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Abstract. We report a particle identification (PID) method developed
for charged pions, kaons, and protons using specific ionization informa-
tion in the silicon-strip vertex detector (SVD) of Belle II with D** —
D°[— K~ n%]rT and A — pn~ decay samples. The study is based on
ete™ collision data recorded at the 7'(4S) resonance by the Belle II de-
tector. The introduction of additional information from the SVD is found
to improve the overall PID performance in the low-momentum region.
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1 Introduction

Identification of charged particles such as pions, kaons, and protons is important
to the physics program of the Belle II experiment [1]. Belle IT has an excellent
particle identification (PID) system comprising three main subdetectors, the cen-
tral drift chamber (CDC), time-of-propagation counter, and aerogel ring-imaging
Cherenkov counter. Low-momentum charged particles having a transverse mo-
mentum pp < 65MeV/c are unable to reach the CDC, owing to their highly
curved trajectories. Our goal is to exploit specific ionization (dE/dx) [2] by these
low-momentum particles in the silicon-strip vertex detector (SVD) to identify
them. Even if the particles have a pr greater than 65MeV/c and are thus able
to reach the CDC, the dE/dx values measured in the SVD can provide comple-
mentary information to that obtained from the main PID subdetectors [3].
The study is based on ete™ collision data recorded at the 7" (4S) resonance
by the Belle IT detector. We use relatively clean samples of D** — DO(K—7+)x ™
and A — pr decays to first obtain the SVD dE/dz calibration for pions, kaons,
and protons. Later, we check the impact of dF/dx information on overall PID
performance using the same decay channels. The charged tracks are identified
based on a binary PID likelihood L(i/j) = L;/(Li+L;), where £; and L; are the
individual likelihoods. To assess the impact of SVD dE/dx information on the
overall PID performance, we study the identification efficiency and fake rate as
a function of momentum. The efficiency ¢; is defined as the ratio of the number
of charged particle tracks identified with PID requirement under the particle
hypothesis 7 and the number of charged particle tracks identified kinematically
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under the hypothesis i. The fake rate (f;_;) is the ratio of the number of charged
particle tracks identified with PID requirement under the hypothesis i and the
number of charged particle tracks identified kinematically under the hypothesis

J-

2 SVD dE/dx calibration

The D** — D%(— K~ 7")n" decay is used to calibrate the pion and kaon PIDs
based on dE/dz information in SVD. We require the charged particle tracks
to have a transverse (longitudinal) impact parameter less than 0.5cm (2.0 cm).
These tracks must have at least one SVD hit and a track-fit x2 probability value
greater than 107°. To further purify the sample, we require the reconstructed
DP mass to lie between 1.85 and 1.88 GeV/c?, corresponding to a +30 window
around the nominal D° mass. The reconstructed D* mass must be within 1.95
and 2.05GeV/c?. We apply a loose criterion on kaon and pion PID likelihoods,
to remove low-momentum secondary pions and kaons produced due to hadronic
interaction in the detector material. These loose PID criteria do not bias our
dE/dx calibration since they are calculated without using SVD information.

The A — pr decay is used to calibrate the proton PID based on dE/dx infor-
mation in SVD. We require the reconstructed prm invariant mass of A candidates
to be in the range [1.10, 1.13] GeV/c?, and they are further subjected to a vertex
fit. To remove the random combination of two tracks, the distance between the
interaction point and the vertex of the A candidates is required to be greater
than 1.0 cm and the vertex-fit 2 probability must be greater than 10~3. We also
require at least one SVD hit for both daughter tracks. We suppress the contami-
nation of charged pions coming from the K9 decay by rejecting events that have
the M+ ,- value in the range [488, 508] MeV/c?, corresponding to a +30 window
around the nominal K9 mass. Similarly, events with electrons from converted
photons are suppressed by excluding M +.- < 50 MeV/c?. We impose an addi-
tional requirement of at least one CDC hit and a loose criterion on the proton
PID calculated without SVD information to remove low-momentum secondary
pions produced due to hadronic interaction with the detector material.

We model the signal and background shape in the D*~D° mass difference
(Am) by a sum of two Gaussian functions with a common mean and a threshold
function, respectively. For A — pm decay, we model the signal shape in M, with
the sum of a Gaussian and two asymmetric Gaussian functions of a common
mean and the background shape with a second-order Chebyshev polynomial.
The fitted distributions of Am from the D* sample and M, from the A sample
are shown in Fig. 1. The (Plot [4] technique is used to subtract the residual
background contributions.
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Fig. 1. Fitted distributions of Am from the D* sample (left) and of M, from the A
sample (right). The size of the dataset used for D* calibration is larger to have enough
low momentum kaon tracks.

As shown in Fig. 2, the two-dimensional distributions of dFE/dx vs. momen-
tum shows a clear separation between different particles in the low momentum
region. These background subtracted two-dimensional histograms are used as
probability density functions for various particle hypotheses and uploaded to
the calibration database.
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Fig. 2. Scatter plot of dE/dx values of pions and kaons as a function of their momentum
for the D* sample (left) and dE/dx values of protons and pions as a function of their
momentum from the A sample (right).

3 PID performance

To assess the impact of the SVD dE/dx information to the overall PID, we use a
separate set of data sample processed including the PID information from SVD.
We study the efficiency and fake rate as a function of momentum by varying
the PID likelihood L£(i/j). The PID likelihood criterion is varied from 0 to 1 in
order to produce these plots. The efficiency vs. fake rate distributions shown in
Fig. 3 confirm the improvement in PID performance by adding the SVD dEj/dx



4 A. B. Kaliyar

information. The data-MC difference in performance arises due to imperfect
simulation of the cluster energy distribution for which the work is underway.
Nonetheless, our study confirms that for a given fake rate the addition of dE/dx
information improves the efficiency in the low-momentum region.
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Fig. 3. Efficiency vs. fake rate distributions with and without SVD for p < 1 GeV/ec.

4 Conclusion

We have developed a PID method for charged pions, kaons, and protons using
energy loss information in Belle I SVD with D** — D% — K—77)r* and
A — prn~ decay samples. The study tells that adding the SVD information
improves the overall PID performance in the low-momentum region.
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