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Abstract

This is an experimental particle physics thesis that aims to study the exclusive semileptonic decay

B0 → D∗−l+νl at Belle II for a new measurement of its decay dynamics and |Vcb|. Belle II is a

particle physics experiment that focuses on weak-interaction processes of heavy quarks to search

for indirect indications of non-standard-model physics. The B0 → D∗−l+νl decay provides access

to the strength of the bottom-to-charm weak coupling, |Vcb|, a fundamental parameter of the stan-

dard model, whose determination presents a long-standing discrepancy between two measurement

methods, the so-called inclusive and exclusive approaches. The B0 → D∗−l+νl decay is the golden

mode of the exclusive approach. In this approach, to determine |Vcb| from experimental data, a

parameterization of the strong-interaction contribution to the decay amplitude is needed. Recent

calculations of this contribution in the B0 → D∗−l+νl decay showed some inconsistencies, making

the exclusive determination less precise.

This work aims to explore a novel experimental approach which provides a measurement of

model-independent observables of the decay dynamics, which can be interpreted assuming any

theoretical model to parameterize the strong interaction contribution. The analysis is conducted

using a full, realistic simulation of the Belle II sample collected between 2019 and 2022. A selection

is developed to obtain a high-purity signal sample, whose composition is studied in detailed to model

the data for a multi-dimensional χ2 fit that measures the model-independent observables. The fit is

inspected in search for configurations which minimize fit parameter biases. A comparison between

two configurations of fit variables is performed to assess which one returns the best parameter

sensitivity, and the model-independent observables obtained are interpreted with a theoretical model

to obtain |Vcb|. The results show that in the fit performed, for the best sensitivity on |Vcb|, a better

signal-to-background discrimination is preferred over adding more information about the decay

dynamics.





Sommario

Questa è una tesi sperimentale di fisica delle particelle che ha lo scopo di studiare il decadimento

semileptonico B0 → D∗−l+νl a Belle II per una nuova misura della dinamica del decadimento e di

|Vcb|. Belle II è un esperimento di fisica delle particelle che si concentra sui processi di interazione

debole dei quark pesanti per cercare indirettamente delle prove di fisica oltre il modello standard.

Il decadimento B0 → D∗−l+νl permette di misurare |Vcb|, l’intensità dell’accoppiamento debole

tra quark bottom e charm. Questo è un parametro fondamentale del modello standard la cui

determinazione presenta da molti anni una discrepanza tra due metodi di misura, detti inclusivo

ed esclusivo. Il decadimento B0 → D∗−l+νl è il canale principale usato nel metodo esclusivo. Per

ottenere |Vcb| dai dati sperimentali, questo metodo richiede una parametrizzazione del contributo

dell’interazione forte nell’ampiezza di decadimento. Calcoli recenti di questo contributo per il

decadimento B0 → D∗−l+νl presentano discrepanze tra loro, che rendono la misura di |Vcb| meno

precisa.

Questo lavoro mira ad esplorare un nuovo approccio sperimentale per misurare delle osservabili

legate alla dinamica del decadimento, che possono essere interpretate assumendo qualsiasi modello

teorico per il contributo dell’interazione forte nella determinazione di |Vcb|. L’analisi è condotta

utilizzando una simulazione realistica dei dati acquisiti da Belle II dal 2019 al 2022. Ho sviluppato

una selezione per ottenere un campione di alta purezza, studiandone la composizione in dettaglio

per sviluppare un fit di χ2 multidimensionale a più componenti e misurare le osservabili di interesse.

Ho controllato diverse configurazioni di fit e i bias nella determinazione dei parametri. Ho effettuato

un confronto tra due configurazioni di variabili di fit per valutare quale di esse fornisce la precisione

migliore nella misura. Ho scelto un modello teorico come esempio con cui interpretare la misura

per ottenere |Vcb|. I risultati dimostrano che avere una migliore discriminazione tra segnale e

fondo garantisce risultati più precisi su |Vcb| rispetto ad aggiungere nel fit nuova informazione sulla

dinamica di decadimento.
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Introduction

The standard model (SM) of particle physics is currently the accepted theory that describes el-

ementary particles and three out of the four fundamental interactions. The SM predicts with

extraordinary precision many experimental results in processes mediated by the electromagnetic,

weak, and strong interactions across several orders of magnitudes in energy. However, a number

of open questions and experimental observations suggest that the SM might be an effective theory,

only valid at the energy we can currently probe, that is part of a more general unknown theory.

Finding an extension to the SM is the main goal of modern particle physics.

There are two approaches adopted to search for SM extensions. The direct approach consists in

searching for decay products of non-SM particles produced on-shell in high-energy collisions. This

approach would provide clear evidence of new particles, but it is limited by the available collision

energy of today’s colliders. Another complementary method is the indirect approach, that aims to

perform precise measurements in lower-energy processes in which off-shell non-SM particles could

take part, and to search for deviations of experimental results from SM predictions. This is not

limited by energy but experimental evidence of new phenomena is typically harder to establish: it

requires great experimental and theoretical precisions and a coherent, clear pattern of discrepancies

in several processes.

The Belle II experiment is one of the main ongoing experiments that tests indirectly the SM

using data produced by SuperKEKB, the asymmetric positron-electron collider located in Tsukuba,

Japan. Belle II has been designed to make precise measurements in weak interactions of bottom

and charm quarks, as well as tau leptons. Belle II started collecting data in January 2019 and

ended in June 2022, recording a sample of 424 fb−1 of integrated luminosity. This is the so-called

Run I sample. Run II started in March 2024, after a 1.5 years shutdown to upgrade part of the
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detector, and will go on until a second shutdown for a new upgrade, expected in 2027, with the

goal of collecting a sample about 6-7 times larger than that of Run I.

The work presented in this thesis aims to study with Belle II data a semileptonic decay of the

B0 meson, the B0 → D∗−ℓ+νℓ decay (ℓ indicates a muon or an electron). This decay is particularly

suited to measure the strength of the Cabbibo-Kobayashi-Maskawa (CKM) matrix element, |Vcb|,

which describes the intensity of the weak coupling between bottom and charm quarks. Precise

measurements of |Vcb| are key for testing the quark-flavour sector of the SM. These are obtained

through semileptonic B meson decays using two different methods: inclusive measurements sum all

possible final charm states which the B can decay into; exclusive methods focus on specific decay

channels. Currently, there is a discrepancy of about 6% between the results of |Vcb| from the two

methods; this limits the knowledge of this important parameter of the SM.

The B0 → D∗−ℓ+νℓ decay presented in this work is the golden mode of the exclusive method,

which relies, to obtain |Vcb|, on a parameterization of the decay dynamics with effective functions,

called form factors (FFs), which describe strong interactions between quarks bounded in mesons.

Experimental results must be complemented by a precise calculation of the FFs to extract |Vcb|.

Recent, more precise calculations of the FFs of the B0 → D∗−ℓ+νℓ decay from different theoretical

groups showed significant discrepancies, making the extraction of |Vcb| from this channel less solid.

My thesis aims to explore a novel experimental approach to provide a measurement of model-

independent observables of the decay dynamics. These observables can be interpreted assuming any

possible FF model: this eases a phenomenological analysis to determine |Vcb| from experimental

data with any possible theoretical advancement on the FF modelling.

The thesis is structured as follows. Chapter 1 introduces the SM, focusing on the quark-flavour

sector. Chapter 2 describes the phenomenological features of semileptonic B decays, the current

status of measurements and the novel approach employed in this thesis. Chapter 3 gives an overview

of the Belle II detector, while Chapter 4 details the selection of the data and the sample composition.

In Chapter 5 I report the experimental method to access the decay dynamics and the fit of the sample

composition, with studies on simulated data. This fit is expanded to include the model-independent

observables in Chapter 6 and tested with simulation, where I also show an interpretation of the

results and compare the sensitivity to |Vcb| in two different fit configurations. A brief summary

concludes the thesis.
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Chapter 1

Theoretical framework

In this Chapter, I give a brief overview of the standard model of particle physics. I focus on the

quark-flavour sector, introducing how its experimental study can provide indirect evidence of physics

beyond the standard model or powerful constraints to exclude possible new models. I conclude by

discussing Vcb, the bottom-to-charm quark coupling, giving motivations for the precise measurement

of its strength.

1.1 The standard model of particle physics

The standard model (SM) of particle physics is a quantum field theory that describes elementary

particles and three of the four fundamental forces existing in the Universe. Electromagnetic, strong

and weak processes are described with great precision, while gravity is still not included, due

to conceptual difficulties that prevent achieving a description of gravity consistent with quantum

mechanics [1–6]. The model is based on the symmetry group:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.1)

where SU(3)C is the standard unitary group of strong interactions (described by quantum chro-

modynamics, QCD), and the product of the groups SU(2)L ⊗ U(1)Y yields the electromagnetic

and weak interactions (the electroweak force): SU(2)L is the standard unitary group of the weak

3
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isospin1 and U(1)Y is the unitary group of the hypercharge.

Mediators of these interactions are spin-1 particles called gauge bosons. The strong force is

mediated by eight gluons, which are massless neutral gauge particles corresponding to the eight

SU(3)C generators. They carry the quantum charge of color, which can be red, blue or green, and

mediate interactions between quarks. Weak interactions are mediated by three massive bosons, two

charged (W±) and one neutral (Z0). Lastly, the mediator of electromagnetic force is the photon γ,

which is a massless gauge boson: it mediates interactions between electric charged particles. The

electroweak bosons (W±, Z0, γ) arise from the following linear combinations of SU(2)L ⊗ U(1)Y

generators:

W± =
1√
2
(W1 ∓ iW2) ,

(
γ

Z0

)
=

 cos θW sin θW

− sin θW cos θW

(
B

W3

)
. (1.2)

where θW is a free parameter, called Weinberg angle. The masses of the W± and Z0 weak bosons

are connected with each other via the θW parameter, which are bounded by this relation:

m2
W

cos2 θWm2
Z

= 1 . (1.3)

In the SM, the Higgs mechanism is responsible for the electroweak symmetry breaking into the

electromagnetic group (U(1)em). This brings the system from four generators, shown in Eq. 1.2, to

a single generator, thus breaking three degrees of freedom.

Excitations of spin- 12 field correspond to fundamental particles of matter called fermions. Each

fermion has its associated anti-particle, with the same mass but opposite quantum numbers.

Fermions are categorized into two classes, which are organized in three families of weak isospin

doublets:

• Quarks are particles characterized by a fractionary electric charge. Each family is formed by

an up-like particle with electric charge of 2
3e and a down-like particle with − 1

3e:(
u

d

) (
c

s

) (
t

b

)
. (1.4)

Each quark is identified by its flavor, and also carries a color. They couple with strong and

electroweak interactions. Quarks cannot be observed individually but only in colorless bound

1The L in the standard unitarity group stands for left, because only particles with left chirality engage in weak
interactions.
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Figure 1.1: Particle contents of the standard model [7].

states called hadrons, and depending on the number of quarks that compose them, they are

called mesons or baryons. Mesons are formed by a quark and an anti-quark while baryons

are composed of three quarks or three anti-quarks. Baryons have a quantum number, called

baryon number, which is conserved in interactions even if no symmetries in the Lagrangian

of the SM require that.

• Lepton families are formed by a massive particle with charge −e and a massless neutral

particle called neutrino. They couple only via electroweak interactions. Similarly to baryons,

each family has its own quantum number, called leptonic number, which is conserved in all

interactions even if no symmetries requires that2.

Figure 1.1 shows a summary scheme of the elementary particles of the SM.

Chirality is a particle’s property that describes how its spin is related to its momentum. Left

(right) transformations affect only left- (right-) handed particles. This property plays an important

role in the standard model: only left-chiral fermions (and right-chiral antifermions) take part in the

charged weak interaction, so left- and right-handed fields of quarks and leptons transform differently

under SU(2)L. Right-handed fields are singlets; left-handed fields are doublets. Therefore, weak

2This description of the SM assumes massless neutrinos, although it has been proven that neutrinos oscillate and
change flavor when propagating through space, showing that neutrinos have non-zero masses. This fact requires a
modification of the SM to include a lepton mixing matrix, called PMNS matrix [8].
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interactions violate parity (P ), the transformation that inverts all spatial coordinates. Strong

and electromagnetic interactions are P symmetric instead. Weak interactions also violate CP, the

combined transformation of parity and charge-conjugation. The latter, denoted with C, inverts

all quantum numbers of a particle. Electromagnetic interaction is CP symmetric. The strong

interaction could violate CP symmetry too, but no experimental evidence of that has ever been

observed. According to a quantum-field theorem [9], all interactions are symmetric under the

combined CPT transformation, where T inverts the time axis. This implies that particles and

anti-particles have the same mass and lifetime, as experimentally observed so far.

1.2 The quark-flavor sector

The flavor sector of particle physics refers to the study of the fermion species: the six quarks and six

leptons, each with its individual flavor. In this Section, I will restrict the focus to flavor-changing

interactions of quarks.

The development of flavor physics began in the early 1960’s, when there were three known

quarks (u, d, s). The inconsistencies in measurements of muon decay, neutron decay, and strange-

particle decays led Gell-Mann and Levy [10], and then Cabibbo [11], to introduce a mixing angle

θC between the strange and down quarks. With the addition of this new parameter, inconsistencies

seen before were solved, but the corrected theory at that time predicted some rare kaon decay rates

(e.g. that for K0 → µ+µ−) inconsistent with experimental limits: this was corrected by Glashow,

Iliopoulos and Maiani [12] by postulating the existence of a fourth quark, the charm quark, which

gave an additional factor in ”loop” amplitudes that suppresses the rates. Lastly, Kobayashi and

Maskawa generalized Cabibbo’s theory from a four-quark model to a six-quark model to include

the phenomenon of CP violation observed in 1964 [13]. They introduced a matrix that describes

the flavor-mixing between different quarks, the Cabibbo-Kobayashi-Maskawa matrix (CKM).

This CKM matrix has dimension N × N , where N is the number of quark families. It has

N(N−1)
2 independent angles and (N−1)(N−2)

2 physics phases. If N = 2, the only free parameter is

the Cabibbo angle θC, while if N = 3 there are three angles (θ12, θ23 and θ13) and a complex phase

(δ) which is responsible for CP violation. Kobayashi and Maskawa postulated that, in order to

include this phase, three generation of quarks are required, even if no sign of the last family was

6
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yet present at that time. The matrix can be written as follows:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb ,

 (1.5)

where Vij indicates the coupling between an up-type quark i and a down-like quark j, mediated by

the emission of a W± boson. By expressing the matrix in terms of the four free parameters, it can

be rewritten as follows:

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 , (1.6)

where sab (cab) indicates the sine (cosine) of the angle θab, and ab indicate the generations involved.

Experimentally measured values of the three angles point out a hierarchy between them (s13 ≪

s23 ≪ s12), while the phase implies a small violation of the CP symmetry although its value is

relatively high (δ ≈ 66°). The Wolfenstein parameterization [14] reflects the hierarchy of the three

angles, expressing the matrix in terms of λ = s12 ≈ 0.225:

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (1.7)

The parameter λ expresses the mixing between the first and second quark generations, A and ρ are

real parameters, and η is the parameter that accommodates CP violation.

The unitarity condition of the CKM matrix (V †
CKMVCKM = 1) allows to obtain the following

relations between elements:

∑
k=d,s,b

|Vik|2 = 1
∑

k=u,c,t

|Vkj |2 = 1 ∀ i, j ,

∑
k=d,s,b

VikV
∗
jk = 0

∑
k=u,c,t

VkiV
∗
kj = 0 ∀ i ̸= j .

(1.8)

The latter two relations give rise to six combinations, which could be represented in the complex

7
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Figure 1.2: Sketch of the unitary triangle [16].

plane as triangles. Usually, the relation used for this representation is

VubV
∗
ud + VcbV

∗
cd + VtbV

∗
td = 0 , (1.9)

where all the terms have the same order of magnitude in terms of the parameter λ; other relations

compose nearly-degenerate triangles in the complex plane. Areas of all triangles are the same,

half of the Jarlskog invariant J [15], which is a phase-convention independent measure of CP

violation defined by Im[VijVklV
∗
ilV

∗
kj ] = J

∑
m,n ϵikmϵjln, where ϵabc indicates the Levi-Civita tensor.

Normalizing Eq. 1.9 by VcbV
∗
cd and taking the conjugate, we obtain

1 +
VudV

∗
ub

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

= 0 , (1.10)

whose single terms indicate the sides’ length of the triangle. This relation is referred to as the

unitary triangle (UT), whose vertices are (0,0), (1,0) and (ρ̄, η̄), where ρ̄ = ρ(1−λ2/2+O(λ4)) and

η̄ = η(1− λ2/2 +O(λ4)). The angles are referred to as α or ϕ2, β or ϕ1, and γ or ϕ3. A sketch of

the triangle in the complex plane is shown in Fig. 1.2.
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1.2.1 Current picture

The CKM matrix elements are related to the four fundamental parameters of the SM describing

quark-flavor mixing and their precise determination is an important goal of flavor-physics exper-

iments. This is achieved by performing several complementary measurements of the elements to

check for an overall consistency of the CKM picture. Measurements can be displayed and compared

in the complex plane (ρ̄, η̄), pointing out disagreements between angles and sides of the UT.

The magnitudes of CKM matrix elements are usually measured with semileptonic or fully lep-

tonic decays. The measured decay rates of the respective quark-flavor changing transitions are

proportional to the coupling strength |Vij |2. This is the case for the matrix element |Vcb|, focus

of this thesis, which is extracted by analyzing B → Xcℓνℓ
3 transitions, where Xc is an hadron

containing a c quark and ℓ either an electron or a muon (this will be extended in Section 1.4).

