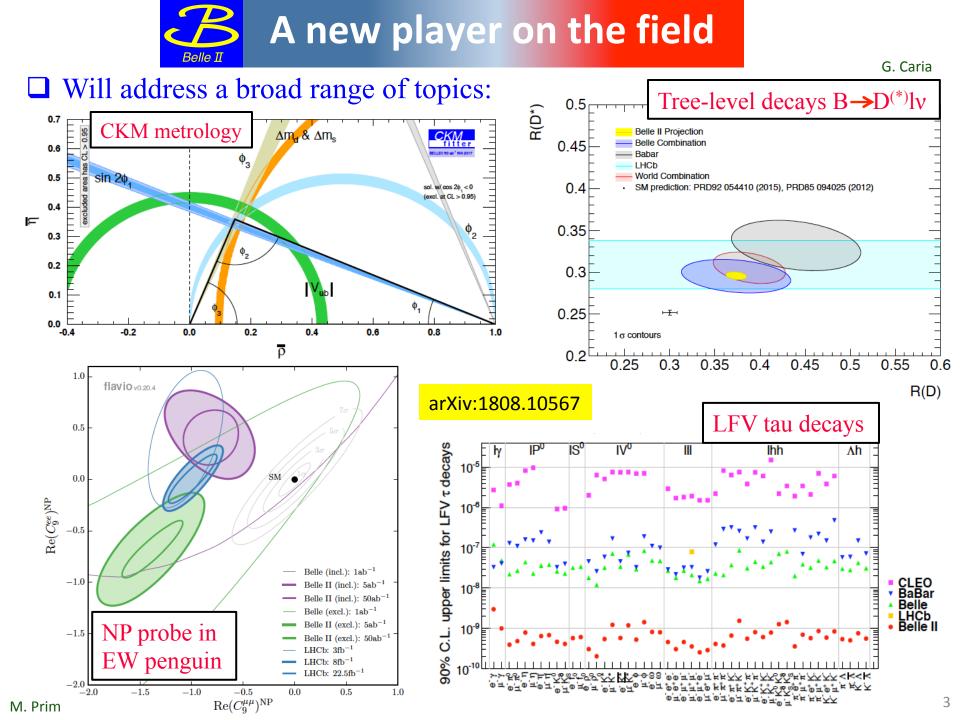


Gagan Mohanty

Provides us a unique probe to unravel deeper mysteries of the universe with intense sources and highly sensitive detectors

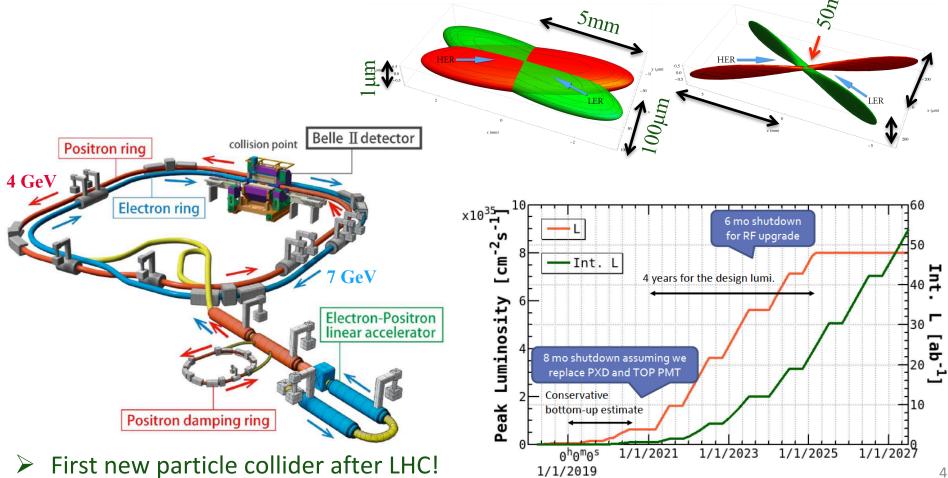
Main players at energy and intensity frontiers:



