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Disclaimer

The research studies presented in this thesis were proposed by my supervisor, Professor
Torben Ferber.

The tracking pipeline, which is a central aspect of this thesis, was developed by
Lea Reuter.

This thesis analysis features particle collision events produced using the Belle II
Analysis Software Framework (basf2), developed by the Belle II Software Group [30].
This software was employed for the generation of all events used in this thesis and for
the reconstruction of experimental detector data.

Simulations of the Inelastic Dark Matter with a Dark Higgs model are simulated
by Lea Reuter using a simulation written by Patrick Ecker. The background overlay
files were centrally provided by the data production group of the Belle II experiment.

For chapter 6, the Dimuon events were personally simulated using basf2, with the
background overlay files also centrally provided by the data production group of the
Belle II experiment.

The corresponding plots of the results from the studies were created with the
Matplotlib package [20], along with the seaborn package [36].

The event displays were created using a framework developed by Lea Reuter,
adapted to this thesis’s requirements.

Please note that any internal references may be attributed by name. All individuals
mentioned are esteemed members of the Belle II collaboration.
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Abstract

The Belle II experiment at the SuperKEKB accelerator in Japan offers unique op-
portunities for particle physics research. However, the current tracking algorithms
have limitations in managing highly displaced vertices and escalating beam back-
grounds. This research investigates several components of a Graph Neural Network
(GNN)-based pipeline, including the exploration of input features for real-time pattern
recognition algorithms, a systematic approach for graph-building based on hits in
the Central Drift Chamber (CDC), the primary tracking detector of the Belle II
experiment, and the use of the Interaction Network (IN) for edge classification and
background clean-up.

The study found that Analog-to-Digital Converter (ADC) count and the Time-to-
Digital Converter (TDC) count, representing deposited energy and associated timing
information in a CDC cell, provide orthogonal discrimination power, making them
both valuable for distinguishing signal from background.

Graph-building models were analyzed, utilizing different patterns for possible
connections to neighboring sense wires in the CDC, using simulated events of an
Inelastic Dark Matter with a Dark Higgs (IDMDH) physics model. The aim was to
construct graphs that effectively encapsulate crucial information about signal particle
tracks to accurately predict their hits in a subsequent classification task. Metrics are
introduced to aid in balancing between capturing essential edges connecting signal
hits and excluding those associated with background.

The IN is employed as a classifier in the GNN-based pipeline, performing edge
classification on the constructed graphs. This process allows for the identification of
signal hits and the execution of a background clean-up. The classification and the clean-
up tasks yield promising results, with their effectiveness significantly influenced by
the graph-building model. The clean-up tasks correctly identified up to (80.6 ± 0.4) %
signal hits in the CDC while maintaining a purity of (67.4±0.4) % in the hit selection.
Furthermore, an initial analysis towards real-time implementation, aligning input
feature resolution with anticipated resolutions at the Level 1 Trigger (L1 Trigger)
stage, is conducted.

This Thesis provides encouraging evidence that a GNN-based pipeline offers a
viable solution to the challenges posed by highly displaced vertices and increased
beam background conditions.
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1. Introduction

For years, scientists have been striving to gain a deeper understanding of the funda-
mental forces in our universe through experimental and theoretical research in particle
physics. One of the leading experiments in this field is the Belle II experiment, located
at Japan’s SuperKEKB accelerator facility. The high-precision experiment operates
at the 𝛶 (4𝑆) resonance, where electrons and positrons collide at asymmetric beam
energies in a clean environment [29, 1]. With the SuperKEKB achieving a new world
record instantaneous luminosity of 4.7 × 1034 cm−2 s−1 in June 2022 and an ambitious
target data set of 50 ab−1, Belle II provides unparalleled opportunities in searches for
new physics in rare processes at the intensity frontier.

However, these achievements come with unique challenges. The Belle II collabora-
tion continuously pushes the limits of the instantaneous luminosity of the SuperKEKB
accelerator even further by increasing beam currents and reducing beam size at the
Interaction Point (IP). This results in an increased beam background, affecting the
performance of established particle tracking algorithms which are fundamental for the
physics analysis. Common tracking algorithms, like the combinatorial Kalman filters
and the Legendre transform algorithms, scale in their computational complexity worse
than linear with increased background hits in the detector [7, 33, 25, 17].

Furthermore, the existing tracking algorithm of the Belle II experiment is optimized
for particles originating from the IP, such as 𝐵-decays. However, some particles of
the Standard Model of Particle Physics (SM), like 𝛬 and 𝐾0

𝑠 , as well as potential
Beyond the Standard Model (BSM) particles, can originate from displaced vertices.
These particles decay in the detector spatially separated from the IP due to their
comparably high lifetimes. The Belle II reconstruction algorithm is not optimized for
displaced vertices. Thus, it is known to have reduced efficiency for these particles.
Moreover, the efficiency of the Belle II tracking algorithm drops for low transverse
momentum tracks.

The application of deep learning algorithms and, more specifically, Geometrical
Deep Learning (GeoDL) applications, such as Graph Neural Networks (GNNs), have
recently gained attention in the field of particle tracking [5, 25, 16]. This thesis explores
the steps of such an algorithm to address the challenges for particle tracking in the
Belle II experiment. This investigation forms part of a broader research initiative to
establish a fully GNN-based tracking pipeline, with the aim of improving the detection
and tracking of particles [44, 18, 34].
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1. Introduction

Particle tracking involves the identification of the trajectories (tracks) particles take
as they move through a detector. This process can be thought of as pattern recognition,
where Two-Dimensional (2D) or Three-Dimensional (3D) position measurements (hits)
of the detector are used to identify trajectories. This task becomes progressively more
complex as the number of background hits increases, making distinguishing the signal
hits from the background difficult. Chapter 6 addresses this problem by analyzing
additional detector outputs of the primary tracking detector of the Belle II experiment,
the Central Drift Chamber (CDC). The goal is to identify beneficial detector outputs
which provide discriminatory power.

Employing a GNN-based pipeline, the initial step includes building the input
graph for the network. Chapter 7 discusses graph-building algorithms for the CDC
and introduces several metrics to assess their performance in the context of particle
physics models. Finally, in chapter 8, a GNN algorithm, namely, the Interaction
Network (IN), is utilized for the pattern recognition in the CDC to classify specific
signal edges of a graph corresponding to the path of a signal particle. The chapter
evaluates different graph-building models on the edge classification task and analysis
their performance in a background clean-up of hits in the CDC. A discussion on the
comparability of the results in real-time implementation follows the analysis.

The overall structure of the study takes the form of nine chapters. Following an
introduction to the essential physics concepts and the motivation for a novel displaced
vertex trigger (chapter 2 and chapter 3), a comprehensive overview of the tracking
pipeline under discussion is provided (chapter 4), along with the details on Monte
Carlo (MC) event generation and event reconstruction used in the studies (chapter 5).
Subsequent chapters delve into the primary analysis, presenting analyses of raw
detector outputs, the graph-building algorithms with several metrics, and finally
delve into the study evaluating various graphs resulting from the graph-building
concerning the edge classification task and the background clean-up task in the CDC.
The concluding chapter offers a summary and future prospects of the studies.
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2. The Belle II Experiment

The Belle II Experiment is located at Tsukuba, Japan, in the High Energy Accelerator
Research Organization (KEK). This national research facility for high energy physics
hosts the SuperKEKB accelerator, where the Belle II experiment is conducted. The
main goals of Belle II are to improve high-precision measurements of parameters of
the Standard Model of Particle Physics (SM) and to search for new physics in the
flavor sector [28]. This will be achieved through the analysis of the target dataset of
50 ab−1, which contains approximately fifty times more data than its predecessor, the
Belle experiment.

2.1. SuperKEKB Accelerator and Belle II Detector

The following section is based on the work of [28, 1]. The SuperKEKB accelerator,
the successor to the KEKB accelerator, is operated at a center of mass energy from
below the 𝛶 (1S) resonance at 9.46 GeV to the 𝛶 (6S) resonance at 11.24 GeV. Most
of the data is taken at the 𝛶 (4S) resonance at (10 579.4 ± 1.2) MeV [53], where the
accelerator can produce a 𝐵-meson pair without remnant particles. SuperKEKB
consists of the positron ring, also referred to as Low-Energy Ring (LER), and the
electron ring, also referred to as the High-Energy Ring (HER). In those approximately
3 km long rings, electrons and positrons with asymmetric beam energies, 7 GeV and
4 GeV respectively, collide at the Interaction Point (IP) in the Belle II detector [31].
The asymmetric acceleration boosts the center-of-mass system, large enough to allow
precise measurements of lifetimes, mixing parameters, and Charge Conjugation Parity
Symmetry (CP) violation of 𝐵 or 𝐷 mesons.

The SuperKEKB accelerator consists of a Linear Particle Accelerator (LINAC),
which injects the electrons to the HER and the positrons to the LER. The pre-injector
generates the positrons at the beginning of the LINAC, where electrons irradiate a
tungsten target. The positrons are led into a damping ring which reduces the emittance
by radiation damping. Afterward, the positrons are reinjected to the LINAC.

The target instantaneous luminosity of the SuperKEKB accelerator is 40 times
greater than the peak luminosity recorded by KEKB. This is realized mainly through
a reduced beam size at the collision point, and an increased current (”nano-beam”
scheme) [28, 9, 1]. The absolute delivered instantaneous luminosity is measured
with Bhabha scattering. The nano-beam scheme leads to growing emittance through
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2. The Belle II Experiment

intra-beam scattering and a short lifetime due to the Touschek effect [1]. Further
technical design parameters are listed in table 2.1.

Table 2.1.: SuperKEKB machine parameters, from [28, 1].
LER (𝑒+) HER (𝑒−)

Energy 4.000 7.007 GeV
Beta function at IP (𝛽∗

𝑥/𝛽∗
𝑦) 32/0.27 25/0.30 mm

Horizontal Beam Size 𝜎∗
𝑥 10.2 ± 10.1 7.75 ± 7.58 µm

Vertical Beam Size 𝜎∗
𝑦 59 59 nm

Horizontal emittance 3.2 4.6 nm
Luminosity 8 × 1035 cm−2 s−1

Figure 2.1.: The SuperKEKB accelerator. Taken from [52].

The Belle II detector is shown in fig. 2.2. The hermetic detector consists of five
main detector systems.

(i) The Vertex Detectors (VXDs), comprising a Pixel Detector (PXD) with two
layers and a Silicon Vertex Detector (SVD) consisting of a four-layer double-sided
silicon-strip detector.

(ii) The central tracking device is the Central Drift Chamber (CDC). The CDC is
capable of reconstructing a full Three-Dimensional (3D) helix track. This it is
the fundamental detector for this thesis.
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2.2. Central Drift Chamber

(iii) The Particle Identification (PID) system, cosisting of a Time-of-Propagation
(TOP) counter used in the barrel region. It is a special Cherenkov detector,
using two-dimensional information of Cherenkov rings and the reconstructed
momentum to determine the identity of the particles [41]. In the forward endcap
region, an Aerogel Ring Imaging Cherenkov (ARICH) counter, a proximity
focusing Cherenkov ring imaging detector with aerogel as Cherenkov radiator is
used [28, 54].

(iv) The Electromagnetic Calorimeter (ECL) detector, built out of an array of
thallium-doped cesium iodide CsI(Tl) crystals. This system detects gamma rays
and identifies electrons.

(v) The 𝐾𝐿 Muon Detector (KLM) system, placed outside of the superconducting
solenoid. It composes of a sandwich of iron plates and active detector elements.
The iron plates return the magnetic flux and provide additional interaction
lengths.

Electromagnetic Calorimeter (ECL)
KL and muon detector (KLM)

Magnet

Particle Identi�cation (PID)

Vertex Detectors (VXD)

Central Drift Chamber (CDC)

electrons e -

positrons e +

Figure 2.2.: The Belle II experiment with crucial detector components. Adapted
from [52].