Measurements of |Vij | elements need input from theoretical calculations to factor out the strong in-

teraction from the decay rate as the quarks involved are bound in hadrons. Therefore, improvements

in the determination of the matrix-element strengths require advancements in both the experimen-

tal measurements and QCD calculations. The current status [16] confirms the almost diagonal

hierarchical structure of the CKM matrix:

VCKM =


0.97435± 0.00016 0.22501± 0.00068 0.003732+0.000090

−0.000085

0.22487± 0.00068 0.97349± 0.00016 0.04183+0.00079
−0.00069

0.00858+0.00019
−0.00017 0.04111+0.00077

−0.00068 0.999118+0.000029
−0.000034

 . (1.11)

The CKM matrix parameters can be most precisely determined by using a global fit that com-

bines all available measurements and imposes the SM constraints (e.g., three generation unitarity).

The fit also uses theory predictions for hadronic matrix elements, which sometimes give the largest

uncertainties. Currently, there are two approaches to combine the experimental data, given by the

CKMfitter [17] and UTfit [18] collaborations. They provide similar results; Figure 1.3 shows the

result obtained by the CKMFitter in March 2024 as an example.

The global picture is that the CKM description is the dominant mechanism at play. Despite this

remarkable consistency, possible deviations of up to 10-20% are still unconstrained, especially those

associated with rare decay processes. Most of the relevant measurements are currently dominated

3Charge conjugation is always implied through the document, unless stated otherwise.
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Figure 1.3: CKM global fit results and the constraints on ρ̄ and η̄ [17].

by statistical uncertainties, offering therefore promising opportunities for future experiments.

1.3 Extending the standard model

The SM framework has been completed in the 1970’s. Since then, it has been abundantly tested

in a range of energies from a few eV to a few TeV, where the experimental results confirmed the

SM predictions with great precision. However, this model unlikely is the ultimate theory of Nature.

There are still several questions that must be addressed. The SM relies on about twenty free

parameters, which must be determined experimentally, that shape the world as we know it. The

theory gives no explanation about the values that these fundamental parameters take. For instance,

we have no clue on the origin of the hierarchical pattern of fermion masses or of the quark-mixing

couplings in the CKM matrix. We also have no idea why there are three families of fermions in

first place. Besides these questions concerning the model itself, there are also clear observations

from cosmology and astrophysics indicating that the SM is incomplete, as it cannot provide an

explanation for them within its current form. For instance, the SM fails to predict the asymmetry

observed between matter and anti-matter in the Universe; or, it has no particle candidate for the

10
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non-interacting matter (dark matter) that should populate the galactic halo. In addition, gravity

must be also included in a particle physics theory, eventually.

Developing an extension of the SM is the main goal of modern particle physics. This is currently

carried out via two approaches. The direct approach works at the energy frontier, using high-energy

collisions to produce new on-shell particles that are not included in the current formulation of the

SM. The new particles would be observed by detecting directly their decay products. This approach

would provide striking, clear evidence of new phenomena, but it is limited by the maximum energy

reachable at colliders.

The indirect approach aims to search for discrepancies between high-precision measurements

and equally precise SM predictions in low-energy processes. The basic idea is that the discrepancy

would be due to new massive particles that can take part virtually in the amplitude of the process.

Taking an example from the past, this is exactly what happened with the K0
S → µ+µ− decay before

the GIM mechanism and the introduction of the charm quark, the new massive particle at that

time. With the indirect approach, experimental evidence is typically harder to establish, but there

are no restriction regarding maximum collision energies reachable by experiments.

Precision tests of forbidden or suppressed processes in the SM are powerful probes of the indirect

approach. The SM features several accidental properties (i.e., properties that are not postulated

but arise automatically in the model), which can be challenged to look for new phenomena. Among

these: baryon number conservation; the universality of the gauge couplings for the three charged

leptons; the absence of interactions via a single W± emission that change the flavour but not

the charge (the so-called flavour-changing neutral current, forbidden at “tree level” in the SM).

Most of the measurements for these tests are limited by the current samples’ size, but the potential

sensitivity to new physics equally depends on the achievable experimental and theoretical precision.

New experiments to accumulate more data of higher quality have just started, like Belle II or

the upgrade of the LHCb experiment. Further upgrades are under development or discussion.

Considering the experimental opportunities, assessing the factors that will limit the precision in the

SM prediction of golden quark-flavour probes is critical. It turns out that, in several rare processes,

a major limitation is due to the current knowledge of the strength of the matrix element Vcb [19].

Improving its determination is pivotal for the discovery potential of future quark-flavor experiments.

11
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b c

q q

ℓ

νℓ

W

Vcb

B Xc

Figure 1.4: Feynman diagram of the B → Xcℓνℓ decay, where Xc is a meson containing a charm
quark while ℓ is an electron or a muon. The gluons are represented by spring-like lines.

1.4 The CKM element Vcb

The CKM matrix element Vcb is the weak coupling between bottom and charm quarks. Recalling

the Wolfestein parametrization, a precise measurement of its strength, |Vcb|, amounts to a precise

determination of the parameter A, since the Cabibbo angle λ ∼ θC is known with only 0.2%

uncertainty. In this respect, the measurement of |Vcb| yields a fundamental SM parameter.

Rates of several rare processes, highly sensitive to potential beyond-SM contributions, are pro-

portional to A4 [20]; an uncertainty as small as 5% on A would lead to a 20% uncertainty on

the SM prediction for the rate of those processes, hardly sufficient for a high-precision test when

experimental uncertainties aim to get lower than a few percent (or at most 10% in the next decade).

Semileptonic decays of B mesons, B → Xcℓνℓ, where Xc is a meson containing a charm quark,

and ℓ is either an electron or a muon, proceed through the electroweak transition b → cℓνℓ, as illus-

trated in Fig. 1.4. This is governed by the CKM-matrix elements Vcb and, since the intermediate W

boson decays leptonically, does not involve any other CKM matrix elements. Hence, measurements

of the B → Xcℓνℓ decay rate can be used to directly measure |Vcb|.

Semileptonic B → Xcℓνℓ decays have branching fractions of a few percent, thus providing large

samples. Experimentally, reconstructing the neutrino in the final state is challenging as it can not

be directly detected; however, these decays can be easily identified by a lepton carrying, on average,

a large momentum, combined with a charm meson, which can be fully reconstructed with good

efficiency. Theoretically, since the leptons in the final state do not interact strongly, the decay

amplitude of a semileptonic decay can be factorized into a hadronic and a leptonic current (this

will be expanded in Sec. 2.1). The challenge in the extraction of |Vcb| is the determination of the

decay matrix element of the hadronic current. For this purpose, different theoretical methods have

been developed, depending on the specific decay mode under consideration and involving different

12
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approximations. They can be grouped in two major categories:

• The inclusive method relies on the sum of all possible charm states which the B can decay into

with a lepton-neutrino pair. By considering this sum, the partonic level of the B → Xcℓνℓ

decays is the only relevant process to consider (an approximation called quark-hadron duality

in literature). This eliminates any long-distance dependence (i.e. non-perturbative QCD) of

the decay amplitude for the final state, while the short-distance correction (i.e. perturbative

QCD) can be computed in terms of an expansion of the strong coupling constant at the b

quark mass scale, αS(mb) ∼ 0.2. The remaining long-distance corrections related to the initial

B meson can be expanded in powers of ΛQCD/mb ∼ 0.1, where ΛQCD is the hadronic scale of

order mB −mb ∼ 0.5GeV/c2. This approximation is called heavy quark expansion (HQE): it

systematically expresses the decay rate in terms of non-perturbative parameters that describe

universal properties of the B meson.

• The exclusive method, where the semileptonic decay of the B meson into a specific charm

state (e.g. D, D∗) is considered. In this case, the hadronic matrix element is parameterized

in terms of form factors, which are non-perturbative functions of the recoil energy w of

the charm meson in the B rest frame. The form factors encapsulate the non-perturbative

dynamics of the transition between the initial and final states, providing essential insights into

the underlying strong interactions. In B → Dℓνℓ decays, form factors describe the transition

between the B and the D mesons; similarly, in B → D∗ℓνℓ decays, that from the B to the D∗.

Precise theoretical calculations using lattice QCD methods, and experimental information on

the shape of the form factors as a function of w, are crucial for extracting |Vcb|.

These methods rely on different experimental techniques too. They complement each other and

provide largely independent determinations (of comparable accuracy) of |Vcb|. This feature would

provide a crucial cross check of the results and of our understanding of semileptonic B decays.

Unfortunately, this turned out to be the major limitation in the determination of |Vcb|. Indeed, the

two methods, although reaching individually high precision (about 2% uncertainty) they provide

two values of |Vcb| that differ by about 6% as shown in Fig. 1.5, completely spoiling the knowledge

of this CKM elements.

A precise determination of |Vcb| requires improvements to overcome this “inclusive-exclusive

puzzle”, both on the theoretical and experimental side. In this thesis, I will focus on the study
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Figure 1.5: Measurements of Vcb over the last two decades [21].

of the B0 → D∗−ℓ+νℓ decay, which is the golden channel of the exclusive method. In the next

Chapter I will give more details on the theoretical description of semileptonic B decays and the

channel of interest, outlining also the target of my study.
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Chapter 2

The B → D∗ℓν decay

This Chapter outlines a phenomenological description of the semileptonic decay B → D∗ℓνℓ. I

give a brief experimental status and introduce new model-independent observables sensitive to |Vcb|,

which are the target of my study.

2.1 Semileptonic B decays: generalities

Semileptonic decays of a bottom meson B into a charm meson D, a lepton ℓ, and a neutrino proceed

through the electroweak decay b → cℓνℓ (Fig. 1.4). The CKM matrix element Vcb is the only quark-

mixing coupling since the W boson decays leptonically. The other quark making the B meson (a d

quark for the B0 and u quark for B+) do not engage in the electroweak transition and it is usually

considered as a spectator.

The decay width can be decomposed as the product of two currents, Lµ and Hµ, by integrating

out the contribution of the W boson at tree level, since mb ≪ mW . The decay width takes the

form

Γ ∝ G2
F|Vcb|2|LµHµ|2 , (2.1)

where GF is the Fermi constant, Lµ is the leptonic current and Hµ the hadronic current, and µ are

Lorentz indexes. The leptonic current can be exactly calculated at the elementary-particle level,

as it involves only leptons. On the other hand, the hadronic current cannot be, as the quarks

are bounded in mesons. Indeed, the spectator quark can be consider as such only for the weak
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interaction; it interacts strongly with the other quark exchanging soft glouns in the B and D

mesons. Those interactions cannot be calculated exactly analytically, as perturbative QCD fails

at this energy scale. An effective approach must be considered, as anticipated in Sec. 1.4. The

hadronic current is therefore parameterized in terms of form factors, non-perturbative functions

of the squared transferred momentum q2 between the B and D∗ mesons. Its definition can be

extracted from w, the scalar product of four-velocities of the two mesons:

w = vB · vD∗ =
m2

B +m2
D∗ − q2

2mBmD∗
, (2.2)

where mB and mD∗ are the masses of the two mesons. The form factors can be computed by em-

ploying lattice QDC (LQCD), a non-perturbative method that adapts continuous equations derived

from the original QCD Lagrangian in a discrete space, and then solves them numerically. However,

these numerical calculations require intense CPU power and time, which limit the accessible phase-

space region and achievable precision. The form factors can be calculated only for a few q2 values

close to the maximum values kinematically allowed (q2max), and usually have 1-2% uncertainty only

at q2max [22–24]. Approximated analytical methods (light cone sum rules, LCSR) are also used [25],

but they yield much less precise results; their advantage consists in providing values of the form

factors at low q2, to complement lattice QCD calculations.

Form factors can also be measured experimentally by analyzing the differential decay rate as a

function of q2. However only the “shape” of the function can be accessed, i.e. only the relative

variations of the form factors are measurable. As the decay rate is the product of |Vcb|2 and the

form factor, to disentangle them, the value of the form factor must be known at least for a q2 value.

Although any q2 point could work, usually that with maximum precision is used (i.e. the value of

the form factors at q2max from lattice QCD).

Parameterizations of the form factors are used to extrapolate them at any q2 value, allowing to

obtain precise predictions for decay rates. There are different parameterizations, named after the

physicists who proposed them. The two most commonly used are:

• Boyd-Grinstein-Lebed (BGL) parameterization [26]. The form factors are expanded

in a power series of a variable z, a function of q2, which takes values much smaller than

1, such that the series converges within a few terms. The series are constructed to satisfy

basic constraints imposed by unitarity and flavor symmetries. The free parameters are the
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coefficients of the power of z of the series. This is the most generic functional description

of the form factors and has an arbitrary number of parameters depending on the truncation

order of the series [27, 28].

• Caprini-Lellouch-Neubert (CLN) parameterization [29]. The form factors are also ex-

panded in z, but imposing more restrictive theoretical constraints to reduce the number of

free parameters. For this reason, it has been the preferred parameterization used in experi-

mental analyses until few years ago. Phenomenologists have strongly criticized its used, as the

assumptions made do not allow for enough flexibility to fit the data; resulting uncertainties

associated with the form factor parameters and |Vcb| are also considered to be underestimated

in this approach.

Once the form factors of the decay are known, the value of |Vcb| can be determined by a measurement

of its branching fraction. This measurement can be differential as a function of the kinematic

variables which characterize the decay rate, in order to gain experimental sensitivity from the

form factor shape and its knowledge over the phase-space. In the next Section I will discuss the

differential decay rate of the B → D∗ℓν decay.

2.2 Exclusive B meson decay B → D∗ℓνℓ

The B → D∗ℓνℓ decay is a decay of a pseudo-scalar meson into a vector meson and two leptons. The

two leptons originate from the virtual W decay: this can be described as the decay of spin-0 particle

(the B meson) and into two spin-1 particles (the D∗ and the W ). The decay amplitude A can be

expressed in terms of three helicity amplitudes (H+(w), H−(w), H0(w)) which correspond to the

three polarization states of the D∗ meson (two transverse and one longitudinal), allowed by angular-

momentum conservation. The helicity states are characterized by different angular distributions of

the final-state particles. Considering the decay D∗ → Dπ, the kinematics of the full decay can be

described by four variables, the recoil energy w and three helicity angles, θℓ, θD and χ:

• The recoil energy between B and D∗ mesons w. This variable is confined between the min-

imum value of w = 1, corresponding to zero recoil of the D∗ meson in the B meson rest

frame, and thus the largest transferred momentum q2, and the maximum value w ≈ 1.5035,

corresponding to q2 = 0, i.e. the largest recoil energy available.
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Figure 2.1: Illustration of the three helicity angles in the B rest frame for the decay B → D∗ℓνℓ,
where D∗ → D0πs [30]. The πs is a pion with low momentum in the center-of-mass frame, which is
called soft-pion.

• Three helicity angles, displayed in Fig. 2.1, which are θℓ, the angle between the direction of

the lepton in the virtual W rest frame and the direction of the W in the B rest frame; θD,

the angle between the direction of the D meson in the D∗ rest frame and the direction of the

D∗ meson in the B rest frame; χ is the angle between the decay planes formed by the W and

the D∗ meson in the B rest frame.

In the massless lepton limit (i.e. for an electron or a muon), the four-dimensional differential

decay rate is
d4Γ(B̄0 → D∗+ℓ−ν̄ℓ)

dw d cos θℓ d cos θD dχ
=

3

16π
Γ0(w)|Vcb|2|A(w, θℓ, θD, χ)|2 , (2.3)

where Γ0(w) = η2EWmBm
2
D∗G2

F

√
w2 − 1(1 − 2rw + r2)/(4π3), with r = mD∗/mB and ηEW the

electroweak correction factor [31]. The decay amplitude A can be expressed in terms of the helicity

amplitudes H+(w), H−(w), and H0(w) as

|A(w, θℓ, θD, χ)|2 =

6∑
i=1

Hi(w)ki(θℓ, θD, χ) , (2.4)

where Hi and ki terms are defined in the Table 2.1.

The helicity amplitudes encode the form factors, which are expressed as functions of w. Based

on the assumed parameterization, there are different functions that are related to helicity ampli-
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i Hi ki

1 H2
+ sin2 θD(1− cos2 θℓ)

2

2 H2
− sin2 θD(1 + cos2 θℓ)

2

3 H2
0 4 cos2 θD sin2 θℓ

4 H+H− −2 sin 2θD sin2 θℓ cos 2χ
5 H+H0 −2 sin 2θD sin θℓ(1− cos θℓ) cos 2χ
6 H−H0 2 sin 2θD sin θℓ(1 + cos θℓ) cos 2χ

Table 2.1: Functions appearing in the Eq. 2.4 for the selected decay.

tudes. For example, a common basis used for the BGL expansion defines the following form factors

functions:

g(w) =
H−(w)−H+(w)

2m2
Br

√
w2 − 1

, (2.5)

f(w) =
H+(w)−H−(w)

2
, (2.6)

F1(w) = mB

√
1− 2rw + r2H0(w) . (2.7)

The important point to make is that form factors are functions of the helicity amplitudes. A

measurement of the helicity amplitudes as functions of w gives access to the form factors. The

three form factor can be expressed using either the BGL or CLN parameterizations. In the case of

the BGL parameterization, the parameters are the coefficients of three expansion series in powers of

w (one for each function g(w), f(w) and F1(w)), truncated at some arbitrary order. In the case of

the CLN parameterization, the helicity amplitudes depend only on fours parameters: three values

of three form factors at w = 1: hA1(1), R1(1) and R2(1); and a shape parameter ρ2. Details on

the derivation of the form factors and their parameters for the CLN and BGL, are presented in

Appendix A.

2.3 Experimental status

From the knowledge of the branching fraction and the form factors, |Vcb| can be determined. I will

briefly review the current experimental status of these ingredients.