Some of the grand questions for FP

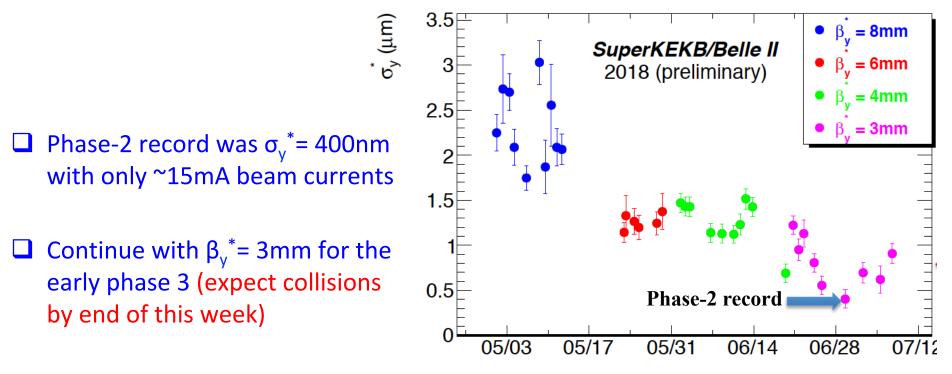
- Are there any new CP violating phases?
 CP violation (CPV) in B and D decays
- Any right-handed current from new physics?
 Photon polarization in radiative decays
- Are there any imprints of new physics beyond the SM in flavor changing neutral current transitions?
 - \rightarrow Electroweak penguin decays e.g. b \rightarrow sll
- ❑ Are there any signature of charged Higgs boson? Or, leptoquark?
 → Tree-level B decays to τν or D^(*)τν final state
- Neutrino oscillation being firmly established, what are the implications for lepton flavor violation in the charged lepton sector?
 Lepton flavor violating (LFV) tau decays
- □ Understanding exotic QCD states? Tetraquark, pentaquark, hybrid?
- Can we chase down dark matter from bottom? Hidden dark sector?

SuperKEKB: New intensity frontier machine


KEKB

□ Targets to deliver e⁺e⁻ collisions at a peak luminosity of 8×10³⁵ cm⁻²s⁻¹

- \rightarrow 40 times that of KEKB:
 - \diamond Increase beam currents twice
 - ♦ Reduce beam size by 20 times


SuperKEKB

How far have we gone?

Phase 2 (2018): beam commissioning (establish nano-beam scheme, reach the KEKB luminosity, and measure beam backgrounds) as well as do some physics with partial vertex detector → ~500 pb⁻¹

□ Phase 3 (2019 onward): physics run with the vertex detector

Gradually increase beam currents and reduce the beam size

Date

Belle II: A 21st century HEP experiment

Designed to operate with a performance similar to or better than Belle, but in a harsh beam background condition

EM Calorimeter (ECL): CsI(TI) crystals, waveform sampling readout

electrons (7 GeV)

Beryllium beam pipe (2 cm diameter)

Vertex Detector (VXD): 2-layer pixel (PXD) + 4-layer strip (SVD)

> Central Drift Chamber (CDC): He(50%)+C₂H₆(50%), small cells, long lever arm, fast electronics

K_L and muon detector: Resistive plate counter (barrel outer), plastic scintillator + WLS fiber + SiPM (endcap and inner two barrel layers)

Particle identification: Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

Tracking system is working fine!

