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Abstract. The Belle II experiment is an upgrade to the Belle experiment, and is
located at the SuperKEKB facility in KEK, Tsukuba, Japan. The Belle II soft-
ware is completely new and is used for everything from triggering data, gener-
ation of Monte Carlo events, tracking, clustering, to high-level analysis. One
important feature is the matching between the combinations of reconstructed
objects which form particle candidates and the underlying simulated particles
from the event generators. This is used to study detector effects, analysis back-
grounds, and efficiencies. This document describes the algorithm that is used
by Belle II.

1 Introduction

The Belle II experiment [1, 2] at the SuperKEKB e+e− collider [3] is the successor to the
Belle experiment [4]. The full software stack has been rewritten for Belle II: notably the
tracking [5], clustering, and high-level analysis tools [6–8]. The Belle II software framework
(basf2) [9] supports both C++ and python 3 code. The software is organised into modules1,
each of which perform a single task of data-processing within the event loop. Basf2 modules
are configured in an ordered sequence, called a path which defines the processing of events
in a job.

2 Monte-Carlo sample generation in the Belle II software

Belle II data are processed centrally within the collaboration. The output of this processing is
a set of common post-reconstruction files2 (containing data objects such as tracks, calorimeter
clusters, particle identification information, etc).

Monte Carlo (MC) simulated data is reconstructed in the same way, with the obvious ex-
ception that events are generated and then passed through a GEANT4 [10] simulation [2, 11].
For b-physics analyses, the EvtGen [12] generator is typically used, and for tau physics,
TAUOLA [13]. There are a variety of other generators available for low-multiplicity pro-
cesses.
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1An unfortunate nomenclature clash here: basf2 modules are distinct and different from a python 3 module.
2So-called mini data summary table (mDST) format files. Based on ROOT.
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In the post-reconstruction files from simulated events, the underlying generator-level par-
ticles are also stored alongside the reconstructed tracks, clusters, and other information. The
generator-level particles are described by a Belle2::MCParticle data object.

These post-reconstruction files (or subsets thereof) are processed again by the analyst
who will have specific analysis requirements for her physics channel.

3 High-level analysis at Belle II

In high-level analysis jobs, the tracks and clusters (or combinations thereof) are interpreted
as candidate physics particles (Belle2::Particles). For example, a track associated to a
calorimeter cluster consistent with a minimum-ionising particle, and with hits in the muon
system would be a muon candidate particle. No specific selection criteria are necessarily im-
posed at this stage, any and all tracks may be interpreted as “muon” particles. To give another
example, two particles under a kaon and pion hypothesis (using, say, particle identification
information) can be combined to make a composite particle candidate for a K∗0 → Kπ decay.

It is at this stage, and to these particle candidates, that analysis-specific algorithms (such
as kinematic fitting, full-event interpretation [6], etc) are employed.

4 MC-matching

The procedure of identifying the underlying generator-level particle that is responsible for a
reconstructed candidate is MC-matching and is important for understanding reconstruction
effects and backgrounds. This is the association of a particle to an MC-particle in Belle II
nomenclature.

The MC-matching of tracks is described in Ref. [5]. In brief: it is a requirement on the pu-
rity of the hits used in the track that are due to a single generated particle. Similarly, a cluster
is MC-matched if a certain fraction of its energy is due to the generated particle. Track-
based and cluster-based particles (final-state particles) therefore simply inherit the match of
the underlying reconstructed object, with preference to the track. For example, if the track of
the muon candidate particle discussed earlier is matched to a generator-level muon, then the
particle will inherit this match regardless of the match of the associated calorimeter cluster.
Photons, K0

L, and neutrons take their MC match from that of the associated cluster.
For composite particles Belle II employs a two stage process. An algorithm to find an

MC-match is followed by an evaluation step to categorise incorrectly reconstructed candi-
dates.

5 The algorithm for composite particles

The goal of this MC-matching algorithm is to establish the relation between the reconstructed
composite particle and the corresponding MC-particle. A flowchart of the algorithm is shown
in Fig. 1.

Let us take the following decay chain as an example: Υ(4S ) → B0B0 followed by
B0 → K∗0(→ K+π−)e+e−. Let us assume that the B0 candidate is correctly reconstructed
from final-state particles (K+, π−, e+, and e−), which have already been matched with the cor-
responding MC-particles. In this case, one wants to assign the MC-particle B0 as the match
to the candidate. The overall algorithm process is as follows:

• Check that every daughter (K∗0, e+, e−) of the initial particle (B0) is a composite particle or
a final-state particle.
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Figure 1. The algorithm flowchart of the MC-matching for a composite particle.

• If a daughter is a composite particle, such as the K∗0 in the example, call the algorithm
routine for that daughter recursively.

• Check all daughters of the initial particle for any that have already been matched.

• If all daughters have been matched, assign the most recent common ancestor from all MC-
particles which are matched to the daughters. Hereafter, the most recent mutual ancestor is
called the first common mother. In the example, the first common mother of the (K∗0, e+,
e−) is the B0. Thus, the MC-matching of B0 is correctly established. The MC-matching of
the K∗0 will also be correct in the example, since the first common mother of (K+, π−) is
the K∗0.

• If any daughter has not been matched, and no MC-particle is matched either: the algorithm
is running on data, a final-state particle has been created from beam-background hits, or a
particle is otherwise wrongly reconstructed.

It is also possible that a B0 candidate may have been reconstructed partially from correctly
matched particles (say, K+, π−, e+) and a wrong particle (e−other) which could be a decay
product from, for instance, the other B. In this case, the first common mother of (K+, π−, e+,
e−other) is the Υ(4S ). So the B0 candidate will be matched to the Υ(4S ).