2.2. Central Drift Chamber

The following chapter is based on [28, 1]. The Central Drift Chamber (CDC) is the
main tracking system of the Belle II detector. It is a cylindrical chamber containing
sense wires and is filled with a gas mixture. If a charged particle traverses the detector,
it ionizes the gas mixture inside the Central Drift Chamber (CDC). The electric field
present within the chamber accelerates these charged particles, leading to further
ionization of the gas and creating an avalanche effect. The cascade of charged particles
is accumulated in the sense wires. Eventually, this leads to the detection of a signal hit.
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2. The Belle II Experiment

Using 14 336 sense wires, a high spatial resolution can be archived, and the momenta
of the passing particles can be measured. Furthermore, the CDC provides information
on particle identity by measuring the energy loss (𝑑𝐸𝑑𝑥) in the gas volume. This is
especially useful for low momenta tracks, which do not reach the PID devices. The
structure of the CDC will be explained in detail in the following section. Additionally,
details of the readout electronics, the measurement information, and backgrounds in
the CDC are presented in the following subsections.

2.2.1. Geometry and Structure

The following section is based on [1]. A technical drawing of the CDC is given in
fig. 2.3. The CDC covers the full range of the azimuthal angles and has a polar angular
acceptance of 17° to 150°. The chamber has an inner radius of 160 mm and an outer
radius of 1130 mm.

Figure 2.3.: Technical drawing of the Central Drift Chamber, displaying its structure.
Taken from [1].

The 14 336 sense wires with a diameter of 30 µm made from tungsten are arranged
around the Interaction Point (IP). Each is surrounded by a drift cell, and the electric
field is generated with additional 42 240 field wires made from aluminum. The sense
wires are arranged into 56 layers, further compartmentalized into nine superlayers.
Each superlayer comprises six layers, and the innermost superlayer has two additional
active guard layers. The superlayers are distinguished into axial (”A”) and stereo
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2.2. Central Drift Chamber

layers (”U”, ”V”), where the first ones are aligned, and the latter ones are skewed to
the solenoidal magnetic field. This design allows the CDC to reconstruct a full 3D
helix track. The two different wire types are illustrated in fig. 2.4, and additional
information on the nine superlayers is displayed in table 2.2.

The chamber of the CDC is filled with a gas mixture of 50 % Helium and 50 %
Ethan where a drift velocity of 3.3 cm µs−1 with a maximum drift time of 350 ns for
a 17 mm drift cell is achieved. The size of the drift cells is ∼18.2 mm for the outer
superlayers and 10 mm for the innermost superlayer.

Figure 2.4.: Illustrative drawing of the axial layer (top) and the stereo layer (bottom)
in the Central Drift Chamber of Belle II. Taken from [7].

Table 2.2.: Detailed information on the superlayers of the Central Drift Chamber.
Taken from [1].

no. superlayer type layers wires / layer radius (mm) stereo angle (mrad)

1 Axial 8 160 168.0 – 238.0 0
2 Stereo U 6 160 257.0 – 348.0 45.4 – 45.8
3 Axial 6 192 365.2 – 455.7 0
4 Stereo V 6 224 476.9 – 566.9 -55.3 – -64.3
5 Axial 6 256 584.1 – 674.1 0
6 Stereo U 6 288 695.3 – 785.3 63.1 – 70.0
7 Axial 6 320 802.5 – 892.5 0
8 Stereo V 6 352 913.7 – 1003.7 -68.5 – -74.0
9 Axial 6 384 1020.9 – 1111.4 0

2.2.2. Readout Electronics

The readout electronics of the CDC are situated close to the backward endplate
and consist of a front-end digitizer [50]. It provides two main pieces of information
to the Data Acquisition (DAQ) system. One is the digitized analog signal, the
Analog-to-Digital Converter (ADC) count, which refers to the deposited energy of a
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measurement in the CDC. The other is the associated time information, the Time-
to-Digital Converter (TDC) count. TDC and ADC information is passed on to the
trigger system to process relevant signals quickly. However, due to the high-speed
requirements and limited time window of the trigger system, it has a constraint
available bandwidth, and not all signals can be passed on. In table 2.3, the available
information for the DAQ and the trigger system is listed. As illustrated in fig. 2.5,
signals are passed from a subset of the sense wires, the trigger wires. If this Thesis
refers to trigger information, it refers to the information available after the Long
Shutdown 2 (LS2).

Table 2.3.: Current and anticipated information from the front-end electronics of
the Central Drift Chamber passed to the Level 1 Trigger and the Data
Acquisition. The projections are preliminary and may change based on
future hardware considerations and decisions (Koga-san, T., personal
communication, 03.11.2022).

DAQ TRG TRG LS1 TRG LS2

Time window (ns) 800 32 32 32
TDC resolution (ns) 1 ns 2 ns 2 ns 2 ns
ADC resolution (points) 25 - 3 3
Hit info (layers) 6/6 (8/8) 5/6 (5/8) 5/6 (5/8) 5/6 (5/8)
TDC count (layers) 6/6 (8/8) 1/6 (1/8) 1/6 (1/8) 5/6 (5/8)
ADC count (layers) 6/6 (8/8) - 5/6 (5/8) 5/6 (5/8)

Stereo wire
Axial wire

Trigger wire

Figure 2.5.: Illustration of a fraction of the Central Drift Chamber with stereo and
axial layers. The marked trigger wires are assumed to be available to the
Level 1 Trigger system after Long Shutdown 2.

The Time-to-Digital Converter (TDC) count TDCcount is the time information of
hits in the central drift chamber and has a resolution of 𝜏≈1 ns. The time window for
the TDCcount is set in the front-end electronics considering the L1-trigger latency and
differs for the innermost superlayer in the CDC from the outer layers. The window is
defined with [𝑡1, 𝑡2], where 𝑡1 equals the trigger delay and 𝑡2 is the delay added by the
window width. The time of measurement of a hit in the CDC has a temporal shift to
its actual time. The TDC count is derived from the following equation

𝜏 ⋅ TDCcount = Tstop − Tevt − Ttof − Tdrift − Tprop-delay − Ttime-walk, (2.1)
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2.2. Central Drift Chamber

where the event time Tevt is referring to the actual event time. In Monte Carlo (MC)
this is set to zero for a signal event. The time of flight Ttof is the time it takes for the
particle leading to the hit in the CDC to the primary event happening in the IP. The
drift time Tdrift describes the time it takes for free charges from the gas ionization
in the drift cell of a sense wire to reach the sense wire. The 𝑥 − 𝑡 (time-to-distance)
relation is described as a polynomial function or linear function, depending on the
drift region, and provides an approximation between drift time and distance [7, 1].
The Tprop-delay is the time, the signal propagates along the sense wire, and Ttime-walk
is the pulse-height dependent timing shift.

The Analog-to-Digital Converter (ADC) is calculated as a truncated mean of a
time window to minimize the Landau tail’s contribution and reduce the data size
[50, 7]. The ADC value is sampled with a frequency of approximately 32 MHz and
digitized. For the DAQ, this information is sampled from approximately 25 points,
whereas it is anticipated to be calculated from 3 points for the trigger system with a
reduced resolution.

2.2.3. Background in the Central Drift Chamber

Various background processes are expected in the CDC. Additional wire hits increase
the difficulty of pattern recognition of charged signal tracks as they are expected
from future luminosity increasements of the SuperKEKB accelerator [38, 39]. They
impact the accuracy of measurements and the reconstruction efficiency of the Belle II
experiment. In the following, some of the major background sources are listed. The
section is based on [38].

Cross-talk Cross-talk occurs by interference from different channels in a detector [47].
In the context of the CDC, cross-talk refers to the impact on signals in sense
wires caused by electrical coupling between spatially close sense wires. This
coupling can influence or induce signals in adjacent sense wires.

Beam Background The high-luminosity beam of the SuperKEKB is expected to gen-
erate additional hits in the CDC. Collimation adjustment and shielding are
critical for reducing beam background.

Bhabha Scattering In the IP, also undesirable collision processes can happen. Ra-
diative Bhabha scattering (𝑒+𝑒− → 𝑒+𝑒−𝛾), for example, increases the Belle II
occupancy due to high cross-section but is of minor interest.

Touschek Effect The Touscheck effect describes the loss of particles in the beam
due to intrabeam scattering. It is the main limiting factor for the beam’s
lifetime.

Injection Background Due to a limited lifetime, the particle beam must be con-
tinuously refilled to keep a stable current. Particle bunches do not enter the
storage ring ideally because of optical mismatches and possible injection kicker
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2. The Belle II Experiment

errors. The increased amplitudes of the particles in the beamline lead to large
backgrounds. Therefore, events shortly after injection are vetoed from the
trigger system of Belle II.

Synchrotron Radiation When electrons and positrons pass the deflecting magnets
close to the IP, they emit synchrotron radiation.

Cosmic Events Cosmic rays can generate background events in the Belle II experiment.

2.3. Data Taking With the Belle II Online System

In the Belle II detector, a vast number of events occur, but only a fraction is of interest
for further analysis. Events like Bhabha scattering (𝑒+𝑒− → 𝑒+𝑒−) are of secondary
interest for the experiment [22]. Hence, it is not desired to save all events. In general,
each subdetector transmits its signal information continuously, but the information is
only saved if the online system triggers an event.

The following section is based on [1]. The trigger system consists of the Level 1
Trigger (L1 Trigger), and the High Level Trigger (HLT). The primary objective is to
reduce the rate of events recorded for storage and analysis while retaining the most
interesting ones for physics analysis. The system is designed to reduce the amount of
data before it reaches the first storage hard disk. The L1 Trigger utilizes information
from the CDC, the ECL, and the 𝐾𝐿 Muon Detector (KLM) in a low resolution
to identify relevant events. It is designed to make decisions near real-time using
a Field-Programmable Gate Arrays (FPGAs), enabling fast but also configurable
hardware. The L1 Trigger comprises several sub-triggers which send their signal to a
Global Decision Logic (GDL), which acts as the final arbiter. The GDL uses summary
information of 𝒪(100) bits and fine information of 𝒪(4000) bits of the sub-triggers. It
processes the information and, eventually, issues trigger signals for physical events
and calibration purposes. The overall latency of the L1 Trigger trigger is in the order
of 5 µs with an expected output rate of 30 kHz at target luminosity.

The online system incorporates a DAQ, which reads out the detector information
and transfers the data through several steps of data processing, and finally leads
to the storage system. One critical component of the system is the HLT, a more
sophisticated trigger system performing fast reconstructions on Central Processing
Units (CPUs). The software on the HLT is the same as the offline reconstruction
software to avoid introducing additional systematics different from that in offline
processing. Detailed information on the software framework of Belle II can be found
in the following section.

10



2.4. Belle II Analysis Software Framework

2.4. Belle II Analysis Software Framework

The Belle II experiment employs a software framework known as Belle II Analysis
Software Framework (basf2) [30]. It is a comprehensive software solution designed to
serve several purposes required for aHigh Energy Physics (HEP) experiment. Belle II
Analysis Software Framework (basf2) offers a high-level analysis framework to analyze
data produced in the Belle II experiment and is capable of handling a wide range of
tasks like generating simulated events, unpacking real raw data, and reconstructing
complex events.

One of the software’s key aspects is its modular structure, comprised of efficient
C++ modules. Users typically create a steering file, which provides a convenient way
of declaring a basf2 path to manage the modules used for the data analysis. An online
database supplies the Belle II experiment conditions for each dataset. The conditions
are defined as binary objects called payloads and organized within a globaltag. A
globaltag offers a convenient way to manage the configuration of the analysis tools.

Event reconstruction relies heavily on particle tracking to determine particle
properties, such as charge and momentum. For this, the basf2 tracking algorithm
utilizes information from multiple detectors. The existing track-finding algorithm for
the CDC will be discussed in greater detail below, as they are of greater interest to
this thesis.

2.4.1. Tracking in the Central Drift Chamber

The basf2 algorithm for track finding in the CDC consists of two main modules. A
global track-finding algorithm and a local track-finding algorithm. The following
section is based on [7].

