

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Exotic and Conventional Quarkonium Physics Prospects at Belle II

LC2019 - QCD on the light cone Palaiseau, September 19th 2019 Umberto Tamponi tamponi@to.infn.it

INFN - Sezione di Torino

Belle II: a super-B factory

~ 10 years of data taking each

Belle II: a super-B factory

To be done by ~2027

- → 40× instantaneous luminosity
- \rightarrow 30x trigger rate
- \rightarrow ~50x computing resources

The toolbox

The Belle II detector

Belle VS Belle II

arXiv:1808.10567

Tracking and vertexing

→ More precise

Particle identification

→ Much more powerful

Calorimetry

→ ~Unchanged (Better reconstruction, but more backgrounds)

Super-KEKB: the nano-beam scheme

Brute force: Increase the current (x2)

Precision: denser beams, smaller β^* (x20)

Super-KEKB: the nano-beam scheme

Measuring a nanometric beam

- ◆ How to measure the vertical size of the beams?
 - Measure the luminosity with our fast diamond detector while the machine people moves the beam vertically.

Charmonium(-like)

The Belle II Charmonium program

At Belle II, charmonium comes "for free"

- \rightarrow No special triggers needed
- \rightarrow No special data taking

Physics program ~ 50x Belle

 \rightarrow What does this mean?

ISR with 50 ab⁻¹

The full Belle II dataset will be equivalent to a 500 pb⁻¹, 10 MeV scan by BESIII

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^-J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$
$\omega\chi_{c0}$	4.23	35 (15)	Y(4220)
		10 ab ⁻¹ 50 ab ⁻¹	

How to measure small widths?

→ Use channels with very small Q-value!

Mass resolution: 684 ± 8 keV

 With the full data sample of Belle II (50 ab⁻¹), total width with values up to

[90% C.L.] ~ 180 keV

[3σ significance] ~ 280 keV

[5σ significance] ~ 570 keV can be measured.

Assuming a Breit-Wigner shape

Bottomonium-like

Bottomonium

Bottomonium is much less accessible than charmonium

 \rightarrow Direct production in e^+e^- collisions 3

→ Prompt production CHCP SATLAS OF SATLAS

After Belle II, only the LHC experiments will cover bottomonia with strong limitations

21

Deuteron formation by coalescence
Hyperons production and correlation
Charmonia and di-baryon exotica inclusive production
Precision QCD in radiative transitions

1+ ab⁻¹ of Y(5S-6S): Exotica

Threshold exploration
Precision spin-singlet spectroscopy
High-statistics scan

Y(5S) and Y(6S): new exotica

If the Z_{b} is a loosely bound state, then several other molecules must appear

Y(5S) and Y(6S): new exotica

Almost all the production thesholds are beyond our reach

Exotica: how you can save the day

1) Calculate the width of the radiative production modes

$$\begin{array}{l} Y(5S) \to \gamma \text{ exotica} \\ e^+e^- \to \gamma \text{ exotica} \end{array}$$

Exotica: how you can save the day

1) Calculate the width of the radiative production modes

$$\mathsf{Y}(\mathsf{5S}) o \gamma$$
 exotica $\mathsf{e}^+\mathsf{e}^{\scriptscriptstyle{\mathsf{T}}} o \gamma$ exotica

2) Calculate corrections induced by the exotica to lower energy transitions like Y(1S) $\rightarrow \pi\pi/\eta$ Y(1S)

More accessible exotica

 \rightarrow Structure at \sim 10.75 D wave state or something more? arXiv:1905.05521

The Belle II scan program (arXiv:1610.01102):

- \rightarrow 50 points
- \rightarrow 10 fb-1 each (10 times Belle)
- ightarrow Average beam energy precision < 1 MeV

Y(nS) annihilations

Similarities between hadronic collisions and bottomonium annihilations

- 0) Mostly Y \rightarrow ggg PRD76 012005 (2007)
- 1) High density Frascati Phys. Ser. (2007) 1519-1522
- 2) Baryon and strangeness enhancement PRD76 012005 (2007)
- 3) Large Production of anti-nuclei Phys.Rev. D89 (2014) no.11, 111102

Charmonium from bottomonia

Lots of observation of exotica, but quite few completely independent confirmations

 \rightarrow Only X(3872) has been seen in prompt production (in pp and pp collisions)

Charmonium from bottomonia

Lots of observation of exotica, but quite few completely independent confirmations

 \rightarrow Only X(3872) has been seen in prompt production (in pp and pp collisions)

Another feature: deuteron production

With no dedicated PID or tracking, BaBar measured the d spectrum Phys. Rev. D89 (2014) no.11, 111102

Process	Rate
$\mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(2S) \to \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1S) \to \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01}) \mathrm{fb}$
$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to \text{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

Deuteron production $\sim 10 \times \text{more}$ likely in Y(nS) than in qq

Theoretical models for coalescence in very small volumes?

