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Abstract

This thesis aims to compare TabNet, a Deep Learning (DL) algorithm for classi-
fication of tabular data, to the established Boosted Decision Tree (BDT) used for
event selection of the τ− → π−π−π+ντ decay. The goal is to see whether Tab-
Net can outperform the established BDT. First the impact of hyperparameter
values of TabNet were studied manually before conducting a high-dimensional
automated hyperparameter optimization. The established BDT still yields a
better performance over all purities than TabNet. Additionally, the feature im-
portance of TabNet was studied and compared to the established BDT, to see
the influence of features on to the prediction of these two models. For both
models the most important category was the event-shape and the third most
important were the vertex reconstruction features. The second and fourth fea-
tures differ for TabNet and the established BDT. The second most important
feature for TabNet were the γ and π0 rejection features and the forth most im-
portant features were the kinematic features. For the established BDT it was
the other way around.
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Chapter 1

Introduction

The Standard Model (SM) contains three generations of leptons. The heavi-
est lepton is called τ lepton and has a mass of 1.777GeV/c2. The decay time
of the τ lepton decaying via the weak force is around 290 fs [17]. As it is the
heaviest lepton it can decay into lighter leptons, i.e. electron (e) and muon (µ).
It can also decay into light hadrons like Pion (π) and Kaon (K). The τ lepton
allows to study Quantum Chromodynamics (QCD), the theory describing the
strong interaction, under very clean conditions due to its semileptonic decays,
especially in the low-energy regime. Additionally, τ leptons provide a chance
for detecting New Phyiscs (NP). This includes the detection of the violation of
the CP-symmetry, the question whether neutrinos are massless, if the lepton
number is violated and testing lepton universality [24].

τ decays to multi-body hadronic final states can be used for spectroscopy of
hadronic resonances, shedding light to the strong interaction and the proper-
ties of mesons. These meson resonances are short-lived states decaying via the
strong interaction. Their characterization is essential to understand the strong
interactions influence on quarks. For meson spectroscopy a Partial Wave Anal-
ysis (PWA) is used, allowing to extract properties such as the spin (J), parity
(P), mass and width from the distribution of the decay products.

The PWA needs a clean sample of the signal decay. In this thesis, the τ− →
π−π−π+ντ

1 decay is studied. The pions in the signal decay are dominantly
produced via an a1(1260) resonance. The shape, mass and width of this reso-
nance are not well determined. Additionally, two more resonances could occure,
namely the a1(1420) and a1(1640) resonance [26]. In order to study these reso-
nances the signal events need to be selected from the Belle II data set including
a variety of other decays, such as τ decays that do not have a 3 × 1 prong
topology, where the number of prongs is equal to the number of charged par-
ticles the τ leptons decay into. The two most challenging backgrounds are qq

1The charge conjugate is taken into account implicitly.
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events originating from e+e− events as continuum background [12], followed by
τ+ → π−π−π+π0ν decays, which also have a 3× 1 topology.

Before the PWA of the τ− → π−π−π+ντ decay was conducted a BDT was
used to select the signal event from the sample to get an as pure as possible
sample. The sample consist out of tabular data. Therefore a BDT was prefered
over a Neural Network (Neural Network), as they struggle with tabular data
due to e.g. the presence of uninformative features [16]. Despite these struggles
there are some Deep Learning (DL) algorithm approaches that seem to yield
promising results. TabNet [4] is one of these approaches that was compared
with other Machine Learning (ML) models such as BDTs and even performed
better on e.g. the Higgs-Boson data set [4] by achieving higher accuracy scores.

The goal of this thesis is to apply TabNet on simulated Monte Carlo (MC)
data from the Belle II experiment and see whether it can outperform the cur-
rently used established BDT for event selection of the τ− → π−π−π+ντ decay.
Additionally the importance of the input features of TabNet, which are the sim-
ulated variables, is studied and compared to the input feature importance of the
established BDT, as both used the same input features for training.

The performance of TabNet is optimized by changing hyperparameter values
manually to see their impact on the performance of TabNet. After this a high-
dimensional automated hyperparameter optimization was conducted using the
Optuna [2] framework. The obtained performance is compared to the estab-
lished BDTs performance.
The feature importance is studied by using the Shapley Additive Explanations
(SHAP) [27] framework, which calculates Shapley values to determine the im-
portance of the used features. The Shapley values were calculated for the es-
tablished BDT and TabNet making the feature importance comparable among
these two models and gives insights into the decision-making of the models.

In chapter 2 the Belle II experiment alongside its seven subdetectors is pre-
sented. In chapter 3 BDT and TabNet are introduced alongside the preprocess-
ing steps and the data set used in this analysis. In chapter 4 the evaluation
methods are introduced in order compare the models studied in this analysis.
In chapter 5 the performance optimization process of TabNet is discussed and
the performance is compared to the established BDT performance. In chapter
6 the feature importance of TabNet is discussed and compared to the feature
importance of the established BDT. In chapter 7 the results are concluded and
an outlook for future analyses is given.
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Chapter 2

The Belle II Experiment

The Belle II Experiment is located at the SuperKEKB accelerator in Tsukuba,
Japan. It is an electron-positron collider experiment with the goal to make
precise measurements of weak interaction parameters, study exotic hadrons and
search for New Phyiscs (NP) [9]. The collision energy is around the Υ(4S)
resonance peak. The collider has asymmetric beam energies of 7.0GeV for elec-
trons and 4.0GeV for positrons [12]. Since June 2022 SuperKEKB has held
the current world record for luminosity with a value of 4.7× 1034 cm−2 s−1 [9].
Despite this world record the target luminosity of 8.0× 1035 cm−2 s−1 is yet to
be reached [10]. During the run from 2019 to 2022 a data sample corresponding
to an integrated luminosity of 400 fb−1 [9] was acquired and set to achieve a
value of 50 ab−1 to get a higher statistical precision [10].
Since Υ(4S) practically only decays to BB-meson pairs with a cross-section of
1.05 nb [18] the SuperKEKB accelerator is also referred to as B-factory. As the
production of τ -lepton pairs has a similar cross-section of 0.92 nb [18], Belle II
can also be called a τ -factory, enabling the analysis of τ -physics in decays such
as τ− → π−π−π+ντ . Besides these two physic processes there are also others
e.g. qq, µµ and Bhabar events.

In section 2.1 the Belle II detector and its sub-detectors will be explained.

2.1 The Belle II Detector

The Belle II detector has a cylindrical shape consisting of two endcaps and one
main barrel region parallel to the beam axis. The ”forwards”-direction is along
the electron beam and the ”backwards”-direction is along the positron beam.
For the analysis of the received data from the detector a suitable coordinate sys-
tem needs to be defined. The origin of the coordinate system is chosen at the
Interaction Point (IP) of the two beams. The positive z-axis lies in the moving
direction of the electron beam and the y-axis vertically upwards. Together with
the x-axis this forms a right handed Cartesian coordinate system [20].
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The Interaction Point (IP) is surrounded by an ultra-light, 2 cm diameter beryl-
lium beam pipe [12]. Around the pipe there is the Belle II detector consisting of
seven subdetectors in total, each one fulfilling a different task e.g. determination
of the momenta of particles. All detectors and their arrangement are depicted
in figure 2.3.

Closest to the IP are two layers of Pixelated Silicon Sensors (PXD) and four
layers of Double-Sided Silicon Strip Sensors (SVD). The PXD layers are of the
high resolution DEPFET type [3]. Their task is to measure decay vertex po-
sitions of short living particles like B mesons. Together, PXD and SVD are
referred to as Vertex Detector (VXD).

The trajectories and energy loss (dE/dx) of charged particles are determined
via a Central Drift Chamber (CDC) which is filled with helium and ethane in
a ratio of 50:50. The three dimensional track of the particle passing through is
reconstructable.

In the next layer the Time-of-Propagation (TOP) and an aerogel-based prox-
imity focusing ring imaging Cherenkov system (ARICH) are located. Both use
the Cherenkov effect to determine the particles passing through [25].
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Figure 2.1: Scheme of a Kaon (K) and Pion (π) passing through a Time-of-
Propagation (TOP) producing Cherenkov radiation. Taken from [14]

The TOP detector is located in the barrel region. Figure 2.1 shows a scheme of
the TOP. It consists out of a 2 cm-thick quartz bars, in which the passing par-
ticle emits its characteristic Cherenkov radiation. Based on the angle in which
the photons are emitted the arrival time on the end of the bar differs slightly for
every particle due to total internal reflection. This allows to distinguish between
different particles e.g.K and π, where π has a larger angle as it is lighter than
K. At the end of the quartz bar Photomultiplier Tubes (PMTs) are placed to
detect the photons.

Figure 2.2 shows a scheme of the ARICH located at the front endcap of the
barrel. In this detector the traversing particle passes a total of 4 cm-thick aero-
gel. This aerogel consists of two different layers to have two different refraction
indices n1 = 1.045 and n2 = 1.055. Each layer is 2 cm-thick. After the aerogel-
layers the light propagates through an expansion volume, before hitting the
photon detector and creating characteristic Cherenkov rings, where the radius
depends on the particle [15].
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Figure 2.2: Scheme of the aerogel-based proximity focusing ring imaging
Cherenkov system (ARICH). The two layers of aerogel are visible with their
respective refraction indices (n1 = 1.045 and n2 = 1.055). The vertical bar
displays the photon detectors. Taken from [12].

Electromagnetic Calorimeters (ECLs) are used to detect electrons and photons,
which deposit almost all their energy in the ECL, via electromagnetic showers.
Thereby the energy of the particle is measured. The ECL is located at the
barrel and endcaps covering almost 90 % of the solid angle in the center-of-mass
system.