The Heavy Flavor Averaging (HFLAV) group performs averages of the B̄0 → D∗+ℓ−ν̄ℓ branch-

ing fraction measurements to obtain the current best-known value [32]. The latest result is obtained

19



Matteo Filipig Chapter 2. The B → D∗ℓν decay

Experiment B(B̄0 → D∗+ℓ−ν̄ℓ) [%] (rescaled)

ALEPH [35] 5.45± 0.26± 0.33
OPAL inclusive [36] 5.92± 0.28± 0.57
OPAL exclusive [36] 5.11± 0.20± 0.36
DELPHI inclusive [37] 4.70± 0.14± 0.35
DELPHI exclusive [38] 5.90± 0.20± 0.42
CLEO [39] 6.09± 0.19± 0.37
Belle untagged [33] 4.90± 0.02± 0.15
BaBar untagged [40] 4.69± 0.04± 0.32
BaBar tagged [41] 5.49± 0.16± 0.31
Belle II untagged [42] 4.60± 0.05± 0.48
Belle II tagged [34] 4.51± 0.41± 0.52

Average 4.97± 0.02± 0.12

Table 2.2: Measurements of various experiments and the average of B̄0 → D∗+ℓ−ν̄ℓ branching
fractions. The first error is statistical and the second one is systematic. The branching fractions
reported are rescaled by HFLAV by adjusting input parameters to common values.

using the measurements presented in Table 2.2, which yield the following average:

B(B̄0 → D∗+ℓ−ν̄ℓ) = (4.97± 0.02± 0.12)% , (2.8)

where the first error is statistical and the second one is systematic. The measurements are all

limited by the systematic uncertainties, whose principal sources are: lepton identification and track

reconstruction of daughter particles, such as K,π and ℓ; track reconstruction of the πs, which is

the greatest contribution to systematic uncertainty, is limited by the control sample statistics [33,

34]. These very same sources of systematic uncertainties also affect the |Vcb| determination.

Measurements of |Vcb| are obtained by assuming a parameterization of the form factors. Due to

its reduced set of parameters, the CLN has been the parameterization used in all measurements until

about 2017. In this case, the parameter ρ2 (and in some cases also R1(1) and R2(1), see App. A)

is measured and then the rate at zero recoil (w = 1) is extracted to determine ηEWhA1(1)|Vcb|,

where hA1
(1) is the value of the CLN form factor at w = 1. HFLAV performed a four-dimensional

fit of ηEWhA1
(1)|Vcb|, ρ2, R1(1) and R2(1) with the measurements shown in Table 2.3. These

measurements are obtained from both B0 → D∗−ℓ+ν and decays B+ → D∗0ℓ+ν, assuming isospin

symmetry (i.e., the equality of the semileptonic decay width for B0 and B+ decays). The results
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Experiment ηEWhA1(1)|Vcb|[10−3] (rescaled) ρ2 (rescaled)

ALEPH [35] 31.38± 1.80± 1.24 0.488± 0.226± 0.146
OPAL exclusive [36] 36.20± 1.58± 1.47 1.198± 0.206± 0.153
OPAL partial reco [36] 37.44± 1.20± 2.32 1.090± 0.137± 0.297
DELPHI partial reco [37] 35.52± 1.41± 2.29 1.139± 0.123± 0.382
DELPHI exclusive [38] 35.87± 1.69± 1.95 1.070± 0.141± 0.153
CLEO [39] 40.16± 1.24± 1.54 1.363± 0.084± 0.087
Belle [33] 34.82± 0.15± 0.55 1.106± 0.031± 0.008
BaBar exclusive [40] 33.37± 0.29± 0.97 1.182± 0.048± 0.029
BaBar D∗0 [43] 34.55± 0.58± 1.06 1.124± 0.058± 0.053
BaBar global fit [44] 35.45± 0.20± 1.08 1.171± 0.019± 0.060

Average 35.00± 0.11± 0.34 1.211± 0.014± 0.019

Table 2.3: Measurements of the Caprini, Lellouch and Neubert (CLN) form factor parameters in
the B̄0 → D∗+ℓ−ν̄ℓ. The first error is statistical while the second is systematic. Since most analyses
does not measure R1(1) and R2(1), only ηEWhA1(1)|Vcb| and ρ2 are shown. The reported values
are rescaled by HFLAV by adjusting input parameters to common values.

of the fit are:

ηEWhA1
(1)|Vcb| = (35.00± 0.36)× 10−3 , (2.9)

ρ2 = 1.121± 0.024 , (2.10)

R1(1) = 1.269± 0.026 , (2.11)

R2(1) = 0.853± 0.017 , (2.12)

where the uncertainties include both statistical and systematic contributions.

To obtain |Vcb|, the input value for the form factor normalization is required. The best known

value from averages of lattice QCD calculations [45, 46] is

ηEWhA1(1) = 0.910± 0.013 , (2.13)

where ηEW = 1.0066± 0.0050, from which HFLAV obtains

|Vcb| = (38.46± 0.40 (exp)± 0.55 (th))× 10−3 , (2.14)

where the first uncertainty combines the statistical and systematic uncertainties from the exper-
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imental measurement and the second is theoretical (lattice QCD calculation and the electroweak

correction).

The CLN parameterization has been criticized by several phenomenological papers in recent

years [47, 48], due to restrictive theoretical assumptions used to reduce the number of free param-

eters. Since no uncertainty is associated to those assumptions, the general prejudice is that un-

certainties on the results using this parameterization are usually underestimated. For this reason,

recent experimental analyses consider a different paradigm: first, whenever possible, the outcome of

the measurements should be model-independent observables that can be analyzed using any model

for the form factors; second, the more general parameterization given by BGL should be employed

to fit such observables.

The first analysis of a B̄0 → D∗+ℓ−ν̄ℓ reporting model-independent observables is Ref. [49] from

Belle in 2017, which was then updated in 2019 [33]. In this analysis, Belle reported one-dimensional

distributions of w and the helicity angles θℓ, θD, and χ. Despite the approximation of marginalizing

the four-dimensional distribution, the four independent one-dimensional distributions lead to the

possibility of re-analysing the data a-posteriori assuming a different form factor model to describe

the differential decay rate with respect to that used by Belle. The additional challenge in this

kind of analyses is that of unfolding the experimental effects, such as resolution of the measured

kinematic variables and efficiency as a function of those, to provide the kinematic distribution that

can be directly employed in phenomenological fits. Belle II contributed also to an analysis of this

type using half of the data set collected during 2019-2022 operations [30].

A refined technique, which use improved determination of the neutrino reconstruction, leads

to novel results presented in Ref. [50]. The disadvantage of this approach is that it features low

efficiency, as the full decay of the B meson accompanying the B meson signal in Υ(4S) decays

needs to be reconstructed (so-called B tagging). Ref. [50] still makes use of the approximation

of marginalizing the full decay rate over four one-dimensional distributions. A different approach

to provide model-independent observables that encodes the full four-dimensional information, has

been also pursued very recently [51]. In this approach, angular coefficients of the decay rate as

a function of w are measured: from those coefficients the full four-dimensional decay rate can be

recovered. However, this analysis still requires large data samples, as the method is based again on

B tagging.
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2.4 A novel approach

The Belle II Trieste group is working on a simultaneous analysis of B → Dℓν and B → D∗ℓν decays

which yields model-independent observables to determine |Vcb| from data using any form factor

model. TheD∗ meson of the B decay is partially reconstructed, thus removing the major systematic

uncertainty on |Vcb| from the soft-pion reconstruction. The method resembles the measurement of

the angular coefficients of the B → D∗ℓν decay rate [51]. The idea is to define observables that

are combinations of the helicity amplitudes and |Vcb|. For B → D∗ℓν decays, a measurement of

the helicity amplitudes Hi(w) gives access to the full decay rate similarly to a measurement of

the multidimensional distribution of (w, cos θℓ, cos θD, χ). Such a measurement would yield directly

the form factors without assuming any parameterization (i.e. in a model-independent fashion), as

expressed by the dependence of Eq. 2.5.

These observables allow for an analysis to determine |Vcb| using any model of the form factors

and any inputs from calculations, in a similar fashion of the analysis of unfolded distributions (but

without any approximation due to one-dimensional projection) or of the angular coefficients of

B → D∗ℓν decays (but without the need of B tagging). A first complete study of this approach has

been recently presented [52]. In this analysis, the partial reconstruction of the D∗ decay prevents

the measurement of the cos θD and χ helicity angles: the full basis of the angular decomposition in

Table 2.1 cannot be accessed. However, the higher efficiency of the partial reconstruction provides

better statistical sensitivity on those coefficients that are accessible, which are sufficient to recon-

struct the full decay rate (up to an ambiguity on the sign of the helicity amplitudes). The study

presented in this thesis aims at investigating an expansion to the case where the D∗ decay is fully

reconstructed, to be sensitive to the full set of angular distributions. In what follows, I present the

definition of such model-independent observables.

If only the angle θℓ can be reconstructed (such as for in the D∗ partial reconstruction), only the

two-dimensional decay rate can be probed. Recalling Eq. 2.3 and integrating in cos θD (from −1 to

1) and χ (from 0 to 2π), we obtain:

d2Γ

dw d cos θℓ
=

1

2
Γ0(w)|Vcb|2{a(w) + b(w) cos θℓ + c(w) cos2 θℓ}, (2.15)
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where

a(w) = H2
+(w) +H2

−(w) + 2H2
0 (w) , (2.16)

b(w) = 2[H2
−(w)−H2

+(w)] , (2.17)

c(w) = H2
+(w) +H2

−(w)− 2H2
0 (w) . (2.18)

A measurement of the coefficients a(w), b(w) and c(w) yields the squares of the three helicity

amplitudes: the form factors can be measured up to an ambiguity on their signs. Considering N

bins of w, we define 3N model-independent observables :

a′n ≡ |Vcb|2 an = |Vcb|2 a(wn) , (2.19)

b′n ≡ |Vcb|2 bn = |Vcb|2 b(wn) , (2.20)

c′n ≡ |Vcb|2 cn = |Vcb|2 c(wn) , (2.21)

where wi is the average value of w in the bin n, with n = 1, . . . , N . These are the model-independent

observables used in the novel analysis of Ref. [52].

In fully reconstructed B → D∗ℓν decays it is possible to access the full set of helicity angles. A

minimal extension of Eq. 2.15 is the addition of the helicity angle cos θD. In this case, by integrating

Eq. 2.3 in the χ variable (from 0 to 2π), we are again left with a combination of the squared helicity

amplitudes,

d3Γ

dw d cos θℓd cos θD
=

3

8
Γ0(w)|Vcb|2{H2

+(w) sin
2 θD(1− cos2 θℓ)

2

+H2
−(w) sin

2 θD(1 + cos2 θℓ)
2

+ 4H2
0 (w) cos

2 θD sin2 θℓ} .

(2.22)

To maintain the same formalism adopted before and enable a direct comparison of the sensitivity

to a measurement of a′n, b
′
n and c′n, we can rewrite the three-dimensional decay rate in terms of
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a(w), b(w) and c(w):

d3Γ

dw d cos θℓd cos θD
=

3

32
Γ0(w)|Vcb|2

{
[a(w) + c(w)− b(w)] sin2 θD(1− cos2 θℓ)

2

+ [a(w) + c(w) + b(w)] sin2 θD(1 + cos2 θℓ)
2

+ 4[a(w)− c(w)] cos2 θD sin2 θℓ

}
.

(2.23)

To resolve the ambiguity on the sign of the helicity amplitudes, we should use the angle χ. So, we

can integrate the four-dimensional decay rate in cos θD (from −1 to 1), to obtain:

d3Γ

dw d cos θℓdχ
=

3

32
Γ0(w)|Vcb|2

{
H2

+(1− cos2 θℓ)
2

+H2
−(1 + cos2 θℓ)

2

+ 4H2
0 sin

2 θℓ

− 2H+H− sin2 θℓ cos 2χ
}
.

(2.24)

In this case the mixed terms containing H0(w) are again equal to zero, but the mixed term with

the product of H−(w)H+(w) is now present in the decay rate, enabling to information access about

their signs. This would then resolve the ambiguity for the form factor f(w) and g(w) in Eq. 2.5.

From the same relations, the sign of H0(w) must be positive for any value of w, to prevent F1(w)

to be imaginary. When using the decay rate of Eq. 2.24 in an analysis, it is more convenient to

define the model-independent observables as:

H ′2
0,n ≡ |Vcb|2 H2

0,n = |Vcb|2 H2
0(wn) , (2.25)

H ′
+,n ≡ |Vcb|H+,n = |Vcb|H+(wn) , (2.26)

H ′
−,n ≡ |Vcb|H−,n = |Vcb|H−(wn) . (2.27)

2.4.1 Goal and plan of the thesis

This thesis explores the possibility to use the fully reconstructed B → D∗ℓνℓ decays to access more

information about the form factors with respect to the current analysis with partially reconstructed

D∗ mesons ongoing within the Trieste Belle II group. The data sample with the signal reconstruction

is introduced in Chapter 4. This is a key point of the thesis, as we need to estimate the number
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of expected signal candidates and background events to simulate different fitting configurations

and assess possible sensitivity to the model-independent observables. Chapter 5 is dedicated to the

development of the fit method to measure a′(w), b′(w) and c′(w), either through the two-dimensional

decay rate of Eq. 2.15 or the three-dimensional decay rate of Eq. 2.22, so to compare the expected

precision on the measurement when passing from a partial to a complete reconstruction of the D∗

decay. I investigate the analysis variables that can be used to access the two- or three-dimensional

decay rates without performing a neutrino reconstruction. I also implement a fit of the measured

model-independent observables, using a BGL parametrization of the form factors as an example,

and check the sensitivity to the form factors parameters and |Vcb| in the two fit configurations.

Finally, I draw the conclusion of my study in Chapter 6.
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Chapter 3

The Belle II experiment

The work presented in this thesis uses data collected by the Belle II experiment. This Chapter de-

scribes the Belle II detector at the SuperKEKB collider. Lastly, I will briefly describe the simulation

used at Belle II.

3.1 The SuperKEKB collider

SuperKEKB is a high-luminosity electron-positron (e+e−) energy-asymmetric collider, designed to

produce nearly 1000 BB pairs per second (B0B0 and B+B− in approximately equal proportions)

via decays of Υ(4S) mesons produced at threshold [53]. Such colliders are called ”B-factories”, and

were proposed in the 1990’s for the dedicated exploration of CP-violation in B mesons. The main

goal of B-factories is to produce low-background quantum-correlated BB pairs at high rates.

Intense beams of electrons and positrons are brought to collision at the energy corresponding to

the Υ(4S) meson mass, 10.58GeV/c2, which is just above the BB production kinematic threshold.

Such finely tuned collision energy is key. The production of Υ(4S) mesons, which decay in BB pairs

96% of the times with little available energy to produce additional particles, suppresses backgrounds,

which are mainly due to competing non-resonant hadron production. In addition, usage of beams of

point-like particles allows for knowing precisely the collision energy, which sets stringent constraints

on the final-state kinematic properties, thus offering additional background suppression. Since

bottom mesons are produced in a strong-interaction decay, flavour is conserved, and the null net
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bottom content of the initial state implies production of a flavourless BB pair; even though B0

and B0 undergo flavour oscillations before decaying, their time-evolution is quantum-correlated in

such a way that no B0B0 or B0B0 pairs are present at any time. In fact, angular-momentum

conservation implies that the decay of a spin-1 particle in two spin-0 particles yields total angular

momentum L = 1. Because the simultaneous presence of two identical particles in an antisymmetric

state would violate Bose statistics, the system evolves coherently as an oscillating B0B0 particle-

antiparticle pair until either one decays. This allows identification of the bottom (or antibottom)

content of one meson at the time of decay of the other, if the latter decays in a final state accessible

only by either bottom or antibottom states. This important capability is called ‘flavour tagging’

and allows measurements of flavour-dependent decay rates, as needed in many determinations of

CP-violating quantities.

Not just Υ(4S) mesons are produced in e+e− collisions; Fig. 3.1 shows the hadron-production

cross-section in e+e− collisions as a function of the final-state mass. The various peaks are radial

excitations of the Υ meson and the nearly uniform baseline at about 4 nb represents the so-called

continuum of lighter-quark pair production (e+e− → qq, where q identifies u, d, c, s), which exceeds

Υ(4S) production in rate. In addition, the most frequent outcomes of 10.58GeV/c2 e+ e− collisions

are electroweak processes of lepton production, such as e+e− → e+e−(γ), e+e− → e+e−e+e− and

e+e− → µ+µ−(γ). These form about 94% of the total cross-section, but can straightforwardly be

discriminated online thanks to their distinctive final states.

Because the Υ(4S) mesons are produced at threshold, they would be nearly at rest in the

laboratory frame in an energy-symmetric collider. The resulting B mesons too would be produced

with low momentum (≈ 10MeV/c) in the laboratory, because of the 21MeV/c2 difference between

the Υ(4S) mass and the mass of a BB pair. With such low momenta they would only travel

approximately 1µm before decaying. The 10 µm typical spatial resolution of vertex detectors would

not be sufficient to separate B-decay vertices and enable the study of the decay-time evolution

for measurements involving mixing. Asymmetric beam energies are used to bypass this limitation.

By boosting the collision center-of-mass along the beam in the laboratory frame, they achieve B-

decay vertices separations resolvable with current vertex detectors [54]. SuperKEKB implements

a 7-4GeV energy-asymmetric double-ring design, which achieves a vertex displacement of about

130 µm.

SuperKEKB is designed to deliver collisions corresponding to some tens of ab−1 of integrated
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Figure 3.1: Hadron production cross section from e+e− collisions as a function of the centre-of-mass
energy. The vertical red line indicates the BB production threshold.

luminosity by around 2035. This sample corresponds to an order of magnitude more data than the

total amount collected by B-factories to date.

To achieve high luminosities, a nano-beam, large crossing-angle collision scheme is implemented [55].

This is an innovative configuration based on keeping small horizontal and vertical emittance and

large crossing angle, as shown in Fig. 3.2. This is obtained with a specially designed final-focus

superconducting-quadrupole-magnet system, made of magnets, corrector coils, and compensation

solenoids installed at each longitudinal end of the interaction region. Functionally the nano-beam

scheme mimics a collision with many short micro-bunches, offering great advantages in luminosity

with respect to previous schemes. The reduction of the luminous volume size to about 5% with

respect to the predecessor KEKB, combined with doubling of beam currents, is expected to yield a

factor 40 gain in intensity.