The global algorithm utilizes a Legendre transform method for tracking, achieving
high track-finding efficiency with low fake rates. It begins by identifying patterns
of hits consistent with helix trajectories. Then the position information in the axial
layers is determined using the drift time information for each hit in the CDC. In this
process, 𝑇𝑡𝑜𝑓 and 𝑇𝑝𝑟𝑜𝑝−𝑑𝑒𝑙𝑎𝑦 are initially estimated and later revised. Further details
on timing information in the CDC can be found in subsection 2.2.2.

Circles in the 𝑟, 𝜙-plane can be mapped to a conformal space, where tracks starting
at the origin are represented as straight lines, and drift circles remain circles. Thus,
the particle tracks are represented as straight lines tangential to the circles. These
tangents can be represented using two Legendre parameters 𝜌 and 𝜃 as

𝜌 = 𝑥0 cos 𝜃 + 𝑦0 sin 𝜃 ± 𝑅𝑑𝑟. (2.2)

The drift circles are represented using their position (𝑥0, 𝑦0) and radius 𝑅𝑑𝑟. Assuming
tracks to originate from the IP, track finding eventually involves identifying densely
populated regions in this Two-Dimensional (2D) space. This way, multiple track

11



2. The Belle II Experiment

candidates can be found. In the final step, the 𝑧 information is added to the 𝑟 − 𝜙
tracks by incorporating the information from the stereo layers.

The basf2 also offers a local track-finding algorithm designed to detect short tracks
and tracks with displaced vertices using the cellular automaton concept. Finally,
results from both algorithms can be combined, considering their specific benefits.
Generally, the global track-finding algorithm is used as a baseline, while the local
track-finding algorithm is not in use to date due to its high fake rates.
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3. Motivation for Advancements in Particle
Tracking Algorithms

The Standard Model of Particle Physics (SM) describes fundamental findings of
particle physics with great success to this day. It provides a theoretical framework
describing three of the four known fundamental forces, electromagnetic, weak, and
strong interactions. Even though the model proclaims itself with precise predictions,
it cannot explain all observed phenomena. Questions about the genesis of the matter-
to-antimatter asymmetry in the universe, the formation and evolution of galactic
structures, or the nature of the neutrino mass are unanswered until today.

Pioneering work by Vera Rubin [45] in 1980 demonstrated that the rotational
velocities of spiral galaxies could not only be explained from the visible matter. The
study by Rubin discusses the idea of the existence of non-luminous matter. Nowadays,
this concept is well known as Dark Matter (DM). The existence of DM is supported
by strong evidence over a wide range of astrophysical scales, but its particle physics
nature has not yet been established. Indications of DM’s existence have also been
found in further observations of cosmological phenomena like gravitational lensing
by galaxy clusters, the famous bullet cluster [8], and Cosmic Microwave Background
(CMB) anisotropies.

The detection of DM has become one of the ultimate goals in experimental physics.
With growing attention on light DM and the associated dark sector states with
masses in the MeV c−2 to GeV c−2 range, low-energy, high-intensity facilities such as
𝐵-factories offer unique advantages for the exploration of such scenarios. The Belle II
detector is one such facility, designed to study the properties of 𝐵-mesons and search
for various DM models.

However, the baseline basf2 tracking algorithm has three limitations. First, the
algorithm is optimized for tracks originating from the Interaction Point (IP), where
most particles in 𝐵-meson decays will originate. This limits its ability to track SM
particles with longer lifetimes, such as 𝛬 and 𝐾0

𝑠 , with significantly displaced vertices.
Moreover, Beyond the Standard Model (BSM) mediator candidates can have longer
lifetimes. In the following section 3.1, the concept of inelastic DM is presented, which
can include such long-lived mediators. Subsequently, section 3.2 discusses possible
signatures of it in the Belle II detector, highlighting the need for novel tracking
algorithms to address this challenge. Second, the basf2 tracking algorithm is not yet
optimized for high beam backgrounds, which will increase with future upgrades of
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the SuperKEKB, for an increased instantaneous luminosity [38]. Lastly, the basf2
tracking algorithm is not yet fully efficient for low transverse momentum (𝑝𝑇) tracks.

3.1. Inelastic Dark Matter with a Dark Higgs

This section delves into the concept of the Inelastic Dark Matter with a Dark Higgs
(IDMDH) model and the important signatures that the Belle II detector may detect.
The model discussed in this section was first presented in [12], and a more detailed
explanation can be found here. Thermal DM is well motivated and has long captivated
the scientific community with searches in collider experiments as in direct and indirect
searches.

The IDMDH model introduces two states of DM, the 𝜒1 and a heavier state
𝜒2. The mass splitting 𝛥 = 𝑚𝜒2

− 𝑚𝜒1
can be enabled with a dark Higgs field,

introducing a dark Higgs ℎ′ which mixes with the Standard Model of Particle Physics
(SM) Higgs. In this scenario, the inelastic DM can couple to a massive gauge boson,
a dark photon 𝐴′, which mixes with the SM photon. The signature in the Belle II
experiment can then be identified as two lepton tracks, respectively electrons or muons,
or two hadronic tracks originating from a displaced vertex.

The model consists of seven free parameters.

1. The mass of the dark photon 𝑚𝐴′

2. The mixing angle of the SM photon to the dark photon 𝜖

3. The mixing angle of the SM Higgs to the dark Higgs 𝜃

4. The mass of the dark Higgs 𝑚ℎ′

5. The mass of the 𝜒1 𝑚𝜒1

6. The coupling of 𝜒1 and 𝜒2 to the dark Higgs 𝑓

7. The coupling of 𝜒1 and 𝜒2 to the dark Photon 𝑔𝑋

The simultaneous progress of expansion and cool-down of the early universe
led to a drop in particle production and annihilation. Ultimately, this progress is
expected to leave the thermal equilibrium of the Weakly Interacting Massive Particles
(WIMPs) like the hypothetical DM. This thermal freeze-out is expected to leave
distinct signatures in the CMB. Precise measurements of the CMB like these from
the Planck satellite can be used to constrain the parameters of the IDMDH. These
constraints can be summarized as

1
4

𝛼2
𝑓𝑚𝜒1

< 𝑚ℎ′ ≲ 𝑚𝜒1
< 𝑚𝐴′, (3.1)

with the coupling constant 𝛼𝑓 = 𝑓/4𝜋.
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Figure 3.1.: A possible signature of the Inelastic Dark Matter with a Dark Higgs. The
Standard Model of Particle Physics photon mixes with the dark photon,
which couples to a dark Higgs, which decays into two muons which is
the searched signal. The dark photon finally couples to the Dark Matter
particles 𝜒1 and 𝜒2. 𝜒1 is assumed to be stable and the heavier state 𝜒2
decays into a 𝜒1 with an 𝑒+𝑒− signature. Adapted from [12].

Figure 3.1 presents one possible feynman diagram of the IDMDH. The signature
of this diagram in a detector is four charged leptons as a final state, which can decay
displaced from the Interaction Point (IP). The diagram sets the foundation for the
signatures simulated for this thesis and details on this can be found in section 5.4.
Searches for signatures of these displaced tracks have been shown to significantly gain
sensitivity with a new displaced vertex trigger for the Belle II experiment [13].

3.2. Displaced Vertices at Belle II

Displaced vertices refer to the points in space where particles decay or interact, located
at a significant distance from the primary IP. These displaced vertices commonly
originate from long-lived particles of the SM but can also originate from exotic decay
processes that are not accommodated by the SM. Identifying and analyzing displaced
vertices can provide crucial insights into new physics phenomena, such as inelastic
dark matter or other BSM scenarios, and potentially aid precise measurements of the
SM.

The current experimental configuration of Belle II may miss key signatures that
appear generically in a number of models, consisting of a displaced pair of electrons,
muons, or hadrons. This becomes clear when investigating the reconstruction efficiency
of Belle II Analysis Software Framework (basf2). Figure 3.2 shows the reconstruction
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efficiency of basf2 on a simulation with uniformly displaced. Details on the simulation
are presented in section 5.4. The efficiency of the reconstruction software is satisfactory
for particles with a vertex close to the IP. For particles with a larger displacement in the
transverse plane 𝜌 = √𝑥2 + 𝑦2, the reconstruction efficiency decreases significantly.
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Figure 3.2.: Offline reconstruction efficiency of Belle II Analysis Software Framework in
dependency of the transversal displacement. Courtesy of Lea Reuter [44].

This becomes even more obvious when examining trigger efficiency. Since the
majority of SM processes are expected to have tracks originating from the IP at
Belle II, most triggers are designed to trigger on such tracks. This is also necessary
due to background suppression. It follows that the trigger efficiency is dropping for
displaced tracks. Figure 3.3 presents the trigger efficiency of the Single Track Trigger
(stt) which is designed to identify single tracks in the Belle II using a neural network
approach [48]. In fact, the trigger efficiency of the stt for tracks with a displacement
𝜌 > 40 cm is close to zero.

Given the limitations of the current reconstruction software and trigger efficiency
for detecting displaced vertices, it is clear that a new algorithm is needed for both
online and offline identification of these vertices. Such an algorithm would improve
the sensitivity of the Belle II experiment to inelastic dark matter and beyond the
Standard Model scenarios involving displaced vertices [13].

16



3.2. Displaced Vertices at Belle II

0 10 20 30 40 50 60
MC
h ′  (cm)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ig

ge
r E

ffi
cie

nc
y

 = 0.0001
 = 0.0001

m 1 = 1.0 GeV/c2

f = 0.275
gX = 1.121

mA ′ = 4m 1 = 4.0 GeV/c2

m = fmA ′/gX

stt

mh ′ = 1.0 GeV/c2

mh ′ = 2.5 GeV/c2

mh ′ = 4.0 GeV/c2

Figure 3.3.: Online Level 1 Trigger efficiency of the Single Track Trigger trigger bit in
dependency of the transversal displacement. Courtesy of Lea Reuter [44].

17





4. Graph Neural Network-Based Track and
Vertex Finding

In the field of High Energy Physics (HEP), the accurate representation and analysis
of complex and heterogeneous data from detectors are crucial for understanding the
underlying physical processes. Graph Neural Networks (GNNs) recently have emerged
as a powerful and adaptable approach for representing and processing this data [25,
26, 43, 46, 10]. Particularly in particle tracking, the application of such networks has
shown promising results [25].

Graph Neural Networks (GNNs) are a class of neural networks that operate
on graph structures, consisting of nodes and connections between the nodes called
edges. The graph-based representation can capture relationships between different
entities, such as Two-Dimensional (2D) and Three-Dimensional (3D) measurements
in the tracking detector. The versatility of graphs enables embedding a flexible
depth of information as node features or edge attributes. Therefore, a graph can
comprehensively represent the information provided by a tracking detector like the
CDC at the Belle II experiment.

In the main tracking detector of Belle II the CDC, these measurements refer to
measured energy deposition in sense wires called hits. These hits can result from
signal particles and several background sources like beam background, cross-talk, and
others. A detailed overview of the major backgrounds in the CDC is presented in
subsection 2.2.3.

A novel graph neural network track and vertex finding pipeline is proposed by Lea
Reuter and Torben Ferber to address the growing challenge of the track finding task
[44, 18, 34]. The GNN-pipeline is introduced in the following section. The Interaction
Network (IN) is an integral part of the GNN-pipeline and is used for the analysis in
this thesis. It is introduced in detail in section 4.2.

4.1. Pipeline for a Graph Neural Network-Based Tracking
Approach

The baseline basf2 tracking algorithm, presented in subsection 2.4.1, exhibits three
main non-optimal features that the new GNN-pipeline aims to address.
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(i) This algorithm is optimized for tracks originating from the IP, which is not ideal
for Standard Model of Particle Physics (SM) particles with longer lifetimes,
such as 𝛬 and 𝐾0

𝑠 , that can have significantly displaced vertices.

(ii) The baseline algorithm is not yet optimized for high beam backgrounds as they
are expected with the increasing luminosity.

(iii) The tracking algorithm is not fully efficient for low transverse momentum (𝑝𝑇)
tracks.