Around the barrel ECL is a large-bore solenoid coil providing a 1.5T magnetic
field. It bends the trajectories of the charged particles. Thereby the momenta
of charged particles are measured.

The last layer consists of the K0
L and Muon Detectors (KLM)s. As muons

and kaons travel through the other calorimeters in the Belle II detector only
these two types of particles are detected in this layer [12].
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Figure 2.3: Top view of the Belle II detector. The purple and green detectors
are the K0

L and Muon Detector (KLM) and the Electromagnetic Calorimeter
(ECL). The orange detector is the aerogel-based proximity focusing ring imaging
Cherenkov system (ARICH). The turquoise detector is the Time-of-Propagation
(TOP). The blue detector is the Central Drift Chamber (CDC). The light purple
detector is the Double-Sided Silicon Strip Sensors (SVD). The light blue detector
is the Pixelated Silicon Sensors (PXD). Taken from [12]
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Chapter 3

MVA Methods for
Fineselection

Multivariate Analysis (MVA) uses two or more features at once in order to find
patterns and correlations between them. This can be done by using different
ML models. Model refers to the algorithm that learned by training on a specific
data set to find patterns and make predictions by the patterns it has learned.
This can include tasks like classification, where the model needs to distinguish
between e.g. signal and background. In order to make precision physics mea-
surements it is crucial to be able to distinguish between signal and background
[5]. The process of separating signal from background is called event selection.
The event selection scheme is divided into three steps. First the reconstruction
is used to reconstruct the original particle from the measured data of the decay
products. Second the preselection is applied, which uses the 3 × 1 topology of
the τ− → π−π−π+ντ event in order to distinguish it from background. Third
the fineselection is applied to get a maximally pure signal event sample. In this
step a MVA is used in the form of a BDT to get the maximum precision of the
measured data as an event is characterized by multiple features of the data [5].
This thesis compares TabNet to the established BDT in this event selection step.

As DL algorithms are biased towards smooth functions the irregular patterns,
in tabular data, are challenging [16]. Further more they are not robust against
uninformative features often appearing in tabular data [16]. Apart from data
structure the computation time needed for DL algorithms tends to be longer
than for BDTs [16]. Also the vast amount of hyperparameters makes it chal-
lenging to find optimal solutions.
Still there are many attempts to make DL work on tabular data. One promising
and in this thesis used attempt is called TabNet [4]. The authors of [4] com-
pare several tree-based algorithms on several data sets, against the proposed
TabNet. The most outstanding result comes from the Poker Hand data set [6],
where TabNet outperforms tree-based models by almost 30% [4]. Making it
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interesting for physics data applications is the comparison on the Higgs boson
data set. Here the performance is not as outstanding as compared to the Poker
Hand data set but still higher with an accuracy of 78.84% against 75.97% for
the BDT [4]. Therefore TabNet is used in this thesis.

Section 3.1 presents the data set used in this thesis and the used features in
the analysis. Section 3.2 introduces the BDT model. Section 3.3 presents the
TabNet model, its architecture and the scaling of the data alongside with the
training.

3.1 The Data Set

The data used for training, validating and testing the models analysed in this
thesis is simulated Monte Carlo (MC) data from the Belle II MC. Also the
established BDT was trained on this data set. A total of 4×362 fb−1 generic
MC data was produced, containing the τ− → π−π−π+ντ signal and every
background. The data set is divided into 32 equal chunks. In this thesis only
chunk 31 was used with 15, 481, 952 events. As signal the truth τ− → π−π−π+ντ
decay was chosen according to the known MC truth and the rest was considered
to be background. The background consisted of taubBkg which represent other
τ decays not belonging to the signal excluding the π−π−π+π0ν decay as this
also has a 3× 1 topology and decays of qq events as the continuum background
[12] the other channel are decays not originating from τ lepton decays. The
total numbers of decays per channel are shown in table 3.1.

Table 3.1: Number of events alongside their fraction in the preselected data.
Only tau3pi is considered as signal the rest is referred to as background.

Decay Events Fraction[%]
total 15, 481, 952 100%
qq 7, 085, 954 46%

tau3pi 3, 841, 829 25%
π−π−π+π0ν 1, 841, 148 12%

other 1, 392, 989 9%
tauBkg 1, 320, 032 8%

3.1.1 Utilized Features

A hand-made set of features including 30 features are used as input to TabNet in
this thesis. The same features were used for the established BDT. The utilized
features can be divided into four categories:

• Event-shape: features that characterise the events by their shape. The
thrust is the only feature of this category used in this thesis.
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• Kinematics: these features correspond to the energy and momenta of
the particles in the events. This also includes missing momenta.

• Vertex reconstruction: feature of this category give information about
the origin of the tracks.

• γ and π0 rejection: features that suppresses background events with
photons and π0.

A list of all features divided into their subcategories is shown in section A.2.

Some features need more explanation as it is not clear from their label what
they describe. The first one is thrust. It describes how co-linear the tracks of
an event are aligned. It is defined as

T = max
n⃗

∑
i |p⃗in⃗|∑
i |p⃗i||n⃗|

, (3.1)

where n⃗ is called thrust axis. The value of T is in the interval of [0, 1]. When
the value gets close to 1 the event is more jet-like and closer to 0 corresponds
to a more spherical event.
Next are the features belonging to the list of reconstructed γ and π0 rejection
features. The π0 decay into two photons that are measured and reconstructed
to a π0. Every photon that is not assigned to a π0 is used under the following
conditions. The first condition only includes photons with an energy larger
than 200MeV. The next cut is called loosePhoton. Here only photons with an
energy larger than 100MeV are included. The last cut is an MVA cut. This cut
separates photons coming from physical processes, which we want to suppress
from photons from background processes like photons coming from bumping
into the beam pipe or are due to the interaction of the particles in the beam.
Most of the kinematic features are measured in the Center of Mass System
(CMS) and are denoted with CMS.

3.2 Boosted Decision Trees

A Decision Tree (DT) is like a cut-based analysis, where thresholds in the d-
dimensional feature space are chosen to separate signal from background. The
input data gets split recursively based according to the cuts made on the fea-
tures. Each split is made to maximize the information gain. This continues
until some stopping condition is met. A schematic representation is shown in
figure 3.1.
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Figure 3.1: Schematic representation of a Boosted Decision Tree (BDT). The
blue boxes depict the nodes and leaves represent the end nodes or decision. x,
y, z represent the thresholds for the split of the data. Taken from [7].

The BDT is a combination of decision trees and a boosting algorithm like gra-
dient boosting. A single DT is a weak learner, but if combined with many DTs
becomes a strong classifier. After data is processed by a single DT, a new DT
is created using gradient descent which designed to improve the previous trees.
Again this procedure continues until a stopping condition is met [7].
In this thesis a BDT that was already trained on the full simulated MC data
from the Belle II experiment (see section 3.1) and had optimized hyperparam-
eter values is used as comparison to TabNet. This BDT is referred to as the
”established BDT”1.

3.3 TabNet

The architecture of TabNet is shown in figure 3.2 with multiple decision steps.
Each decision step has the same structure. TabNet uses sequential attention
[13] to select the input features used to make predictions. By this approach the
network filters uninformative features and even makes it interpretable. A single
step consists of an attentive transformer providing a mask to mask the input
features followed by a feature transformer. Both will be explained in more detail
in sections 3.3.1 and 3.3.2.

1The established BDT was developed by Dr. Stefan Wallner and Yingming Yang.
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First the input goes through a Batch Normalization Layer (BN) before passing
the first feature transformer, explained in section 3.3.1 and then entering the
first step. In a single step the input passes the attentive transformer, explained
in section 3.3.2, which provides the mask for the input features. Every mask
is aggregated to provide interpretability at each step. Next is a feature trans-
former, after which the output is split into two. One part undergoes a ReLu2

function and is subsequently added to the overall output. The other part gets
feed to the next steps attentive transformer. This process is repeated nsteps

3

times. Finally the summed output of all decision steps is processed through a
Fully Connected Layer (FC), which provides the final output of TabNet. In the
analysis of this thesis of the simulated MC data from the Belle II experiment
the final FC will be a two dimensional layer, as we are using binary classification
in terms of signal and background events.
Additional information, in addition to the decision output is provided by the
masks, which gives insights on information the computer used for its decisions
in a single step. This is also referred to as local interpretability.

Figure 3.2: Architecture of TabNet. Two steps are depicted, but more can be
added. Each step has the same structure. The most important parts are the
feature and attentive transformers. Before the first feature transformer a Batch
Normalization Layer (BN) is placed. The last layer providing the output is a
Fully Connected Layer (FC). Taken from [4].

2Rectified Linear Unit (ReLU) is an activation function setting negative values to zero.
3a parameter representing the number of decision steps.
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3.3.1 Feature Transformer

Figure 3.3: A feature transformer used in the TabNet architecture. One trans-
former block consists of a Fully Connected Layer (FC), Batch Normalization
Layer (BN) and a Gated Linear Unit (GLU). Here two decision step dependent
and two shared blocks are represented. After each block the result is added to
the previous result, with a scaling factor of

√
0.5. Taken from [4].

In figure 3.3 the structure of a feature transformer is depicted, which consists
of 4 transformer blocks divided into two types indicated by the dashed lines.
One type is shared across the decision steps and the other one is dependent on
the decision steps. Sharing across decision steps means, that the same weights
achieved in earlier steps are taken into account, while the independent trans-
former block starts from scratch. A single transformer block is composed of a
Fully Connected Layer, a Batch Normalization Layer and a Gated Linear Unit.
The GLU is defined as

GLU(x) = σ(x) · x, (3.2)

where σ(x) is a Sigmoid function4.
Every block’s result is added to the previous result, with a scaling factor of√
0.5. The scaling factor is introduced to help stabilize the learning by ensuring

that the variance does not change drastically throughout the network [4]. The
feature transformer takes input of dimension nfeatures and outputs information
of dimension nd+na, which are both hyperparameters, that will be explained in
section 3.3.3. nfeatures is the dimension of the features i.e. how many features
are passed to the network.