3.2 The Belle II detector

The Belle II detector is a system of multiple subdetectors, each optimized to reconstruct some

specific features of the collision final states, arranged in concentric layers forming an approximately

cylindrical layout around the collision point of the SuperKEKB accelerator. It is about 8 meters in

length, width, and height, and weights 1400 tons. It is located in the same experimental hall and
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Figure 3.2: Two-dimensional sketch of the nano-beam mechanism implemented in SuperKEKB
(right) compared with the previous KEKB collision scheme (left).

has a similar design to its predecessor, the Belle detector. The main subsystems are summarized in

Table 3.1 and shown in Fig. 3.3. They are detailed in next Sections and can be broadly classified

as follows:

• Detectors for charged particle tracking: silicon pixel and strip detectors close to the

beam pipe and a wire drift chamber, all immersed in a 1.5T magnetic field parallel to the

beam axis, are used for reconstruction of charged-particle trajectories.

• Detectors for particle identification: Cherenkov radiators, an electromagnetic calorime-

ter, and scintillators for muon and long-lived neutral hadrons achieve particle identification.

• Data acquisition system: a two-stage online trigger is designed to acquire interesting events

at the high rates expected at design luminosities.

3.3 Tracking detectors

The innermost detectors are used for charged-particle reconstruction. Effective track reconstruction

is of great importance since flavour-physics analyses rely strongly on precise momenta measurements

and on precise determination of the decay positions. These accurate measured momenta and ver-

tices allow separation of signal from backgrounds, thanks to narrower signal invariant-mass peaks

that are therefore more distinctive from smoothly distributed backgrounds. Moreover, precise ver-

tices measurements are key to determine the decay time, a fundamental quantity for CP-violating

asymmetries measurements involving mixing. To simplify pattern recognition, tracks are first re-

constructed in the outer tracking volume, and then are extrapolated into the innermost detector to
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Figure 3.3: Top view of the Belle II detector [56].
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Purpose Name Component Channels θ coverage

Tracking PXD Silicon Pixel (DEPFET) 10M [17◦, 150◦]
SVD Silicon Strip 245k [17◦, 150◦]
CDC Drift Chamber (He-C2H6) 14k [17◦ : 150◦]

Particle ID TOP RICH with quartz radiator 8k [31◦, 128◦]
ARICH RICH with areogel radiator 78k [14◦, 30◦]

Calorimetry ECL CsI(Tl) 6624 (Barrel) [12.4◦, 31.4◦]
1152 (FWD) [32.2◦, 128.7◦]
960 (BWD) [130.7◦, 155.1◦]

Muon ID KLM barrel: RPCs and scintillator strips θ, ϕ 16k [40◦, 129◦]
KLM end-cap: scintillator strips 17k [25◦, 40◦]

[129◦, 155◦]

Table 3.1: Summary of the detector components.

define coarse regions of interest around their expected intersection points in the inner active layers.

If an actual measurement point is found within the region of interest, the event associated to the

tracks is included in the pattern recognition algorithm, otherwise it is discarded.

3.3.1 Silicon-pixel vertexing detector

The innermost detector, shown in Fig. 3.4, is a pixel vertexing detector (PXD). Its goal is to sample

the trajectories of final-state charged particles in the closest vicinity of the decay position of their

long lived ancestors, so that the decay point can be inferred by extrapolation inward.

PXD sensors are based on depleted field-effect transistor technology [57]. They are made of

p-channel MOSFET integrated on a silicon substrate, which is fully depleted by applying an ap-

propriate voltage. Incident particles generate electron-hole pairs in the depleted region, and thus

induce a current passing through the MOSFET. Sensors are 75 µm thick, which allows on-pixel

integration of most of the electronics.

The PXD consists of two sets of rectangular layers, called ladders, arranged around the beam

pipe on a cylindrical layout: the inner layer consists of eight ladders at a radius of 14 mm while

the outer layer has twelve ladders at 22 mm radius: the PXD extends longitudinally for 174 mm

at the radius of the outer layer. It comprises around 8 million pixels, 50 × (50 − 55) µm2 (inner

layer) and 50× (70− 85) µm2 (outer layer) each. The polar acceptance ranges from 17 ◦ to 150 ◦.

The transverse impact-parameter resolution is 12µm, achieved by weighting the charge deposited
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Figure 3.4: Scheme of the PXD detector geometry.

in neighbouring pixels.

Only the inner layer was fully mounted during Run I operations (i.e. between 2019 and 2022)

of the experiment, while only two out of twelve ladders had been installed in the outer layer. The

full detector was installed during the 2023 long shutdown. During 2024 operations, about 2% of

the PXD channels were damaged by two sudden beam losses. Since the machine operations have

been unstable due to the push to reach luminosities of about 1035 cm−2 s−1 (the target for 2024),

to preserve the safety of the detector it was decided to run the experiment keeping the PXD off

until more stable conditions are met. This should hopefully happen in late Fall 2024.

3.3.2 Silicon-microstrip vertexing detector

Around the PXD is the silicon-microstrip vertexing detector (SVD), a silicon detector aimed at

reconstructing decay vertices and charged-particle tracks at high spatial resolution [58], an exploded

view is reported in Fig. 3.5.

SVD uses double-sided silicon strips. Each sensor is made of a silicon n-doped bulk with an

highly p-doped implant on one side. An applied bias increases the depletion region at the p-n

junction, and removes intrinsic charge-carriers from the region. Traversing charged particles ionize

the silicon, freeing electron-hole pairs that drift due to the electric field, and induce a signal in

the highly granular strip electrodes implanted at both ends of the depletion region. The fine

segmentation of SVD sensors reduces latency, to deal with the high expected rates.

SVD has a polar-asymmetric geometry that mirrors the asymmetry in particle density resulting

from the center-of-mass boost. The polar acceptance ranges from 17◦ to 150◦. SVD is radially
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Figure 3.5: Exploded view of a SVD detector half.

structured into four concentric layers at 39, 80, 104, and 135mm, composed of, respectively, 7, 10,

12, and 16 independently readout modules arranged in a cylindrical geometry.

Sensors are 300 µm-thick, and the separation between adjacent sensing strips (dpitch) ranges

from 50 µm to 240 µm. Hence, the spatial resolution dpitch/
√
12 varies with the polar angle. Since

the charge associated with an incident particle is usually distributed among several strips, position

resolution is improved by interpolation.

3.3.3 Central drift chamber

The central drift chamber (CDC) [59] samples charged-particle trajectories at large radii. It provides

trigger signals for events containing charged particles, and contributes to identification of charged-

particle species by measuring their specific-ionization energy loss (dE/dx).

When a charged particle traverses the CDC volume, it ionizes the gas, freeing electrons and

positive ions from gas atoms. An applied electric field then moves these charges toward the sensing

wires, where high field gradients cause an abrupt acceleration with secondary ionizations that

induce an electric signal on the sensing wires. The time taken to move these charges from the

source position to the wires is called drift time. The tracks are reconstructed from the hits in the

chamber, and each hit’s position is calculated from the drift time.

The CDC has a hollow cylindrical geometry with an inner radius of 16 cm and an outer radius

of 113 cm. Fig. 3.6 shows the configuration of the wires inside the CDC. Wires are organized in

superlayer: the innermost superlayer contains eight layers, all the others contain six. Superlayers

alternate between axial wires and stereo wires. The chamber is composed of 14336 sense wires,

with a diameter of 30µm, divided in 56 layers, immersed in a gaseous mixture of 50% He and 50%
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Figure 3.6: The left side shows a quadrant of a slice of the r-ϕ projection of the drift chamber [60].
The innermost superlayer contains eight layers, all the others contain six. The right side shows a
visualization of axial wires (top) relative to stereo wires (bottom). The skew is exaggerated.

C2H6 (ethane), while 42′240 aluminum wires, with a diameter of 126 µm, shape the electric field.

The azimuthal acceptance ranges from 17◦ to 180◦.

The single hit spatial resolution is about 100 µm and the dE/dx resolution is 11.9% for an

incident angle of 90◦. The typical transverse momentum resolution is σ(pT )/p
2
T ≈ 0.5%/[GeV/c].

3.4 Particle-identification detectors

Charged particle identification in the Belle II experiment is mainly performed by two detectors:

the time of propagation counter (TOP) and the aerogel ring-imaging Cherenkov counter (ARICH).

Both use Cherenkov light to identify charged particles. Particle-identification information is also

provided by the electromagnetic calorimeter (ECL) and the K0
L and muon detector (KLM).

3.4.1 Time of propagation counter

The time of propagation (TOP) counter is located in the barrel region. It measures the time

of propagation of the Cherenkov photons produced by charged particles and undergoing internal

reflection in its quartz radiator. A three-dimensional image of the photon cone is reconstructed

using the correlation between hit positions in the x-y plane and time of propagation. The TOP

consists of 16 quartz bars mounted on the barrel at 1.2m radius from the interaction point. Each

bar is a photon radiator and has three main components, as shown in Fig. 3.7: a long section that
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Figure 3.7: Sketch of a TOP quartz bar. A charged particle is shown passing through the radiator
and emitting a Cherenkov photon.

acts as a Cherenkov radiator, where photons are generated and propagate towards the bar end; a

spherical mirror mounted on the forward end, which focuses the light and reduces the chromatic

error; and a prism, mounted on the backward end of the bar, which collects and guides the photons

to a photomultiplier.

The polar angular acceptance ranges from 31◦ to 128◦. The single-photon time resolution is

about 100 ps, providing a good separation of pions and kaons in the 0.4-4GeV/c momentum range

(kaon identification efficiency is about 95%, pion fake rate is about 10%). This time resolution is

achieved with a micro-channel plate photo-multiplier specially developed for this purpose.

3.4.2 Aerogel ring-imaging Cherenkov

Charged-particle identification in the forward end-cap is provided by the aerogel ring-imaging

Cherenkov (ARICH) counter, which measures the Cherenkov ring produced by the passage of

charged particles through a radiator. The ARICH provides discrimination between pions and

kaons in a broad momentum range, and discrimination between pions, muons, and electrons be-

low 1GeV/c. When charged particles pass through the aerogel radiator, Cherenkov photons are

produced; they propagate in the volume where they form a ring on a photon sensitive surface

consisting of position-sensitive photo-diodes. Photocatodes are used to convert photons into photo-

electrons and generate electrical signals. As shown in Fig. 3.8, two aerogel radiators with different

refraction indexes are used to increase the number of generated photons without degrading the
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Figure 3.8: Scheme of the ARICH counter.

Cherenkov-angle resolution [61].

The ARICH is composed of 420 modules for photon detection arranged in seven layers extending

from 0.41 to 1.14m radii, and by 248 aerogel tiles placed on the detector endcaps. The polar angular

acceptance ranges from 14◦ to 30◦. The observed ARICH performance allows for a 5σ separation

between kaons and pions of 0.4-4GeV/c momenta, and a 4σ separation between pions, muons and

electrons with momenta smaller than 1GeV/c.

3.4.3 K0
L and muon detection system

The K0
L and muon detection system (KLM) detects muons and neutral particles that do not get

absorbed in the inner detectors, such as K0
L [62]. It is made of alternating 4.7 cm-thick iron plates

and active detector elements. Iron elements act also as magnetic flux return for the tracking solenoid.

In the inner layers, the active material is scintillator, while in the outer layers glass-electrode

resistive-plate chambers are used, with a gas mixture filling the space between electrodes. When

particles traverse the KLM, they produce charges that are collected by applying an appropriate

voltage. The barrel section of the detector covers 45◦ to 125◦ in polar angle. The endcaps cover 20◦

to 45◦ and 125◦ to 155◦. Design reconstruction efficiency exceeds 80% for muons with momentum

greater than 1GeV/c and K0
L with momentum greater than 3GeV/c.

3.4.4 Electromagnetic calorimeter

The electromagnetic calorimeter (ECL) [56] is a very important part of the Belle II detector, since

one third of B-decay products are π0 or neutral particles that provide photons. These photons

37



Matteo Filipig Chapter 3. The Belle II experiment

cover a wide energy range, from 20MeV to 4GeV and a high electromagnetic energy resolution is

fundamental. The ECL reconstructs energy and position of photons and neutral hadrons, but it is

also useful for electron and charged hadron reconstruction in regions with limited tracking coverage.

ECL permits to identify electrons and separate them from hadrons by extrapolation of CDC tracks.

If the incident particle stops in the calorimeter, the total energy is measured. In the ECL, photons

and electrons are identified through their kinematics, shower shapes and timing information, as

they have different (in shape and magnitude) energy losses with respect to charged hadrons. To

separate electrons from photons, information from tracking detectors is correlated with the ECL

signal. In addition, the sum of all the reconstructed showers constrains the missing energy in decays

involving neutrinos. The ECL also allows for determining luminosity by measuring the Bhabha 1

scattering rate and using its precisely known cross section.

The ECL is a highly-segmented array of 8′736 thallium-doped, cesium iodide crystals (CsI(Tl))

assembled in a projective geometry pointing to the interaction region (Fig. 3.3). Its detection

principle is based on scintillation: the energy released by an incident particle causes a molecular

excitation in the material with the passage of an electron from the valence band to the conduction

band. The de-excitation of the electron to the valence band is associated with the emission of

a photon, called scintillation light, that is usually inefficient and low-energetic. To improve the

probability to emit a photon in the visible energy spectrum, thallium impurities are added to create

activator sites for the electrons with energy levels in the forbidden zone between the two bands. The

CsI(Tl) crystals offer short scintillation time, which reduces the contamination of beam-background

photons, which are often ‘out of time’ with respect to collision products.

The ECL consists of a 3m-long barrel section with an inner radius of 1.25m and annular end

caps at z = 1.96m (forward) and z = −1.02m (backward) from the interaction point. The polar

angle coverage ranges from 12.4◦ to 155.1◦. Between the barrel and the end caps there are two gaps

of ∼ 1◦. The barrel has a tower structure that projects to a region near the interaction point of

the beams. It contains 6′624 CsI(Tl) crystals with 29 different shapes. Each crystal is a truncated

pyramid of an average size of 6×6 cm2 in cross section and 30 cm in length (corresponding to 16.1X0

radiations lengths). Each crystal is enveloped in a 200µm thick Gore-Tex teflon layer, coated by a

25 µm laminated aluminium and mylar sheets.

1Bhabha scattering is the electron-position elastic scattering process e+e− → e+e−.
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The intrinsic energy resolution of the calorimeter can be expressed as [56]:

σE

E
=

√(
0.066%

E

)2

+

(
0.81%

4
√
E

)2

+ (1.34%)2 (3.1)

where E is the energy in GeV and the first term is the contribute of the electronic noise. The

energy resolution ranges from σE/E = 4% at 100MeV to σE/E = 1.6% at 8GeV. The observed

resolution for the reconstructed π0 mass is 8MeV/c2.

3.4.5 Online event selection

Various processes occur in 10.58GeV e+e− collisions (Fig. 3.9). Since events of physical interest for

the Belle II program make up for a small fraction of the total cross section, the online event selection

(trigger) identifies them in real time while rejecting background events, in order to reduce the data-

writing rate. The trigger must be efficient for recording hadronic events from Υ(4S) → BB and

events from the continuum to a manageable level, up to a maximum accept rate of about 30 kHz, due

to data-acquisition restrictions. BB events have distinctive high-track multiplicity, and therefore

are relatively straightforward to select. Events containing τ decays are harder to identify, since

they have fewer tracks in the final state and can therefore be misclassified as electrodynamics

backgrounds as e+e− → e+e− or e+e− → µ+µ− processes, that are not interesting for Belle II

physics.

The trigger is composed of a hardware stage called Level1 (L1) [56] followed by a software high-

level stage (HLT) [56]. The L1 decision is mainly based on information from CDC and ECL, but

also TOP and KLM information is available. The L1 decision feeds the global decision logic [56],

that sends out the final trigger based on the information it receives from the detector. The HLT is

based on a more complete software reconstruction of the event similar to the offline reconstruction,

that uses charged particles from the CDC and energy deposits in the ECL. The HLT selects events

based on tracking multiplicity, vertex position, and total energy deposition, achieving a 30% event

rate reduction without efficiency loss for e+e− → hadron processes.
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σ[e+e− → e+e−(γ)] = 300 nb

σ[e+e− → μ+μ−(γ)] = 1.15 nb

σ[e+e− → τ+τ−(γ)] = 0.92 nb
σ[e+e− → νν̄(γ)] = 0.25 ⋅ 10−3 nb

σ[e+e− → γγ(γ)] = 4.99 nb
σ[e+e− → Υ(4S)] = 1.11 nb

σ[e+e− → cc̄] = 1.30 nb

σ[e+e− → uū] = 1.61 nb

σ[e+e− → dd̄] = 0.40 nb

σ[e+e− → ss̄] = 0.38 nb

Figure 3.9: Cross sections of the main final states produced in e+ e− collision at the Υ(4S) center-
of-mass energy.

3.5 Current status of Belle II operations

SuperKEKB produced its first electron-positron collisions in April 2018, while Belle II started taking

physics data in January 2019, after a commissioning period. The SuperKEKB collider achieved

the world’s highest instantaneous luminosity for a colliding-beam accelerator, setting a record of

2.40×1034 cm−2s−1, in June 2020.2 During 2022, constantly higher instantaneous luminosities were

recorded, with a maximum value of ∼ 4.4 × 1034 cm−2s−1. In June 2022, both SuperKEKB and

Belle II ended operations to enter a long shutdown period (LS1). During LS1, the PXD detector

was extracted and replaced with a new PXD that has a complete outer layer of pixels. At the same

time the TOP photomultipliers were upgraded. Other minor updates, regarding both the detector

and the collider, were performed. In the recent Run II, the PXD was turned off to prevent further

damages until more stable data-taking conditions are reached, probably in October. Run II will go

on collecting data until a second long shutdown (LS2), expected in 2027.