The GNN-pipeline, illustrated in fig. 4.1, is intended for both online trackings,
referring to real-time tracking during data taking in the Belle II experiment, and
offline tracking, for post-data-taking analysis. Each application must address distinct
challenges. The online application requires low latency and suitable computational
demand, while the offline approach must deliver precise results, competing against
the established and accurate baseline algorithms.

CDC Hits
(Nodes) Edges

GNN-based 
Track- and 

Vertex�nding 
Pipeline

Graph
Building

Edge- 
Classi�cation

Track
Finding

Vertex
Finding

Figure 4.1.: Illustration of the Graph Neural Network-based Track- and Vertexfinding
pipeline. Adapted with courtesy of Lea Reuter [44].

The GNN-pipeline is separated into four modular steps, ensuring flexibility and
adaptability:

Graph-building The initial step is constructing the input graph for the Graph Neural
Network (GNN). The graph-building process is essential for transforming raw
data into a structured graph, selectively connecting nodes and edges to strike a
balance between incorporating valuable physical knowledge, adhering to hard-
ware limitations for efficient processing, and maximizing accuracy in subsequent
steps of the GNN-pipeline.

Edge-Classification and Background clean-up Background clean-up plays a pivotal role
in analyzing particle collisions, as it ensures the quality and reliability of results
by isolating imprints of signal particles in the measurements. The background
clean-up is realized using the Interaction Network (IN), which classifies edges of
an input graph to identify nodes corresponding to hits in the CDC corresponding
to a signal particle and determine cleaned events.

Track-Finding In the third step, an object condensation [26] method classifies hits in the
CDC, identifying individual particles. Simultaneously this GNN-based algorithm
determines track parameters. The first implementation of this algorithm for
Belle II is presented in [18].
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Vertex-Finding In the final step, an advanced algorithm for vertex-finding is intended
to be employed. To this date, it is unclear if it can be incorporated into the
preceding step.

The innovative Graph Neural Network-based Track and Vertex Finding pipeline
represents a leap forward in high energy physics research, providing a powerful tool
to overcome the challenges the Belle II experiment faces. This thesis concentrates on
advancing research in graph-building by investigating various graph-building methods
and determining suitable metrics for evaluating resulting graphs. Additionally, a
background clean-up using the IN is implemented and examined to deepen the
understanding of graph-building. While the remaining two steps of the proposed
pipeline are not this thesis’s primary focus, advancements in graph-building and the
in-depth analysis of the IN contribute to the overall improvement and development of
the GNN-pipeline.

4.2. Interaction Network

The goal is to clean up events in the CDC by isolating hits that can be associated with
a specific particle of interest against background hits. These signal hits are generally
energy depositions in the CDC resulting from the passage of signal particles, such as
those produced in the decay or interaction processes being studied, and not caused
by background processes like beam-induced noise or detector artifacts. Traditional
tracking algorithms have several drawbacks, such as their iterative nature, which
prevents parallelization, the increased difficulty of pattern recognition with more
background hits [38], and a complexity that is worse than non-linear.

To address these issues, Geometrical Deep Learning (GeoDL) is utilized, allowing
for parallelization on hardware and simultaneous analysis of entire events. GeoDL
aims to generalize and adapt the core principles of deep learning to work with non-
Euclidean data structures, such as graphs and other irregular structures. Graph
Neural Networks (GNNs) are a popular example of GeoDL, designed specifically to
operate on graph-structured data.

One example of a GNN is the Interaction Network (IN), first introduced in [6] and
later adapted for particle tracking by [14], with its initial application in the TrackML
challenge [5, 4], showing promising results.

The motivation for utilizing the Interaction Network (IN) for the background
clean-up in the context of the Belle II experiment stems from its ability to represent
and reason about objects and relations in intricate systems. The IN combines a
structured model with deep learning, allowing it to exploit explicit knowledge of
relations among objects while providing highly scalable learning. This adaptability
is achieved through adjustable and trainable parameter space. Additionally, the
network’s flexibility in input sizes and dimensions allows for versatile use cases, such
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as online or offline applications, by adjustment of the available input information.
Furthermore, the tracking at the CDC can benefit from flexible input sizes, as patterns
of spatially distributed hits in the CDC can vary significantly due to the involvement
of different particles and background sources in a single event picture.

In summary, the IN addresses the limitations of traditional tracking algorithms
in the Belle II experiment by leveraging the power of GeoDL. This versatile and
adaptable approach may significantly improve pattern recognitions and the subsequent
particle tracking in the Belle II experiment.

4.2.1. Mathematical Description of the Implemented Interaction Network

This section presents the mathematical foundation of the IN implemented in this
thesis. The IN is a specific class of GNNs called message-passing networks, which are
designed to learn and generalize from structured graph data. The core idea behind
message-passing networks is the iterative exchange of information between neighboring
nodes (receivers and senders) to accumulate information in the receiving nodes. This
process can be extended by incorporating relational information between two nodes
in the form of edge attributes. The IN implementation focuses on predicting edge
states, which are then used for edge classification and background clean-up in the
GNN-pipeline.

The following section provides a general mathematical introduction to the IN and
is based on [6, 14]. Detailed information regarding the implementation in this thesis
is presented in subsection 8.1.1.

Initially, the input to the IN is a graph 𝐺 = (𝑉 , 𝑅) with 𝑁𝑉 nodes 𝑉 and 𝑁𝑅
directed edges 𝑅. They are defined as

𝑉 = {𝑣𝑖}𝑖=1,...,𝑁𝑉
, 𝑅 = {𝑟𝑘}𝑘=1,...,𝑁𝑅

. (4.1)

Each node 𝑣𝑖 and each edge 𝑟𝑘 is defined as an input vector with a fixed dimension.
The IN uses a relation-centric function

𝑓𝑅(𝑏𝑘) = 𝑟′
𝑘, where 𝑏𝑘 = (𝑣𝑖, 𝑣𝑗, 𝑟𝑖,𝑗)𝑘 (4.2)

to describe the future states of a single edge 𝑟′
𝑘, focusing on the relations between

objects. The index 𝑘 denotes the iteration over all neighboring nodes 𝒩(𝑣𝑖, 𝑣𝑗),
connected by a directed edge 𝑟𝑖,𝑗 = 𝑟𝑘. The interaction between two nodes is
represented using 𝑏𝑘. The relational model

𝜙𝑅(𝐵) = 𝑅′ = {𝑟′
𝑘}𝑘=1,..,𝑁𝑅

, with 𝐵 = {𝑏𝑘}𝑘=1,...,𝑁𝑅
, (4.3)

applies 𝑓𝑅 to each 𝑏𝑘 and gives the future state of all edges. Now the output of the
relational model is aggregated by a function

𝑎(𝜙𝑅(𝐵)) = 𝑅̃′ = { ̃𝑟′
𝑖}, with ̃𝑟′

𝑖 = ∑
𝑗∈𝒩(𝑖)

𝑟′
𝑖𝑗 (4.4)
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collecting all effects applying to a receiver (node) by collecting all relational information
from the connected nodes 𝒩(𝑖). In this Thesis, a summation function is used in the
aggregation step. After the aggregation, an object-centric model

𝜙𝑂(𝑉 , 𝑅̃′) = 𝑉 ′ (4.5)

is used to compute an output for each node. The object-centric model focuses on
the individual objects (nodes) in the graph. Finally, a second relation model 𝜙𝑅,2 is
applied, which classifies the edges

𝜙𝑅,2(𝐵′), with the input 𝐵′ = (𝑣′
𝑖, 𝑣′

𝑗, 𝑟′
𝑖,𝑗)𝑘. (4.6)

The second model uses the output of the first relational model and the output of the
object model as an input. The IN model can be described as

IN(𝐺) = 𝜙𝑅,2 (𝜙𝑅 (𝐵) , 𝜙𝑂 (𝑎 (𝐺, 𝜙𝑅 (𝐵)))) , (4.7)

leading to a final one-dimensional output with 𝑁𝑅 edge weights. The final output
can be used to classify edges by defining a threshold.

4.2.2. Pytorch Geometric

PyTorch Geometric (PyG) is an extensive library of the deep learning framework
PyTorch, focused on geometric deep learning tasks. It allows making usage of GPUs,
which allows for highly efficient parallelization of computational tasks and a wide
range of pre-implemented base classes for the ease of an own implementation of a GNN.
PyTorch and the PyG are used to embed the proposed GNN-pipeline for analysis
use-cases. The whole IN is embedded in a MessagePassing network, a base class
from PyG, which helps in creating GNN by automatically taking care of message
propagation. Further details on the implementation can be found in subsection 8.1.1.

4.2.3. Training Theory

The primary objective of training a neural network is to learn the probability distribu-
tion 𝑃 that represents the true underlying distribution of the problem being analyzed.
In this context, a sample of data points with known labels, 𝑦, is provided by the
simulation. The network aims to learn a hypothesis 𝑄, which approximates the true
label distribution 𝑃. The goal is to minimize the divergence of the two distributions
𝑃 and 𝑄. The Kullback-Leibler divergence, a well-known measure of the divergence
between two distributions, is defined as

DKL(𝑃 ||𝑄) = ∑
𝑖

(𝑃𝑖 log(𝑃𝑖) − 𝑃𝑖 log(𝑄𝑖)) . (4.8)

In most training cases, the distribution 𝑃 is not entirely known. For binary
classification problems, the true label distribution 𝑃 can be represented by a Bernoulli
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distribution with the parameter 𝑦. Similarly, the predicted probability distribution
can be represented as the Bernoulli distribution with the parameter 𝑝. There are only
two possible outcomes. Success (1) with probability 𝑦 and failure (0) with probability
1 − 𝑦. The predicted probabilities for these outcomes are 𝑝 and 1 − 𝑝, respectively,
the output of the sigmoid function with a value between zero and one. Thus, the
Kullback-Leibler divergence formula in this discrete case can be expressed as:

DKL(𝑃 ||𝑄) = 𝑦 log(𝑦) − 𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑦) − (1 − 𝑦) log(1 − 𝑝). (4.9)

As the first and third terms can be assumed to be constant, minimizing the Kullback-
Leibler divergence is equivalent to minimizing the binary cross-entropy loss defined
as

Lcross−entropy = −(𝑦 ⋅ log (𝑝) + (1 − 𝑦) ⋅ log (1 − 𝑝)). (4.10)

By minimizing the binary cross-entropy loss, the divergence between the true label
distribution 𝑃 and the predicted probability distribution 𝑄 is effectively minimized.
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5. Monte Carlo Simulation and Data
Sampling for Event Analysis

This Thesis employs Monte Carlo (MC) simulated events for various studies, including
the input feature comparison, the graph-building analysis, and for training and
evaluation of the Interaction Network (IN).

In this thesis, a MC simulation of dimuon events is performed for the input
feature analysis. Section 5.2 presents the dimuon simulation and reconstruction,
while section 5.3 presents details of the reconstruction used for the corresponding
experimental data.

Section 5.4 outlines the MC simulation of the Inelastic Dark Matter with a
Dark Higgs (IDMDH)-model introduced in section 3.1, employed for evaluating the
graph-building and the training of the IN. The truth information supplied by the MC
simulation is a fundamental aspect of the analysis.

5.1. Introduction to Monte Carlo Simulation at Belle II

For the MC simulation at the Belle II experiment, Belle II Analysis Software Framework
(basf2) is used. The MC simulation can be divided into three steps.

1. Event generation, where particles are simulated based on an underlying physics
theory, such as the Standard Model of Particle Physics (SM). This begins with
the interaction of the positron and the electron at the Interaction Point (IP).
There are various generators for different use cases depending on the simulated
models and involved particles.

2. Simulation of particle’s propagation through the various components of the
Belle II detector. This step includes a simulation of the energy deposition in the
detector, as well as the response of the detector. Detailed information on the
complex geometry of the detector is needed for that step. Geant4 simulation
software is used to simulate particle interaction with the virtual detector [2],
such as ionization, bremsstrahlung, pair production, Cherenkov radiation, and
others.

3. Reconstruction of the raw data. The event simulation is followed by a recon-
struction where the generated raw data is processed and reconstructed. The
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basf2 mainly uses the same algorithms for reconstructing real detector data and
simulated data, ensuring a consistent analysis process. This step may include
the reconstruction of particle properties.