4Here σ(x) = 1
1+e−x is used.
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3.3.2 Attentive Transformer

Figure 3.4: An attentive transformer used in the TabNet architecture. It starts
with an FC followed by a BN. Before inputting the features to the Sparsemax
function they are scaled (Prior scales). The output of the Sparsemax function
is again used to scale the next Sparsemax input. Taken from [4].

Figure 3.4 depicts the structure of an attentive transformer. Again the first two
layers are FC and BN layers. The reusage of features is controlled by scaling
them with ’Prior Scales’. It rescales the features before entering the Sparsemax
function according to

Pi = Πi
j=1(γ −Mj), with P0 = 1 (3.3)

where Mj is the previous mask and γ is the relaxation factor5. Prior scaling is
therefore performed based on the knowledge of what is known about a feature
and how often it was used in the previous steps.
In order to obtain the masks the scaled outputs are fed into a Sparsemax func-
tion. A Sparsemax function is a sparser version of the Softmax function [21].
It sets features with negative values to zero and is responsible for the instance-
wise feature selection. The attentive transformers input dimension is na and its
output dimension is nfeatures.

3.3.3 Hyperparameters of TabNet

Here a list of the used hyperparameters is presented [11], their default values
are presented in table A.2 alongside their recommended range according to the
authors of [4] and [11]. The default values will be referred to as model default
hyperparameter values. There are a few parameters left out as they are not rele-
vant in this application, e.g. three parameters for categorical features, which are
not of interest as there are no categorical features in the Belle II data. Left out
hyperparameters are listed in table A.1. During this thesis the hyperparameter
values are constantly adjusted. During the manual hyperparameter optimiza-
tion (see section 5.1) the model default hyperparameter values are used for the

5a parameter controlling the reusage of features
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first model. Afterwards the hyperparameter values are changed one by one.

The hyperparameters can be split into two categories: model parameters and
fit parameters.
First we will take a look at the model parameters, which impact the structure
of the model.

• nd : parameter for the dimension of the decision prediction layer. The doc-
umentation states that this parameter is a risk for potential overfitting[11].

• na : dimension of the attention masks embedding. It is recommended to
set this to the value of nd. Therefore both features are referred to as
n da ≡ na = nd.

• nsteps : number of decision steps.

• gamma : coefficient for feature reusage in the masks. If set to 1 each
feature will be used in only a single decision step. Larger values allow
features to be used in more than one decision step.

Next are the fit parameters, which impact the training of the model, but are
not directly part of the model.

• lambda sparse : sparsity coefficient for feature selection. The bigger the
coefficient the sparser the model will be.

• learning rate : parameter used for the Adam6 optimizer, used in the anal-
ysis. The learning rate corresponds to the magnitude of change performed
on the parameters, based on the computed error.

• gamma scheduler : this hyperparameter is connected to the scheduler
used for adjusting the learning rate of the network. Here an exponential
scheduler7 is used, which decays the learning rate by gamma scheduler
per epoch.

• max epochs : maximum number of epochs TabNet is trained.

• patience : early stopping interrupts the training when for patience epochs
a given metric does not change. Here the validation Area Under the Curve
(AUC) is used for early stopping.

• batch size: size of the batches. A large batch size of around 1 − 10% of
the sample size is recommended.

• virtual batch size : size of batches used for the ghost batch normaliza-
tion, which normalizes batches of the size of virtual batch size to mimics
training with small batch size [19]. batch size should be a multiple of this
value.

6https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
7learning rate(epoch) = gamma scheduler × learning rate(epoch− 1)
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3.4 Scaling the Data and Training of TabNet

Before TabNet is trained and used to make predictions the input data needs to
be preprocessed. This includes scaling the data and handling missing values.
In the data set used in this analysis there are no missing values, reducing the
prepocessing steps to scaling the data. Without scaled data the problem gets
more complex, as each feature may be on a different scale i.e. kilograms or
hours. The error gradient may have large values and therefore the weight values
may change a lot which makes the learning process unstable [23]. As TabNet
was trained with a specific scaler the scaler needed to be saved as it is part of
TabNet. In this thesis the initial training sample was used to learn the scalar
parameters. After scaling the data the hyperparameter values are selected and
subsequently the model is initiated and fit with the scaled data for max epoch
epochs. This only holds if patience = 0.
TabNet uses BN to normalize the data before entering the first feature trans-
former (see section 3.3). Therefore the authors of [4] state that TabNet can
handle raw data making the scaling unnecessary. Whether this holds true is
studied in section 5.1.1.
The goal of training a neural network is to adjust the weights of the activation
function of the network. In order to do so a loss function is used to determine
the difference between the predicted label and the actual label (see section 4.1).
During the training the learning rate tells the network how much the weights
need to be changed and the scheduler adjusts the learning rate according to the
scheduler after each epoch. The network then tries to find a minimum for the
loss function to maximize its accuracy.
Section 3.4.1 explains the StandardScaler and section 3.4.2 explains the Min-
MaxScaler. Both scalers are part of the sklearn.preprocessing library [22].

3.4.1 The StandardScaler

The StandardScaler standardizes the data according to

z =
x− u

s
, (3.4)

where x is the sample, u is the mean of the sample and s is the standard deviation
of the sample. This transformation sets the mean of every standardized feature
z to 0 and the standard deviation to 1.

3.4.2 The MinMaxScaler

The second scaler considered in this thesis is the MinMaxScaler. It scales each
feature to be in the range [0,1]. This happens according to

xstd =
x− xmin

xmax − xmin
, (3.5)
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where xmin is the minimum value in the data and xmin is the maximum value
in the data. Each individual value is then scaled by

xscaled = xstd(max−min) +min, (3.6)

where max is the maximum and min is the minimum of the given range.
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Chapter 4

Evaluation Methods

The training of TabNet models is evaluated using the log-loss and the intrinsic
sparse-loss of TabNet. The log-loss and sparse-loss of the validation sample is
used to check for overfitting during training and consequently if the training was
successful. The performance of a model is the measurement of how accurate the
prediction of the model is on new data, the better a model predicts new data
the better its performance. In order to compare the performance of two mod-
els the Receiver Operating Characteristic (ROC)-curve and the AUC are used.
Besides the performance the feature importance can also be measured. For this
the Shapley values originating from cooperative game theory are used.

In section 4.1 the logloss is introduced and the intrinsic sparse-loss of Tab-
Net. In section 4.2 the ROC-curve is introduced used for performance analysis.
In section 4.3 Shapley values are introduced use for feature importance analysis.

4.1 The Log-loss

TabNet combines two loss metrics the log-loss and the sparsity-loss according
to

L = Lpred + λsparseLsparse. (4.1)

The first loss metric is the log-loss. It reflects the discrepancy between the
prediction probability of a model and the actual label. The log-loss is defined
as

Lpred = − 1

N

N∑
i=1

yi log (pi) + (1− yi) log (1− pi), (4.2)

where N is the sample size, yi is the true label (0, 1) and pi is the predicted
probability. This means that a lower log-loss corresponds to a better prediction
and consequently performance. [8].

The second loss metric to punish its model during training is referred to as
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sparsity-loss as it is used to regulate and favour the use of sparse feature masks
[4]. It is adjustable by tuning lambda sparse, introduced in section 3.3.3. The
sparsity-loss is defined as

Lsprase =

Nsteps∑
i=1

B∑
b=1

D∑
j=1

−Mbj [i]log(Mbj [i] + ϵ)

NstepsB
, (4.3)

where Nsteps corresponds to nsteps, B is the batch size, D the amount of features
used, Mbj the mask of feature j in batch b and ϵ a constant for numerical
stability, also a hyperparameter, which should not be changed.
From here on the final loss will be referred to as logloss, as TabNet also utilizes
this labeling. An example of a desired logloss as function over the epochs is
shown in figure 4.1.

Figure 4.1: Logloss of a TabNet model trained on 100K events for 50 epochs
and model default hyperparameter values. The blue curve represents the
logloss evaluated on the training sample of each epoch (train logloss). The
orange curve represents the logloss evaluated on the validation sample of each
epoch(val logloss).

The logloss decreases exponentially. This means that within the first epochs
the logloss decreases rapidly and afterwards converges slowly towards a static
plateau. If the validation logloss increases while the trainings logloss decreases
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the model is overfitting. When the model is overfitting it memorizes the train-
ing data and therefore generalizes poorly, which is leading to a bad performance
and is therefore not desirable. Also, if both loglosses are increasing overfitting
is implicated. Spikes within the logloss are normal as long as it decreases af-
terwards, since the model exits a local minimum in the prediction function in
order to find a more global one. The models training is therefore considered
successful when the logloss decreases exponentially and reaches a static plateau
without overfitting.
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4.2 The ROC-Curve

In order to compare the performance of the established BDT with the TabNet
model a Receiver Operating Characteristic (ROC)-curve is used. It depicts the
True-Positive-Rate (TPR) plotted against the False-Positive-Rate (FPR), for
every threshold. TPR is defined as

TPR =
TruePositive

TruePositive+ FalseNegative
(4.4)

and describes the rate of signal events being identified as signal. FPR is defined
as

FPR =
FalsePositive

TrueNegative+ FalsePositive
. (4.5)

and describes the rate of background events being identified as signal.

A model predicts probabilities, returning values in the range of [0,1]. Therefore
a certain threshold is set to determine which values are accepted as signal and
which as background. Each threshold is used to calculate TPR and FPR and
therefore the ROC-curve. An example is shown in figure 4.2. The closer the
curve gets to the upper left corner the better the selection performance of the
model [29]. If the model is just guessing the ROC-curve would be described by
f(x) = x i.e. a diagonal line.