If there is only one daughter in the “composite” particle, then the particle is assigned a
match to the mother of the MC-particle matched to this daughter. This is a fringe case for,
for example, semileptonic decays such as B+ → τ+ντ. Assuming that the tau is correctly
reconstructed in this example, then the particle has only one reconstructed mother. It is
also sometimes desirable for users to “combine” a single particle with nothing to create a
“mother”. This is helpful for bookkeeping, and labelling purposes.

6 Evaluation algorithm for composite particles

It is useful to categorise failure cases of the reconstruction. For this, a so-called evaluation
algorithm is employed as a second step to the MC-matching.

3

EPJ Web of Conferences 251, 03021 (2021) https://doi.org/10.1051/epjconf/202125103021
CHEP 2021



The MC-matching of final-state particles can be evaluated trivially. On the other hand,
evaluating the matching of composite particles must consider not only the MC-matching of
the given particle but also that of daughters and particles which may be missed or erroneously
added. Moreover, there must be the option to take into account the requirements of important
physics analysis such as inclusive analyses (e.g. B → Xγ). The MC-matching evaluation
provides several error flags, that each analyst can choose to accept or not for her own analysis
use case.

The evaluation for composite particles is divided into two major parts: processes with ex-
isting particles and processes with missing particles. Figure 2 shows the algorithm flowchart
of the evaluation for existing particles. The algorithm is as follows:

Figure 2. The algorithm flowchart of the evaluation for existing particles

• First, check if the given particle has a match. If not, an InternalError flag is added
indicating a problem in the matching.

• Check if the given particle has daughters.

• If the particle does not have any daughters, check if the MC-matching between the given
particle and the MC-particle is correct.

– If the MC-matching is correct, the routine ends.
– If the MC-matching is not correct, check if the MC-particle related to the given particle

is created in the GEANT4 detector simulation or in the generator.

– If the MC-particle is simulated at generator level, then the MisID flag is added since
the particle identification was not correct.

– If the MC-particle was created at detector level, then the DecayInFlight flag is added
since the particle must have decayed in the detector. And if the mother MC-particle
of the MC-particle is also different from the given particle type, the MisID flag is also
added.
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• If the particle has daughters: check if the MC-matching is correct for each daughter. If not,
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Figure 3 shows the algorithm flowchart of the evaluation for missing particles. The algo-

Figure 3. The algorithm flowchart of the evaluation for missing particles

rithm is as follows:

• Create two lists of MC-particles: GeneratedMCParticleList which has all MC-particle
daughters of the MC-particle which is matched to the given particle, and MatchedMC-
ParticleList which has all MC-matched particles of the reconstructed decay chain.

• Check if each generated MC-particle of the GeneratedMCParticleList is included in the
MatchedMCParticleList. If a generated MC-particle is not included, then a MC-particle
was missed from the reconstruction. The cause of the missing particle is identified as
follows:

– If the MC-particle is a composite particle, then the MissingResonance flag is added.
– If the MC-particle is a photon, first check if it is produced with PHOTOS [14] which

simulates QED radiative corrections. In this case, the MissPHOTOS flag is added. If the
MC-particle is produced with another generator such as EvtGen, then the MissGamma
flag is added.

– If the MC-particle is a neutrino, then the MissNeutrino flag is added.
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– Otherwise, the MissMassiveParticle flag is added since the other particle was not a
photon or neutrino.

– If the MC-particle is K0
L , the special MissKlong flag is added.

7 User interface

The matching of composite particle candidates can be computationally expensive if there are
large combinatorics. Composite particles are therefore not matched or evaluated by default.
The MCMatcherParticlesmodule must be added to the basf2 processing path. This module
runs both algorithms. A very brief script to run our example analysis from Section 5, is:

import basf2
path = basf2.Path() # instantiate a basf2 path
path.add_module("RootInput", "/path/to/a/file.root")
path.add_module("ParticleLoader", ["e+", "pi+", "K+"])
path.add_module("ParticleCombiner", "K*0 -> K+ pi-")
path.add_module("ParticleCombiner", "B0 -> K*0 e+ e-")
path.add_module("MCMatcherParticles", "B0") # matching module added
path.add_module("VariablesToHDF5", "B0", ["InvM", "isSignal"])
basf2.process(path) # execute the processing event loop

In this script, tracks are interpreted as particle candidates under three hypotheses: e±, π±, K±

(ParticleLoader). They are then uniquely combined to create candidate B0 → K∗0e+e−

decays comprising of groups of four tracks (ParticleCombiner). The penultimate module
runs the MC-matching algorithm over all candidates. The final module writes out each can-
didate’s invariant mass and a boolean isSignal quantity. The latter could be used as a target
for some machine learning classifier, for example.

The user can control the behaviour of the algorithm and options to accept missing reso-
nances, etc. with the use of syntax in the decay string. To give some examples:

• "@Xsd -> K+ pi-" specific resonances (marked by @) that are correctly reconstructed do
not need to be individually specified and are labelled Xsd.

• "B0 =exact=> K*0 e+ e-" requires an exact match of every decay particle.

• "B0 -> D*- tau+ ?nu" a missing neutrino is acceptable.

8 Summary

In summary, MC-matching is the association of particle candidates to the underlying
generator-level particle. For track-based and cluster-based particle candidates, the match
is inherited from the track or cluster (track preferred). For composite particle candidates, the
Belle II algorithm attempts to find the first common mother of daughters. The user interface
makes use of the decay string to configure the matching algorithm in an intuitive way.
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