Adding background to the physics processes is achieved by applying overlays to
the simulated detector response. The naming of background overlays of the Belle II
experiment can be assigned to major commissioning phases [39].

Phase 1 This phase focused on the commissioning of the SuperKEKB accelarator.

Phase 2 From March 2018 to July 2018, the full Belle II detector was installed except
for the Vertex Detector (VXD). First background measurements ensured a safe
installation of the sensitive VXD [35].

Phase 3 The ongoing phase of the Belle II experiment started in March 2019 and is
dedicated to physics data taking.

5.2. Dimuon Sample Generation for Feature Analysis with
Monte Carlo Simulation

The signal consists of dimuon events simulated with the standard dimuon generator
of basf2, the KKMC generator[23, 24] in version 4.19. Specifically, the basf2 imple-
mentation with the module add_kkmc_generator, with a final state of 𝜇+𝜇−. The
latest available pre-release background overlays were used in this analysis, namely the
pre-release-07 backgrounds. They are expected to provide the most accurate simu-
lation of Analog-to-Digital Converter (ADC) and Time-to-Digital Converter (TDC)
counts of the Central Drift Chamber (CDC). One drawback is that a pre-release
background might still undergo some verification tests and possible improvements
before the official release. This analysis, therefore, does not use an official simulation
of the Belle II experiment.

Recent updates in background simulation include a more refined physical descrip-
tion of the collimators and beam pipe, as well as a first implementation of collimator
tip scattering embedded into a new sequential tracking framework [37]. These modifi-
cations significantly improve agreement between data and simulation for the CDC
hit-wire rate, which is now within one order of magnitude for luminosity and beam
backgrounds.

The Belle II experiment continuously collects data over an extended period.
The detector’s performance, calibration, and environmental conditions may change
throughout this time. To account for these, the Belle II experiment uses run-dependent
background files. These are background files generated from real data to account for
varying backgrounds that may result from varying background conditions. Utilizing
these background files offers a robust verification of the analysis results. Therefore
two simulations were performed, one with run-independent background files and one
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using run-dependent background files. Details on the configuration of basf2 are listed
in table 5.1 and in table 5.2. The number of simulated events was adjusted to the
number of available background files to prevent a re-usage of the available background
files. For the run-independent analysis, 80 000 events are simulated, and for the
run-dependent analysis, 14 778 events are simulated.

Table 5.1.: Simulation parameters employed for the run-independent dimuon samples
with the Belle II Analysis Software Framework simulation.

Parameter Value

Basf2 release 82bd9e2155301de47454988d73f0169cfdf27563
(development branch)

Conditions global tag mc_production_MC15ri_a, main_2022-07-05
Experiment number 1003 (early-phase-3)
Background files pre-release-07-00-00a

Table 5.2.: Simulation parameters employed for the run-dependent dimuon samples
with the Belle II Analysis Software Framework simulation.

Parameter Value

Basf2 release release-06-01-08
Conditions global tag hlt_filters_exp24,

mc_production_MC15rd_a_exp24_bucket30,
data_reprocessing_prompt, online

Experiment number 24
Run number 888
Background files run-dependent background

5.3. Data Sample Reconstruction for Feature Analysis

The Belle II uses two identifiers to organize the data collected during the operation
of the experiment. The experiment number does refer to a group of data collected
under similar conditions within a distinct phase of the experiment with a specific
detector and accelerator configuration. The run number refers to a distinct period of
continuous data taking, operating with stable beam and detector conditions. Several
runs from different experiments are investigated for the input feature analysis. The
selection on the runs is described in chapter 6. The unpacking of the raw data is
handled by basf2, as is the reconstruction of the data. Table 5.3 does present details
on the configuration on basf2 used.
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Table 5.3.: Reconstruction parameters employed for reconstruction of the Belle II raw
data with the Belle II Analysis Software Framework.

Parameter Value

Basf2 release release-06-00-14
Conditions global tag data_reprocessing_prompt
Experiment (run) number 20 (672,874), 21 (116,128), 22 (32,546), 24 (888)

5.4. Simulating Inelastic Dark Matter With a Dark Higgs Signal
Using Monte Carlo Simulation

One of the main objectives of the GNN-pipeline is to optimize the online and offline
reconstruction efficiency of particles with displaced vertices. Therefore, a signal MC
simulation with simulated displaced vertices is used to evaluate the graph-building
and the edge classification performance of the Graph Neural Network (GNN)-pipeline.
The events were generated on the basis of the IDMDH model presented in section 3.1
with additional constraints. The coupling of the Dark Matter (DM) particles to the
dark Higgs is fixed to

𝑓 = √4𝜋𝛼𝑓 ≈ 0.2476, (5.1)

and the coupling constant to the dark photon is set to

𝑔𝑋 = √4𝜋𝛼𝑋 = 1.12, (5.2)

where 𝛼𝑋 is the dimensionless coupling constant. Additionally, the total mass of the
considered particles in an event is the constraint to the beam energy of SuperKEKB
accelerator

𝑚𝜒1
+ 𝑚𝜒2

+ 𝑚ℎ′ < 10.58 GeV c−2. (5.3)
This work focuses on the dilepton pair created in the dark Higgs decay. To reduce
the complexity of the events, the lifetime of the 𝜒2 is set to a high value in the
simulation to guarantee its decay outside of the Belle II detector. For the event
generation of the purely leptonic final states, MadGraph5 is used [3]. For this work,
solely dimuon final states are simulated and investigated. They have comparatively
high branching fractions to other leptonic final states in this model and are the
primary expected leptonic signal. After generating the events, they are simulated and
reconstructed using basf2 with the same settings as in the official MC15 campaign.
The corresponding settings are listed in table 5.4.

This analysis uses background overlays with early Phase 3 and nominal Phase 3
background. The early Phase 3 overlay thus refers to background conditions expected
in the early stages of the Belle II experiment. The nominal Phase 3 overlay refers to
background conditions met at design luminosity. Table 5.5 does list optics and beam
conditions of the Belle II from June 2021. In contrast, table 5.6 shows the expected
beam parameters, with largely increased instantaneous Luminosity.
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Table 5.4.: Simulation parameters employed for the Inelastic Dark Matter with a Dark
Higgs simulation with Belle II Analysis Software Framework.

Parameter Value

Basf2 release release-06-00-08
Conditions globaltag mc_production_MC15ri_a, release-06-00-07
Experiment number 1003 (early-phase-3)
Experiment number 0 (nominal-phase-3)
Background files release-05-01-15

Table 5.5.: Parameters for the optics and beam conditions of the Belle II experiment,
from the luminosity background study on June 16, 2021, taken from [39].

Parameters LER HER

Beam current (mA) 732.6 647.2
Number of bunches 1174 1174
Beam size 𝜎𝑥 (µm) 184.6 151.0
Beam size 𝜎𝑦 (µm) 60.7 36.2
Beam size 𝜎𝑧 (mm) 6.5 6.8
𝛽∗

𝑥/𝛽∗
𝑦 at IP (mm) 32/0.27 25/0.30

Pressure (nPa) 88.7 24.3
Luminosity ℒ 2.6 × 1034 cm−2 s−1

Table 5.6.: Comparison of expected beam parameters for SuperKEKB before Long
Shutdown 2 (Januar 2027) and target parameters (2031), taken from [39].
Parameters Jan 2027 Jan 2031

Beam current (LER/HER) (A) 2.52/1.82 2.80/2.00
Number of bunches 1576 1761
Beam size 𝜎𝑧(LER/HER) (mm) 8.27/7.60 8.25/7.58
Emmitance 𝜖𝑥(LER/HER) (nm) 4.6/4.5 3.3/4.6
Emmitance 𝜖𝑦/𝜖𝑥(LER/HER) (%) 1/1 0.27/0.28
𝛽∗

𝑥 at IP (LER/HER) (mm) 60/60 32/25
𝛽∗

𝑦 at IP (LER/HER) (mm) 0.6/0.6 0.27/0.3
Luminosity ℒ (cm−2 s−1) 2.8 × 1035 6.3 × 1035
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The simulated dark Higgs masses used for this analysis where the range of
𝑚ℎ′ = [1.1, 1.2, ...4, 0] GeV c−2 for the nominal Phase 3 background. The additional
analysis provided for early Phase 3 background used a simulated Higgs mass in the
range of 𝑚ℎ′ = [0.6, 0.7, ...4, 0] GeV c−2. The lifetime of the dark Higgs ℎ′ determines
the origin of the dimuon signal as they originate from its decay vertex. The simulation
contains uniformly displaced vertices in a radial distance from the IP of 𝑟 = [0, 100] cm.
The vertices point to the IP, meaning that the vector sum of the momenta of the two
signal muons points back to the IP. The simulated Higgs mass influences the signal in
the Belle II detector in two ways. Firstly, the energy of the signal muons is directly
affected by the mass of the dark Higgs. Secondly, the opening angle between the two
muons is influenced by the dark Higgs mass, with an increased Higgs mass leading to
a larger opening angle in the lab frame.

MC truth matching refers to the association of hits in a particle detector to
the corresponding MC particle generated in the simulation. This is an established
method to determine the performance of reconstruction algorithms, to evaluate the
accuracy of analysis, or to examine the efficiency of selections. In MC truth matching,
the term truth refers to the information about the generated particle, like its type,
energy, and momentum. In the context of the CDC, the probability of overlap
of a signal particle hit and a background hit is non-negligible, particularly in the
nominal Phase 3 background scenario with a higher number of background hits. This
makes the truth-matching process more challenging and necessitates the development
of more sophisticated methods for handling such situations. To address this issue, a
new feature, storing up to five different particles for each wire hit, was implemented
to build graphs and benchmark the GNN algorithm more robustly, considering the
challenges posed by the particle interactions within the CDC.
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6. Investigation of Central Drift Chamber
Signal Characteristics as Potential Input
Features for Neural Networks

Machine learning algorithms heavily rely on input features to make accurate predic-
tions. However, in real-time reconstruction scenarios, input feature selection becomes
particularly important due to limitations, such as time constraints, limited memory
on the Field-Programmable Gate Arrays (FPGAs), and limited data rates. To ensure
accurate and efficient real-time reconstruction, it is crucial to select input features
that possess high relevance and good discriminatory power. Additionally, the input
features should be orthogonal to each other to avoid redundancies, as adding an input
feature involves a trade-off between computational overhead and information gain. In
a previous study, the use of digitized signal information as additional input features
has shown great improvements for a classification task in the Central Drift Chamber
(CDC) [34]. More precisely, Time-to-Digital Converter (TDC) count and Analog-to-
Digital Converter (ADC) count information for each hit was included. Resolution
and scope of the features were taken, as available at the analysis level. However,
it has not been shown that this information provides discriminatory information in
real data. The following chapter investigates the discriminatory potential of the two
detector signals and evaluates the consistency of their behavior in Monte Carlo (MC)
simulation to data. It is also discussed how both ADC and TDC information can be
used at the trigger level with reduced resolution.

6.1. Methodology for Comparing Signal Information of the
Central Drift Chamber in Monte Carlo Simulation and
Belle II Data

In this comparison, ADC and TDC information of dimuon (𝑒𝑒 → 𝜇𝜇) events were
investigated. For this, a small subset of the available Belle II data runs is used to
compare real data with simulated MC events. The runs are selected based on the
availability of the skim mumu_tight as a starting point for a tight selection on dimuon
samples. The skim already provides some tight constraints on event properties, as
highlighted in table 6.1.
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Table 6.1.: Summary of the mumu_tight High Level Trigger skim [30].

Condition Description

nTracks = 2 Events with two reconstructed tracks.
enECLTrack1 < 0.5
enECLTrack2 < 0.5

Each track with a cluster in the ECL with an energy
deposition smaller than 0.5 GeV.