The ROC-curve can also be given in terms of Purity and Efficiency. Efficiency
is the fraction of signal events correctly classified, it is exactly the same as the
TPR. Purity, on the other hand differs from the FPR as it describes the correctly
classified signal events in the total selected sample.

Purity =
selected signal

selected signal + selected background
. (4.6)

In that case the performance is better the closer the curve gets to the upper right
corner. An example is shown in figure 4.3. When looking at the ROC-curve
in terms of efficiency and purity a good performing model has a high efficiency
over a long range of purities.
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Figure 4.2: Receiver Operating Characteristic (ROC)-curve of TabNet model
trained on 100K events for a total of 50 epochs and the model default hyperpa-
rameter values in terms of True-Positive-Rate (TPR) and False-Positive-Rate
(FPR). After every 10 epochs the TabNet model was saved to see the perfor-
mance improvements over the epochs. The ROC-curve of the established BDT
is shown as reference (black curve).
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Figure 4.3: Receiver Operating Characteristic (ROC)-curve of TabNet model
trained on 100K events for a total of 50 epochs and the model default hyper-
parameter values in terms of Efficiency and Purity. After every 10 epochs the
TabNet model was saved to see the performance improvements over the epochs.
The ROC-curve of the established BDT is shown as reference (black curve).

A metric that can be calculated from the ROC-curve is the AUC, which is the
area under the ROC-curve. It is between 0 and 1 and the model is performing
better the closer its AUC is to 1.

4.3 The Shapley Value

Understanding how a neural network makes its decisions is still a major challenge
in the field of AI. As explainability is imperative there are many approaches to
make them more interpretable. One approach is to calculate the Shapley values,
which are derived from cooperative game theory and try to explain the decision
making of machine learning models by explaining the prediction as a sum of the
contribution of each feature. This happens on an event by-event basis enabling
the interpretation of single events.
In theory the model is presented a subset of the test sample, where the feature
of interest is excluded and makes a prediction. Then the model is presented
the full test sample including the feature of interest and makes a prediction.
The difference between these two prediction values is the Shapley value. This
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is mathematically describe by

Φi =
∑

S⊆N\i

|S|!(M − |S| − 1)!

M !
[fx(S ∪ i)− fx(S)], (4.7)

where S is a possible subset, |S|! is the number of permutations of all feature
values before the i-th feature value, M the number of features and fx the pre-
diction function i.e. TabNet or the BDT output in this case [28].
As this is computationally expensive approximations are considered in order to
calculate Shapley values. Here the SHAP framework was used [27] more specifi-
cally the KernelExplainer. In the case of the KernelExplainer a linear surrogate
model is used implying that the model of interest is at least locally linear. Ad-
ditionally the features are assumed to be independent of each other.
As models often can not handle missing data, the algorithm takes a background
data set1 and replaces the feature value of interest with a random feature value
of the given background data set. In order to be able to compare two models
the background data set needs to be the same for both and hence needs to be
saved. Then linear regression is used to approximate the relation between the
input features and the model prediction of each perturbation. The coefficients
of the linear regression are the Shapley values.[1]
In the case of binary classification a positive Shapley value means that for the
given event the feature is pushing the prediction towards positive labels (1) and
a negative Shapley value means that the feature is pushing the prediction to-
wards negative labels (0).
The feature importance of a feature is given by the mean of the absolute Shapley
values of the test sample.

1this is a subset of the training sample
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Chapter 5

Performance Analysis

The thesis evaluates whether TabNet can outperform the established BDT on
event selection for the τ− → π−π−π+ντ decay. Therefore TabNet is first tuned
by manually adjusting the hyperparameter values to get an idea of how certain
hyperparameter affect TabNet, before an automated hyperparameter optimiza-
tion framework, namely Optuna [2], is used to find the optimal settings for the
hyperparameter.1

In this chapter the performance of TabNet, on the Belle II MC τ− → π−π−π+ντ
simulated data (see section 3.1) is discussed. Section 5.1 discusses the process of
manually optimizing selected hyperparameter of TabNet. It starts by discussing
the selection of a scaler. Next the batch size and sample size are investigated.
Last the risk of overfitting with the n da hyperparameter is discussed. Section
5.2 discusses the automated hyperparameter optimization and the correlation
between the hyperparameters. Last the performance of TabNet, with the op-
timal choice of hyperparameter values, is compared to the performance of the
established BDT, in order to determine whether TabNet performs better in
event selection than the established BDT.

5.1 Manual TabNet Hyperparameter Optimiza-
tion

Before showing the results of the manual hyperparameter optimization it is
important to establish some ground rules about the labeling of the plots. The
sample size is given in terms of the total sample size i.e. 1M means 800, 000
training, 100, 000% validation and 100, 000% testing sample size as we use a
80/20 split for the data. Each plot consists of a title, where the type of plot,
used sample size, compared hyperparameter and epoch, if there is no epoch split,
are declared. In the legend the hyperparameter value of interest is displayed.

1During the initial approach the scaler, which is an essential part of the neural network
was not saved. This was fixed in the presented results
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After each analysis the best performing model from the previous analysis is used
to compare with the new results.

5.1.1 Scaler Optimization

TabNet requires to define a suiting preprocessing scaler,explained in section 3.4,
for the data. Additionally a NoScaler model, which trained on not preprocessed
data, is used, as the first layer of the TabNet model is a BN and the authors of
[4] state that this makes the application of a preprocessing step redundant.

In figure 5.1 the logloss of the StandardScaler and the MinMaxScaler model is
shown. Both models trained on 100K events, a total of 50 epochs and the model
default hyperparameter values. In both models the logloss decreases exponen-
tially. While the validation logloss and the training logloss of the MinMaxScaler
model follow almost the same line. This validates that the training of the Min-
MaxScaler model was successfull. In comparison the validation logloss and the
training logloss of the StandardScaler model do not follow the same line. While
both loglosses decrease, the validation logloss stays above the training logloss,
which is already a sign that the model is overfitting. When the model overfitts
it memorizes the training data and therefor generalizes poorly. In figure A.1
the logloss of the NoScaler model is shown, it shows the same behaviour as
the logloss of the MinMaxScaler and therefore also indicates the success of the
training.

(a) (b)

Figure 5.1: Logloss as in figure 4.1. The data was scaled using the (a) Stan-
dardScaler, (b) MinMaxScaler

In figure 5.2 the performance of all three models is shown alongside the estab-
lished BDT performance as reference. The TabNet models were trained using
100K events and 50 epochs. Figure 5.2a shows the ROC-curve in terms of TPR
and FPR, while figure 5.2b shows the ROC-curve in terms of Efficiency and Pu-
rity. In both cases the StandardScaler model has the worst performance, while
the MinMaxScaler and NoScaler model show almost the same performance,
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with the MinMaxScaler showing a small improvement. Therefore the data is
preprocessed using the MinMaxScaler for every following analysis.

(a) (b)

Figure 5.2: ROC-curve as in figure (a) 4.2, (b) 4.3. The models are scaled using
no scaler (blue), StandardScaler (orange) and MinMaxScaler (green).

5.1.2 Batch and Sample Size Optimization

From experience a lot of data often helps to increase performance of deep neural
networks. This is why here two different sample sizes are discussed. In figure
5.3b the logloss as a function of the epoch of a TabNet model trained on 1M
events for 200 epochs is shown. The logloss does not converge to lower values
and the training was unsuccessful. Figure 5.3, which shows the performance
after every 50 epochs of training of the model trained on 1M data, supports this
hypothesis, as the performance fluctuates around the curve of the model after
50 epochs. A steady increase or decrease of performance is expected.
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(a) (b)

Figure 5.3: (a)ROC-curve as in figure 4.3 trained on 1M events, a total of 200
epochs and saved after every 50 epochs. (b) Logloss as in figure 4.1. The model
trained on 1M events and 200 epochs.

Up until this point the model default hyperparameter values were used. The
authors of [4] state that a high batch size in the range of 1− 10% of the sample
size, is recommended in order to achieve desired results. Compared to 1M events
the model default batch size is low. Therefore three models were trained using
2.0%(16348), 8.2%(65538) and 16.4%(131072). The virtual batch size was set
to batch size divided by 32. In figure 5.4b and A.2 the loglosses of these models
are shown. Each logloos looks better than the one shown in figure 5.3b, as they
converge to lower values.

(a) (b)

Figure 5.4: (a)ROC-curve as in figure 4.3 trained on 1M events, a total of 200
epochs and batch size = 16384 (blue), 65536 (orange), 131072 (green). (b)
Logloss as in figure 4.1. The model trained on 1M events, 200 epochs and
batch size = 65536.

From these plots it is not safe to say which model is performing the best. There-
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fore the ROC-curves are shown in figure 5.4a. All trained TabNet models show
a similar result. The model trained with a batch size of 65536 consistently
outperforms the other models. The model trained with the largest batch size
underperforms for purities below 80%. Afterwards it yields almost the same
performance as the other trainings.
In conclusion a large batch size between 2 − 8% is favourable for an optimal
performance, but it should not exceed this range, as the model trained with a
batch size of 131072 shows.

Now the question remains whether a larger sample size leads to an increase
in performance. Therefore models trained with 100K and 1M events are com-
pared, both are trained for 200 epochs. Figure 5.5 shows the performance of the
model trained with the model default hyperparameter values and 100K events
compared to the model trained with 1M events and a batch size of 65536, while
every other hyperparameter remains unchanged.

Figure 5.5: ROC-curve as in figure 4.3 trained on 100K events (blue), 1M events
(orange), a total of 200 epochs and batch size = 65536.