Entries/(0.012 GeV/c²

80E

70⊦

60ŀ

50

40F

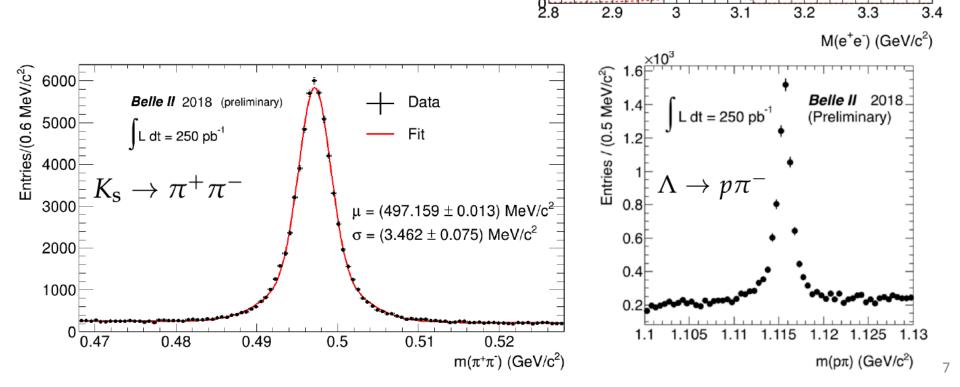
30

20

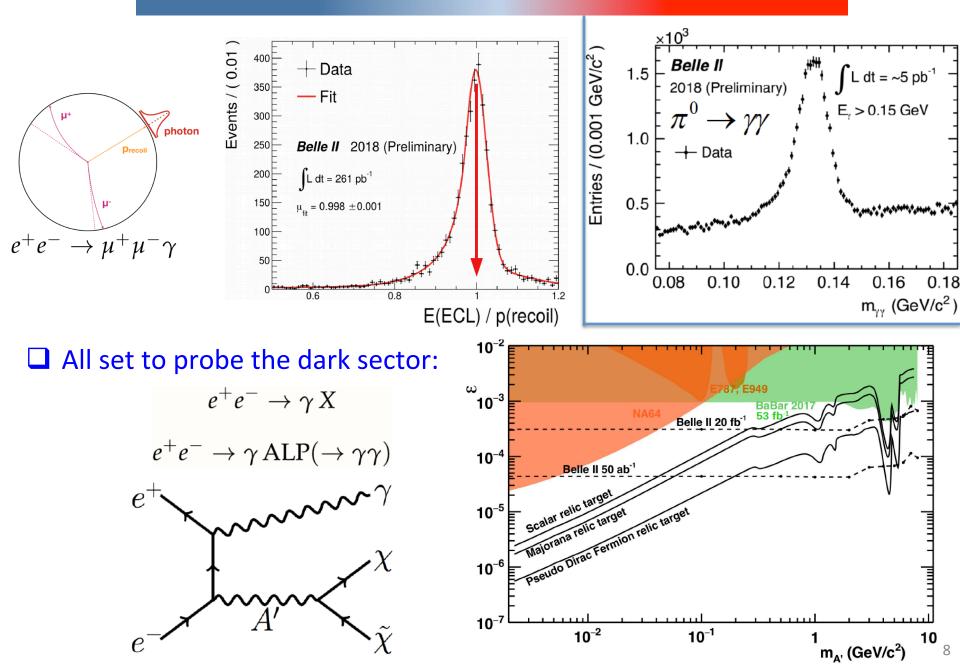
10

Belle II

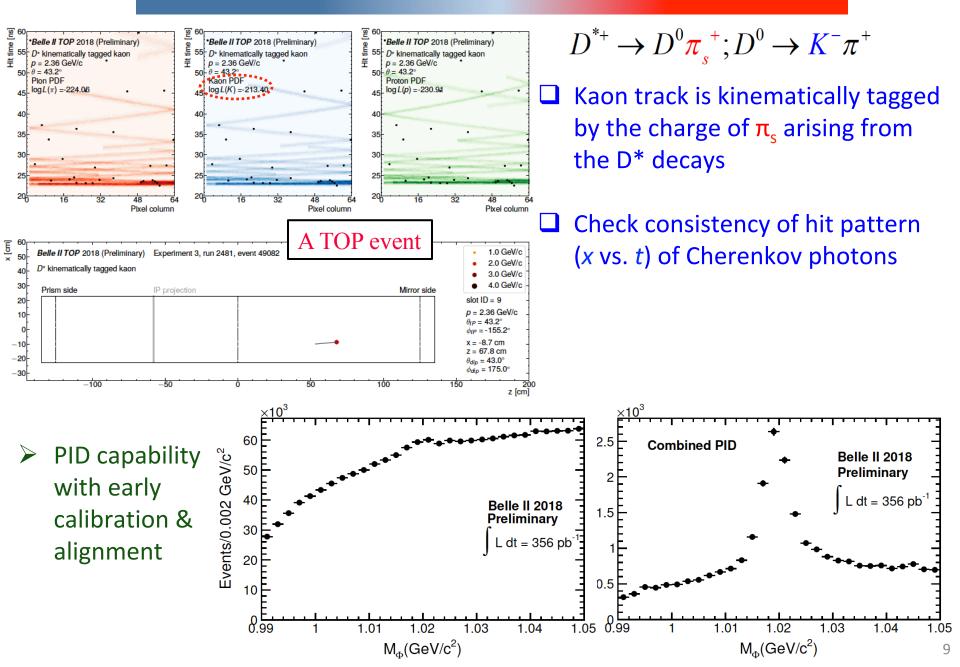
2018 preliminary

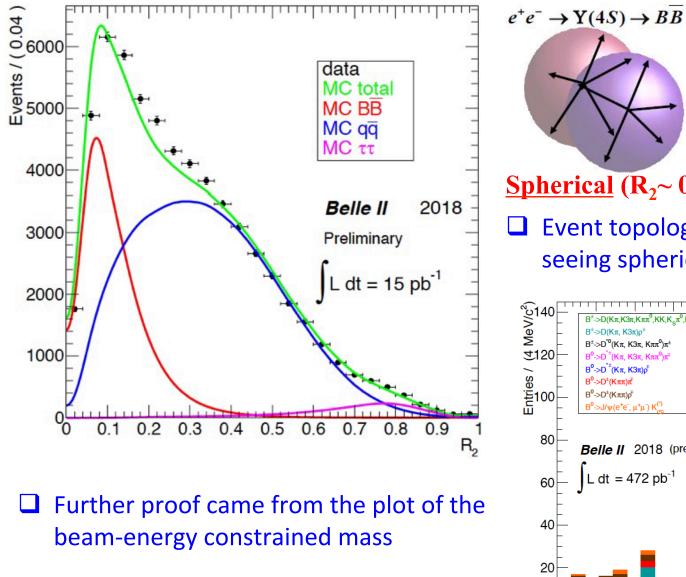

⁻¹ L dt = 472 pb⁻¹

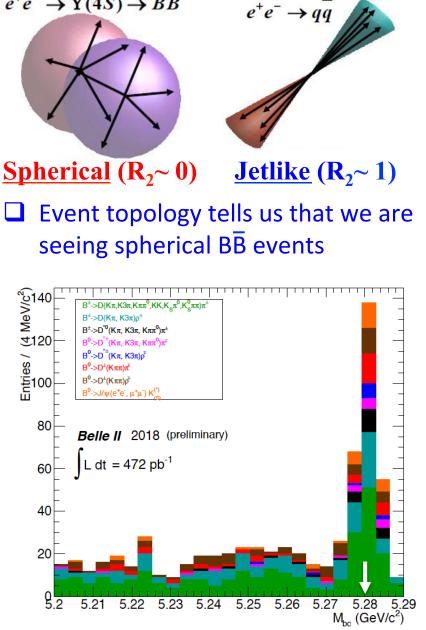
 $\mu_{v} = 3.0901 \pm 0.0012$


nbkg = 893 ± 32

 $nsig = 198 \pm 19$

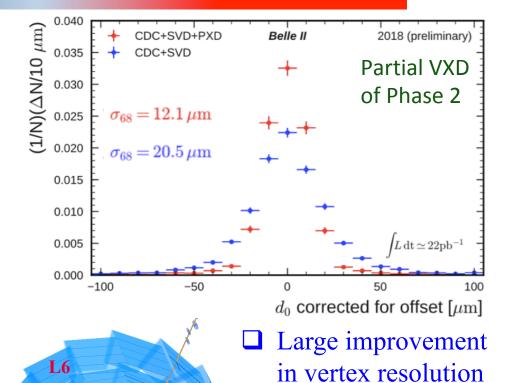

- Charged tracks reconstructed using info mostly from the CDC are available since the beginning of collisions
- Mass resolutions of known particles in data in agreement with simulations (B field measured well and sub-detectors also aligned)


