cm)
 - 30% more Ks with vertex hits available.
- Effective tagging efficiency is ~20% better
- We can reach 0.03 uncertainty on S.
 - Still statistically dominated

Photon Polarization

- We can constrain on C₇' from S_{K*γ} and angular observables in B→K*ee at low q² region, A_T⁽²⁾ and A_T^(Im)
 - Belle II
 - LHCb (additional observables $S_{\phi\gamma}$ and $A^{\Delta}_{\phi\gamma}$)
- Adding S(B \rightarrow K₁(K $\pi\pi$) γ) is one of the keys to improve the sensitivity
 - Both experimentally and theoretically Gratrex and Zwicky (2018)

Akar, Ben-Haim, Hebinger, Kou and Yu (2018)

Observables	Belle $0.71 \mathrm{ab}^{-1}$	$(0.12 \mathrm{ab}^{-1})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$	
$S_{K^{*0}\gamma}$	0.29		0.090	0.030	
$S_{\rho^0\gamma}$	0.63		0.19	0.064	
Observables	Bel	lle $0.71 {\rm ab}^{-1}$	Belle II 5 ab ⁻¹	Belle II $50 \mathrm{ab}^{-1}$	
$A_{\rm T}^{(2)}$ ([0.002, 1	$1.12] GeV^2)$	_	0.21	0.066	
$A_{\rm T}^{\rm Im}$ ([0.002, 1	$1.12] \mathrm{GeV^2})$	_	0.20	0.064	

LHCb have additional observables