The model trained on 100K events performs better than the model trained on
1M events. This might be due to the choice of the other hyperparameter values,
as the values of e.g. n d and n a, explained in section 3.3.3, is low. Therefore
each following model is trained on 1M events and a batch size of 66536.

31



5.1.3 Overfitting Check with n da

The authors of [11] state that the choice of the width of the decision prediction
layer n d, defined in section 3.3.3 might cause overfitting. Therefore the impact
of n da, defined in section 3.3.3, is investigated in this section.

The model default hyperparameter value n da = 8, which is the minimum rec-
ommended value, did not yield any signs of overfitting as shown in the previous
sections figure 5.5. In this section n da = 32 and n da = 64 are analysed, as 64
is the maximum recommended value and 32 is right in between the maximum
and minimum recommended value.
Figure 5.6b and 5.6a show the loglosses of each model from epoch 40 to 200.
Before epoch 40 the loglosses decrease exponentially (see figure A.3). Therefore
the shown loglosses are zoomed in to tell whether the models overfit. Both
models were trained on 1M events for 200 epochs. The logloss of the model
trained with n da = 64 increases after reaching a minimum at epoch 128, im-
plicating overfitting, as the logloss increases steadily afterwards. The logloss of
the model trained with n da = 32 shows a successful training until epoch 100
where the logloss spikes. Until epoch 120 the logloss decreases. Afterwards it
increases steadily and therefore also implicates overfitting, despite having its
minimum after 173 epochs of training. Judging from the loglosses the training
was successful until epoch 127 for n da = 64 and 100 for n da = 32.

(a) (b)

Figure 5.6: Logloss as in figure 4.1 showing epoch 50-200. The model trained
on 1M events, 200 epochs, batch size = 65536 and (a) n da = 64 , (b) n da =
32

In figure 5.7 the ROC-curves of the two models trained with n da = 32 and
n da = 64 are shown, respectively. After every 50 epochs of training the models
were saved with a maximum of 200 epochs.
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(a) (b)

Figure 5.7: ROC-curve as in figure 4.3 trained on 1M events a total of 200
epochs saved after every 50 epochs, batch size = 65536 and (a) n da = 64 and
(b) n da = 32.

Figure 5.7a shows the performance of the models trained with n da = 64. The
model trained for 100 epochs has the best performance. Afterwards the models
performances decrease, which supports the beginning of overfitting visible in
figure 5.6a. Despite having the minimum after epoch 127 the performance of
the model trained for 150 epochs is worse than the model trained for 100 epochs.
In figure 5.7b the performance of the models trained with n da = 32 is shown.
The performance after every 50 epoch almost follow the same curve. For purities
below 75% the model trained for 100 epochs has the best performance, but for
purities above 75% the model trained for 200 epochs has the best performance
in this hyperparameter analysis. This might be due to the minimum in the
logloss at epoch 173.
In both cases it is not certain if the models do have the best performance as
shown in figure 5.7, since both show signs of overfitting in their loglosses. For
the model trained with n da = 32 it seems plausible that the best performance
is after 200 epochs as the model uses the weights of the best training epoch
(here 173), which corresponds to the lowest logloss (see section 4.1). The model
trained with n da = 64 does not show this behaviour, as its minimum is at 127
epoch and the models after 150 epochs of training are not outperforming the
models with fewer epochs of training.

To conclude the analysis of the n da hyperparameter, the performance of the
best performing model trained with n da = 64 and n da = 32 is compared. Fig-
ure 5.8 shows the performance of the model default hyperparameter value com-
pared to the two chosen values and the established BDT. The established BDT
is still outperforming TabNet. The change of hyperparameter barely change the
performance, therefore they are not the most optimal values to outperform the
established BDT and a automated hyperparameter optimization was conducted.
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Figure 5.8: ROC-curve as in figure 4.3 trained on 1M, a total of 200 epochs ,
batch size = 65536 and n da = 8 (blue), 32 (orange), 64 (green).
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5.2 Automated Hyperparameter Optimization

After conducting the manual hyperparameter optimization (see section 5.1) the
performance of TabNet was still lower than the established BDT performance.
Therefore changing a single variable seemed suboptimal in order to increase
the performance, as the model trained with the model default hyperparameter
value yielded the best performance in section 5.1.3. For that reason a high-
dimensional automated hyperparameter optimization is conducted using the
Opunta [2] framework. The goal is to increase the performance of TabNet by
adjusting multiple hyperparameter values simultaneously and compare it to the
performance of the established BDT.

Each model discussed in this section was trained using early stopping to get
a maximum of trials in the given time as training the models can be very time
consuming and early stopping tries to prevent overfitting. For the automated
hyperparameter optimization the patience hyperparameter (see section3.3.3),
controlling the early stopping, was set to 50 and used the validation AUC met-
ric for early stopping. This metric was chosen as we are using the ROC-curve for
performance analysis and the AUC describes the area under the ROC-curve (see
section 4.2). The validation AUC metric will be referred to as objective value
in the following, as the goal during the automated hyperparameter optimization
was to maximize it.

Subsection 5.2.1 discusses the trials of the automated hyperparameter opti-
mization. Subsection 5.2.2 discusses the performance of the model trained with
the optimal hyperparameter values and compares it to the established BDT
performance. Section 5.2.3 discusses the combination of hyperparameters.

5.2.1 Tunning of the Hyperparameter

The framework used for the automated hyperparameter optimization was Op-
tuna [2]. Optuna requires a range of values for each hyperparameter that are
optimized. Table 5.1 lists the hyperparameters and the step sizes, which con-
trolled the change of the hyperparameters. Every hyperparameter that impacts
the training was given with the recommended range of [11]. The step sizes were
chosen to be as small as possible, while the number of possible hyperparameter
values stayed low to optimize the time and therefore the number of trials. For
some hyperparameter ranges no step size was given, as they either were not a
range but a set of values or no recommended range was given. A single trial
is the training of one model with a specific set of hyperparameter values. This
means that different trials used different combinations of hyerparameter values.
All trials together are called study.
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Table 5.1: Hyperparamete ranges optimized in the automated hyperparameter
optimization and their and steps sizes. ”-” indicates no value was given.

Hyperparameter Range Step
n da 8− 64 2

n steps 4− 10 1
gamma 1.2− 2.0 0.1

n independent 2− 5 1
n shared 2− 5 1

momentum 0.01− 0.1 0.01
lambda sparse 0− 10−3 −
learning rate 2× 10−2 − 5× 10−2 −
batch size 16384, 32768, 65536, 131072 −

virtual batch size 512, 1024, 2048, 4096 −
gamma scheduler 0.5− 0.99 0.01

In figure 5.9 the history of the automated hyperparameter optimization is shown.
Each dot represents the objective value of a single trial ordered by their trial
number. The red line represents the highest value of the objective value of all
previous trials.
A total of 17 trials were conducted. Each trial was trained on 1M events. As
early stopping was used in this study the maximum amount of epochs for each
trial was different. The index of the trials do not correspond to the number of the
trial, as some trials were interrupted, due to testing and technical difficulties.
Here the labels of the trials are used and each model will be referred to as
trial plus the index number. Trial 18 achieved the highest objective value of
0.9609422. Trial 22 achieved the second highest objective value of 0.9569875.
Compared to bot the trials with the third to fifth highest objective value did
not come close, as the difference between these two and the third best was
in the order of 10−3, while the difference between the third to fifth highest
objective value trials was of the order of 10−5.
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Figure 5.9: History of the automated hyperparameter study with Optuna [2]. A
total of 17 trials were conducted, while the labels of the trials were not continual
as some trials were interrupted. The red line shows the objective value of earlier
trials.

In figure 5.10 the zoomed logloss of the models, ordered by their trial index,
achieving the five highest objective values are shown. The logloss of trial 4
shown in figure 5.10a decreases the fastest and stays low for the entire training
showing no signs of overfitting. In figure 5.10b the logloss of trial 16 is shown.
Despite having some spikes the logloss decreases over all and also shows no signs
of overfitting. In figure 5.10c the logloss of trial 18 is shown. This trials logloss
also has spikes but decreases steadily with no signs of overfitting. In figure 5.10d
the logloss of trial 21 is shown. It has the smallest max epochs. The logloss
decreases steadily and shows no signs of overfitting. In figure 5.10e the logloss
of trial 22 is shown. After 102 epochs the logloss starts to increase indicating
that the model is overfitting.
Besides trial 22 no model is overfitting. As the patience was set to 50 and trial
22 trained for 129 epochs the overfitting is visible in 5.10e. In that case early
stopping prevented the model from overfitting. Trial 18 achieved the lowest
logloss, but as the logloss values are very low the difference is only marginal.
In order to see which model performed the best the ROC-curve needs to be
investigated (see section 5.2.2).
Every models training was succesful and showed no signs of overfitting besides
trial 22, which started to overfit after 102 epochs of training. The hyperparam-
eter values of trial 4, 16, 18/22, 21 are given in tables A.3, A.4, 5.2 and A.5,
respectively.
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(a) (b)

(c) (d)

(e)

Figure 5.10: Loglosses as in figure 4.1. The models trained on 1M events with
the maximum number of epochs and hyperparameter values of (a) trial 4, (b)
trial 16, (c) trial 18, (d) trial 21, (e) trial 22.

38



In figure 5.11 the hyperparameter importance based on the Optuna study is
shown. The sum of all hyperparameter importances is 1. n steps and n da make
up 0.64, which is more than all other hyperparameter importances combined.
The gap between these two hyperparameters and the third most important
(n independent) is 0.17, which is more than the hyperparameter importance
of every other hyperparameter. After n independent there is another notable
gap. The difference between n independent and n shared, which is the fourth
most important hyperparameter, is 0.08, which again is higher than every other
following value. After these two gaps the importance is relative evenly spread
across the remaining hyperparamters. In the use-case of TabNet in this thesis
the hyperparameters therefore have very different contributions to the learning
process of TabNet.

