

Torben Ferber (University of British Columbia)

27.09.2017, Flavour and Dark Matter, Heidelberg

Dark Sector Physics at BaBar and Belle II

Overview

- Part I: BaBar
 - Experiment overview
 - Dark Photon to Dark Matter

- Part II: Belle II
 - Experiment overview
 - Dark Photon to Dark Matter
 - Axion-Like Particles
 - Other planned searches

BaBar: Experiment

- First generation B-factory: BaBar at PEP-II, USA, took data until 2008.
- ▶ Very high luminosity: ~1.2×10³⁴ /cm²/s
- Collision energy at Y(nS): Mainly at $E_{CM} = 10.58$ GeV. $BR(Y(4S) \rightarrow BB) > 96\%$
- Asymmetric beam energies:
 9 GeV (e⁻) / 3.1 GeV (e⁺)
 → Boosted BB pairs.

Dark photons: Visible and invisible

- In the Vector Portal, a (massive) Dark Photon A' can mix with the SM photon with strength ε.
- Searches at BaBar and Belle II assume onshell A' decays (m_{decay}≤m_{A'}/2):
 - Mono-energetic ISR photon.
 - Invariant di-lepton mass equals m_{A'.}
- If A' is the not the lightest Dark Sector particle, it will decay into Dark Matter (DM).

*Holdom, Phys. Lett B166, 1986

BaBar: Dark Photons to invisible (``Single photon search")

- Single photon trigger was implemented for final BaBar running period (~10% of all data):
 - ► 48 fb⁻¹ for high $m_{A'}$ (low E_{γ}), mostly at $E^{CM} = \Upsilon(2S)$ and $E^{CM} = \Upsilon(3S)$
 - ► 53 fb⁻¹ for low $m_{A'}$ (high E_{γ}), (additional 5 fb⁻¹ at $E^{CM} = \Upsilon(4S)$).
- Trigger threshold: $E_{\gamma}^* > 1.5$ GeV. Usable at analysis level: $E_{\gamma}^* > 1.8$ GeV (calibration issues).

- Signal selection using a BDT with 12 variables, including:
 - Energies and polar angles of highest two energetic γ's.
 - Distance of missing momentum vector to EMC crystal edges.
 - Additional clusters in muon system (IFR).
 - . . .
- Trained on 3 fb⁻¹ $\Upsilon(3S)$ data and simulated signal samples uniform in $m_{A'}$.

BaBar: Dark Photons to invisible ("Single photon search")

- Backgrounds:
 - e⁺e⁻→γγ, 1γ undetected:
 Peaking, identical to the signal for m_{A'} < 1.6 GeV/c². Photons can escape undetected through azimuthal gaps between calorimeter crystals and other inefficient detector regions.
 - ▶ $e^+e^- \rightarrow \gamma\gamma\gamma$, 1 γ undetected, 2nd out of the detector acceptance.

- e⁺e⁻→e⁺e⁻γ, both electrons out of the detector acceptance (γ energy limited by kinematics).
- Beam background photons do not fake signal γ , but can be the 2^{nd} γ in a signal event.
- Irreducible SM background
 e⁺e⁻→ vvγ is negligible.

BaBar: Dark Photons to invisible (``Single photon search")

High A' mass region (low γ energy) $m_{A'} > 5.5 \text{ GeV/c}^2$ is dominated by radiative Bhabha background smooth in recoil mass.

Low A' mass region has both peaking and smooth backgrounds. Select data using two statistically independent cuts on BDT and θ .

to appear in PRL (2017), <u>arXiv:1702.03327</u>

BaBar: Dark Photons to invisible ("Single photon search")

Belle II: SuperKEKB collider

Belle II: Detector

Belle II: Detector

Electromagnetic calorimeter (ECL):

Csl(Tl) crystals, waveform sampling to measure time and energy (possible upgrade: pulse-shape)

Non-projective gaps between crystals

electrons e

K_L and muon detector (KLM):

Resistive Plate Counters (RPC) (outer barrel)
Scintillator + WLSF + MPPC (endcaps, inner barrel)

Magnet:

1.5 T superconducting

Vertex detectors (VXD):

2 layer DEPFET pixel detectors (PXD)

4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):

 $He(50\%):C_2H_6$ (50%), small cells, fast electronics

positrons e+

Particle Identification (PID):

Time-Of-Propagation counter (TOP) (barrel)
Aerogel Ring-Imaging Cerenkov Counter (ARICH)

Belle II: Expected luminosity

Belle II "Phase 2" goal:

Peak luminosity as at the end of Belle: 1×10³⁴ cm⁻²s⁻¹

Belle II "Phase 2" dream:

20 fb⁻¹ of physics data at the $\Upsilon(4S)$.

Belle II"Phase 3" goal:

50x the integrated luminosity of Belle: 50ab⁻¹ by 2025.

Belle: ~1 ab⁻¹

BaBar: ~0.5 ab⁻¹

Belle II: Expected calorimeter performance

Energy resolution in Belle II barrel:

- Effects of beam background:
 - Degrades energy resolution.
 - Radiation damage.
 - Pile-up and increased event size.
 - Physics background.
 - → Upgrades of hardware (detector) and software (reconstruction) are crucial.

Belle II: Dark Photons to invisible (``Single photon search")

- Goal is to produce a competitive single photon measurement using the Phase 2 data (2018):
 - Belle II calorimeter is more hermetic than BaBar's (no projective gaps):
 Better sensitivity for low mass A' than BaBar.
 - Aim for trigger energy threshold E_{γ}^{*} > 1.0 GeV, at least during initial low luminosity running: Higher mass reach than BaBar.
 - Belle had no triggers for this physics.

