ACAT 2021

Abstract

The physics output of modern experimental HEP collaborations
hinges not only on the quality of its software but also on the
ability of the collaborators to make the best possible use of it.

With the COVID-19 pandemic making in-person training
impossible, the training paradigm at Belle Il was shifted towards
one of guided self-study.

To that end, the study material was rebuilt from scratch as a
series of modular and hands-on lessons tightly integrated with
the software documentation on Sphinx. Each lesson contains
multiple exercises that are supplemented with hints and
complete solutions. Rather than duplicating information,
students are systematically taught to work with the API
documentation to find the important sections for themselves.
Unit tests ensure that all examples work with different software
versions, and feedback buttons make it easy to submit
comments for improvements.

On this poster, we detail our experiences with the new setup and
training model.

Challenges

The training model at Belle Il faces the following
challenges:

 Suitability for both self-study and in-person events

« Versioning: Analyst-facing API of the Belle Il software is
still evolving = different versions of lessons for different
versions of software

» Testability: Code snippets in the lessons should be
tested to ensure that they are working

« Maintainability and sustainability: Lessons should be
consistent, stable, and easy to update.

 Interactivity: Exercises improve the learning experience
and keep students engaged

Some trade-offs between these points are necessary. For
example, self-study-ready material requires a level of
verbosity that may be overwhelming when presented in
traditional in-person events.

General principles

« Lessons are available as web pages built with Sphinx’

« Verbose text. Didactical style inspired by work of
software carpentries? / HSF training® / LHCb StarterKit*

« Source code is hosted in git together with the main
software (basf2, now open source?®!)

= Natural correspondence of software versions and
lesson versions

= Good for unit testing

* Do not replicate existing documentation! Either link to it
or make it an exercise for students to find the
information.

» Helps with maintainability

« Teaches students to work with “normal”
documentation

* Refer to outside training for some software
prerequisites (e.g., python). Currently using material of
Sw carpentries.

« Events: Guided self-study with Q & A sessions,
mentoring sessions, and self-study time in between.
Chat channels for asynchronous help.

Contact: kilian.lieret@posteo.de, software-doc@belle2.org

A new Software Training Model at Belle Il

Kilian Lieret, Alejandro Mora, Moritz Bauer, Michel Bertemes, Sviatoslav Bilokin, Giulia Casarosa, Racha Cheaib, Samuel Cunliffe, Angelo Di Canto,
Giacomo De Pietro, Nathalie Eberlein, Michael Eliachevitch, Marcela Garcia Hernandez, Philip Grace, Daniel Greenwald, Oskar Hartbrich, Michel
Hernandez Villanueva, Chia-Ling Hsu, llya Komarov, Thomas Kuhr, Yaroslav Kulii, Frank Meier, Marco Milesi, Gian Luca Pinna Angioni, Markus
Tobias Prim, Martin Ritter, Pascal Schmolz, Umberto Tamponi, Francesco Tenchini, Hannah Wakeling, Xing-Yu Zhou

#& basf2

» 3. Beginners' tutorials View page source

3. Beginners' tutorals

This online textbook aims to help new Belle Il members to get started with the software by
following through a series of hands-on lessons.

O Tip

Ll s Just as there are many versions of the Belle 2 software, there are many versions of this

2. Installation and Setup documentation to match it. After all, if a new feature is added in our software, we also want to

B 3. Beginners’ tutorials have the documentation for it.

3.1. Welcome! _] . . .
The current version of this documentation is shown on the top left of this page, just below the

3.2. Fundamentals ' _— .
logo. You can also change your version by clicking on other versions.

3.3. Software Prerequisites

3.4. Working with Belle Il software. If you are a new to all of this, we recommend you to select the recommended release version

. . release-xx-xx-xx (recommended) in the above list).
3.5. Offline analysis [: o))

3.6. Data model and computin : .
puting You can also take a sneak peek at the most recent version of the documentation by selecting

3.7. Join us

the development version. However not all of the code examples might work for you yet.
4. Command Line Tools

5. Belle Il Python Interface The earliest release version which contains this online book is release-85-81-12 .

&é. List of Core Modules

7. Analysis

8. B2BlIl

If you change the version to an earlier version than the current one, some pages (also this page!)

9. Background module might not exist.

10. Calibration

Figure 1. Home of the lessons at training.belle2.org

[]
244 code snippets
[]
61 # ROE variables 45 flgures
62 roe_kinematics = ["roeE()", "roeM()", "roeP()", "roeMbc()", "roeDeltae()"] ;
63 roe_multiplicities = [_w' <
64 "NROE_Charged()", ‘ —
65 "nROE_Photons()", \§ 2,
66 "nROE_NeutralHadrons()", MANN | :
o7] AN
Ga b_vars += roe_kinematics + roe_multiplicities 11:: \
[]
57x keeping an
° Teaching: 10-20 min
Ove rVI ew Exercises: 10-20 min

e The ROE of a selection is build with buildRestOfEvent Questions:
« ROE masks are added with appendrROEMask Of appendROEMasks . lJse them to clean up e | combined several particles

beam-induced or other background particles. into x . How do | select
« For many analyses ROE is used as middleware to get tag vertex fit, continuum suppre everything that is not “in" « ?
or flavor tag. ® How to exclude some particles
« Usage of ROE without a mask is not recommended.

o vent / what
is an ROE mask?
2.5x Hamlet

(excluding most code)

212 exercises, 159 hints, 191 solutions

Add PID and track variables for all charged final state particles and the
iInvariant mass of the intermediate resonances to the ntuple. Also add the
standard variables from before for all particles in the decay chain, the
kinematics both in the lab and the CMS frame.