Figure 5.11: Hyperparameter importance for TabNet based on the conducted
Optuna study.
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5.2.2 Boosted Decision Tree vs TabNet Performance

After checking if the five models with the highest objective value are overfitting,
(see section5.2.1) the performance is compared in figure 5.12.

Figure 5.12: ROC-curve as in figure 4.3 trained on 1M events, with the maxi-
mum number of epochs and hyperparameter values of best optimization by hand
(blue), trial 4 (orange), trial 16 (green), trial 18 (red), trial 21 (purple), trial 22
(brown).

Trial 22 (brown) performs only slightly worse than trial 18. All the other trials
perform worse. Trial 18 (red) performs the best. Despite the increase in perfor-
mance with the automated hyperparameter optimization compared to the model
with the model default hyperparameter values (see figure 5.13) the established
BDT is still outperforming every TabNet model discussed in this analysis. In
order to beat the established BDT performance TabNet would need another in-
crease in performance comparable to the increase from trial 4 (orange) to trial
18 (red). As this increase occurred within the last trials more trials need to
be conducted, which was not possible during this analysis due to time, as the
training of a single model remains time consuming even when including early
stopping. Therefore trial 18 might not yield the most optimal hyperparameter
values for event selection of the τ− → π−π−π+ντ decay.
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Figure 5.13: ROC-curve as in figure 4.3 trained on 1M events with the model
default hyperparameter values for 200 epochs (blue) and maximum number of
epochs and hyperparameter values of trial 18.

5.2.3 Combinaton of Hyperparameter

In table 5.2 the best hyperparameter values of the best two trials are listed.
Eight out of eleven hyperparameters have different values. Despite the results
of section 5.1.3 the selected hyperparameter values for the width of the decision
prediction layer and the attention masks embedding (n da) tends to be larger
than the model default hyperparameter value n da = 8 and overfitting does not
occur (see section 5.2.1). This indicates that the combination of hyperparameter
values is important and the change of a single hyperparameter value will most
likely not improve the performance. Figure 5.14 gives clues about the interplay
of hyperparameter values.
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Table 5.2: Hyperparameter, maximum epochs and validation AUC of Trial 18
and Trial 22.

Trial 18: Trial 22:
Hyperparameter Value Value

n da 52 42
n steps 8 6
gamma 1.6 1.2

n independent 5 5
n shared 5 4

momentum 0.07 0.07
lambda sparse 9.831 368 331 738× 10−6 3.907 557 640 709 79× 10−4

learning rate 0.047533385594715795 0.032519974768828466
batch size 66536 65536

virtual batch size 2048 512
gamma scheduler 0.99 0.91

max epochs 323 129

val auc 0.9609422 0.9569875

A low feature reusage (gamma) is combined with a large coefficient for the
sparsity-loss (lambda sparse) to get a sparse model and vice versa for not sparse
models in order to achieve high objective values. Trial 22 is an example for a
sparse model, as the feature reusage (gamma) is low and the sparsity-logloss
(see section 4.1) is multiplied with a large coefficient (lambda sparse) compared
to trial 18. Trial 18 on the other hand is an example for a not sparse model as
the feature reusage (gamma) is high and the sparsity-loss is almost multiplied
by a coefficient (lambda sparse) close to 0. The combination of a high feature
reusage and a high coefficient for the sparsity-loss was also considered but did
not achieve large objective values, when compared to sparse or not sparse model
combination. This shows a tendency towards either sparse models or not sparse
models. As trial 22 and trial 18 are example for a sparse and not sparse model,
respectively, it is not save to say which sparsity is optimal for the even selection
of τ− → π−π−π+ντ decay.
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Figure 5.14: Parallel Coordinate plot of the automated hyperparameter opti-
mization. It show the relation between the hyperparameters. The blue tone
depicts the objective value. The lighter the blue tone, the further the combina-
tion of hyperparameters was from the best achieved objective value.

The second interplay visible in figure 5.14 is the combination of the step size
(learning rate) and the adjustment of it (gamma scheduler) after every epoch
during training. A large step size corresponds to a small adjustment after every
epoch (see section 3.3.3) and a small step size corresponds to a large adjustment
of it. The combination of a large step size with small adjustments yielded the
better results. This implies that the model tries to learn fast but risks over-
shooting minima.
Four possible batch sizes were given but only two yielded large objetive values.
The batch size yielding the best results is the same as in section 5.1.2 (65536).
The second batch size considered was 16384. The relation of the batch size with
the virtual batch size was known before figure 5.14, as batch size is a multiple
of virtual batch size. This thesis chose batch size = 32 × virtual batch size,
which is supported by figure 5.14 as 2048 and 512 were the only choices yielding
large objective values.
The last interplay visible in figure 5.14 is the combination of the number of inde-
pendent (n independent) and shared (n shared) transformer blocks (see section
3.3.1). A hyperparameter value of 5 is selected for both in almost every trial
yielding a large objective value with the exceptions of trial 4 and 22, which
selected n shared = 4. As the upper limit is selected most of the time a larger
upper limit in the range for the hyperparameter values might give a better idea
of the hyperparameter value needed for an improvement in performance. The
choice of both hyperparameters having the same hyperparameter value indicates
n independent = n shared as a good choice, which is the same behaviour as for
the hyperparameter values of the width of the decision prediction layer and the
attention mask (n da) (see section 3.3.3). If this holds for a larger upper limit
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of the range is uncertain.
The number of decision steps (n steps) and the momentum for BN (momentum)
indicated no interplay wit other hyperparameters, as the selected hyperparam-
eter values showed no tendencies.

In conclusion the automated hyperparameter optimization yielded a better per-
formance than the manual hyperparameter optimization. Although optimizing
the performance of TabNet the established BDT still outperforms every Tab-
Net model in event selection for the τ− → π−π−π+ντ decay obtained in this
analysis.
In section 5.1.3 the default model value was performing the best, while the
larger n da hyperparameter values overfitted. Compared to trial 18, where the
hyperparameter value n da = 52 was selected due to the combination with
other hyperparameter values, the performance increased and did not overfit.
Therefore when training the model an automated hyperparameter optimization
is recommended as tuning a single hyperparameter can give wrong clues for the
optimal setting of a hyperparameter value and the combination of hyperparam-
eter values is important for a good TabNet performance.
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Chapter 6

Feature Importance
Analysis

Interpretability plays a crucial role in understanding how ML and DL algorithms
make their predictions and building confidence and trust in these algorithms.
Explainable AI is a whole field of study dedicated to make Artificial Intelli-
gence (AI) interpretable. In this thesis the Shapley value (see section 4.3) is
used to interpret the decision making of TabNet and the established BDT as
additional source of information about the interpretability, next to the intrinsic
interpretability of BDTs and TabNet. Shapley values measure the importance
of the features for the predictions, this is referred to as feature importance. Us-
ing the Shapley value for interpretability of the established BDT and TabNet
makes the feature importance comparable, as the intrinsic measure of feature
importance differs for BDTs and TabNet.
Each model was trained using the same hand-made set of features, but the use
of the information of the features can be different for the models, as some fea-
tures can obtain redundant information. The goal is to partly understand how
TabNet learns from these features compared to the established BDT. Minimiz-
ing the feature set is also important to get rid of unwanted biases. The Shapley
value for both models was calculated using the same data set as well as the
same background set in order to make the results comparable.

Section 6.1 discussed the calculated Shapley values of TabNet. Section 6.2
discusses the comparison of the TabNet and established BDT Shapley values.
Section 6.3 discussed the intrinsic interpretability of TabNet and the established
BDT.

6.1 Shapley Values of TabNet

Figure 6.1 shows the distribution of the Shapley values for each of the input
feature value. On the x-axis the calculated Shapley value is displayed, where a
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positive Shapley value pushes the prediction towards signal (1) and a negative
Shapley value pushes the prediction towards background (0). The colors of the
data points display the feature value. A high feature value corresponds to a
more red data point and a low feature value corresponds to a more blue data
point.

Figure 6.1: Beeswarm plot of the TabNet Shapley values. Shown is the distri-
bution of the calculated Shapley value for each of the input feature values. The
color of the data points indicate the feature value. Blue corresponds to low fea-
ture values, red corresponds to high feature values. The features are displayed
in the order of their importance.
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Figure 6.2: Distribution of the number of π0 for signal (orange) and background
(blue) events.

From the distribution in the number of π0 on the three prong side, shown
in figure 6.2 it is clear that almost all signal events have nPi0s 3prong = 0.
Comparing this with the corresponding Shapley values in the first line of figure
6.1, low numbers of π0 on the three prong side correspond to a positive Shapley
value and therefore push the prediction towards signal. This makes sense as
there is no π0 in the τ− → π−π−π+ντ decay. Larger numbers of π0 on the three
prong side lead to negative Shapley values and therefore push the prediction
towards background.
The feature importance given by the Shapley values is calculated by taking the
mean of the absolute of the Shapley values per feature. The feature importance
is shown in figure 6.3 and corresponds to the ordering of features in figure
6.1. Overall the feature importance is decreasing continuously with the first
features having the largest feature importance and some features having almost
no feature importance. The three most important features are the number of π0

on the three prong side, the loose and MVA cut photons on the three prong side
and the thrust. The three least important features are the energy of the loose
and MVA cut photons on the one prong side, the energy of the τ on the three
prong side and the transverse momentum of the τ on the three prong side. All
three features have a feature importance of almost zero, which means they do
not contribute to the prediction of TabNet. Between the three most important
features and the following features a gap in the feature importance is visible. A
second gap is visible between all features and the three least important features.
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Figure 6.3: Feature importance of TabNet calculated via the mean of the abso-
lute Shapley values per feature.