The complete data sample available today corresponds to an integrated luminosity of 531 fb−1,

2Previous world’s highest instantaneous luminosity was set by LHC proton-proton collider at the European Or-
ganization for Nuclear Research (CERN) with a value of 2.14× 1034 cm−2s−1.
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Figure 3.10: Weekly (blue histogram) and total (red line) integrated luminosity recorded using the
Belle II detector during 2019-2022 operations of Run I and Run II after the long shutdown [64].

combining both Run I (424 fb−1) and the initial period of Run II (107 fb−1), from March to June

2024. This roughly corresponds to the data set collected by the BaBar experiment in its lifetime (9

years) and about to 50% of the Belle full sample (collected in about 11 years). Of the total Belle II

sample, about 85% has been collected at the Υ(4S) resonance, while the rest with collision energy

below or above the Υ(4S) . The total integrated luminosity as a function of time from January

2019 to June 2024 is shown in Fig. 3.10.

To achieve the goal of collecting 50 ab−1, SuperKEKB needs to be ugraded during the LS2 in

order to reach a peak luminosity of ∼ 6.5 × 1035 cm−2s−1. An international task force has been

formed to provide advice to SuperKEKB on the possible upgrade options, which include a redesign

of the interaction region and of the final focusing system. LS2 provides the possibility to upgrade

parts of the Belle II detector as well. A new vertex detector might be required to accommodate the

new interaction-region design, and other sub-detectors might require improved robustness against

increasing machine background [63].
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3.6 The Belle II software and simulation

The Belle II analysis software framework (basf2) [65] contains open source tools and algorithms

for event simulation, reconstruction and analysis. In addition to basf2, other packages are used for

event generation in Belle II: EvtGen [66] simulates the B-meson decays, PYTHIA [67] simulates

hadronisation, KKMC [68, 69] generates e+e− → τ+τ− events, TAUOLA [70, 71] generates τ

decays and GEANT4 [72] is used for the detector response simulation.

Monte Carlo (MC) samples are used for three main aspects: to study the expected number of

events, to study the background composition of the analyzed samples and the selection efficiency

of the applied cuts.

There are two different types of MC simulations used in Belle II: run-independent and run-

dependent. The biggest difference between the two is in the beam background description. Run-

dependent MC uses samples of background events recorded in data with random triggers (delayed

Bhabha) and overlaid to the generated MC signal. For run-independent MC, the background events

to be overlaid are simulated, a combination of various single beam backgrounds (e.g. beam gas)

and low-angle high-cross section physics processes, such as radiative Bhabha or two photon fusion

production of e+e−. A lot of work has gone into making these simulated backgrounds as realistic

as possible, but they do not necessarily reflect reality. The run-dependent MC is also intended to

reflect the varying status of the detector, such as dead channels, and the variations in the trigger.

Run independent MC does not. Run-dependent simulation has been implemented only recently in

the last months. In this work, I study the B → D∗ℓνℓ decay using run-dependent MC.
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Data sample and event selections

In this Chapter I discuss the reconstruction and selection of the signal decay B0 → D∗−ℓ+νℓ from

Belle II data. I use a simulated data set, which fully models the Run I sample, to study the

requirements and the resulting sample composition. Finally, I present a comparison of simulated

and experimental data for relevant distributions as to assess the simulation quality for the study

presented in the next Chapters.

4.1 Data samples

As described in the Sec. 2.2, the B0 → D∗−ℓ+νℓ decay is particularly suited to measure |Vcb|: by

featuring the largest semileptonic branching fraction (about 5%), it provides the best sensitivity.

Experimentally, signal events are easily identified through a lepton paired to a D∗ meson. The

lepton carries on average a large momentum, which makes the signal distinguishable from hadronic

B decays with a secondary semileptonic decay. The D∗ meson can be efficiently reconstructed

from D∗ → D0π decays, and the D∗ and D0 invariant mass distributions feature narrow peaks

to discriminate the background. However, the signal presents a key experimental challenge: the

undetected neutrino, which makes the decay kinematics incomplete. The only way to access the full

kinematics is to reconstruct both the signal and the decay of the accompanying B meson from Υ(4S)

events. However, this tagging method (presented in Sec. 2.3) has a very low efficiency, generally

less than 1%. My analysis, instead, is untagged : I will reconstruct only the signal side to retain a
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large sample and access the decay kinematics on a statistical basis by using proxy variables. The

latter point will be explained in the next Chapter. Here, I focus on the signal side selection.

The Belle II experiment accumulated a data set corresponding to an integrated luminosity of

424 fb−1 during Run I; 362 fb−1 of them have been taken at the energy of the Υ(4S) mass. This is

the sample I focus on: I do not use Run II data as at the time of this work, such very new sample

still needed a full calibration and reconstruction.

I use a simulation of the experiment to perform most of the analysis: to optimize the event selec-

tion, to choose variables for the fit to extract the signal, and to test multiple fitting configurations.

The simulation is based on the Monte Carlo (MC) approach, which consists in producing samples

through event-generator algorithms. These are achieved by producing final-state particles of e+e−

collisions, whose properties and interactions are generated by pseudo-random number algorithms

that follow theoretical models. These generated particles pass through the simulated experimental

apparatus of Belle II, emulating the response of the detector system and reproducing the expected

values of observed quantities.

Regarding beam interactions, the simulation can be run-dependent or run-independent, as intro-

duced in Sec.3.6: in the first case, each e+e− interaction has been simulated accurately to emulate

real experimental conditions, while in the second case the simulation is approximated to the mean

expected conditions of the experiment. In this work I use run-dependent simulation. The simulated

samples contain information about reconstructed particles, which have all information available as

the experimental data (e.g. track parameters, vertexes coordinates, particle-identification likeli-

hood, etc.), and true particles, which contain the truth-level information of particles in the detector

(e.g. generated momenta, exact decay points, identification codes, etc.). The latter are used in

the truth-matching procedure to check if the particles are correctly reconstructed. To ensure the

identification of the signal decay chain, I use flag variables created during the truth-matching phase.

These variables state if the reconstruction of all particles in the decay chain is correct while allowing

for missing momentum caused by the neutrino. This is a key step to individuate the signal sample

and inspect background sources.

The simulated data are generated in different samples: signal, background from light quarks (so-

called continuum), and background from other B meson decays. For the signal sample, I simulate

e+e− → B0B̄0 events, where one of the two B mesons decays according to the signal final state: a

lepton, which can be an electron or a muon, a neutrino of the same lepton’s flavor, and a D∗ meson.
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The D∗ then decays into a D0 meson and a πs, where the subscript “s” stands for soft, because this

pion features low momentum due to the small difference between the D0 and D∗ masses. Lastly, I

use the favored decay where theD0 meson decays into a kaon and a pion. For the continuum sample,

I generate e+e− → uū, e+e− → dd̄, e+e− → cc̄, e+e− → ss̄ events. Each quark pair hadronizes

to form jets of particles, as pions, kaons, protons, charm mesons and others, which can eventually

decay. For the sample of background B decays, called also BB̄ background, e+e− → B0B̄0 and

e+e− → B+B− samples are generated, where B mesons can undergo all possible decays. The total

MC sample, composed of the parts presented above, is roughly four times the size of the Run I data

set, corresponding to 1444 fb−1.

In addition to these simulated data, I use another type of samples called pseudo-experiments,

which are based on random generation of few distributions of interest from templates obtained

with the fully simulated sample described above. The pseudo-experiments are usually employed to

study fit properties and assess systematic uncertainties in data analysis. I will discuss them more

in Sec. 5.3.

4.1.1 Sample components

I study the MC sample to define the selection of the signal channel. For this purpose, it is useful to

categorize the sample into components, depending on the origin of the reconstructed particles for

the final state. Signal and continuum events are two of such components; background from other

B decays are split in three other components. Therefore, I define five sample components:

• Signal candidates, following the decay chain B0 → D∗−l+νl, D
∗− → D0π−

s , andD0 → K−π+.

• Continuum candidates, where the majority of events comes from a D∗ meson reconstructed

from e+e− → cc̄ events, and the lepton originates from a secondary decay of a hadron.

• Xℓνℓ candidates, where the reconstructed particles originate from a semileptonic B meson de-

cay different from the signal, B → D∗∗ℓνℓ. With D∗∗ I indicate the excited D mesons D
(0,+)
1 ,

D
′ (0,+)
1 and D

∗ (0,+)
2 . The D∗∗ particle decays into a D∗ meson, which is fully reconstructed,

and another particle Y , which is not.

• Fake-D∗ candidates, which are events composed of an incorrectly reconstructed D∗ decay

combined with a lepton, which in most cases is correctly identified and originates from B
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meson decays.

• True-D∗ candidates, which have correctly reconstructed D∗ mesons originating from B meson

decays, but associated leptons come from other sources, the majority being a semileptonic

decay of the other B meson.

Current measurements of the branching fraction and |Vcb| with B0 → D∗−l+νl decay are limited

by systematic uncertainties. Those related to background are not the major ones because the general

strategy is to apply a selection that minimizes the background impact (uncertainties related to its

knowledge and modelling). To select my sample, I follow the same principle of prioritizing signal

purity over efficiency1. In what follows, I describe the selections applied to the data sample. These

are inspired by the work done in the analysis currently conducted by the Belle II Trieste group, in

which both B → Dℓνℓ and B → D∗ℓνℓ decays are studied. Similar selections are adopted where

possible, to facilitate an possible combination of the two analysis in the future.

4.2 Event selection

The Belle II experiment collects large amounts of data and, depending on the analysis performed,

only a fraction of those is used for each study. To ease the reconstruction phase, raw data are

centrally processed to produce summary data, called “mDST”, which are reduced in dimension and

contain higher-level information related to physics quantities, including four-momenta, vertex posi-

tions, particle-identification likelihoods and others. A second centralized step consists in applying

loose selection criteria on the mDST data to obtain analysis-specific subsets reduced in dimension

(5% of the mDST) that can be released to collaborators for detailed studies. This is called skim-

ming. An optimal skimming is important because any signal inefficiency occurred at this stage

is laborious to recover. In the next Section I present the skimming selection applied. After the

skimming, I show the study conducted to find selection criteria with the goal of increasing signal

purity. These criteria are identified through the inspection of variable distributions in which the

signal shape differs from that of the background.

1Signal purity is the percentage of signal events on the total events present in the sample, while efficiency is the
ratio between the events after and before selection(s).

46



Matteo Filipig Chapter 4. Data sample and event selections

4.2.1 Skim selection

The following selection criteria are applied in the skimming phase. Each requirement, if not specified

otherwise, is applied to both the electron and muon channels.

• Measurements of distances between interaction points and charged tracks are used to indi-

viduate possible tracks caused by beam interactions with residual gases in the beam line.

Usually, the quantities used are the longitudinal (dz) and transverse (dr) distances of a track

from the interaction point. In this work, I require |dr| < 1.0 cm and |dz| < 3.0 cm for all

charged particles. Additionally, all tracks are required to be in the CDC angular acceptance

(17◦ < θ < 150◦) and have at least 20 hits in the CDC.

• The momentum of the kaon in the center-of-mass frame must be over 0.5GeV/c. This is done

to suppress background from low-momentum tracks.

• The visible energy of the event in the center-of-mass frame is required to be larger than 4GeV,

to avoid including events in which there are no B mesons.

• The momentum of the rest-of-event (ROE) particles must be less than 3.2GeV/c in the center-

of-mass frame. Among all the tracks in an event, ROE particles are those tracks that are not

used for the signal reconstruction. For a signal event, ROE particles are daughter particles of

the other B meson of the Υ(4S) decay.

• The momentum of the lepton in the center-of-mass frame must be over 0.6GeV/c. This

ensures to select B events with semileptonic decays.

• The Fox Wolfram variable R2, which is defined as the ratio between the 2-nd and 0-th order

of the Fox Wolfram momenta [73], is required to be under 0.4. The variable R2 accounts for

the shape of the geometrical distribution of the particles in an event, and is usually used to

suppress continuum.

• The thrust axis is the most probable direction axis of a particle, obtained by considering its

daughters’ momenta. The cosine of the angle between the thrust axis of the signal B meson

and the ROE is called cosTBTO. For signal events, this is the cosine of the angle between

the two B mesons. It is a useful variable for continuum suppression and is required to be less

than 0.9.
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• Additionally, I use particle identification (PID) information. As seen in Sec. 3.4, several

detectors provide information about the nature of the track from a charged particle, and

this information is analyzed independently to determine the likelihood of charged particle

hypothesis, one for each detector. The likelihood can be used to create a set of binary PID

variables, which corresponds to the probability (0, 1) of the first provided mass hypothesis

with respect to the second mass hypothesis. I use the following PID variables:

– Kaon-pion discrimination is used to properly reconstruct the D0 → Kπ decay. This

decay is already well identified from the kinematics; also, it has larger branching frac-

tion than the other main background decays (D0 → KK or D0 → ππ). Given these

motivations, a minimal requirement is sufficient: the PID is set to be higher than 0.1.

– Another type of binary PID variable is used for muons only, which employs, unlike

the kaon PID, information from all detectors except the Silicon Vertex Detector. It is

required to be higher than 0.9.

– For electrons, a Boosted Decision Tree (BDT) is used to distinguish them from the other

charged particles by using information from all detectors available. The values accepted

are above 0.6.

The criteria above are loose requirements in order to obtain samples of moderate dimensions. The

signal efficiencies resulted from these selections for the muon and electron channels are

ϵ(µ) = (20.58± 0.04) ,% (4.1)

ϵ(e) = (20.38± 0.04) .% (4.2)

The uncertainties are only statistical. The relative fractions of each component in the sample

are reported in Tab. 4.1. The signal fractions are about 10% after the skimming, and are different

between muon and electron channels. The selections applied in the skimming phase affect differently

the two channels since distributions of the requirement variables are different. In the next Section,

I present the detailed study on diverse variables to obtain the final sample, which will be used for

the analysis.
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Component Muon channel [%] Electron channel [%]

Signal 9.04± 0.02 13.93± 0.03
Continuum 35.04± 0.03 24.65± 0.04

Xℓν 1.56± 0.01 2.42± 0.01
True-D∗ 6.80± 0.02 6.11± 0.02
Fake-D∗ 47.57± 0.03 52.90± 0.04

Table 4.1: Relative fractions of each component in the sample after the skimming selections. The
uncertainties are only statistical.

4.2.2 Final requirements

After the skimming selections, the sample still needs to be revisited in order to increase the signal

purity. So, I carry out the additional selections which are explained in what follows. The selection

summary is presented in Table 4.2.

Optimal D∗ candidate

To correctly reconstruct the initial B meson, all particles in the chain decay must be correctly

identified. For the D∗ and D0 mesons, the invariant masses are ideal variables for this, since they

are completely reconstructed and their mass distributions have narrow peaks. The D0 meson is

formed by a kaon and a pion candidate, while the D∗ meson is obtained from the combination

of the D0 and a slow pion. An additional variable is the difference of invariant masses of these

two mesons, ∆M(D∗, D0), which should be distributed around values slightly higher than the rest

mass of the charged pion (mπ ≈ 0.140GeV/c2). This additional variable has a narrower peak than

that of invariant masses since part of experimental resolution cancels in the difference. I select

values between [1.855,1.875] GeV/c2 for the invariant mass of D0 and [0.144,0.147] GeV/c2 for

the ∆M(D∗, D0). In Fig. 4.1, the distributions of ∆M(D∗, D0) and D0 invariant mass are shown

after the skimming selections to highlight the importance of these requirements in removing a good

amount of continuum and fake-D∗ events. The invariant mass of D0 shows also that both Xℓν and

true-D∗ components peak in the same region of the signal, so further variables need to be inspected.

Tails of the ∆M(D∗, D0) and D0 invariant mass are composed exclusively of continuum and fake-

D∗ events: this will be better explored in Sec. 4.3. The data that I discuss in what follows already

include these selections, since they remove a good amount of background while preserving almost

all signal events. This allows focusing on the remaining distributions to add targeted requirements.
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Object Requirement

Tracks
dr < 1 cm
dz < 3 cm

17◦ < θCDC < 150◦

Kaons
pCMS
K > 0.5 GeV/c
PID(K)> 0.1

D mesons
0.144 < ∆M(D∗, D0) < 0.147 GeV/c2

1.855 < M(D0) < 1.875 GeV/c2

pCMS
D∗ < 2.5 GeV/c

Continuum
R2 < 0.4

cosTBTO< 0.75

Leptons
PID(µ)> 0.99
PID(e)> 0.90

0.8 < pCMS
ℓ < 2.4 GeV/c

Y system
M(Y ) > 3 GeV/c2

−1 < cos θBY < 1

ROE pCMS
ROE < 2.8 GeV/c

Event energy ECMS
visible > 4 GeV

Table 4.2: Summary of the requirements applied. Notice that the requirement on PID(µ) is applied
only to the muon channel, PID(e) to the electron channel; the selection on the lepton momentum
to both channel.

Continuum suppression

Continuum events make up most of the hadronic events at Belle II, so effective identification and

reduction of these backgrounds are essential. In the skimming phase, the requirements on Fox Wol-

fram parameter R2 and cosTBTO contribute to reduce continuum, but are still quite loose. Among

the two, the variable cosTBTO is more helpful since, as seen in Fig. 4.3, the signal distribution is

uniform while the continuum peaks at values near 1. This difference arises from the topology of

the event: the B mesons have momentum’s directions that are distributed uniformly in the space

and might be non-collinear in Υ(4S) decays. For qq̄ events, quarks produce jets of particles that

are headed in opposite directions. Fig. 4.2 shows a sketch of the two cases. The selected values are

those below 0.75, where the reduction of the continuum sample is no longer convenient in favor of

the signal sample.
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Figure 4.1: Top: distributions of the ∆M(D∗, D0) for the muon (left) and electron (right) chan-
nel. Bottom: distributions of the M(D0) for the muon (left) and electron (right) channel. The
histograms are stacked.