Neutral construction: Belle II strength



Particle identification: A key element

Rediscovery of B mesons



10

VXD: Another key element is now ready

PXD: L1+1/6 of L2 (rest will be added in 2020)

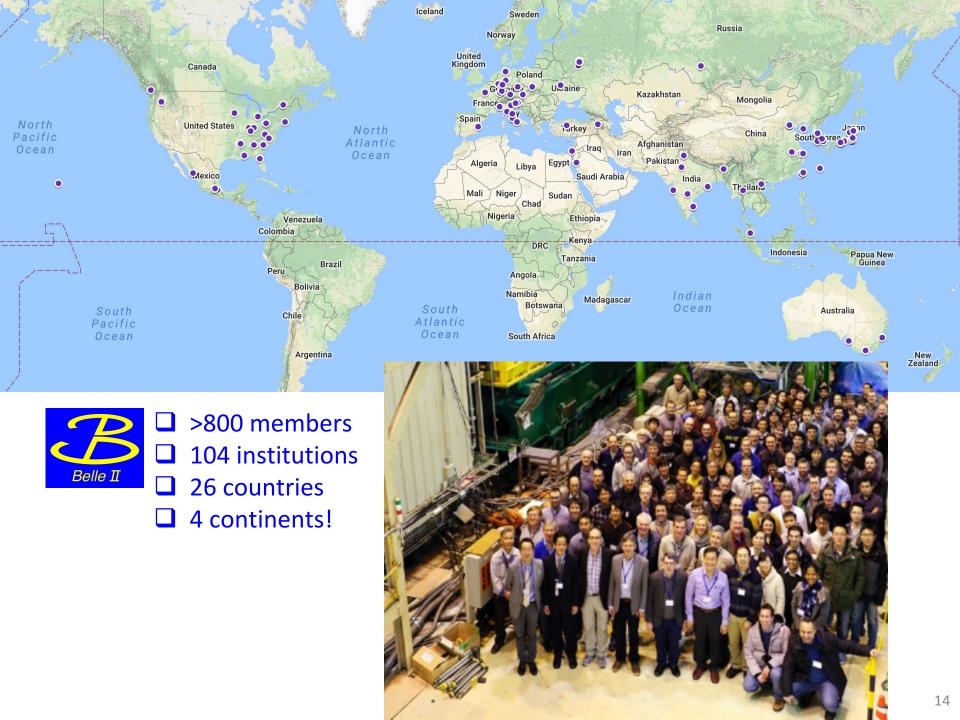
In global cosmic since Jan 2019

Early physics harvesting from Phase 3

- Integrated luminosity will depend on machine and detector performance
- Nevertheless, we expect around 10 fb⁻¹ by Summer 2019 that would be used to study an array of topics
- Low multiplicity:
 - \blacktriangleright Dark photon, ALP (1-2 fb⁻¹)
 - \blacktriangleright Magnetic monopole (0.5 fb⁻¹)
- Tau:
 - \succ $\tau \rightarrow l\alpha$, $\omega h\nu$, $\omega h\pi^{0}\nu$ (1 fb⁻¹) \succ Lifetime (2 fb⁻¹)
- Charm:
 - \succ D lifetime (2 fb⁻¹)
 - Doubly Cabibbo suppressed $D^0 \rightarrow K^+ \pi^-, K^+ \pi^- \pi^0$ (10 fb⁻¹)
- Semileptonic B:
 - \blacktriangleright B \rightarrow D^(*)lv untagged (0.5-10 fb⁻¹)
 - \blacktriangleright B $\rightarrow \pi/\rho lv$ untagged (2-10 fb⁻¹)