The most important feature is the number of π0 on the 3 prong side. This
feature belongs to the γ and π0 rejection features (see section 3.1.1). As there
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Figure 6.4: Distribution of the thrust values for signal (orange) and background
(blue) events.

are no π0 in the signal τ− → π−π−π+ντ decay this is a good separator between
signal and background, explaining its high feature importance.
The thrust is also a good indicator between signal and background, as τ leptons
have a mass of 1.777GeV [17] which is small compared to the CMS energy of
10.580GeV. Therefore the τ leptons have a large momentum in the CMS.
Consequently the event-shape is jet-like with a thrust value in the range of 0.85
and 0.99 as shown in the orange histogram in figure 6.4. In contrast, background
events strongly peak at thrust values of 1 corresponding to Bhabha events or
have a broad bump of low thrust value from e.g. BB events.
The loose and MVA cut photons on the three prong side also belongs to the γ
and π0 rejection features. As this is the softest cut it includes photons of the
200MeV cut on the three prong side, the 100MeV cut on the three prong side
and the MVA cut. Therefore the information given to TabNet with the other
cuts on the three prong side contain redundant information, as photons can
already be included in the loose and MVA cut photons on the three prong side.
This is supported by the correlation of the features shown in figure 6.5. Green
corresponds to a positive linear correlation, brown corresponds to a negative
linear correlation and white corresponds to no linear correlation.
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Figure 6.5: Correlation of the γ and π0 rejection features.

The green blocks of the γ and π0 rejection features on the one and three prong
sides show, that these features have a positive linear correlation, respectively
and therefore contain redundant information. Between the prongs there was
almost no linear correlation, as the correlation values are low. The most im-
portant feature on the one prong side was the energy of the MVA cut photons.
This feature was the fifth most important feature overall.

The kinematic feature can be divided into two subgroups. The first group in-
cludes the visible energy of the event in the CMS, the squared missing mass, the
missing momentum of the event in the CMS and the angle theta of the missing
momentum of the event in the CMS (see section 3.1.1). The most important
feature of this group (see figure 6.3) is the visible energy of the event in the
CMS. Figure 6.6 shows the linear correlation of the kinematic features of this
group.

50



Figure 6.6: Correlation of the first group of kinematic features.

The visible energy of the event in the CMS has a positive linear correlation
with the missing momentum of the event in the CMS and a negative linear
correlation with the squared missing mass. The squared missing mass also has
a negative linear correlation with the missing momentum of the event in the
CMS. The only feature not linearly correlating with any other feature of this
group nor any other input feature (see figure A.4) is the angle of the missing
momentum in the CMS. This feature has the least feature importance out of
this group. This means that either the information obtained from this feature
is not crucial for the prediction or the information of this feature is included in
features that correlate on higher orders.

The second group of kinematic features include the energy of the τ on the
three prong side and the transverse momentum of the τ on the three prong side.
Both features have the lowest feature importance for the TabNet model and
have a positive linear correlation of 0.7147 with each other, but no other linear
correlation with other input features. This means that these two features were
not important for TabNet to make predictions.

The last category of features are the vertex reconstruction features (see sec-
tion 3.1.1). They only have a slight linear correlation shown in figure 6.7 and
do not correlate with any other input feature. The most important feature of
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Figure 6.7: Correlation of the vertex reconstruction features.

this category is the second track on the three prong side. It is the seventh most
important feature overall, while the first track on the three prong side is the
18th most important feature overall, which is the second most important feature
of this category. As they do not strongly linearly correlate they seem to be less
important for the predictions of TabNet than the thrust and γ and π0 rejection
features.

In conclusion TabNet makes its predictions using almost all features, where
every feature has a different feature importance for TabNet. The number of π0

and the thrust value are good separators for signal and background. This is why
they are part of the top three most important features. The second most impor-
tant feature also accounts for the γ and π0 rejection features, as they contain
redundant information that is also given in the number of loose and MVA cut
photons. The least important category of features are the vertex reconstruction
features. The kinematic features include the least important features, that have
almost a feature importance of zero.
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6.2 Boosted Decision Tree vs TabNet Shapley
Values

Figure 6.8 shows the feature importance of the established BDT. The feature
importance of the established BDT follows a smooth curve and shows no gaps.
The redundancy of the γ and π0 rejection features is clearer shown as many of
these features show a small feature importance. The most important features
of the γ and π0 rejection features are the number of π0, which is the fourth
most important feature overall and the energy of loose and MVA cut photons
on the three prong side followed by the number of loose and MVA cut photons
on the three prong, which are the sixth and seventh most important feature,
respectively. The most important γ and π0 rejection feature on the one prong
side is the number of loose cut photons on the one prong side.
The thrust is also the third most important feature for the established BDT,
which shows again that this feature is a good separator for signal and back-
ground.
The first group of kinematic features consisting of the visible energy of the event
in the CMS, the squared missing mass, the missing momentum of the event in
the CMS and the angle theta of the missing momentum of the event in the CMS
has a higher feature importance overall. The visible energy of the event in the
CMS is again the most important feature of this group and the fifth most impor-
tant feature overall. The next two features with the highest feature importance
of this group are the missing momentum of the event in the CMS and the angle
theta of the missing momentum of the event in the CMS. Both features had
the lowest feature importance of this group for TabNet, with the angle theta
of the missing momentum of the event being the fourth least important feature
almost having a feature importance of 0. For the established BDT the squared
missing mass was the least important feature of this group but is still the 14th
most important feature overall, ranking this group of features higher in feature
importance compared to its feature importance for TabNet.
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Figure 6.8: Feature importance of the established BDT calculated via the mean
of the absolute Shapley values per feature.

The second group of the kinematic features consisting of the energy of the
τ on the three prong side and the transverse momentum of the τ on the three
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prong side are the most important features for the established BDT.

Figure 6.9: Beeswarm plot of the established BDT Shapley values. Shown is
the distribution of the calculated Shapley value for each of the input feature
value. The color of the data points indicates the feature value. Blue correspond
to low feature values, red corresponds to high feature values. The features are
displayed in the order of their importance.

Compared to TabNet where they had no feature importance and did not con-
tribute to the prediction (see section 6.1). Figure 6.9 shows the beeswarm plot
of the established BDT. Almost every value for the energy of the τ on the three
prong side and the transverse momentum of the τ on the three prong side pushes
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the prediction towards signal, with a small portion of high values of the energy
of the τ on the three prong side pushing the prediction towards background.
This distribution looks odd compared to the TabNet distribution shown in figure
6.1 and the other features shown in figure 6.9. The expectation is a distribu-
tion that has values pushing the prediction to signal and background not only
to signal. This may be caused by the assumption made when calculating the
Shapley values (see section 4.3), as e.g. the established BDT is not linear.
The most important vertex reconstruction feature is the distance of the τ on the
three prong side. It is the ninth most important feature overall, immediately
followed by the second track on the three prong side. The least important fea-
ture of this category of features is the third track on the three prong side, being
the 19th most important feature overall. Compared to TabNet this category of
features is more important to the established BDT, as the second most impor-
tant feature of this category for TabNet was the 18th most important feature
leaving a big gap between the two most important features.

In conclusion the feature importance of TabNet and the established BDT only
agree on the importance of the thrust values. When ranking the feature im-
portance not based on the single features but base on the categories of features
the most important category is the event shape. The second most important
category of features are the kinematic feature for the established BDT and the
γ and π0 rejection features for TabNet. The third most important category
for the established BDT and for TabNet are the vertex reconstruction features.
The least important category for the established BDT are the γ and π0 rejection
features and the kinematic features for TabNet.

6.3 Intrinsic Interpretability of BDT and Tab-
Net

The established BDT and TabNet also have an intrinsic feature importance,
which is not common in the case for DL algorithms like TabNet. The BDT
measures the feature importance by either counting the times a feature is used
to split the data set or by weighting the counts of splitting with the information
gained through this feature. TabNet provides interpretability by aggregating
the attention masks and by calculating the mean of the attention masks to get
a global feature importance. The intrinsic intepretability of TabNet is not shown
as there seems to be a bug. When changing the thrust value for a signal event
to a thrust value of a background event the prediction changes from signal to
background, but the global feature importance of the thrust provided by Tab-
Net is 0 and consequently the prediction should not be altered. Therefore the
intrinsic interpretabilty of TabNet is not to be trusted, until this bug is fixed.
Besides the bug of TabNet comparing the intrinsic interpretability of the estab-
lished BDT and TabNet is not meaningful as the definition of interpretability
and feature importance are different. They can only be compared qualitatively.
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Chapter 7

Conclusion and Outlook

This thesis studied whether TabNet, a DL algorithm, can outperform the es-
tablished BDT in selecting the τ− → π−π−π+ντ decay in Belle II data. We
also studied the way TabNet makes its predictions, how the prediction making
differs from the established BDT and derived the importance of the input fea-
tures from this with the help of the SHAP library [27].