Kinematic constraints

For the B0 → D∗−ℓ+νℓ decay, through the conservation of four-momenta, the following relation

applies:

pB = pD∗ + pℓ + pνℓ
, (4.3)

or, by making explicit the four-momentum of the neutrino and squaring it,

p2νℓ
= (pB − pD∗ − pℓ)

2 . (4.4)
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Figure 4.2: Illustration of the topology of an event. Beams of e+e− collide to produce a Υ(4S),
which then decays into two B mesons: one is the signal, the other is the ROE. The B decays are
isotropic. A continuum event is also represented: the qq̄ pair hadronizes in two jets of particles
headed in opposite directions.
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Figure 4.3: Distributions of cosTBTO for the muon (left) and electron (right) channel. The his-
tograms are stacked.

This must equal zero for a signal neutrino. All four-momenta are in the center-of-mass frame. This

can be expanded as:

M2
B +M2

Y − 2EBEY + 2|p⃗B ||p⃗Y | cos θBY = 0 , (4.5)
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Figure 4.4: Distributions of the cos θBY for the muon (left) and electron (right) channel. The
histograms are stacked.

where Y results from the sum of D∗ and lepton four-momenta. From the latter equation, an

important variable in the analysis is obtained, the cosine between the B meson and the Y system,

cos θBY =
2EBEY −M2

B −M2
Y

2|p⃗B ||p⃗Y |
. (4.6)

This quantity can be calculated with all available information: the Y system is determined through

the measurement of masses and momenta of the lepton and D∗, the value of the B meson mass from

PDG [16] (mB = 5.27972 GeV/c2) and the energy is half of the center-of-mass energy, which is

about 5.29GeV/c2. For the signal, most of the events fall in the physical region −1 < cos θBY < 1,

which is the range of values accepted in this analysis. These formulae are true by assuming that

the only undetected particle is the neutrino. It is important to notice that, in Fig. 4.4, there are

more events with cos θBY < −1 in the electron channel than in the muon channel for the signal:

electrons are subject to bremsstrahlung losses, so the energy and momentum of the Y system are

lower than those in the muon channel. This will bring differences in the final efficiency of the two

channels.

Another constraint that can be imposed from the kinematic is on the Y system mass, which is

required to be above 3GeV/c2. Below this value there are few signal events, as shown in Fig. 4.5.
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Figure 4.5: Distributions of the M(Y ) for the muon (left) and electron (right) channel. The
histograms are stacked.

Particle ID criteria

In the skimming phase, particle identifications of muons and electrons are required to be higher

than 0.9 and 0.6 respectively, but those thresholds are very loose (see Fig. 4.6). Both particles can

be mis-identified, but muons tend to be so more frequently, given that their mass is close to that of

charged pions. This is the reason for applying a stricter requirement to the muon channel, selecting

PID values higher than 0.99. For electrons, which have a larger tail in the PID distribution, I use

a requirement to select PID values higher than 0.9.

Table 4.3 reports the fraction of events removed after the PID selection and the fraction of fake

leptons among the removed events. Fake leptons are all particles that are not the lepton indicated

in the signal B decay. For instance, in the case of the muon channel, electrons are considered fake

leptons, as well as pions, kaons and protons. The two PID requirements work differently on the two

channels: the first row indicates how effective the PID selection is in the two channels, removing

more events for muons among all components. The second indicates the fractions of fake leptons

removed in each component, which are in general larger for muons.

True-D∗ background reduction

A true-D∗ event is characterized by an incorrect combination of a lepton with a properly recon-

struceted D∗ meson, so inspecting the lepton’s characteristics can be helpful. Fig. 4.7 shows the

distribution of lepton momentum in the center-of-mass frame for both channels. A good amount
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Figure 4.6: Distributions of the particle ID of the two channels in logarithmic scale. The histograms
are stacked.

Signal Continuum Xℓν True-D∗ Fake-D∗

Muon
Removed fraction 3.44± 0.04 27.91± 0.11 6.89± 0.14 27.90± 0.12 15.16± 0.31
Fraction of fakes – 88.86± 0.15 1.36± 0.24 83.00± 0.12 73.98± 0.97

Electron
Removed fraction 2.44± 0.04 17.71± 0.13 2.82± 0.09 15.23± 0.13 7.25± 0.25
Fraction of fakes – 81.01± 0.32 0.76± 0.29 69.63± 0.42 46.46± 1.79

Table 4.3: Fractions (in %) of removed events after the PID selection and, among the removed
events, the fraction of fake leptons. Uncertainties are statistical. Fractions are calculated after the
∆M(D∗, D0) and M(D0) selections indicated above, which greatly reduce continuum and fake-D∗

components. The signal component has no fake leptons.

of true-D∗ events are located at low values of the lepton momentum, mostly due to a secondary

semileptonic decay of another meson (e.g. a charm meson) from a B decay. This latter component

features indeed a lepton momentum on average softer than the signal. For this reason, the selected

lepton momenta are values higher than 0.8GeV/c. Additionally, to fix the range in preparation of

the fit, the lepton momentum must have an upper limit of 2.4GeV/c, while the D∗ momentum of

2.5GeV/c. The latter requirements remove little to none events for all components. The momen-

tum of the ROE in the center-of-mass frame, already mentioned in the skimming phase, can be

further selected to be below 2.8GeV/c. In Fig. 4.8, its distribution is shown for both channels. In

the region removed, besides continuum events, many true-D∗ events are present while signal events

are negligible.
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Figure 4.7: Distributions of the pCMS
ℓ for the muon (left) and electron (right) channel. The his-

tograms are stacked.
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Figure 4.8: Distributions of the pCMS
ROE for the muon (left) and electron (right) channel. The his-

tograms are stacked.

4.2.3 Final sample composition

The signal efficiencies for the electron and muon channels after all the selections are

ϵ(µ) = (12.92± 0.03) % , (4.7)

ϵ(e) = (11.64± 0.03) % . (4.8)

The relative fraction of each component is reported in Tab. 4.4. Overall, I have improved the

purity of the sample, from about 10% after skimming selections to over 80% after final selections.
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Figure 4.9: Distributions of pCMS
D∗ before (left) and after (right) the application of the selected

criteria of this Chapter for the muon channel. The histograms are stacked.

Component Muon channel [%] Electron channel [%]

Signal 81.85± 0.10 85.30± 0.10
Continuum 2.89± 0.04 2.34± 0.04

Xℓν 6.40± 0.06 6.28± 0.07
True-D∗ 6.08± 0.06 3.32± 0.05
Fake-D∗ 2.78± 0.04 2.86± 0.04

Table 4.4: Relative fractions of each component after the full selection. Uncertainties are statistical.

Figure 4.9 compares the distribution of pCMS
D∗ in the two cases, visually demonstrating how the

purity has improved. However, these selections significantly reduce the available statistic, since the

signal efficiency is almost halved compared to the efficiency after the skimming phase. For the Run

I data set, I expect (35620 ± 190) events for the muon channel and (32950 ± 180) events for the

electron channel.

After skimming selections, the fraction of each component differs between the muon and the

electron channels. This difference is enhanced in the true-D∗ component after the full selection,

while the others are similar. A detailed overview is given by Tabs. 4.5- 4.6, where I report the

efficiency of the selection flow for both channels. A comparison of them quantifies how each selection

affects a component in the two channels. The selections that originate significant differences are:

for the fake-D∗ component, the PID selection; for the continuum events, several requirements lead

to a difference, with PID being the selection with highest impact; for the true-D∗ component, the

PID and M(Y ) selections are those causing the difference; for the signal, the cos θBY selection
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Selection Signal Continuum Xℓνℓ True-D∗ Fake D∗

∆M(D∗, D0) 98.76 22.53 98.67 97.45 2.83
M(D0) 93.12 85.68 93.11 91.64 43.44
PID(µ) 96.56 72.09 95.38 72.10 84.84

cosTBTO 83.25 51.11 83.01 77.95 80.39
cos θBY 93.81 15.06 44.36 24.78 56.69
M(Y ) 94.63 77.83 95.65 63.51 89.89
pCMS
µ 97.87 71.85 96.84 89.90 97.83

pCMS
D∗ 100.00 92.61 100.00 100.00 99.98

pCMS
ROE 97.73 85.28 95.52 87.27 96.80

Table 4.5: Selection-flow table with relative efficiencies in % for the muon channel for each com-
ponent. The value of a row refers to the efficiency of that requirement with respect to the sample
obtained by applying all requirements of the preceding rows. The first selection (∆M(D∗, D0)) is
evaluated with respect to the skimming selection events.

Selection Signal Continuum Xℓνℓ True-D∗ Fake-D∗

∆M(D∗, D0) 98.70 27.39 98.80 96.86 3.02
M(D0) 93.10 86.38 93.12 90.84 45.60
PID(e) 97.56 82.29 97.18 84.77 92.75

cosTBTO 82.47 52.14 81.82 77.66 79.83
cos θBY 88.17 14.70 38.71 20.75 57.25
M(Y ) 93.09 86.12 94.46 52.90 89.09
pCMS
e 96.39 72.72 94.82 89.89 96.32

pCMS
D∗ 100.00 97.02 100.00 100.00 100.00

pCMS
ROE 97.66 88.23 95.54 88.82 97.21

Table 4.6: Selection-flow table with relative efficiencies in % for the electron channel for each
component. The value of a row refers to the efficiency of that requirement with respect to the sample
obtained by applying all requirements of the preceding rows. The first selection (∆M(D∗, D0)) is
evaluated with respect to the skimming selection events.

removes more electron events; this also causes the difference in the Xℓν component.

4.3 Monte Carlo validation

The selection is obtained through the study of the Monte Carlo sample, which is an helpful tool

in understanding the data composition and background features. As presented in Sec. 4.1.1, the

division of the data sample into five components is possible thanks to the knowledge of all infor-

mation regarding the selected decay, accessible only through the use of the simulation. Different
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components have different distribution shapes that allow for the study presented in Sec. 4.2.2, which

is a key aspect of this work. An high purity sample reduces the impact of uncertainties caused by

the presence of background.

However, simulation must correctly resemble the experimental data. Thus, it is important to

verify this condition. I inspect the distributions of various observables, such as particle momenta

or invariant masses, and compare the Monte Carlo sample with the experimental data sample. The

selection defined above is applied in this study, as I am interested in understanding if the selected

sample is well represented in simulation for the studies presented in the rest of this thesis. In this

respect, I investigate the center-of-mass momenta of all particles participating in the decay, which

are shown in Appendix B, and invariant masses of reconstructed D∗, D0 and ∆M(D∗, D0), shown

in Fig. 4.10. The simulation is scaled to the data luminosity in all these plots. Overall, there is a

good agreement between data an MC, meaning that the simulation correctly reproduces the data.

The invariant masses of the D∗ and D0 mesons and ∆M(D∗, D0) are inspected without the

requirements imposed on these variables to observe regions enriched in background, called sidebands

(Fig. 4.10). The sidebands are defined with these requirements: M(D∗) < 1.97 GeV/c2 and

M(D∗) > 2.04 GeV/c2, since the mass of D∗ is not a selection variable. They are particularly

interesting to study: they are composed principally by fake-D∗ and marginally by continuum events,

thus allowing to individuate these background sources in the experimental data sample. Simulation

predicts fairly well the amount of background in these regions. I also compare the distributions

of some variables (cos θBY , p
CMS
ℓ , pCMS

D∗ and pCMS
πs

) for data and simulation in the sidebands. I

observe reasonable agreement between data and MC in both the shape and the normalization for

these distributions, as shown in Figs. B.4- B.5 in Appendix B. This fact will be useful to constraint

fake-D∗ and continuum background in the fit for the sample composition, that will be discussed in

the next Chapter.
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Figure 4.10: Data-simulation comparison for the distributions of ∆M(D∗, D0) and invariant masses
of D∗ and D0 mesons. Differences observed in the proximity of the peaks are likely due to a different
mass resolution between data and simulation. The histograms are stacked.
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Chapter 5

Fit of sample composition

In this Chapter I inspect the analysis variables that are used to access the two- and three-dimensional

decay rates of the signal. Then I discuss the settings of the sample composition fit to measure the

signal branching fraction, as a preliminary step before extending the fit to include model-independent

observables a′n, b
′
n and c′n. Lastly, I use pseudo-experiment data to find the fit configuration that

gives the smallest biases in the estimation of the fit parameters.

5.1 Accessing the differential decay rate

In Section 2.2 I presented the four kinematic variables that describe the differential decay rate of

the signal decay (see Eq. 2.3). Those variables1 are defined in the B rest frame. To reconstruct

them, one needs to know the B momentum, hence, to use B-tagging algorithms, which have very

low efficiency (typically below 1%).

Untagged analysis can also approximate the kinematics of the decay by using the information

of the rest-of-event in an inclusive way, e.g. estimating the other B momentum by the sum of the

other visible particles in the events other than those of the signal. This process is very efficient,

although it provides lower resolution on the measurement of the B-kinematics variables. Untagged

analysis of B → D∗ℓνℓ decays have so far exploited this method [42]. In this case, the measurement

must rely on a good description of the rest-of-event particles to properly compute resolutions and

1I refer to them also with the shorthand B-kinematics variables.
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Figure 5.1: Two-dimensional distributions of (top-left) w and pCMS
D∗ , (top-right) cos θℓ and pCMS

ℓ ,
(bottom-left) cos θD and pCMS

πs
, (bottom-right) χ and ϕ. Simulated data of the electron channel are

shown. Distributions of the muon channel present identical behaviours. The black points represent
the mean value of the Y axis variable in each of the bin of the X axis variable.

efficiencies through migration matrices that are used to unfold experimental effects from the data.

Another possibility, which I investigate in my work, is the use of reconstructed variables from

visible particles of the signal decays that are highly correlated with the kinematic variables of

interest. In Fig. 5.1 I show the two-dimensional distribution obtained between the following pairs

of variables: (w, pCMS
D∗ ), (cos θℓ, p

CMS
ℓ ), (cos θD, pCMS

πs
) and (χ, ϕ). I show the case of the electron

channel, but identical distributions hold for the muon channel.

The particle momenta in the center-of-mass frame, pCMS
D∗ , pCMS

ℓ , pCMS
πs

, and the angle ϕ are

calculated from reconstructed particles, while the B-kinematics variables from true particles, both

obtained in the simulation (see Sec. 4.1). The angle ϕ is a new variable introduced to find a proxy

for the angle χ, and it is defined as the dihedral angle between the plane containing the lepton
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Variable pair Correlation (µ) Correlation (e)

(w, pCMS
D∗ ) 0.97 0.97

(cos θℓ, p
CMS
ℓ ) 0.95 0.93

(cos θD, pCMS
πs

) −0.66 −0.66
(χ, ϕ) −0.84 −0.84

Table 5.1: Linear correlation factors between B-kinematics variables and reconstructed variables in
the muon and electron channels.

and D∗ momenta and the plane containing the πs and D0 momenta, all calculated in the center-

of-mass frame. In Tab. 5.1 I report the correlation factors of the four pairs of variables: the first

two, (w, pCMS
D∗ ) and (cos θℓ, p

CMS
ℓ ), show very high correlations; the (cos θD, pCMS

πs
) pair is mildly

anti-correlated; the latter pair, (χ, ϕ), is very interesting, since, neglecting events near 0 and 2π,

shows high anti-correlation.

These distributions prove that one can access the differential decay rate as a function of the B-

kinematics variables through the use of reconstructed variables in the center-of-mass frame. Some

dilution of the precision is present, as correlations are not 100%; however, this can be compensated

by large size samples.

I use these variables to study measurements of the model-independent observables a′n, b
′
n and

c′n introduced in Chapter 2. I investigate the use of pCMS
D∗ , pCMS

ℓ , and pCMS
πs

to access the two-

and three-dimensional decay rates reported in Eq. 2.15 and Eq. 2.22, respectively. I do not use the

angle ϕ, but the study that I present in this and in the next Chapter can be extended to access the

decay rate of Eq. 2.24 and have sensitivity to the signs of the H± helicity amplitudes.

5.2 Fit of sample composition

The scope of this analysis is to measure the branching fraction of the B0 → D∗−ℓ+νℓ decay, and

determine |Vcb| and the form factors. I study the feasibility of doing these measurements using

the proxy variables described in the previous Section to access the differential decay rates. As a

preliminary step, I focus on the measurement of the branching fraction, assuming a fixed model of

the form factors (which determines the shape of signal distributions) from previous measurements.

In the next Chapter I release this assumption and extend the measurement to the model-independent

variables a′n, b
′
n and c′n, from which |Vcb| and the form factors can be obtained. In my studies I
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only use simulated data.

The core of this measurement is a multivariate fit. It is based on the method of least squares and

minimizes the χ2
total function, which is defined as the sum of the χ2 of electron and muon samples,

evaluated individually for each bin of the data histogram accordingly to the following formula:

χ2 =
∑
i

[
Ni − fi(θ̄)

]2
σ2
i

, (5.1)

where Ni is the number of events in the i -th bin; fi(θ̄) is the fitting function; and σ2
i is the

uncertainty squared of the i -th bin, assumed to be the Poisson uncertainty of the number of events

in the bin. For the χ2 minimization, I use the MINUIT package implemented in the ROOT library.

The function fi(θ̄) depends on the vector of parameters θ̄ and it is calculated for each i -th bin

as:

fi(θ̄) = Nsig psigi +Nfake pfakei + Ntruep
true
i +Ncont p

cont
i +NXℓν pXℓν

i , (5.2)

where Nj is the total number of events of the sample component j (the yield), while the probability

density functions pji (pdfs), evaluated in each i -th bin, resembles the distributions of the component

j. The pdf is a three-dimensional histogram of each component normalized to unity, called template.

The component index j takes the following values: “sig” for the signal; “fake” for the fake-D∗

background component; “true” for that of true-D∗ background; “cont” for continuum; “Xℓν” for

Xℓν background.