Conclusions

The Belle II experiment has finally started the data taking

The Belle II quarkonium program includes

- ightarrow 50 ab⁻¹ for charmonium ISR, double charmonium, B ightarrow cc X ...
- \rightarrow 500 fb⁻¹ of scan above Y(5S)
- \rightarrow 300 fb⁻¹ of Y(3S)
- \rightarrow 100 fb⁻¹ of Y(6S)
- $ightarrow 1 ext{ ab}^{-1} ext{ of Y(5S)}$

... However, the schedule is still under discussion and theoretical support is very welcome...

A very personal wish list

- Lineshape of the $X(3872) \rightarrow D\overline{D}\pi$

-
$$Y(nS) \rightarrow (cc)_{exotic} + hadrons$$

$$\text{- }(\mathsf{p}\underline{\mathsf{p}}) \to (\mathsf{c}\underline{\mathsf{c}})(\mathsf{c}\underline{\mathsf{c}})$$

- Deuteron formation in small volumes
- hyperon-hyperon correlation functions in small volumes
- Y(5S, 6S) ightarrow γ $\left(b\overline{b}\right)_{exotic}$
- $\Gamma[\eta_{h}(1S) \rightarrow \gamma\gamma]$

The end

Belle VS Belle II

arXiv:1808.10567

Tracking and vertexing

→ More precise

Particle identification

→ Much more powerful

Belle VS Belle II

Tracking and vertexing

 \rightarrow More precise

Particle identification

→ Much more powerful

Calorimetry

→ Slightly worst (Better reconstruction, but more backgrounds)

Belle II: a super-B factory

First data with full detector

- \rightarrow ~0.015% of the final goal
- \rightarrow Only 4S and 4S 30 MeV

First Quarkonia!

First Quarkonia!

Y(5S) and Y(6S): new exotica

- \rightarrow If the $Z_{_{L}}$ is a loosely bound state, then several other molecules must appear
- → No predictions on the production rates

Mod. Phys. Lett. A 32, 1750025 (2017)

$\overline{I^G(J^P)}$	Name	Composition	Co-produced particles [Threshold, GeV/c^2]	Decay channels
$1^{+}(1^{+})$	Z_b	$Bar{B}^*$	$\pi \ [10.75]$	$\Upsilon(nS)\pi$, $h_b(nP)\pi$, $\eta_b(nS)\rho$
$1^+(1^+)$	Z_b'	$B^*ar{B}^*$	$\pi \ [10.79]$	$\Upsilon(nS)\pi$, $h_b(nP)\pi$, $\eta_b(nS)\rho$
$1^-(0^+)$	W_{b0}	$Bar{B}$	$\rho \ [11.34], \ \gamma \ [10.56]$	$\Upsilon(nS)\rho,\eta_b(nS)\pi$
$1^-(0^+)$	W_{b0}'	$B^*ar{B}^*$	$ ho \ [11.43], \ \gamma \ [10.65]$	$\Upsilon(nS)\rho,\eta_b(nS)\pi$
$1^-(1^+)$	W_{b1}	$Bar{B}^*$	ρ [11.38], γ [10.61]	$\Upsilon(nS) ho$
$1^-(2^+)$	W_{b2}	$B^*ar{B}^*$	ρ [11.43], γ [10.65]	$\Upsilon(nS) ho$
$0^-(1^+)$	X_{b1}	$Bar{B}^*$	η [11.15]	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^-(1^+)$	X'_{b1}	$B^*ar{B}^*$	η [11.20]	$\Upsilon(nS)\eta,\eta_b(nS)\omega$
$0^+(0^+)$	X_{b0}	$Bar{B}$	ω [11.34] γ [10.56]	$\Upsilon(nS)\omega,\eta_b(nS)\eta$
$0^+(0^+)$	X'_{b0}	$B^*ar{B}^*$	ω [11.43] γ [10.65]	$\Upsilon(nS)\omega,\eta_b(nS)\eta$
$0^+(1^+)$	X_b	$Bar{B}^*$	ω [11.39] γ [10.61]	$\Upsilon(nS)\omega$
$0^+(2^+)$	X_{b2}	$B^*ar{B}^*$	ω [11.43] γ [10.65]	$\Upsilon(nS)\omega$

Charmonium from bottomonia

A tentative comparison between Belle and CMS.