- Charmless B (no time dependent): ► B→Kπ (10 fb⁻¹) ➢ B→φK (10 fb⁻¹)
- Charmed B: \blacktriangleright B \rightarrow D^(*)h CF decays (1 fb⁻¹) \succ B→D^(*)K, D^(*)π⁰ (10-20 fb⁻¹)
- EW penguins:
 - ➢ B→K^{*} γ (2 fb⁻¹)
 - \blacktriangleright B \rightarrow X_s γ (2-10 fb⁻¹)
- Time-dependent CPV:
 - ➢ B lifetime (2-10 fb⁻¹)
 - Mixing in B \rightarrow Dh, Dlv (2-10 fb⁻¹)
 - > sin $2\phi_1$ in $B \rightarrow J/\psi K_s$ and related modes (10+ fb⁻¹)

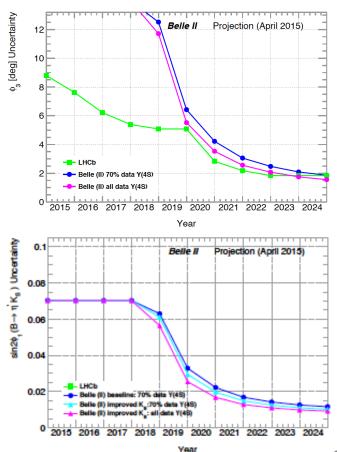
Closing words


□ Belle II will probe new physics at the intensity frontier → complementary to high p_T programs of ATLAS and CMS experiments at the LHC

□ As for LHCb, there is healthy competition and complementarity

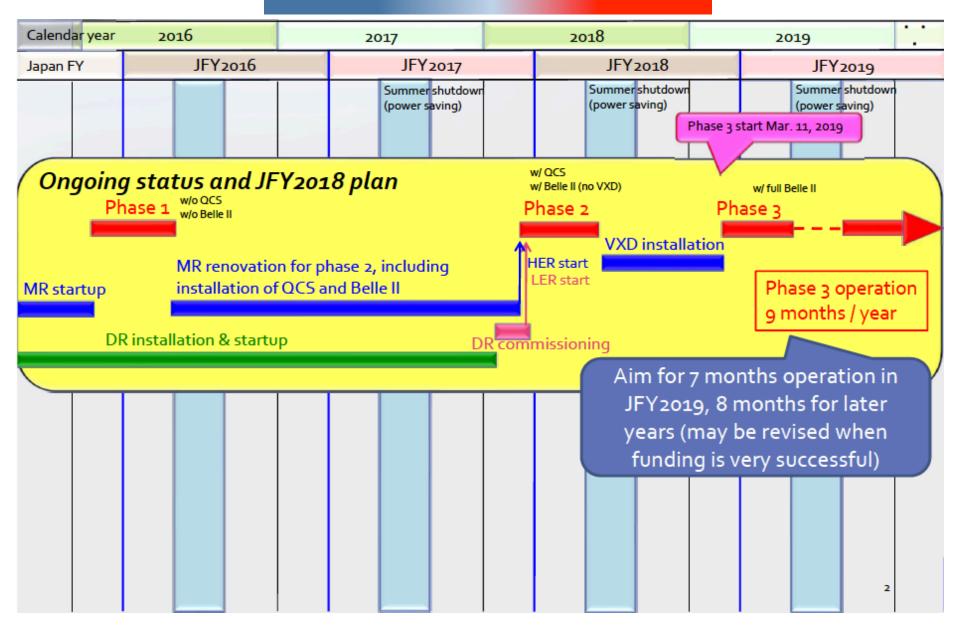
□ Marathon (physics run) has just begun in the super factory mode → need high-efficiency data taking as well as extensive running of SuperKEKB