In Sec. 4.3 I observed a good agreement between true data and the Monte Carlo sample for

fake-D∗ and continuum background in the sideband distributions. Once the continuum yield is

known, that of the fake-D∗ background can be determined by the sideband data. The yield of the

continuum can be easily obtained by the off-resonance sample, where only e+e− → uū, dd̄, cc̄, ss̄

and cc̄ events contribute, by scaling the sample size of the off-resonance sample to that of the Υ(4S)

sample. Thus, the yield of the fake-D∗ and continuum backgrund can be fixed in the fit (this implies

an additional systematic uncertainty which is not evaluated in this work). For simplicity I sum the

yields and the pdfs of those two components in the fitting function and assume a single pdf from

the simulation prediction.
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Fixed parameters Muon channel Electron channel

NBB 330× 106

(Nfake +Ncont) 5160 4150
ϵ [%] 12.9 11.6
f00 0.486
B(D∗ → D0πs) [%] 67.70
B(D0 → Kπ) [%] 3.95

Table 5.2: Values of the fixed parameters in the fit.

The signal yield is parameterized as:

Nsig = 2NBB ϵ f00 B(B → D∗ℓνℓ)B(D∗ → D0πs)B(D0 → Kπ) , (5.3)

where NBB is the number of BB pairs; ϵ is the efficiency of the electron and muon sample after

the selection presented in the last Chapter; f00 is the fraction of Υ(4S) resonances that decay into

B0B̄0. The other factors are the branching fractions of the signal decay chain. The values of

the fixed parameters are reported in Tab. 5.2: NBB and (Nfake + Ncont) values are referred to an

integrated luminosity of 1444 fb−1 (that of the simulated sample); efficiencies are those calculated

in Sec. 4.2.3, while the other values are taken from Ref. [16].

The free parameters in the fit are the yields of Xℓν and true-D∗ components (for both the muon

and electron channels) and the branching fraction of the B → D∗ℓνℓ decay (common to the two

samples), for a total of five free parameters.

In the next Section I present the generation and fit of pseudo-experiments to evaluate the fit

properties, i.e., to assess if the parameters are determined without biases. This is done for different

fit configurations and it is an important preliminary step before extending the fit to the model-

independent observables presented in the next Chapter.

5.3 Assessing best fit configurations

The fit can show statistical bias on the set of estimated parameters. To assess the presence of

this phenomenon, I study distributions of pull values with simulated data. A pull of a parameter

i is defined as the difference between the fitted value θ̂i and the true value θi and divided by its
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estimated uncertainty σ̂θ̂i
:

Pull(θ̂i) =
θ̂i − θi
σ̂θ̂i

. (5.4)

Those considered are the five free parameters of the pdf presented in the previous Section. The true

values of the four background yields are the number of expected candidates found in the previous

Chapter and for the B(B → D∗ℓνℓ) the generation value used in the Belle II simulation.

To check the pull distributions, I generate pseudo-experiments. A pseudo-experiment resembles

a data sample: the number of event generated for each component is obtained from a Poisson

distribution centered at the value expected from the simulation (the only exception being fake-D∗

and continuum components, that are fixed in the fit). An event is generated by randomly extracting

variable values from the templates of the chosen component. The pseudo-experiment total sample

is composed by putting together the generated events of all components.

I generate and fit 1000 pseudo-experiments. For each fit, I obtain the values of fit parameters

and its uncertainties to compute the pulls. The obtained pulls form a distribution, which is then

fitted with a Gauss function. The results are unbiased if the pulls follow a Gaussian distribution

with zero mean and unit standard deviation. If the mean differs from zero, it indicates that there

is a systematic bias in the estimation of the parameter; if the standard deviation differs from unity,

it corresponds to a wrong estimation of the parameter uncertainty.

5.3.1 Tested configurations

In this study I make use of three-dimensional histograms, which are filled by triplet of those variables

correlated to the B-kinematics variables (as discussed in Sect. 5.1). I tested two configurations of

fitting variables in my study:

• Configuration A: (cos θBY , p
CMS
ℓ , pCMS

D∗ ), which gives access the two-dimensional decay rate

of Eq. 2.15.

• Configuration B: (pCMS
πs

, pCMS
ℓ , pCMS

D∗ ), which gives access the three-dimensional decay rate of

Eq. 2.22.

The variable pCMS
D∗ is highly correlated to w, while pCMS

ℓ with cos θℓ (Tab. 5.1). The variable

pCMS
πs

is correlated to cos θD, while the cosine of the angle between the momenta of B meson and the

Y system, cos θBY , has much less dependence on the the form factors, but helpful in discriminating
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Figure 5.2: Two-dimensional distributions of configuration A and B variables for the electron
channel: (cos θBY , p

CMS
ℓ ) in the first row, (pCMS

ℓ , pCMS
D∗ ) in the second row, (cos θBY , p

CMS
D∗ ) in the

third row, (pCMS
ℓ , pCMS

πs
) in the fourth row, (pCMS

D∗ , pCMS
πs

) in the fifth row. In orange the signal
component, in blue the Xℓν component, in purple the true-D∗ component.
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between background components. This is shown by the two-dimensional distributions of Fig. 5.2,

where the distributions for the signal, Xℓν, and true-D∗ components are reported. The separation

of the components is noticeable by looking at the dimensions of boxes, which is proportional to

the number of events per bin; the signal component events accumulates more in regions where Xℓν

and true-D∗ are not. All pairs present this behaviour at different level, indicating that they can

statistically discriminate the sample components.

Configuration A is expected to provide the best separation between the signal and background

components, and it is the same configuration used in the ongoing analysis in Trieste with B → Dℓνℓ

and partially reconstructed B → D∗ℓνℓ decays [52]. Therefore, I start from configuration A to

inspect any bias as a function of the sample size expressed in terms of the integrated luminosity.

For each configuration three scenarios of integrated luminosity are tested: 360 fb−1, 700 fb−1 and

3000 fb−1. The first value is the integrated luminosity of the Υ(4S) Run I Belle II dataset; the

second is the integrated luminosity of Belle, which Belle II expect to reach next year; the last is the

expected integrated luminosity that Belle II expected in Run II, i.e. in about three years.

The fit projections for one of these pseudo-experiments are shown in Fig. 5.3 as an example for

the third scenario. The pulls distributions for the fit in the three scenarios are shown in the Figs. C.1-

C.2- C.3 of Appendix C. A summary plot of the means and standard deviations of parameter pulls

is reported in Fig. 5.4. The estimated parameters show little biases that get smaller in the scenario

with 3000 fb−1. The biases in the other two scenarios are not severe, and they might depends also

on other fit settings as the binning scheme used for the data (this is discussed later). However, to

fix an unbiased scenario to proceed with further studies, we choose to simulate 3000 fb−1 samples

in what follows.

It is important to notice that, in the χ2 fit I skip data bins that have less than 30 number of

events, to prevent calculating the χ2 with insufficient events to assume a Gaussian distribution (an

assumption intrinsic of the χ2 fit). It is key to find an adequate binning scheme which minimizes

the number of bins with insufficient events, but it is also important to consider a sufficient number

of bins to keep information on the distribution shape and discriminate between sample components.

I test the two configurations with different binning schemes, i.e. varying the number of bins and/or

using non-uniform bin widths. To select the optimal setting for each configuration, I inspect pull

distributions and the presence of biases.

For configuration A, events are spread almost evenly among the space, leaving small regions
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Figure 5.3: Projection distributions of a pseudo-experiment of configuration A (top row) and B
(bottom row) for the muon channel. The distribution variables are (from left to right): cos θBY ,
pCMS
ℓ , and pCMS

D∗ (in GeV/c) for the first row; pCMS
πs

, pCMS
ℓ , and pCMS

D∗ (in GeV/c) for the second
row. The histogram components are stacked: signal (in orange), Xℓν (in blue), true-D∗ (in purple),
fake-D∗ (in black) and continuum (in grey); black markers are data points (uncertainty is not
visible). Under the stacked histogram are shown the normalized residuals for each bin.

with insufficient events. This fact allows to study directly settings with uniform bin widths. As for

configuration B, the distributions show regions in space sparsely populated: several bins might not

have enough events. I compare two schemes: one with uniform bin width, the other with an evenly-

distributed number of events among the bins. By running the pseudo-experiments and inspecting

the pull distributions, I find no significant difference between the two schemes. Therefore I proceed

considering the simpler case with uniform bin width. In Tab. 5.3 is reported a summary of the final

settings for the configurations A and B, that will be used in the next Chapter to extend the fit to

measure the model-independent observables a′n, b
′
n, and c′n. For both configurations, the fraction

of skipped bins in the chosen settings is no more than 30%.
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Figure 5.4: Summary plot of the mean value and standard deviation of the free parameters of the
fit. The three tested integrated luminosity results are grouped: 360 fb−1 (top), 700 fb−1 (middle)
and 3000 fb−1 (bottom). In grey are shown the standard deviation bars, which are all consistent
with 1; black dots indicate the mean value obtained from the Gaussian fit; red and black ranges
indicate, respectively, σ and 3σ of the mean uncertainties obtained from the Gaussian fit.

Configuration A cos θBY pCMS
ℓ pCMS

D∗

Variable range [−1, 1] [0.8, 2.4] [GeV/c] [0, 2.5] [GeV/c]
Number of bins 3 5 4
Fraction of skipped bins [%] 24

Configuration B pCMS
πs

pCMS
ℓ pCMS

D∗

Variable range [0.05, 0.25] [GeV/c] [0.8, 2.4] [GeV/c] [0, 2.5] [GeV/c]
Number of bins 4 4 4
Fraction of skipped bins [%] 28

Table 5.3: Binning scheme for the configurations A (top) and B (bottom). Both configurations have
uniform bin width. The fraction of skipped bins is the number of bins with less than 30 entries over
the total number of bins; those bins are skipped in the χ2 fit.
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Chapter 6

Measurement of the

model-independent observables

In this Chapter I present the fit employed to measure the model-independent observables of the signal

decay. Then, I show an interpretation of these measurements to determine |Vcb| using a model for

the form factors. I compare two configurations of fit variables to assess which one provides the best

sensitivity to |Vcb| and the form factor parameters.

6.1 Fit of the model-independent observables

Once the fit of the sample composition is set, I extend it to measure the model-independent ob-

servables. To this purpose, I re-parameterize the signal pdf of Eq. 5.3 to obtain the signal yield as

a function of a′n, b
′
n and c′n, which are the free parameters of the fit adopted in this Section. Thus,

I refer to this improved version as the model-independent fit.

I first parameterize the signal yield as a function of the model-independent observables by

decomposing the signal branching fraction, which is the current fit parameter. The branching

fraction of B → D∗ℓνℓ decay can be obtained from the following formula:

B(B → D∗ℓνℓ) =
Γ(B → D∗ℓνℓ)

Γtotal
, (6.1)
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where Γ(B → D∗ℓνℓ) is the decay width of the selected decay and Γtotal is the total decay width of

B mesons, which is obtained as

Γtotal =
h̄

τB
, (6.2)

with τB the B meson lifetime (τB = 1.638 × 10−12 s) [16] and h̄ the reduced Planck constant

(h̄ = 65.82× 10−17 eV × s).

The decay width of B → D∗ℓνℓ is obtained by integrating the differential decay rate: configu-

ration A uses the two-dimensional decay rate (Eq. 2.15) that is integrated in w and cos θℓ,

Γ(B → D∗ℓνℓ) =

∫ 1.50349

1

dw

∫ 1

−1

dcos θℓ
d2Γ(B → D∗ℓνℓ)

dw dcos θℓ
, (6.3)

while configuration B uses the three-dimensional decay rate (Eq. 2.22) that requires the additional

integration of cos θD,

Γ(B → D∗ℓνℓ) =

∫ 1.50349

1

dw

∫ 1

−1

dcos θℓ

∫ 1

−1

dcos θD
d2Γ(B → D∗ℓνℓ)

dwdcos θℓdcos θD
. (6.4)

The maximum value of w is obtained at zero recoil energy (q2 = 0) using the formula of Eq. 2.2

and the mass values of B and D∗ mesons of Ref. [16]. The two differential decay rates are functions

of the model-independent variables a′n, b
′
n and c′n as shown in Eqs. 2.19- 2.21. Signal yield can

now be expressed in terms of these variables. However, the signal template is still fixed from the

simulation: it needs to be modified to be function of the model-independent observables either.

6.1.1 Signal reweighting

The template that makes the signal pdf is generated assuming a given model (BGL) for the form

factors (hence, fixed values of a′n, b
′
n and c′n). I need a way to modify the shape templates according

to new values of a′n, b
′
n and c′n, which change in the χ2 minimization to adapt the template (and

the signal yield) to the data. This is achieved through a weighting technique that happens at every

call of the χ2 in MINUIT when a scan of the parameter space is done searching for the minimum

of the χ2 function.

The weighting acts on the simulated data to change the underlying physics model used to

generate the sample. Let consider as an example the fit of configuration A. The signal template

must contain the information on the w and cos θℓ distribution of the original model. Therefore, the
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three-dimensional template in (cos θBY , p
CMS
ℓ , pCMS

D∗ ) is extended to a five-dimensional template with

(cos θBY , p
CMS
ℓ , pCMS

D∗ , w, cos θℓ). Then, I calculate the per-bin weight by evaluating the following

quantity

pi =

[
1

Γnew

∫
∆xi

dΓnew

dx
dx

] / [
1

Γgen

∫
∆xi

dΓgen

dx
dx

]
, (6.5)

where ∆xi is the two-dimensional space defined by the i-th bin in (w, cos θℓ) of the template

histogram; dΓj/dx and Γj are the differential decay rate and its integral over the full phase space,

with j = gen for the decay-model (BGL) used in the generation of the simulated data, and j = new

for the new decay-model with the parameters a′n, b
′
n, and c′n to be determined in the fit.

The five-dimensional histogram, with modified entries in the (w, cos θℓ) bins, is marginalized

to obtained the three-dimensional template in (cos θBY , p
CMS
ℓ , pCMS

D∗ ). The shape of the three-

dimensional distribution is then changed according to the new underlying physics model. Notice that

this weighting method allows to account for efficiency variations as a function of the reconstructed

variables and resolution effects and makes the template independent from the form factor model

assumed in the data generation. A similar procedure is adopted with the configuration B, with the

only difference being that I need to add another dimension for cos θD.

Notice that the weighting is not dependent on how much populated is the space of the B-

kinematics variables in the templates, (i.e. the number of bins defined for the extra dimensions

added to the original template of the reconstructed variables). The weight can be always computed,

and if there are no events in a particular bin, the weight will not modify the (zero) content. By

marginalizing the distribution to project only on the space of reconstructed variables, the weights

are summed up, and for the χ2 fit only the bin content of the histogram of the reconstructed

variables matters.

I choose to split the w range in 5 bins. This choice depends on the shape of the expected w

distribution and has been optimized in Ref. [52]. From the same Reference, cos θℓ is defined in

three bins of different widths, while I choose to split cos θD in three bin as well, but with uniform

bin widths. These three distributions are shown in Fig. 6.1. Since I use five w bins to evaluate the

three observables, there are now 15 free parameters for the signal in the model-independent fit.

In Fig. 6.2, I show how the one-dimensional distributions of pCMS
πs

, pCMS
ℓ and pCMS

D∗ change for

some different values of the parameters a′n, b
′
n and c′n.
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Figure 6.1: Distributions of w (left), cos θℓ (middle) and cos θD (right) for the electron channel.
The vertical dotted red line indicates the bin edges chosen for this analysis.
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Figure 6.2: From left to right: one-dimensional distributions of pCMS
πs

, pCMS
ℓ and pCMS

D∗ for the muon
channel. These distributions shows how the signal template changes its shape with different values
of a′n, b

′
n and c′n, compared with the generation values, indicated with black dots in each graphs:

in the firts row, parameter values are the same as generation ones; in the second and third rows are
shown different configurations of the model-independent observables.
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Parameter Value Parameter Value Parameter Value

a′1 0.216913 b′1 0.0838165 c′1 −0.013205
a′2 0.237823 b′2 0.116515 c′2 −0.0427276
a′3 0.266600 b′3 0.126478 c′3 −0.0790286
a′4 0.333476 b′4 0.130480 c′4 −0.154522
a′5 0.703115 b′5 0.130076 c′5 −0.534632

Table 6.1: Generation values of the model-independent observables, which are free parameters of
the fit.

6.1.2 Pseudo-experiment results

It is useful to run an analysis similar to that presented in Sec. 5.3, where I use pseudo-experiments

to study possible fit biases. In this case, I also want to compare the statistical sensitivity on the

parameters for the configurations A and B. At this scope, I generate and fit 1000 pseudo-experiments

for each configuration. The generation of pseudo-experiments is performed identically as before,

with the addition of considering the new, re-weighted template for the signal to generate a model

with the parameters a′n, b
′
n and c′n reported in Tab. 6.1. The signal template for the fit is the

original template from the simulation with the BGL as the generation model.

Results of these fits are the pull distributions of the 19 free parameters (15 model-independent

observables for the signal, and the same four background yields of fit in the Chapter 5), shown in

the Appendix D. While most of fit parameters present no significative bias, for both configurations

the parameters a′5 and b′4 have large biases (about 3 to 5 deviations from the mean error). For

configuration A, also the yield of the true-D∗ component for the muon channel has similar behaviour,

while for configuration B this occurs for c′5. An example of fit projections are shown in Fig. 6.3

and 6.4 for configuration A and B, respectively.

Figure 6.5 shows the plots of the 15 model-independent observables for each configuration in

bins of w, comparing the generation values with the mean values obtained from the 1000 pseudo-

experiments (the uncertainties are averages of the fit uncertainties).

