
A new Software Training Model at Belle II
Kilian Lieret, Alejandro Mora, Moritz Bauer, Michel Bertemes, Sviatoslav Bilokin, Giulia Casarosa, Racha Cheaib, Samuel Cunliffe, Angelo Di Canto,

Giacomo De Pietro, Nathalie Eberlein, Michael Eliachevitch, Marcela Garcia Hernandez, Philip Grace, Daniel Greenwald, Oskar Hartbrich, Michel
Hernandez Villanueva, Chia-Ling Hsu, Ilya Komarov, Thomas Kuhr, Yaroslav Kulii, Frank Meier, Marco Milesi, Gian Luca Pinna Angioni, Markus

Tobias Prim, Martin Ritter, Pascal Schmolz, Umberto Tamponi, Francesco Tenchini, Hannah Wakeling, Xing-Yu Zhou

Contact: kilian.lieret@posteo.de, software-doc@belle2.org

Abstract
The physics output of modern experimental HEP collaborations
hinges not only on the quality of its software but also on the
ability of the collaborators to make the best possible use of it.

With the COVID-19 pandemic making in-person training
impossible, the training paradigm at Belle II was shifted towards
one of guided self-study.

To that end, the study material was rebuilt from scratch as a
series of modular and hands-on lessons tightly integrated with
the software documentation on Sphinx. Each lesson contains
multiple exercises that are supplemented with hints and
complete solutions. Rather than duplicating information,
students are systematically taught to work with the API
documentation to find the important sections for themselves.
Unit tests ensure that all examples work with different software
versions, and feedback buttons make it easy to submit
comments for improvements.

On this poster, we detail our experiences with the new setup and
training model.

Challenges

The training model at Belle II faces the following
challenges:

• Suitability for both self-study and in-person events

• Versioning: Analyst-facing API of the Belle II software is
still evolving ⇒ different versions of lessons for different
versions of software

• Testability: Code snippets in the lessons should be
tested to ensure that they are working

• Maintainability and sustainability: Lessons should be
consistent, stable, and easy to update.

• Interactivity: Exercises improve the learning experience
and keep students engaged

Some trade-offs between these points are necessary. For
example, self-study-ready material requires a level of
verbosity that may be overwhelming when presented in
traditional in-person events.

Figure 1. Home of the lessons at training.belle2.org

45 figures

General principles

• Lessons are available as web pages built with Sphinx1

• Verbose text. Didactical style inspired by work of
software carpentries2 / HSF training3 / LHCb StarterKit4

• Source code is hosted in git together with the main
software (basf2, now open source5!)

⇒ Natural correspondence of software versions and
lesson versions

⇒ Good for unit testing

• Do not replicate existing documentation! Either link to it
or make it an exercise for students to find the
information.

• Helps with maintainability

• Teaches students to work with “normal”
documentation

• Refer to outside training for some software
prerequisites (e.g., python). Currently using material of
sw carpentries.

• Events: Guided self-study with Q & A sessions,
mentoring sessions, and self-study time in between.
Chat channels for asynchronous help.

Technical setup

• Continuous roll out: Developed on the main branch of
the basf2 git repository (view package on github6)

• Recommended training versions live on release
branches

• E.g., training.belle2.org automatically points at lessons
of the latest full release

• For substantial improvements/hotfixes: Needs cherry-
picking into minor or fix-releases

• Generally, this means that changes propagate
relatively slowly (but you can always point a
student to the latest development build)

• Code inclusion:

• Put code in separate files and use code inclusion

• These files are then executed as unit tests

• Allows to include complete “solutions” at the end

• Allows using code-inspection/formatting tools for a
uniform experience and fewer bugs

• For step-by-step build-up of larger code examples:
Use partial code-inclusion

• Initial version: line-number based ⇒ very cumbersome
with code changes as line numbers need to be updated

• Now: include small marker comments in code and use
start-after/end-before directives of Sphinx
⇒ Using explicit markers consistently solves ambiguity
issues
⇒makes it obvious where code is included

• Additional admonition types for Sphinx: e.g., exercise
blocks, foldable hints and solutions (Fig. 2)

• Quick feedback form below every lesson for bug
reports, however still rarely used (Fig. 2)

Experiences

• Technical complexity: Contributions require basic
knowledge of git, PR workflows, reStructuredText
(rst), and sphinx directives.

• Automatic Sphinx builds in PRs for preview &
checks, but take ~20 min. Local builds are faster
but require initial compilation of (part of) main
software + 1-3 min per Sphinx build.

• Contributing to documentation teaches the entire
software development workflow

• Additional step-by-step tutorials and dedicated
hackathons could help beginners to contribute,
growing number of unique contributors

• Very complete onboarding experience, even for
newcomers who join “off-season.” Lessons cover
everything from basic physics knowledge and
software prerequisites to submitting grid jobs.

• Very positive feedback (Fig. 3), e.g., “Very solid work

regarding the textbook! Congrats! Everything was very clear

which significantly minimized the need for guidance (…)

Software Prerequisites was the highlight of the workshop as it

summarized all the necessary tools that no one really spends

time on explaining thoroughly to newcomers.“

• Very few issues with broken code snippets due to
unit testing

212 exercises, 159 hints, 191 solutions

244 code snippets

57x keeping an
overview

2.5x Hamlet
(excluding most code)

Figure 2. Features and statistics

Quick feedback form
below every lesson

ACAT 2021

2020 2021

Figure 3. Customer satisfaction: “How happy were you with the lessons?”

1 https://www.sphinx-doc.org/
2 https://software-carpentry.org/
3 https://hepsoftwarefoundation.org/training

4 https://lhcb.github.io/starterkit-lessons/
5 https://github.com/belle2/basf2
6 https://github.com/belle2/basf2/tree/main/online_book

mailto:kilian.lieret@posteo.de
mailto:software-doc@belle2.org
https://training.belle2.org/
https://www.sphinx-doc.org/en/master/
https://software-carpentry.org/
https://hepsoftwarefoundation.org/workinggroups/training.html
https://lhcb.github.io/starterkit-lessons/index.html
https://github.com/belle2/basf2
https://github.com/belle2/basf2/tree/main/online_book
https://training.belle2.org/
https://www.sphinx-doc.org/
https://software-carpentry.org/
https://hepsoftwarefoundation.org/training
https://lhcb.github.io/starterkit-lessons/
https://github.com/belle2/basf2
https://github.com/belle2/basf2/tree/main/online_book