EMumutot < 2 GeV The combined total energy of the ECL clusters and
the energy of the two tracks in the ECL are restricted
to a maximum deposited energy.

||𝜃∗
+ + 𝜃∗

−| − 180°| < 10°
|180° + |𝜙∗

+ − 𝜙∗
−|| < 10°

Without additional particles in the interaction, the
Muons are expected to fly back-to-back in the rest
frame of the dimuon system.

𝑝𝑃1 > 0.5 GeV/c
𝑝𝑃2 > 0.5 GeV/c

The skim demands the momentum of the tracks in
the CMS frame to be larger than 0.5 GeV/c each.

In the following subsection 6.1.1, the selection of events given by the skim
mumu_tight will be discussed. In subsection 6.1.2, track and hit distributions of
the selection are investigated.
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Monte Carlo Simulation and Belle II Data

6.1.1. Selection of Events

For the purpose of conducting a fast and broad comparison with runs from multiple
experiments, events with two data files per run have been chosen. However, it is
important to note that these shorter runs and small subsets have the drawback
that they may be less representative of events in Belle II. This is due to potential
instabilities that could lead to these shorter data collections, which are not accounted
for in simulations. Nonetheless, limited computing resources make this selection
necessary for this analysis. The runs presented in this thesis were randomly selected
from available data of the Belle II experiment in order to address this issue. Self-
generated MC events are compared to real data. Additional simulation details can be
found in chapter 5.

A strict selection process is necessary to obtain a clean sample of real data with
dimuon events. The MC events generated for this analysis include a signal 𝑒𝑒 → 𝜇𝜇
signature with a simulated background. Events taken from the skimmed data may
contain events without a dimuon signal. Therefore, higher efficiency is expected when
selecting the signal simulation compared to the data.

Events are selected based on low-level information like Level 1 Trigger (L1 Trigger)
signals and raw detector measurements, and high-level, processed information. This
high-level information is derived from the reconstruction using the Belle II Analysis
Software Framework (basf2) framework and through calculations.

Each L1 Trigger output bit represents a decision taken from the L1 Trigger system
on whether an event meets specific event criteria [22]. More information on the Belle II
online systems can be found in section 2.3. The Belle II detector provides many bits,
each covering a specific range of physics events. The trigger bit stt is triggering
on events that contain at least one track with estimated momentum 𝑝 > 0.7 GeV/c
found from the Neuro 3D track trigger [40]. The stt bit can be vetoed from the ECL
Bhabha veto signal and the SuperKEKB injection veto.

The trigger is expected to be better described by simulation in the barrel region,
where higher efficiency is anticipated. Therefore, the reconstructed tracks’ angle
𝜃track are constrained to be in the range of 32.2° < 𝜃track < 128.7°. The track-based
efficiency of the stt bit selection is shown in fig. 6.1.

The events that result from reconstruction may consist of various reconstructed
particles, not just two reconstructed muon tracks. To address this, only events
with two tracks, each with a muon Particle Identification (PID) 𝑃(𝜇) > 0.9, are
selected. The reconstructed invariant mass of the dimuon system is selected to be
𝑚𝜇𝜇 > 8 GeV c−2, to suppress dimuon events involving intermediate particles.

For the analysis, hits in the CDC are selected, which have a TDC count in a
window between 4256 ≤ TDCcount ≤ 5024. This is the same TDC window that is
currently used during data-taking at Belle II [30]. Any hits outside this window are
excluded from the comparison. Table 6.2 shows exemplary selection efficiencies for
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Figure 6.1.: Comparison of the angular track distribution, before and after Level 1
Trigger bit selection of experiment 24, run 888. The green lines denote the
edges of the barrel region. The TDC values are in the interval [4256, 5024],
the dimuon mass is 𝑚𝛾𝛾 > 8 GeV and the muon PID is 𝑃(𝜇) > 0.9.

experiment 24, run 888, and the MC simulation. As expected, the selection shows a
higher efficiency for the MC simulation. The selection efficiency of other runs can be
found in appendix A. No corrections, such as PID correction, tracking correction, and
energy calibration, are applied to the events. Thus, this analysis may show differences
when comparing the reconstructed properties of simulation and data.

Table 6.2.: Selection efficiency comparison for the skimmed data sample of experiment
24, run 888 and simulation. The data consists of 36.802 pb−1, and the
simulation consists of 80 000 events.

Order No Selection Exp. 24, run 888 (%) MC simulation (%)

1 Theta cut 76.40+0.27
−0.27 75.46+0.22

−0.22
2 L1 selection stt 94.91+0.16

−0.16 99.56+0.4
−0.4

3 Dimuon track selection 87.80+0.24
−0.24 95.50+0.12

−0.12
4 Dimuon mass cut 94.69+0.18

−0.18 99.839+0.023
−0.026

5 PID cut 94.37+0.19
−0.19 95.47+0.13

−0.13

Total efficiency 56.9+0.3
−0.3 68.39+0.24

−0.24
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6.1.2. Comparison of Track and Hit Feature Distributions

To evaluate the accuracy and reliability of this analysis, it is essential to compare the
track parameters of the reconstructed Muons in simulation and data. This comparison
serves several purposes:

(i) It helps to identify discrepancies between the experimental and the simulated
data sets.

(ii) It allows to review and refine the event selection criteria.

(iii) It aids in verifying the accuracy of the simulation.

This section compares the reconstructed tracks’ properties for MC simulation and data
to evaluate their agreement. The data used in this analysis come from experiment 24,
run 888. This specific run is used as an example, but the thesis analyzes multiple runs,
and their distributions can be found in appendix A. All histograms in this analysis
are normalized to the integrated luminosity ∫ ℒ d𝑡 of the corresponding run. Each
MC event 𝑛𝑖 is weighted following the equation

𝑤i =
∫ ℒdata d𝑡 ⋅ 𝑁sim_events

𝜎𝑒𝑒→𝜇𝜇
, (6.1)

with a cross-section of 𝜎𝑒𝑒→𝜇𝜇 = 1.148 nb. The statistical error is approximated for a
bin 𝑁𝑘 with 𝑛 entries as

𝜎𝑁k
= √

𝑛

∑
i

𝑤2
i , (6.2)

with the corresponding weight 𝑤i of each bin entry.

The longitudinal momentum distribution 𝑝𝑧 and the transversal momentum 𝑝𝑇
are present in fig. 6.3 and fig. 6.2, respectively. For completeness, the individual
momentum distributions 𝑝𝑥 and 𝑝𝑦 are available in appendix A.1. The 𝑝𝑧 distribution
is symmetrical for the dimuon events but shifted due to the asymmetrical beam
energies of the SuperKEKB accelerator. The transversal momentum 𝑝𝑇 distribution
peaks just above 5 GeV/c corresponding to half the center-of-momentum energy of
the SuperKEKB accelerator. This peak is anticipated since the collision energy is
distributed over the two tracks.

Figure 6.4 shows the invariant mass distribution of the dimuon system. The
invariant mass distribution of the dimuon system is expected to peak at the center-of-
mass energy of the electron-positron collision because the collision energy is expected
to be transferred to the two muons in the analyzed process. The Belle II experiment
operates at a collision energy of approximately 10.58 GeV. The PID distribution of
the muon probability 𝑃(𝜇) is shown in fig. 6.5. After the selection, no tracks with
a PID 𝑃(𝜇) < 0.9 remain in the selection. The PID should increase towards one,
underlining the tight selection on the muons.
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Figure 6.2.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks for
experiment 24, run 888, and run-independent Monte Carlo simulation
after selection.
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Figure 6.3.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks for
experiment 24, run 888, and run-independent Monte Carlo simulation
after selection.
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Figure 6.4.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after selec-
tion.
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Figure 6.5.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions of experi-
ment 24, run 888 and run-independent MC after selection.
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The distributions exhibit a general agreement in shape when comparing the
simulations and experimental data. However, some notable deviations are observed,
which may be attributed to missing corrections or discrepancies between the data
and simulation. It is important to recognize that this is an initial comparison, and
the primary goal is to evaluate the overall consistency between the ADC and TDC
distributions. Considering this objective, the agreement between the simulation and
experimental data is considered satisfactory and provides a solid foundation for further
analysis. The subsequent section presents and evaluates the distributions of ADC and
TDC counts.

6.2. Results

The data and simulation are expected to contain a similar number of tracks and hits.
In table 6.3 track ratios

𝜂tracks =
𝑛tracks_data

𝑛tracks_sim
, (6.3)

hit ratios 𝜂hits and the respective signal ratios 𝜂signal_hits and background ratios
𝜂bkg_hits, are listed for several runs. The expected ratio is 𝜂𝑡𝑟𝑎𝑐𝑘𝑠 = 1. Some
investigated runs show a deviation of 20 % or more, indicating a substantial deviation
from the expected ratio. The absence of corrections on the selected events could
partially account for this. Additionally, the number of hits shows considerable
differences between the simulation and real data. Surprisingly, the presented runs
show a negative correlation for the ratio 𝜂total_hits with the rising experiment number.
This result is somewhat counterintuitive, as the expected beam background is rising
due to continuously increased instantaneous luminosity over the time period of the
Belle II experiment, which implies an opposite behavior.

The background in the CDC is influenced by the machine parameters of the
SuperKEKB. Collimators, optics, beam current, and other machine parameters sig-
nificantly affect the background. The most important backgrounds in the CDC are
discussed in subsection 2.2.3. It is possible that the differences in ratios are due to the
short runs used for comparison. The injection backgrounds may significantly impact
these runs, considerably affecting the expected number of background hits in the CDC.
A measurable parameter that offers insight into the injection background of Belle II is
the leakage current of the CDC. The corresponding average leakage current per layer
𝐼leak for the runs are shown in table 6.3. The leakage current increases with higher
injection background [42] and can be correlated with the expected background hits in
the CDC. A positive relationship was found between the background hit ratio 𝜂bkg_hits
and the leakage current 𝐼leak, with a Pearson correlation coefficient of 𝜌 = 0.96,
underlining, that the injection background can at least partially explain the observed
decrease in background hits.
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Table 6.3.: Experimental data to Monte Carlo simulation ratios of hits and tracks
after selection.

exp. run 𝐼leak in µA ∫ ℒ dt in nb−1 𝜂total_hits 𝜂signal_hits 𝜂bkg_hits 𝜂tracks

20 672 110.8 47573.42 1.909 0.797 2.226 0.789
20 874 83.72 44006.91 1.835 0.938 2.091 0.926
21 116 101.28 47118.00 1.850 0.838 2.138 0.833
21 128 103.74 37740.47 1.852 0.831 2.144 0.825
22 32 58.55 39656.24 1.087 1.062 1.094 1.030
22 546 73.48 38852.53 1.462 0.974 1.601 0.962
24 888 27.12 36802.19 0.843 1.086 0.774 1.054

6.2.1. Evaluating the Discriminatory Potential of Analog-to-Digital
Converter Counts

The histogram of the ADC distribution is shown in fig. 6.6. Hits assigned to a
reconstructed signal track are represented in blue, while the remaining hits are labeled
as background and colored red. Values below an ADC count of two are shifted in
the zero bin, and the distribution is shown up to 600 ADC counts. The histogram
reveals two distinctive bumps in the background distribution in regions that are
anticipated to be dominated by cross-talk. Further information on this background
effect is elaborated in subsection 2.2.3. The effect leads to background hits with
a characteristic ADC distribution. The first occurs in the low ADC regions below
20 ADC Counts. The second bump is present around 150 ADC counts. In both regions,
the background count exceeds the signal count, making this a possible distinguishing
feature for the background to signal discrimination. These features are present in
simulation and real data. However, comparing the two distributions reveals a large
deviation in the number of hits in the real data background compared to the simulation.
A large excess is present in the bins lower than 20 ADC Counts. This excess could
be found in all investigated data. The cross-talk modeling in the simulation strongly
influences the low ADC region as it is one of the dominating contributions. Therefore,
the deviations may result from discrepancies in the cross-talk modeling for the low
ADC region compared to the data. These discrepancies are not fully understood yet
and should be investigated in future research in detail.