To compare the two configurations, I calculate the relative difference for the uncertainty of the

model-independent observables:
(σA − σB)

σA
, (6.6)

used to highlight if there is an improvement in the measured parameter when passing from con-
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Figure 6.3: Projection distributions of a pseudo-experiment of configuration A after the model-
independent fit for the muon channel. The distribution variables are (from left to right): cos θBY ,
pCMS
ℓ , and pCMS

D∗ (in GeV/c). The histogram components are stacked: signal (in orange), Xℓν (in
blue), true-D∗ (in purple), fake-D∗ (in black) and continuum (in grey).
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Figure 6.4: Projection distributions of a pseudo-experiment of configuration A after the model-
independent fit for the muon channel. The distribution variables are (from left to right): pCMS

πs
,

pCMS
ℓ , and pCMS

D∗ (in GeV/c). The histogram components are stacked: signal (in orange), Xℓν (in
blue), true-D∗ (in purple), fake-D∗ (in black) and continuum (in grey).

figuration A, using the two-dimensional decay rate in (w, cos θℓ), to configuration B, using the

three-dimensional decay rate in (w, cos θℓ, cos θD). Table 6.2 reports the results obtained. The

uncertainties of background yields worsen in the configuration B: as noted in the fit of sample

composition, the configuration B features less discriminating distributions of the sample compo-

nents, diluting statistical sensitivity. On the other hand, all uncertainties of the model-independent

observables improve (up to 70%) with respect to those in configuration A. It is also interesting to

compare the average linear correlation factors between fit parameters in the two configurations: they

are shown in Fig. 6.6. For the a′n observables, neighboring parameters are highly anti-correlated in

configuration A while configuration B strongly reduces them; the same can be applied to b′n and c′n.
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Figure 6.5: Values of model-independent observables of configuration A (left) and B (right) in bins
w. Mean fit values are compared with the generated ones.
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Parameter
Relative

Parameter
Relative

Parameter
Relative

Parameter
Relative

Difference [%] Difference [%] Difference [%] Difference [%]

NXℓν (µ) -71.77 a′1 55.80 b′1 36.05 c′1 47.45
Ntrue (µ) -31.94 a′2 72.59 b′2 25.26 c′2 66.24
NXℓν (e) -95.22 a′3 36.07 b′3 32.96 c′3 18.83
Ntrue (e) -25.29 a′4 66.68 b′4 24.73 c′4 58.98

– – a′5 36.26 b′5 13.19 c′5 56.99

Table 6.2: Relative difference of the uncertainties [in %] for the fit parameters when passing from
configuration A to configuration B. Ntrue and NXℓν are yields of the two unfixed backgrounds,
defined in Sec. 5.2.

Between a′n and c′n of configuration A there are high (anti-)correlation indexes which are slightly

reduced in configuration B. Observables b′n have small correlations with a′n and c′n. In general,

correlation indexes reduce their absolute values from configuration A to B.

6.2 Sensitivity to |Vcb| and form factor parameters

The fit developed in the Sec. 6.1 allows to obtain model-independent observables in bin of w. This

is a noticeable result, as it enables the interpretation of the measurement a-posteriori assuming

any form factor parameterization (and so any theoretical advancement in this side) to obtain |Vcb|.

I want now to test the sensitivity to |Vcb| and form factor parameters, assuming a BGL model,

and compare the results from the two configurations. The 1000 pseudo-experiments of the previous

Section will be used for this study. The fit to determine |Vcb| and the BGL parameters will be

referred to as a-posteriori fit.

The χ2 function used for this fit reads:

χ2 =

15∑
i,j

[
xi − µi(θ̄)

]
V −1
ij

[
xj − µj(θ̄)

]T
, (6.7)

where the sums run over all 15 observables; xi(j) is the model-independent fit values of the observable

i(j); µi(j) is its predicted value, calculated by using the BGL parameterization of the form factors;

Vij is the covariance between observables i and j.

The vector of free parameters θ̄ depends on the assumed parameterization: in this case, I

truncate the BGL series expansion of f(z), g(z) and F1(z) at the first order (see Eqs. A.1- A.3).

The same number of parameters was also used in the data generation. Values of a′n, b
′
n and c′n are
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Figure 6.6: Correlation matrix of the 15 model-independent observables for configuration A (top)
and B (bottom).
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Parameter Generation Value

a0 0.0260
a1 −0.0604
b1 0.0171
c1 0.0075

|Vcb| 0.0387

Table 6.3: Generation values of the a-posteriori fit parameters.

obtained from the BGL form factor parameterization through Eqs. 2.16- 2.18).

The free parameters are a0, a1, b1, c1, and |Vcb|, and their generation values are reported in

Tab 6.3. The initial terms of two coefficient series, b0 and c0, are related to each other at zero recoil

(w = 1) and fixed by the value hA1
(1) = 0.9021 [74] obtained from lattice QCD calculations.

6.2.1 Results

The model-independent observables from the 1000 pseudo-experiments of Sect. 6.1 are fitted indi-

vidually for both configurations A and B, whose pull distributions are showed in Appendix E and

in the summary plot in Fig. 6.7. Generally, form factor parameters show biases within uncertain-

ties, while |Vcb| has a bias of 30% in configuration A, and 15% in B: this is caused by the higher

uncertainty of this parameter for configuration B. This must be furtherly inspected, as the bias may

be caused by the fixed value of hA1
(1). To compare the two configurations, I evaluate the mean

fit values and mean uncertainties of the BGL parameters and |Vcb|, which are reported in Tab. 6.4.

Uncertainties of configuration B parameters are bigger than configuration A, which is unexpected:

results obtained for the model-independent fit point out that the configuration B, featuring smaller

uncertainties for the model-independent observables which are used in the a-posteriori fit, should

show better sensitivity than configuration A.

The reason can be tracked down to the different correlations between the model-independent

observables in the two configurations. This is tested by constructing, for each pair of model-

independent observables (m,n), a covariance Vmn that uses uncertainties σB
m of the model-independent

observable determined in the configuration B and linear correlation factors ρAmn obtained in the fit

of configuration A:

Vmn = ρAmnσ
B
mσB

n . (6.8)

1The value of hA1
(1) is slightly different from that in Ref. [74] and tuned to that used in the Belle II simulation.
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Figure 6.7: Summary plot of the mean value and standard deviation of the free parameters of the
a-posteriori fit. The two configurations are grouped: the top group refers to configuration A while
the bottom one to configuration B. In grey are shown the standard deviation bars, which are all
consistent with 1; black dots indicate the mean value obtained from the Gaussian fit; red and black
ranges indicate, respectively, σ and 3σ of the mean uncertainties obtained from the Gaussian fit.

The resulting values of the a-posteriori fit parameters are then compared with previous results

from the individual configurations. Table. 6.5 reports the results of this test: the uncertainties

reduce significantly respect to those obtained from configuration A. This shows that the correlations

between the model-independent observables play a significant role in determining the sensitivity of

the form factor parameters and |Vcb|.

6.3 Final considerations

In this Chapter I studied the model-independent fit in two configurations: both of them employ

pCMS
D∗ and pCMS

ℓ , since they are highly correlated with B-kinematic variables; in addition, configu-

ration A uses cos θBY , which helps to distinguish between background components; configuration B

uses instead pCMS
πs

, which allows to access the three-dimensional decay rate. Results from these fits
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Parameter
Mean Mean Relative

Value (FIT) Error (FIT) Uncertainty [%]

A

a0(w) 0.0259 0.0007 2.83
a1(w) −0.0604 0.0206 34.06
b1(w) 0.0175 0.0039 22.46
c1(w) 0.0075 0.0002 2.48
|Vcb| 0.0387 0.0001 0.39

B

a1(w) 0.0259 0.0008 3.03
a1(w) −0.0595 0.0242 40.65
b1(w) 0.0171 0.0037 21.82
c1(w) 0.0075 0.0002 2.60
|Vcb| 0.0387 0.0002 0.48

Table 6.4: Mean values and errors of the free parameters of the a-posteriori fit for configurations
A and B. Relative uncertainties are also reported.

Parameter
Mean Mean Relative

Value (FIT) Error (FIT) Uncertainty [%]

Test

a0(w) 0.0275 0.0006 2.04
a1(w) −0.1203 0.0155 12.93
b1(w) 0.0246 0.0019 7.55
c1(w) 0.0072 0.0001 1.68
|Vcb| 0.0388 0.0001 0.14

Table 6.5: Fit values of the free parameters of the a-posteriori fit for the test conducted. Relative
uncertainties are also reported.

show small biases for some of the model-independent observables, but those are small enough that

could be assessed by systematic uncertainties without spoiling the precision of the measurement

and the bottom-message of this analysis. The model-independent observables offer the possibility

to interpret the measurement to obtain |Vcb| using any parameterization for the form factors.

In the model-independent fit, I observe that configuration B features smaller uncertainties for

the model-independent observables (but not for the background yields) than configuration A. On

the other hand, the a-posteriori fit, employed to determine |Vcb|, shows a better sensitivity for

configuration A. This is due to the correlations between the model-independent observables: it

seems that, when using proxy variables to access the B kinematics, a better signal-to-background

discrimination (configuration A) is preferred over adding more information from the differential

decay rate (configuration B).
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Summary

The standard model is currently the best theory of elementary particles and their interactions.

However, it cannot provide answers to several open questions in particle physics and cosmology

and requires an extension to a more general theory, which extends to energies higher than those

probed so far. The indirect approach offers a powerful way to search for those extensions through

high-precision measurements seeking for deviations from clean, accurate standard model predic-

tions in processes sensitive to new phenomena. The Belle II experiment, operating at the world

highest luminosity electron-positron collider, is one of the main experiments to pursue the indirect

approach through measurements in the weak interactions of heavy quarks. A flagship measurement

of its physics program is a precise determination of the bottom-to-charm weak-coupling strength

|Vcb|. Determinations of this coupling through two different methods have shown a long-standing

inconsistency that must be resolved for the ultimate precision.

In this thesis, I focused on the exclusive measurement of |Vcb| with the decay B0 → D∗−ℓ+νℓ

at Belle II. Using simulated data, I explored a novel experimental approach which provides a

measurement of model-independent observables of the decay dynamics. These observables can be

interpreted assuming any theoretical model to parameterize the strong interaction contribution to

the decay amplitude, necessary to determine |Vcb| from experimental data.

First, I studied a selection of the decay from Belle II data. Using a full, realistic simulation

of the Belle II sample collected between 2019 and 2022, I inspected the distributions of several

discriminating variables to reduce contributions from different background sources, obtaining a

signal purity of 80%. I categorised the composition of the remaining background and made a

comparison of simulated and experimental data as to assess the simulation quality.

Then, I inspected the kinematics variables that provide access to the decay dynamics and are
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sensitive to the model-independent observables. The core of the measurement is a χ2 fit to the

binned distribution of those variables. I investigated the settings of the fit: first a simplified version

to obtain the sample composition and measure the signal branching fraction; then an extension

to include the model-independent observables. I used pseudo-experiment data to find the fit con-

figuration that gives the smallest biases in the estimation of the fit parameters, simulating three

scenarios for the experimental sample size and investigating two combinations of fitting variables.

Finally, I showed an interpretation of the model-independent observables to determine |Vcb| using

a specific theoretical parametrization for the description of the strong interaction contribution to

the decay amplitude. I compared the two configurations of fit variables to assess which one provides

the best sensitivity to |Vcb| and the form factor parameters.

My work proves that the inspected kinematic variables offer sensitivity to the model-independent

observables, such that their measurement can be pursued in Belle II data with the current sample.

I showed the possibility to interpret the data with a theoretical model to obtain |Vcb| from this

measurement. I showed also that in the fit performed, for the best sensitivity on |Vcb|, a better signal-

to-background discrimination is preferred over adding more information on the decay dynamics.
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Appendix A

Form Factor parameterizations

The BGL parameterization, already presented in Sec. 2.1, is reported in terms of helicity amplitudes.

They can be expressed in series of z:

g(z) =
1

P1−(z) ϕg(z)

∞∑
n=0

anz
n , (A.1)

f(z) =
1

P1+(z) ϕf (z)

∞∑
n=0

bnz
n , (A.2)

F1(z) =
1

P1+(z) ϕF1
(z)

∞∑
n=0

cnz
n , (A.3)

with z =
(√

w + 1−
√
2
)
/
(√

w + 1 +
√
2
)
the conformal variable. The functions ϕf,g,F1

are called

outer functions, and the Blaschke factors P1±(z) are functions that describe the resonance J
P = 1±:

P1±(z) = C1±

poles∑
k=1

z − zk
1− zzk

, (A.4)

with

zk =

√
t+ −m2

k −
√
t+ − t−√

t+ −m2
k +

√
t+ − t−

, (A.5)

where t± = (mB ± mD∗)2, mk indicates the pole mass of the k-th excited B∗
c state and C±

1 is

a coefficient. The assumed values of these parameters are in Table A.1. The outer functions are
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JP Pole mass [GeV/c2] χ̃JP (0) CJP

1− 6.337 6.899 7.012 7.280 5.131 1
1+ 6.730 6.736 7.135 7.142 3.894 1

Table A.1: Pole masses assumed in this work. The values are taken from [74].

defined as follows:

ϕg(z) = 16r2
√

nI

3πχ̃1−(0)

(1 + z)2√
1− z[(1 + r)(1− z) + 2

√
r(1 + z)]4

, (A.6)

ϕf (z) =
4r

m2
B

√
nI

3πχ̃1+(0)

(1 + z)
√
(1− z)3

[(1 + r)(1− z) + 2
√
r(1 + z)]4

, (A.7)

ϕF1
(z) =

4r

m3
B

√
nI

6πχ̃1+(0)

(1 + z)
√
(1− z)5

[(1 + r)(1− z) + 2
√
r(1 + z)]5

, (A.8)

where r = mD∗/mB , nI is the effective number of light quarks, which is 2.6, χ̃1±(0) are coefficients

of outer functions, also reported in Table A.1. The coefficients in the series of Eqs A.1-A.3 are

bounded by the unitarity constraints:

∞∑
n=0

a2n ≤ 1 ,

∞∑
n=0

(b2n + c2n) ≤ 1 . (A.9)

These coefficients are the free parameters of the BGL model; depending on the desired truncation,

there can be an arbitrary number of them. Two initial values of the series can be fixed from lattice

calculation: the coefficient b0 is related to hA1(1):

b0 = 2
√
mBmD∗P1+(0)ϕf (0)hA1

(1) , (A.10)

and it is related to the coefficient c0:

c0 = (mB −mD∗)
ϕF1

(0)

ϕf (0)
b0 . (A.11)
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The CLN parametrization functions can be connected with BGL functions

hA1
(w) =

f(w)
√
mBmD∗(1 + w)

, (A.12)

R1(w) = (w + 1)mBmD∗
g(w)

f(w)
, (A.13)

R2(w) =
w − r

w − 1
− F1(w)

mB(w − 1)f(w)
, (A.14)

and can be expressed in terms of three form factors, hA1(w), R1(w), R2(w):

H±,0 = 2

√
mBmD∗

mB +mD∗
(1− r2)(w + 1)(w2 − 1)1/4hA1

(w)H̃±,0(w) (A.15)

and

H̃±(w) =

√
1− 2wr + r2

1− r

[
1∓

√
w − 1

w + 1
R1(w)

]
, (A.16)

H̃0(w) = 1 +
(w − 1)(1−R2(w))

1− r
. (A.17)

We can rewrite hA1(w) in powers of the conformal variable z and the two remaining form factors

in powers of (w − 1):

hA1
(z) = hA1

(1)[1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3] (A.18)

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 (A.19)

R2(w) = R2(1)− 0.11(w − 1)− 0.06(w − 1)2 (A.20)

In this way, the three form factors depend only on four parameters: hA1
(1), R1(1), R2(1) and ρ.
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Appendix B

Data-simulation comparison
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Figure B.1: Data-simulation comparison for distributions of the muon channel (left) and electron
channel (right). The graphs show the distributions of pCMS

ℓ . Ratio of data and MC distributions is
also shown in the bottom part of each plot.
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Figure B.2: Data-simulation comparison for distributions of the muon channel (left) and electron
channel (right). The graphs show the distributions of pCMS

D0 (top row), pCMS
πs

(middle row) and pCMS
D∗

(bottom row). Ratio of data and MC distributions is also shown in the bottom part of each plot.
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Figure B.3: Data-simulation comparison for distributions of the muon channel (left) and electron
channel (right). The graphs show the distributions of pCMS

K (top row) and pCMS
π (bottom row).

Ratio of data and MC distributions is also shown in the bottom part of each plot.
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Figure B.4: Distributions of variables for events in the sidebands for the muon channel. The
graphs show the distributions of cos θBY (top-left), pCMS

ℓ (top-right), pCMS
D∗ (bottom-left) and pCMS

πs

(bottom-right). Ratio of data and MC distributions is also shown in the bottom part of each plot.
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Figure B.5: Distributions of variables for events in the sidebands for the electron channel. The
graphs show the distributions of cos θBY (top-left), pCMS

ℓ (top-right), pCMS
D∗ (bottom-left) and pCMS

πs

(bottom-right). Ratio of data and MC distributions is also shown in the bottom part of each plot.
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Appendix C

Fit of sample composition: pull

distributions
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Figure C.1: Pull distributions of the five free parameters of the fit for the 360 fb−1 integrated
luminosity pseudo-experiments.
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Figure C.2: Pull distributions of the five free parameters of the fit for the 700 fb−1 integrated
luminosity pseudo-experiments.
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Figure C.3: Pull distributions of the five free parameters of the fit for the 3000 fb−1 integrated
luminosity pseudo-experiments.
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Figure D.1: Pull distributions of the free parameters of the model-independent fit for configuration
A.
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Figure D.2: Pull distributions of the free parameters of the model-independent fit for configuration
A.
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Figure D.3: Pull distributions of the free parameters of the model-independent fit for configuration
B.
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Figure D.4: Pull distributions of the free parameters of the model-independent fit for configuration
B.
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Figure E.1: Pull distributions of the free parameters of the a-posteriori fit for configuration A.
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Figure E.2: Pull distributions of the free parameters of the a-posteriori fit for configuration B.
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