

Lake Louise 2019

«SuperKEKB and Belle II: status and plans»

Daniel Cuesta On behalf of the Belle II collaboration

February 16th 2019

de Strasbourg

Few words on Belle II

Belle II is the upgrade of Belle experiment at KEK Tsukuba Japan Belle and BaBar verified CKM mechanism in quark transition Belle II will mainly search for New physics in b,c,τ sector

Intensity frontier B factory

SuperKEKB is aiming to reach the highest luminosity ever reached

Target data set : 50 ab⁻¹ \sim 50x Belle \rightarrow 55 Billion BB pairs

Belle II physics program

SM effective theory with many open questions, Several of them can be addressed to Belle II:

- Additional sources of CP violation: Time Dependent CP Violation in $b \rightarrow s$ transitions
- Lepton Flavour Violation via rare τ decays
 - · SuperKEKB is also a τ factory $\sigma(e^+e^- \to B\bar{B}) \sim \sigma(e^+e^- \to \tau\tau)$
- Dark sector :
 - · Missing energy decays
 - · Specific triggers : single photon trigger
 - · Particulary relevant in early operations

Possible to provide results even with very limited statistics

SuperKEKB

SuperKEKB

phase 3

4.0 / 7.007

10 / 11

0.27 / 0.30

0.088 / 0.081

3.6 / 2.6

80

25

83 **I** x2

25(L x40

Asymmetric e + e - circular collider aiming at delivering the **highest instantaneous luminosity** ever reached

Parameters

(LER / HER)

 β_x^* (mm)

 β_u^* (mm)

 $2\phi(mrad)$

How to reach high luminosity with acceptable beam BG level?

Ι_	f_0	NN_+n_b	I
<i>L</i> –	$2\sqrt{2}\pi(\sigma_z\phi_x)$	$\sqrt{(\varepsilon_{y-} + \varepsilon_{y+})\beta_y^*} \propto$	$\overline{\sigma_{beam}}$

Spoiler:
$$BG \propto \frac{I^2}{\sigma}$$

Rise Current : limited by BG and cost \rightarrow **2x KEKB**

Decrease Beam size: Need a new colliding strategy

En. (GeV) 3.5 / 8.04.0 / 7.007 $\epsilon_x(nm)$ 18 / 242.2 / 5.2**Boost *2/3** $\sigma_x^* (\mu m)$ 147 / 170 16.8 / 22.80.308 / 0.50.0620.94 / 0.94 $\sigma_u^* (\mu m)$ 128 / 100 **B* 1/20**

KEKB

crab cavities

1200 / 1200

5.9 / 5.9

0.129 / 0.09

SuperKEKB

phase 2

2.16 / 2.4

0.0240 / 0.0257

83

 I_{beam} (A) 1.64 / 1.191.0 / 0.8Nb bunches 15842500 $\mathcal{L}(10^{-34}cm^{-2}s^{-1})$ 2.11 HER

LER SuperKEKB $L = 8.10^{35} \text{ cm}^{-2} \text{s}^{-1} > 40 \text{x world record}$

Belle II detector

Operations schedule

Phase I: Single Beam background study

- → No Belle II, No Solenoid , and no final focusing magnet
- →January to June 2016

Phase II: Experiment commissioning

- → Belle II + Beam background
- dedicated sensors @interaction point
- \rightarrow from March to July 2018
 - \rightarrow First Beam : March 19th
 - → First collisions : April 26th

Goals:

Collide nano beams and reach 10³⁴ cm⁻² s⁻¹

Understand and control Machine Background

Calibrate and test detector and DAQ performances

Phase III: Physics run

→ From March 2019

Increase luminosity until 2022 and reach $8.10^{35}\ cm^{-2}\ s^{-1}$

2021 > Babar et Belle

Reach 50 ab⁻¹ ~ 2027

SuperKEKB Phase II achievement

Goals: Shrink beam dimension and reach KEKB Luminosity(10³⁴)

Effective bunch length is *reduced* from ~10 mm (KEKB) to 0.5 mm (SuperKEKB) as well as the transverse size reduced from ~6um to 0,33 um

Highest Luminosity reached: 5,3 10^{33} cm⁻²s⁻¹ with I= 0,265 A equiv. 9 10^{33} at 1A

SuperKEKB has started operation with great success

Background Big picture

Belle II

What is BEAST?

High Luminosity induces large amount of BG

Understand and control BG mandatory for BelleII physics program and detector safety

For safety reasons during PhaseII only a section full VXD installed replaced by a dedicated set of detectors for BG study

What we observed (in Phase II)

- Overall BG rate: ~ 10x MC, dominated by new LER (e+) single beam
- → **Dominant process**: Coulomb scattering between bunch particles and remaining gas atoms in beam pipe
- Dose: Still sustainable by detector

Overall BG is larger than expected (~10x) but there is room for improvement additional collimator will be installed and optimized during early Phase III operations

First collisions and rediscoveries

First collisions took place on 26th of April Phase II data taking rediscoveries : Helpful to test detector and software performance

2019 : Preparation for factory mode

<u>Installation of the Full VXD</u>

BEAST setup removed

VXD installed , currently commissioned

Machine plans :

Continue to reduce Beam size \rightarrow improve luminosity Additional collimator in LER \rightarrow BG commissioning to optimize collimator and fine tune beam

Data projection for 2019:

Several sector of the physics program could already provide interesting results (cf. Eldar's talk)

Useful to demonstrate the capability of the experiment

Conclusions

Belle II collaboration successfully started operation with first collisions on 26 April 2018

Peak Luminosity 5.5 10³³

Data set: 472 pb⁻¹ integrated

Detector performances are promising for a good start for data analysis $\rightarrow cf$. *Jakub's talk*

Background rates are higher than expected but there is still room for improvement

Physics run will start March 2019 $\rightarrow cf$. Eldar's talk

→ Target : exceed existing B factory data set by 2021