Conversely, the shape of the histogram exhibits a similar curve in the remaining
ADC region for simulation and data for the background hits. Still, it shows a
shortage of hits compared to the simulation, which is in agreement with the overall
background hit ratio 𝜂bkg_hits = 0.774. Again, providing evidence of the deviations in
the background modeling for the ADC count.

Delving into the distribution of the signal hits, it is worth reminding that ADC
value refers to the deposited energy in the CDC. The expected energy deposition
d𝐸/d𝑥 of a particle in the CDC is influenced by particle properties. For muons with

39



6. Investigation of Central Drift Chamber Signal Characteristics as Potential Input
Features for Neural Networks

energy below about 100 GeV, ionization is the dominant energy loss mechanism [51].
The average energy loss can be described by the Bethe-Bloch formula, which mainly
depends on

𝛽𝛾 =
𝑣/𝑐

√1 − (𝑣/𝑐)2
. (6.4)

As a result, the energy deposition of an ionization point in the CDC is expected to be
Landau distributed for the dimuon events. Consequently, the energy deposition in
the signal hits in the CDC is also expected to be roughly landau distributed. It is
important to note that several additional factors can influence the ADC distribution,
including the number of ionization points in a drift cell and the detector resolution.
Given the anticipated Landau distribution for the ADC signal, a dominating region
for the dimuon events in the ADC distribution is expected. The observed signal shows
a peak in the range of 30 ADC counts to 100 ADC counts where the signal dominates
the total hit distribution. The agreement between simulated and real data events
is good for most of the observed range, particularly in the peak region. However,
deviations are present in the region of 120 ADC counts to 500 ADC counts, where the
simulation shows a shortage of hits. Several factors may contribute to this discrepancy,
given that the overall data-to-simulation ratio is good in terms of the overall signal hit
ratio and the signal track ratio. These sources of influence include inaccurate modeling
of the ADC count distribution in the simulation, as detector efficiency differences in
simulation and data. These differences in the signal may also result from the missing
corrections.

Nonetheless, it is clear that both signal and background exhibit a range of ADC
counts with distinguishing features. Therefore, the ADC count provides a powerful
separation potential between data and simulation and should thus be utilized as an
input feature for analysis.
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Figure 6.6.: Comparison of Analog-to-Digital Converter count distributions for signal
and background hits in experiment 24, run 888 and simulation. Two
blue histograms represent hits assigned to reconstructed signal tracks
for data and simulation, while the two red histograms denote the back-
ground hits. Distinctive bumps in the background distribution can be
observed below 20 ADC counts and around 150 ADC counts, with the sig-
nal dominating the total hit distribution in the range of 30 ADC counts to
100 ADC counts. The figure highlights the separation potential between
signal and background using ADC counts as an input feature for analysis.
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6.2.2. Angular Dependence of the Analog-to-Digital Converter count

After the reconstruction of events, each reconstructed track in the CDC can be related
to the associated hits. Therefore hits can be associated with reconstructed track
parameters like the polar angle. Figure 6.7 presents the ADC counts of hits of the
data in a Two-Dimensional (2D) histogram in dependency to the reconstructed signal
tracks angle 𝜃, which is the polar angle measured from the beam axis. Figure 6.8
presents the corresponding histogram for the simulated distribution. The distribution
of hits in 𝜃 is expected to be slightly asymmetric due to the asymmetrical arrangement
of the CDC around the Interaction Point (IP) and the asymmetrical beam energies.

Figure 6.7.: A two-dimensional histogram showing the Analog-to-Digital Converter
counts of signal hits associated with a reconstructed track as a function
of the polar angle 𝜃 derived from experimental data. The angle 𝜃 is
measured from the beam axis.

Tracks with a larger 𝜃 angle are observed to have a correlated ADC distribution.
This is expected due to space charge effects for tracks orthogonal to the sense wire [15].
The space charge effect occurs when ionization points of charged particles inside the
CDC influence the electric field, affecting the signal produced by the particles. The
space charge effect is more pronounced for tracks orthogonal to the sense wire, leading
to a correlation between the angle 𝜃 and the ADC distribution. A detailed illustration
is shown in fig. 6.9. The sense wires of the CDC are arranged orthogonal to the 𝜃
direction.

The ratio between data and simulation is presented in fig. 6.10. The agreement
between data and simulation is good in most regions. As shown in table 6.3, the ratio
of signal hits 𝜂signal_hits has a relatively good agreement. Therefore, a high agreement
is anticipated. The histograms show that regions with the majority of hits have only
minor deviations, while bins with fewer hits exhibit larger deviations.
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Figure 6.8.: A two-dimensional histogram showing the Analog-to-Digital Converter
counts of signal hits associated with a reconstructed track as a function
of the polar angle 𝜃 derived from simulation. The angle 𝜃 is measured
from the beam axis.

axial wire
z

A A‘

B B‘

track track

Figure 6.9.: Illustration of the space charge effect in the Central Drift Chamber (CDC),
leading to a positive correlation of ADC and increased angle in |𝜃|. Two
particle tracks are illustrated, traversing an axial sense wire of the CDC.
The left illustration shows a track with a shallow angle to the sense wire.
The two ionization points, A and B do not influence their signal in the
axial wire. The orthogonal track on the right also leads to two ionization
points A’ and B’. Point B’s electron avalanche lowers the electric field at
A’, leading to a smaller overall signal. Based on illustrations by Mirei
Aoyama.
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Figure 6.10.: This plot demonstrates the ratio of the experimental (experiment 24,
run 888) and simulated Analog-to-Digital Converter counts of Central
Drift Chamber hits as a function of the polar angle 𝜃. The angle 𝜃 is
measured from the beam axis. The plot illustrates the relative agreement
between the data and simulated distributions.
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6.2.3. Evaluating the Discriminatory Potential of Time-to-Digital Converter
Counts

The TDC count distribution shown in fig. 6.11 demonstrates overall a good agreement
in shape for the background distribution between simulation and data. The number
of backgrounds in the data is expected to show an excess in line with the background
hit ratio of 𝑒𝑡𝑎bkg_hits = 0.774. These additional hits are anticipated to be attributed
to the increased injection background. This type of background is expected to
be randomly distributed in time. The difference in background hits between data
compared to the simulation reveals a nearly uniformly distributed negative pull
across the entire TDC range, which is consistent with this hypothesis. However, the
background pull shows increased fluctuations around 5000 TDC counts, where the
background simulation does not accurately represent the actual data distributions,
resulting in more significant deviations.

The signal hits from a single event are expected to be clustered within a small
time window, which generally depends on the trigger signal. This implies a correlation
between the time window and the trigger signal properties, suggesting that the TDC
signal may exhibit a region with increased signal hits. This, in turn, introduces
discriminatory potential within the signal and background. The ratio of signal hits
𝜂signal_hits = 1.086 implies an overall good agreement in the TDC count.

However, there is a shortage of CDC hits observed in the range of 4250 TDC counts
to 4550 TDC counts. Although the number of signal hits in this range is small
compared to background hits, it may still slightly affect signal-to-background dis-
crimination. On the other hand, there is a good match in the TDC window of
4600 TDC counts to 4880 TDC counts between simulation and data, where the ratio
of signal to background hits increases, enabling discriminating signal to background.
In the right area of this peak, between 4880 TDC counts to 4950 TDC counts, there
are again noticeable deviations present due to a much more smeared-out signal peak in
the data as present in the simulation, suggesting disparities in the simulation. These
differences in the signal may be the result of the missing corrections.

It is important to note that the real data’s TDC distribution exhibits a consistent
oscillation in the histogram, evident in both the signal and background. However,
the cause of this phenomenon needs to be fully comprehended and requires further
investigation in future research.

Overall, the TDC count shows discriminatory power between signal and back-
ground for data as well as for simulation. Hence, it is a suitable input feature and
should be used.
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Figure 6.11.: Comparison of Time-to-Digital Converter (TDC) distributions for signal
and background hits in experiment 24, run 888 and simulation. The
blue histograms represent hits assigned to reconstructed signal tracks for
data and simulation, while the red histograms denote the background
hits. The figure highlights a discriminatory potential between signal
and background TDC counts due to the distinctive characteristics in
the signal distribution, with noticeable deviations between simulation
and data. Oscillations observed in the data’s TDC distribution require
further investigation.

6.2.4. Orthogonality of Analog-to-Digital Converter and Time-to-Digital
Converter Distributions

To understand how the ADC and TDC count distributions complement each other
in separating signal hits from background hits, their orthogonality is examined.
Figure 6.12, fig. 6.13, and Figure 6.14 show a 2D histogram of TDC and ADC values
of all hits for data, simulation, and the ratio between them. It shows that for the signal
region with 30 ADC count to 150 ADC count and 4800 TDC count to 4950 TDC count,
the counts are predominantly uncorrelated, as is the major background region. This
observation agrees with the analysis presented in [34], where the combination of both
features significantly improves the edge classification for the CDC.
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Figure 6.12.: This two-dimensional histogram presents the Analog-to-Digital Converter
and Time-to-Digital Converter counts of Central Drift Chamber hits
from experimental data (experiment 24, run 888). The signal region,
with Analog-to-Digital Converter counts ranging from 30 to 150 and
Time-to-Digital Converter counts from 4800 to 4950, predominantly
exhibits uncorrelated counts.

Figure 6.13.: This two-dimensional histogram presents the Analog-to-Digital Converter
(ADC) and Time-to-Digital Converter (TDC) counts of Central Drift
Chamber (CDC) hits from simulated data. Mirroring the experimental
data, the signal region, with ADC counts ranging from 30 to 150 and
TDC counts from 4800 to 4950, predominantly exhibits uncorrelated
counts.
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Figure 6.14.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter and Time-to-Digital Converter counts for Central
Drift Chamber hits, providing a method for evaluating the relative
agreement between the two distributions.
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6.2.5. Spatial Distribution of Central Drift Chamber Hits

In addition to the ADC and TDC counts, the spatial information of the CDC hits
is another input feature for the Graph Neural Network (GNN)-pipeline. The two
muons originate at the IP and travel through the CDC, with their trajectories in
the 𝑥 − 𝑦 plane concentrated around the central region of the Belle II detector. As
the muons can be boosted in 𝑧-direction, they can leave the CDC in this direction,
resulting in a lower hit density in the outer regions of the detector. Furthermore, the
innermost superlayer of the CDC features more closely spaced sense wires, leading
to a denser distribution of expected hits in that region. fig. 6.15 and fig. 6.16 show
the distribution of the hits in the 𝑥 and 𝑦 direction, in good agreement with the
expected distrution. Again, it is observed that there is a shortage of hits in the real
data, which is approximately consistent over the entire range of 𝑥 and 𝑦 values but
is more strongly present close to the IP. Apart from this discrepancy, the alignment
of the 𝑥 and 𝑦 distributions are found to be consistent. The background hits show
a much higher pull compared to the signal simulation, which is consistent with the
discrepancies found in the ADC and TDC distribution.

Figure 6.15.: This plot shows the spatial distribution of Central Drift Chamber hits in
the 𝑥 direction. The distribution of the experimental data (experiment
24, run 888) agrees well with the simulation, although a shortage of hits
is observed in experimental data.
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Figure 6.16.: This plot shows the spatial distribution of Central Drift Chamber hits in
the 𝑦 direction. The distribution of the experimental data (experiment
24, run 888) agrees well with the simulation, although a shortage of hits
is observed in experimental data.

6.2.6. Implementing Analog-to-Digital Converter and Time-to-Digital
Converter Information in Event Analysis

The current analysis of the ADC and TDC count distributions are the first data
to MC comparison with a tight selection on dimuon events. It is shown that both
distributions are discriminatory and have the potential to be used as input features
for further analyses in the Belle II detector. The comparison of the signal track hits
shows a close agreement between the data and simulation, with a ratio close to one.
The discrepancy between the data and simulation mainly comes from the non-signal
hits. Furthermore, run-dependent MC studies were investigated, resulting in a high
agreement for the background, as can be viewed in appendix A.2. Following this
analysis, it is anticipated that the ADC information for each trigger wire will be
available by fall 2023 after the Long Shutdown 1 (LS1). However, the resolution
will be significantly lower. The ADC information is expected to be utilized using
three flags. In order to effectively use the discrimination potential of the ADC
count the analysis suggests using a range of 0 ADC counts to 30 ADC counts as a first
flag, the 30 ADC counts to 150 ADC counts as a second flag and 150 ADC counts to
600 ADC counts as a third flag. This is a first suggestion, and further investigations
into the performance of the edge classification may make it necessary to change these
ranges.