The optimization of the TabNet performance was split into two parts. The
first part studied the impact of preproccessing and certain hyperparameter val-
ues on the TabNet performance by manually adjusting them. The second part
conducted a high-dimensional automated hyperparameter optimization using
the Optuna library [2].
The first step in the manual hyperparameter study of TabNet was to establish
a suitable scaler for the data. Two models with different scalers were studied
i.e. StandardScaler and the MinMaxScaler of the sklearn.preprocessing library
[22]. Additionally, a model with no scaling was studied as the authors of ref.
[4] state that preprocessing is not needed for TabNet. Despite the statement
of the authors of [4] the MinMaxScaler model yielded the best performance,
with a slightly better performance than the model trained without scaled data.
Therefore the data used for further training of different models was scaled with
the MinMaxScaler.
Next the training sample size and along with it the batch size was studied.
Three batch sizes of 2 − 8% of the training sample size were studied, where a
batch size of 8% performed the best supporting the need for a large batch size.
After the batch size was adjusted for the model trained on 1M events the model
trained on 100K events outperformed the model trained on 1M events. The fol-
lowing analysis still used 1M events, as the other hyperparameter values were
the model default hyperarameter values and from experience a larger sample
size is performing better.
The next hyperparameter studied was the width of the decision output layer
and the attention masks embedding, as the authors of [11] state that this con-
tains a risk of overfitting. Indeed the models overfitted, with the model default
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hyperparameter values performing the best. This led to an automated hyper-
parameter optimization, as the change of a single hyperparameter value did not
yield a better performance than the established BDT.
During the automated hyperparameter optimization, with the Optuna [2] frame-
work, multiple hyperparameter values were adjusted at the same time. A total
of 17 trials were conducted. The three most important hyperparameters were
the number of decision steps, the dimension of the decision output and atten-
tion masks embedding and the number of independent transformer blocks. All
of these hyperparameters make the model more complex as they increase the
parameters of TabNet. Therefore the complexity of TabNet seems to have the
most influence on the performance. Additionally changing a single hyperparam-
eter value gives wrong clues about the performance of a hyperparameter due to
the interplay of the hyperparameter values. Therefore using a high-dimensioal
automated hyperparameter optimization is recommended instead of changing a
single hyperparameter value.
After the 17 conducted trials the performance of TabNet was still not better
than the performance of the established BDT.

The feature importance analysis using the Shapley value enabling the compari-
son between models in terms of the way prediction were made. First the TabNet
feature importance were studied. For TabNet the thrust and the number of π0

on the three prong side provided a good separator for signal and background.
The most important feature of the γ and π0 rejection features, aside from the
number of π0 on the three prong side, were the loose and MVA cut photons.
The other γ and π0 rejection features contained redundant information and were
therefore partly accounted for in the number of π0 on the three prong side and
in the softest cut of photons. The least important features that had a feature
importance of almost 0 were the energy of the τ on the three prong side and the
transverse momentum of the τ on the three prong side. This means they had no
contribution to the prediction of the model, despite having no linear correlation
with other features.
Comparing the feature importance from TabNet with the established BDT in
terms of feature categories they only agree on the importance of the thrust fea-
ture, which is the only included event shape feature and the vertex reconstruc-
tion features. For TabNet the γ and π0 rejection features were more important
than the kinematic features, which was the opposite for the established BDT.
Still both categories are important for both models. The two most important
features of the established BDT were the energy of the τ on the three prong
side and the transverse momentum of the τ on the three prong side, which had
no feature importance for TabNet. The Shapley values of these two features
pushed the prediction towards signal almost everytime, which should not be
the case and indicate that the assumptions made during the calculation of the
Shapley values may not be applicable for the established BDT, but due to time
this could not be studied further.

As only 17 trials were conducted during the automated hyperparameter op-
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timization and the performance improved a lot in the last few trials more trials
may lead to an even larger improvement in performance. In addition to the pos-
sible improvement in performance more trials could result in an emerging cluster
for combinations of hyperparameter values and make the impact of the combi-
nation of hyperparameters on the performance more clear. The behaviour of
the number of shared and independent transformer blocks could also be studied
further as in this thesis the same value for both hyperparameter values seemed
to be favoured and showed the same behaviour of the dimension of the decision
output and attention masks embedding. For that the range of the hyperparam-
eter values need to be increased and more trials need to be conducted.
Despite the established BDT still outperforming TabNet after the conducted
analysis in the event selection of the τ− → π−π−π+ντ decay it can be an al-
ternative to a BDT for selecting other processes because TabNet is still very
good and close to the performance of the established BDT within the Belle II
data. For each decay TabNet needs to be retrained and reoptimized using a
high-dimensional automated hyperparameter optimization with larger hyperpa-
rameter value ranges as in this analysis.
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Appendix A

Appendix

A.1 Hyperparameters of TabNet

Table A.1: Irrelevant hyperparameters of the TabNet model their model default
hyperparameter values and their recommended range according to [11]. ”−”
indicates that no model default value or recommended value was given.

Model Default value Recommended range
cat idx [ ] −
cat dims [ ] −

cat emb dim 1 −
clip value − −

group features − −
n shared decoder 1 OnlyforPreTrainer
n indep decoder 1 OnlyforPreTrainer

callbacks − −
pretraining ratio − OnlyforPreTrainer
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Table A.2: Relevant hyperparameters of the TabNet model their model default
hyperparameter values and their recommended range according to [11]. ”−”
indicates that no model default value or recommended value was given.

Model Default value Recommended range
n d 8 8− 64
n a 8 nd = na

n steps 3 3− 10
γ 1.3 1.0− 2.0

n independent 2 1− 5
n shared 2 1− 5
epsilon 1e− 15 Not to be changed
seed 0 −

momentum 0.02 0.01− 0.4
lambda sparse 1e− 3 −
optimizer fn torch.optim.Adam −

optimizer params lr = 2e− 2 −
scheduler fn − −

scheduler params − −
model name ′DreamQuarkTabNet′ −

verbose 1 −
device name auto −
mask type sparsemax entmax, sparsemax
eval set − −

eval name − −
eval metric − −
max epochs 200 −
patience 10 −
weights 0 −
loss fn Cross Entropy −

batch size 1024 1− 10%of data
virtual batch size 128 divide batch size
num workers 0 −

drop last False −
warm start False −

compute importance True −

A.2 Feature list

List of all features, divided into their categories, used in the analysis. Values in
brackets represent multiple features. Each value in the bracket corresponds to
one feature.
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• Event-shape: thrust

• Vertex reconstruction: track(1, 2, 3) 3prong dr,
tau 3prong distance, tau 3prong chiProb

• Kinematics: tau 3prong E CMS, tau 3prong pt CMS,
visibleEnergyOfEventCMS, missingM2,
missingMomentumOfEventCMS,
missingMomentumOfEventCMS theta

• γ and π0 rejection: nPiOs (1, 3)proong, nPhotons (1, 3)prong,
photonsE (1, 3)prong, nLoosePhotons (1, 3)prong,
loosePhotonE (1, 3)prong, nPhotonsMV A (1, 3)prong,
photonMV AE (1, 3)prong, nLoosePhotonsMV A (1, 3)prong,
loosePhotonMV AE (1, 3)prong

A.3 Logloss of the NoScaler Model

Figure A.1: Loglosses as in figure 4.1. The data was not scaled.
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A.4 Logloss of batch size Optimization

(a) Logloss as in figure 4.1. The model
trained on 1M events, 200 epochs and
batch size = 16384. (b)

Figure A.2: Logloss as in figure 4.1. The model trained on 1M events, 200
epochs and batch size = (a) 16384, (b)131072.

A.5 Logloss of n da Optimization

(a) (b)

Figure A.3: Logloss as in figure 4.1. The model trained on 1M events, 200
epochs, batch size = 65536 and (a) n da = 64 , (b) n da = 32
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A.6 Hyperparameter Values of automated hy-
perparameter optimization

Table A.3: Hyperparameter, maximum epochs and validation AUC of trial 4.

Trial 4:
Hyperparameter Value

n da 40
n steps 4
gamma 1.9

n independent 5
n shared 4

momentum 0.04
lambda sparse 0.0001631418443918974
learning rate 0.025246159579514208
batch size 16384

virtual batch size 512
gamma scheduler 0.74

max epochs 238

val auc 0.9542854

Table A.4: Hyperparameter, maximum epochs and validation AUC of trial 16.

Trial 16:
Hyperparameter Value

n da 30
n steps 8
gamma 1.6

n independent 5
n shared 5

momentum 0.05
lambda sparse 0.00028398066268405317
learning rate 0.04976252205401964
batch size 65536

virtual batch size 2048
gamma scheduler 0.99

max epochs 402

val auc 0.9536834
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Table A.5: Hyperparameter, maximum epochs and validation AUC of trial 21.

Trial 21:
Hyperparameter Value

n da 62
n steps 7
gamma 1.7

n independent 5
n shared 5

momentum 0.09999999999999999
lambda sparse 6.571264692807959e− 6
learning rate 0.042400355924497146
batch size 16384

virtual batch size 2048
gamma scheduler 0.8500000000000001

max epochs 80

val auc 0.9542641
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A.7 Correlation Matrix

Figure A.4: Correlation of all features used in the TabNet training. Due to
readability only one digit after the decimal point is given.
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Acronyms

π Pion

AI Artificial Intelligence

ARICH aerogel-based proximity focusing ring imaging Cherenkov system

AUC Area Under the Curve

BDT Boosted Decision Tree

BN Batch Normalization Layer

CDC Central Drift Chamber

CMS Center of Mass System

DL Deep Learning

DT Decision Tree

ECL Electromagnetic Calorimeter

FC Fully Connected Layer

FPR False-Positive-Rate

GLU Gated Linear Unit

IP Interaction Point

K Kaon

KLM K0
L and Muon Detector

MC Monte Carlo

ML Machine Learning

MVA Multivariate Analysis

Neural Network Neural Network
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NP New Phyiscs

PMTs Photomultiplier Tubes

PWA Partial Wave Analysis

PXD Pixelated Silicon Sensors

QCD Quantum Chromodynamics

ROC Receiver Operating Characteristic

SHAP Shapley Additive Explanations

SM Standard Model

SVD Double-Sided Silicon Strip Sensors

TOP Time-of-Propagation

TPR True-Positive-Rate

VXD Vertex Detector
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