Belle II: Dark Photons to invisible (``Single photon search")

- Qualitatively the same backgrounds as in the BaBar analysis, but:
 - Almost no backgrounds from ee→γγ outside the endcap gaps.

Trigger	Rate at full luminosity [kHz]
1 GeV* E*>1 GeV and second cluster E* < 0.3 GeV	4 kHz (barrel) 7 kHz (endcaps)
2 GeV* E*>2 GeV and Bhabha veto	5 kHz (barrel)
Belle II MC Preliminary (BG16), C. Hearty	

Belle II: Dark Photons to invisible (``Single photon search")

Belle II: Axion-Like Particles (ALPs)

- Axion-like particles (ALPs) are pseudoscalars and couple to bosons. Unlike Axions, ALPs have no relation between mass and coupling.
- They can be Dark Matter candidates, Dark Sector mediators, and they appear in many BSM scenarios.
- Focus on coupling to photons $(g_{a\gamma\gamma})$ in this talk. B-decays give access to coupling to charged bosons (not in this talk).

Belle II: Axion-Like Particles decaying into two photons or Dark Matter

Belle II: ALPs decaying into Dark Matter

- ALP decays can be invisible because the ALP decays outside of the detector or because the ALP decays into an invisible final state: Dark Matter.
- We re-interpreted BaBar's Dark Photon analysis in terms of ALPs decaying into Dark Matter.
- We studied the Belle II sensitivity for ALPs decaying into Dark Matter.

Belle II: Axion-Like Particles, revised constraints

Belle II: ALPs decaying into two Photons

- ► Select events with three ECL clusters with $m_a \ge 0.2$ GeV and search for a bump in the invariant 2γ mass spectrum.
- Main backgrounds:
 - ► $e^+e^- \rightarrow \gamma\gamma\gamma$ (reduced by helicity cuts)
 - e⁺e⁻→γγ + beam background γ
 (reduced by timing cuts)
 - ► $e^+e^- \rightarrow \gamma\gamma$, $\gamma \rightarrow e^+e^-$ outside of tracking volume (reduced by angular cuts)

- Trigger: For small ALP masses, events look like $e^+e^- \rightarrow \gamma \gamma$ events.
 - At BaBar/Belle: Prescaled at L1.
 - At Belle II: Delay trigger decision, no prescale at L1.

Belle II: Axion-Like Particles, future experiments for visible decays

Dolan, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, submitted to JHEP (2017), arXiv:1709.00009

Belle II: ALPs below 200 MeV?

- For ALP masses below ~200 MeV, the decay photons are reconstructed as one ECL cluster even in offline analysis. Currently under study:
 - Untagged (electrons not seen) ALP fusion production has a much higher cross section and produces ALPs with less boost (difficult to trigger).
 - Shower shapes for merged cluster are different, MVA based reconstruction has better separation power (but events have to pass L1 trigger).
 - Pair conversion of one decay photon costs statistics, but yields a distinctive four particle final state.

Dolan, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, submitted to JHEP (2017), <u>arXiv:1709.00009</u>

Belle II: Other planned Dark Sector and exotic searches

- Search for Dark Photons decaying into pseudo-Dirac DM: ***
 - $A' \rightarrow \chi_1 \chi_2, \chi_2 \rightarrow \chi_1 A', A' \rightarrow e^+ e^-.$
- Off-shell A' decays. ***
- Long-lived neutral particle decays.
- Visible Dark Photon decays.
- ► Dark Scalar: $e^+e^- \rightarrow \tau^+\tau^-S$, $S \rightarrow \ell^+\ell^-$
- Magnetic monopoles with small magnetic charges. ***

- Invisible Y(1S) decays via $Y(3S) \rightarrow Y(1S)\pi^{+}\pi^{-}$ (Requires beam energies at Y(3S)).
- Muonic Dark Force:
 - $\rightarrow e^+e^- \rightarrow \mu^+\mu^-Z', Z' \rightarrow \mu^+\mu^-$
 - $e^+e^- \rightarrow \mu^+\mu^-Z'$, $Z' \rightarrow Invisible ***$
- Dark Higgs
- . . .

Summary

- BaBar single photon search excludes g-2 region of parameter space.
- Still ongoing Dark Sector searches in BaBar and Belle.
- The Belle II search for light dark matter is competitive with BaBar already with expected 2018 data due to the more hermetic calorimeter and better triggers.

- The early running of Belle II offers possibilities for many unique physics analyses in the Dark Sector.
- Belle II Physics Book in preparation* (Belle II detector, simulation, software, analysis tools, physics program incl. dark sectors), to be submitted to PTEP (2017).

"Leaning out of windows" (E. Zack/V. Kwan/T. Ferber/J. Roman)

Outreach project of TRIUMF, UBC and Emily Carr University

Exhibition Jan 25 - Feb 8, 2018 (Vancouver)

Additional information

Beam backgrounds at Belle II

- Degrades calorimeter resolution.
- Radiation damage.
- Pile-up and event size.
- Physics background.

Triggers

Trigger	Rate at full luminosity [kHz]
1 GeV* E*>1 GeV and second cluster E* < 0.3 GeV	4 kHz (barrel) 7 kHz (endcaps)
2 GeV* E*>2 GeV and Bhabha veto	5 kHz (barrel)

Belle II MC Preliminary (BG16), C. Hearty