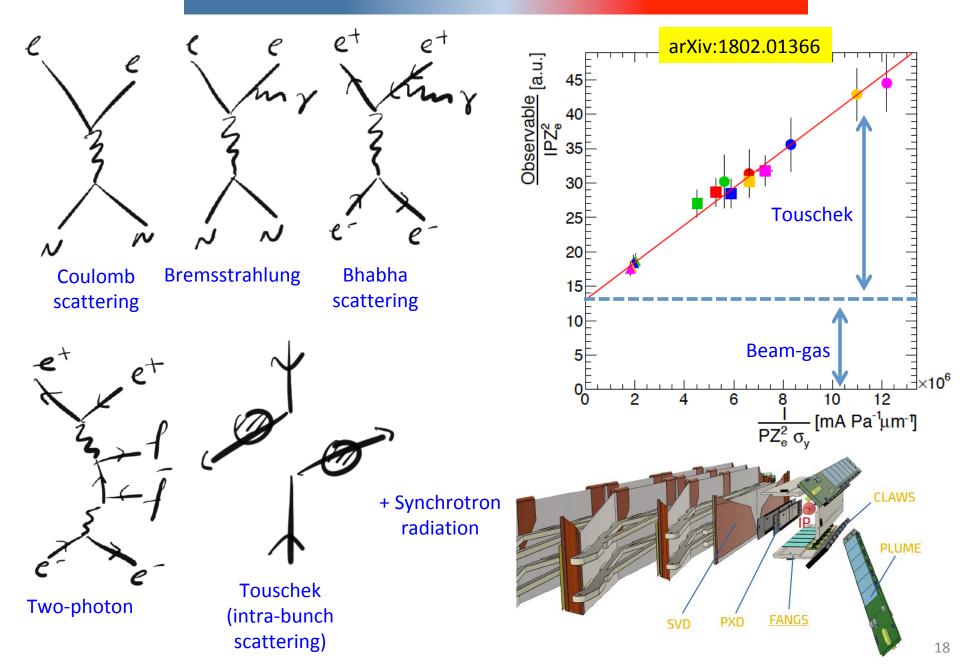
 $\Box \text{ First results expected by } \boxed{\text{LP2} + I9}$



Belle II vs. LHCb

Observable	Expected th. Expected exp. Facility		
	accuracy	uncertainty	
CKM matrix			
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb
ϕ_2		1.5°	Belle II
ϕ_3	***	3°	LHCb
CPV			
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb
$S(B_s \to \phi \phi)$	**	0.05	LHCb
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II
$S(B_d \rightarrow K^*(\rightarrow K^0_S \pi^0)\gamma))$	***	0.03	Belle II
$S(B_s \to \phi \gamma))$	***	0.05	LHCb
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II
A_{SL}^d	***	0.001	LHCb
A_{SL}^s	***	0.001	LHCb
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II
rare decays			
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II
$B(B \rightarrow D\tau\nu)$		3%	Belle II
$\mathcal{B}(B_d \rightarrow \mu\nu)$	**	6%	Belle II
${\cal B}(B_s o \mu \mu)$	***	10%	LHCb
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II
$\mathcal{B}(B \rightarrow s\gamma)$		4%	Belle II
$\mathcal{B}(B_s \rightarrow \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)
$\mathcal{B}(K \rightarrow \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory
charm and τ			
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
$ q/p _D$	***	0.03	Belle II
$arg(q/p)_D$	***	1.5°	Belle II
w 34/4/2			


- Great for neutral and missing energy modes
- Inclusive measurement: OK
- Excellent flavor tagging and K_s reconstruction


Comparison: KEKB vs. SuperKEKB

parameters		KEKB		SuperKEKB		
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	¢	11		41.5		mrad
Horizontal emittance	Ex	18	24	3.2	4.6	nm
Emittance ratio	κ	0.88	0.66	0.37	0.40	%
Beta functions at IP	β x*/βy*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lb 🛛	1.64	1.1 9	3.60	2.60	A
beam-beam parameter	ξγ	0.1 29	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Global Belle II schedule

Beam background commissioning