¥ Hint: Where io look ¥

¥ Hint: Partial solution for final state particles v
¥ Hint: CMS variables ¥

¥ Hint: Partial solution for the CMS variables
& Solution v

© Stuck? We can help! ¥
© Improving things! ¥

0 Quick feedback!

Feedback

@ kilian.lieret@gmail.com (not shared) Switch account)

* Required

Which lesson are you giving feedback to? *

Precise feedback so that we can actually improve and fix things! *

Quick feedback form
below every lesson g

S Page 1 of 1

Clear form

Figure 2. Features and statistics

How happy were you with the lessons provided?

How happy were you with the lessons provided?

53 espnses 2020 e 2021

10.0
20

16 (48.5%) T(292%) 9 [S?E‘a::

75

5.0 4 (16.7%)

5 (15.2%) 55 2 (8.3%)
. 3(9.1%) 3 (9.1%) 1(4.2%) 1(4.2%)
2 (6.1%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)

1(3%) 1(3%) 1(3%) 1(3%)

0 (0%, 0 (0%)

0.0

0 1 2 3 4 5 G 7 3 9

] 1 2 3 4 5 G 7 3 9 10

10

Figure 3. Customer satisfaction: “How happy were you with the lessons?”

>

Belle 11

Technical setup

e Continuous roll out: Developed on the main branch of
the basf2 git repository (view package on github®)

 Recommended training versions live on release
branches

* E.g., training.belle2.org automatically points at lessons
of the latest full release

* For substantial improvements/hotfixes: Needs cherry-
picking into minor or fix-releases

» Generally, this means that changes propagate
relatively slowly (but you can always point a
student to the latest development build)

e Codeinclusion:

« Put code in separate files and use code inclusion
* These files are then executed as unit tests
* Allows to include complete “solutions” at the end

« Allows using code-inspection/formatting tools for a
uniform experience and fewer bugs

» For step-by-step build-up of larger code examples:
Use partial code-inclusion

 Initial version: line-number based = very cumbersome
with code changes as line numbers need to be updated

 Now: include small marker comments in code and use
start-after/end-before directives of Sphinx
= Using explicit markers consistently solves ambiguity
ISSUes
= makes it obvious where code is included

« Additional admonition types for Sphinx: e.g., exercise
blocks, foldable hints and solutions (Fig. 2)

* Quick feedback form below every lesson for bug
reports, however still rarely used (Fig. 2)

Experiences

» Technical complexity: Contributions require basic
knowledge of git, PR workflows, reStructuredText
(rst), and sphinx directives.

« Automatic Sphinx builds in PRs for preview &
checks, but take ~20 min. Local builds are faster
but require initial compilation of (part of) main
software + 1-3 min per Sphinx build.

» Contributing to documentation teaches the entire
software development workflow

« Additional step-by-step tutorials and dedicated
hackathons could help beginners to contribute,
growing number of unique contributors

« Very complete onboarding experience, even for
newcomers who join “off-season.” Lessons cover
everything from basic physics knowledge and
software prerequisites to submitting grid jobs.

« Very positive feedback (Fig. 3), e.g., “Very solid work
regarding the textbook! Congrats! Everything was very clear
which significantly minimized the need for guidance (...)
Software Prerequisites was the highlight of the workshop as it
summarized all the necessary tools that no one really spends
time on explaining thoroughly to newcomers.*

* Very few issues with broken code snippets due to
unit testing

1 https://www.sphinx-doc.orqg/ 4 https://lhcb.qgithub.io/starterkit-lessons/
2 https://software-carpentry.orqg/ > https://github.com/belle2/basf?
3 https://hepsoftwarefoundation.org/training © https://github.com/belle2/basf2/tree/main/online book

mailto:kilian.lieret@posteo.de
mailto:software-doc@belle2.org
https://training.belle2.org/
https://www.sphinx-doc.org/en/master/
https://software-carpentry.org/
https://hepsoftwarefoundation.org/workinggroups/training.html
https://lhcb.github.io/starterkit-lessons/index.html
https://github.com/belle2/basf2
https://github.com/belle2/basf2/tree/main/online_book
https://training.belle2.org/
https://www.sphinx-doc.org/
https://software-carpentry.org/
https://hepsoftwarefoundation.org/training
https://lhcb.github.io/starterkit-lessons/
https://github.com/belle2/basf2
https://github.com/belle2/basf2/tree/main/online_book