Belle II prospects with 300 fb⁻¹ of Y(3S):

 \rightarrow 3-5 x sensitivity in inclusive production from Y(3S)

$$B[Y(nS) \rightarrow X(3872) + had] / B[Y(nS) \rightarrow \psi' + had] > 7\%$$

Basic constraints

e⁺e⁻ machines

- → Triggers are quite open
- → High efficiency / Sensitive to very low momentum
- \rightarrow Unique measurements (double charmonium, $\gamma \gamma^* \rightarrow c\bar{c}$)
- ightarrow Initial states is always a 1 $^-$ quarkonium or a B meson
- → CM energy is a limiting factor
- \rightarrow "continuum" Background processes: ee \rightarrow qq, tt, mm...

Double charmonium production

Measurable only at Belle II

$${
m e^{+}e^{-}}
ightarrow ({
m cc}) \ + \ ({
m cc}) \ 0^{+/-} \ + \ 1^{-/+}$$

Belle II prospects (highlights):

- \rightarrow Inclusive χ and η recoil to study the vector spectrum
- $\rightarrow \eta_c$ branching fractions measurement at 1% precision
- \rightarrow J/ ψ + D recoil and J/ ψ + DD*

Charmonium in yy fusion

$${
m e^+e^-}
ightarrow ({
m cc}) {
m e^+ e^-} \ 0^{-/+}, 2^+$$

- Measurable only at Belle II
- Gives access to spectrum of the scalar states and $\gamma\gamma^*$ form factors

Belle II prospects:

- \rightarrow Disentangle 2 of the four states seen by LHCb in $~\varphi~J/\psi$
- $\to \chi_{c0.2}(2P)$ properties in $D\overline{D}y$

The Belle II experiment: a timeline

What is "phase 2"?

18

What is "phase 3"?

Nano-beam scheme

- 1) Large Piwinski angle by large θ and small σ_x $\phi = \frac{\sigma_z}{\sigma_x} tg \left(\frac{\theta}{2}\right) \approx \frac{\sigma_z}{\sigma_x} \frac{\theta}{2}$
- 2) Very small β $\beta_y^* \approx \frac{\sigma_x}{\rho} << \sigma_z$
- 3) Non-linear optics (suppress beam-beam resonances)

Interaction region size

Beam spot ~ 10 times smaller than KEKB

Belle case 1999 data

Belle case 1999 data

Ground state width in NRQCD

State-of-the art NRQCD: Phys. Rev. Lett. 119, 252001 (2017)

 ~ 1700 diagrams, $\sim 10^5$ CPU hours of calculation

State of the art results

Phys. Rev. Lett. 119, 252001 (2017)

Is charmonium "too relativistic" or is the NRCQD not converging fast enough?

→ See bottomonium!

Last Minute note: Brambilla et al. Also find a disagreement between the

State of the art results

Phys. Rev. Lett. 119, 252001 (2017)

→ Bottomonium measurements are note yet precise enough!

The "holy grail" of NRQCD

Phys. Rev. Lett. 119, 252001 (2017)

Simpler and cleaner: BR(Ground state $\to \gamma \gamma$)

What about the bottomonium?

Phys. Rev. Lett. 119, 252001 (2017)

No measurement has been done!

Why no X_{h} ?

0++

3) The X(3872) is generated by a peculiar coincidence

2++

A close look at the S-wave thresholds

Bottomonium VS charmonium

Bottomonium VS charmonium

Bottomonium VS charmonium

Particle Identification

The TOP is a "DIRC in the time domain"

- ightarrow Cherenkov light trapped and propagated to the readout in a wide bar of fused silica
- ightarrow The Cherenkov angle is measured by the **time of propagation** rather than the ring image on the PMT surface

The TOP counter at Belle II

TOP implementation in Belle II:

- ightarrow 16 modules (or slots) arranged around the interaction point
- ightarrow Each module is made of two identical bars of fused silica glued together
- → Backward side: expansion prism, PMTs and readout

→ Forward side: spherical mirror

Visualizing the Cherenkov rings