The definition of the TDC changes for the L1 Trigger level since the event
time 𝑇evt is unknown. For this reason, absolute values of the TDC count hold no
significance. The expected resolution is 2 ns. Therefore, it may be useful to calculate
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TDC differences between two hits and use this information as an edge attribute instead
of utilizing unprocessed TDC information as an input feature. Further results on the
edge classification can be found in chapter 8. Moving forward, further understanding
the background modeling will be necessary to improve the simulation’s accuracy
and better understand the background. This incorporates taking into account the
granularity and specificity of the ADC and TDC count as a detector output, which
might require more detailed modeling in the simulation to capture subtle variations and
correlations that could influence their distribution and also their discriminatory power,
which is crucial to understand for the analysis. Subtle differences in the distributions
may influence the performance of any machine learning algorithm which is trained
on the simulated samples. Therefore differences in the hit distribution are crucial
to be understood in future applications of TDC and ADC. In addition, an analysis
with longer and more stable runs could improve the background hit comparison in
the CDC.
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In High Energy Physics (HEP), detectors provide their data in a heterogenous format,
with each subdetector generating different information about an event using intricate
sensors. Accurate representation of each measurement is essential for analyzing
experimental results, particularly for tracking detectors like the Central Drift Chamber
(CDC) at the Belle II experiment.

The CDC has a complex structure with an irregular format. The 56 layers with
sense wires are arranged concentrically around the Interaction Point (IP) and have
increasing numbers of wires per layer. Each of the wires can provide information
for particle tracking. The core CDC data thus consists of a variable number of
Two-Dimensional (2D) position measurements, along with additional information for
each measurement, such as timing information and deposited energy information.

Graphs can be an effective way to represent this data, as they capture relationships
between different entities. In the context of the CDC, the entities are the measurements,
and the spatial structure can be represented as the relations. Nodes are therefore
used to capture individual measurements, and edges can connect nodes based on
spatial proximity or other relationships. Additional information, such as timing and
deposited energy, can be added as node features or edge attributes. The graphs in
this analysis contain 𝑥 and 𝑦 position of the wires, timing information Time-to-Digital
Converter (TDC), and energy information Analog-to-Digital Converter (ADC) as node
features. The edge attributes of the graphs include the distance in the 𝑥 − 𝑦-plane of
measurements in the detector 𝛥𝜌 and the angular distance 𝛥𝜙.

The graph-based representation is well-suited for embedding details on a single
wire level of the CDC, providing a flexible and intuitive way to analyze the data.

Graph-building is the process of transforming raw data into the structured form of
a graph. It is particularly important to include relevant physical relationships, while
it is desirable to exclude unphysical ones. As the number of hits 𝑛ℎ𝑖𝑡𝑠 in the CDC is
expected to increase considerably due to increased beam background, the potential
number of edges in a fully connected graph will grow at 𝒪 (𝑛2

ℎ𝑖𝑡𝑠). This results in a
large number of connections, many of which provide little physical knowledge for the
tracking of the signal particle. Therefore, the additional background connections may
negatively influence the analysis with the GNN-pipeline due to increased noise.

The computing load for the GNN-pipeline is expected to depend on the size of
the input graphs. Particularly in the online application of the GNN-pipeline, tight
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latency constraints in the sub-microsecond timescale must be met. On the specialized
hardware, this requires optimizing the parallel data throughput where constraints
on the size of the graphs may apply. Consequently, nodes should be connected
purposefully to maintain a balance between incorporating valuable physical knowledge
and adhering to hardware limitations for efficient real-time processing.

This chapter investigates various graph-building methods and analyzes their
performance in the context of the Belle II CDC. The goal is to develop a systematic
approach for graph-building that connects nodes selectively, using domain knowledge
and physical expectations, to improve tracking accuracy with the Belle II detector. To
accomplish this, metrics are introduced to assess the quality of graph-building, which
will help in selecting appropriate graph-building models for specific tasks within the
Belle II experiment.

7.1. Signal and Background

In the scope of Belle II, an event refers to a specific instance when particles interact,
decay, or are produced in the detector, which was captured for analysis. The stored
data for an event consists of accumulated information over a defined time period. As
a result, a hit in a CDC wire during this time period may contain multiple incidents.
Typical Belle II simulated events consist of a mixture of signal and background hits. A
hit in one CDC wire is defined as a signal hit if any simulated signal particle deposited
energy in that wire. Monte Carlo (MC) identities refer to such signal particles in this
simulation. If a node of the graph is matched to a signal particle, this does refer to
deposited energy in the corresponding CDC wire. One node can also be matched to
multiple MC identities if multiple signal particles share a hit. The remaining nodes
are considered background. fig. 7.1 illustrates a fraction of the CDC, showing hits
originating from signal particle tracks and background. It also displays true and
false edges resulting from an arbitrary graph-building method. Edges between two
nodes matching the same MC particle are regarded as true edges. All other edges are
defined as false. This characterization allows for a clear, model-independent way to
distinguish the nodes and the edges.

In an intermediate step of the GNN-pipeline, the Interaction Network (IN) is
utilizing the graphs from the graph-building to classify edges. These classified edges
are eventually used to clean up events in the CDC from background hits. True
edges provide information about the relation of signal hits in the CDC. Therefore
they introduce essential knowledge to the GNN-pipeline for particle tracking. Thus,
selecting the true edges incorporated in the graph-building step is essential to alleviate
the classification task. In theory, an event with 𝑛 true nodes can compose 𝑛 ⋅ (𝑛 − 1)
true edges when building a fully connected graph. This number scales in 𝒪 (𝑛2)
for a large number of signal hits in the CDC. Even though these true edges may
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Figure 7.1.: Illustration of a detail from the Central Drift Chamber, showcasing
particle tracks, signal and background hits, and their associated true
and false edges. Signal hits are those, matched to a signal particle,
while background hits are unassociated with any signal particle. The
lowest signal node is associated with two signal particles, emphasizing the
possibility of multiple signal particles sharing a hit. True edges (marked
in green) connect nodes to match the same Monte Carlo particles, while
false edges (marked in red) do not.

provide relational information between the signal hits, not all of them may be similarly
important for the background clean-up.

7.2. Wire and Layer Distance

Two parameters are considered to define possible spatial connections between two
nodes 𝑣𝑖, and 𝑣𝑗,

the layer distance 𝛥𝑙𝑖𝑗 (7.1)
and the wire distance 𝛥𝑤𝑖𝑗. (7.2)

These two parameters are advantageous against spatial distances measured in units
such as centimeters. They are independent of the specific layout of the wires in the
CDC and provide a more generalized approach to describing connections between hits.
The numbering scheme is illustrated in fig. 7.2. The wire distance, 𝛥𝑤𝑖𝑗, is calculated
considering the periodic boundary conditions of the CDC.

𝛥𝑤𝑖𝑗 = sign(𝑤𝑗 − 𝑤𝑖) ⋅ min
𝑘∈{−1,0,1}

|𝑤𝑖 − 𝑤𝑗 + 𝑘𝑁|, (7.3)

where 𝑤𝑖 and 𝑤𝑗 are the wire indices of hits 𝑣𝑖 and 𝑣𝑗, respectively, and 𝑁 is the total
number of wires in a single layer. sign(𝑥) is the sign function, which returns the sign
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of the input value 𝑥:

sign(𝑥) =
⎧{
⎨{⎩

−1 if 𝑥 < 0
0 if 𝑥 = 0
1 if 𝑥 > 0.

(7.4)

The wires of the CDC are shifted in every other layer to each other. Therefore one
single node has two neighboring nodes in a neighboring layer. The wire distance of
each nearest neighbor with a layer distance of 𝛥𝑙𝑖𝑗 = 1 is defined with a wire distance
of

𝛥𝑤𝑖𝑗 = 0. (7.5)

Similarly, the connections to the next-to-next neighbors in the same layer distance
are defined with a wire distance of

𝛥𝑤𝑖𝑗 = ±1. (7.6)

This does not fully match the Belle II Analysis Software Framework (basf2) numbering
between two nodes 𝑣𝑖 and 𝑣𝑗 with a layer distance of 𝛥𝑙𝑖𝑗 = 1. The basf2 defines the
wire distances to the neighboring nodes as

𝛥𝑤𝑖𝑗 = 0, −1, for 𝑖 even and 𝑠𝑙 = 0
𝛥𝑤𝑖𝑗 = 0, +1, for 𝑖 odd and 𝑠𝑙 = 0
𝛥𝑤𝑖𝑗 = 0, −1, for 𝑖 odd and 𝑠𝑙 > 0
𝛥𝑤𝑖𝑗 = 0, +1, for 𝑖 even and 𝑠𝑙 > 0.

With the number of the superlayer in the range of 𝑠𝑙 = [0, 1, ..., 8]. The numbering
scheme is redefined for ease of the metric and model definitions, which will be defined
symmetrically. Furthermore, this thesis will use a numbering scheme from SL1 to SL9
referring to the nine superlayer of the CDC.

For connections in the same layer and connections with a layer distance of 𝛥𝑙 = 2,
the neighbors are defined in alignment with the basf2 wire numbering scheme as
shown in the following equations

𝛥𝑙𝑖𝑗 = 0 and 𝛥𝑤𝑖𝑗 = ±1 (7.7)
𝛥𝑙𝑖𝑗 = 2 and 𝛥𝑤𝑖𝑗 = 0, ±1. (7.8)
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Figure 7.2.: Schematic of layer and wire distance in the CDC for graph-building. The
numbering scheme of the Belle II Analysis Software Framework is adjusted
to ensure symmetrical wire distances for neighboring layers.
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7.3. Metrics for Evaluating Graph-Building

In order to analyze physical events represented in a graph, it is crucial to include

(i) all relevant nodes that provide relevant position measurements of a traversing
signal particle and complementary detector information, and

(ii) all relevant edges providing relational knowledge between these measurements.

Consequently, it is essential to define edges of physical significance. Section 7.1,
discusses how to classify hits and edges of a graph for the CDC using simulated events.
Following this, two methods are introduced to delineate a set of physically interesting
edges to analyze the performance and quality of a graph-building algorithm. Method
one, presented in subsection 7.3.1, is introduced to describe a set of potentially relevant
edges by using geometrical information. Method two, presented in subsection 7.3.2,
uses an algorithm to estimate a particle’s track in the CDC, to construct an underlying
graph to create a minimal subset of physically relevant edges. The overhead metric
introduced in subsection 7.3.3 discusses the trade-off between the two subsets of
physically interesting connections.

7.3.1. Complete Set of True Edges

To ensure the efficiency of the GNN-pipeline, it is crucial to carefully select the
connections in the graphs and keep their number to a minimum. This requires
identifying the true edges in the CDC that hold significance for the GNN-pipeline.
The complete set of true edges is determined by utilizing spatial information in the
CDC to isolate these substantial edges from all possible true edges. Hits of a single
particle traversing the CDC are anticipated to form along the particle’s path, typically
within the close proximity of one to two wires. It is important to note that these
hits are generally far apart, as the particle’s hits are spread out along its entire path
through the detector. Connecting these distant hits could introduce more noise to the
graph with little additional information for the track-finding process. Therefore, the
maximum layer distance for a true edge in the CDC is restricted to be

|𝛥𝑙𝑖𝑗| ≤ 2, (7.9)

for the complete set of true edges. For particles with a low transversal momenta 𝑝𝑇,
this configuration can lead to a high number of true edges. As these shallow tracks
traverse the CDC with a low angle or can even curl in the CDC. This means they have
a comparatively high number of true nodes within the layer distance of 𝛥𝑙 = 0, 1, 2.
Thus they have a large number of true edges within this layer distance. To adjust the
number of true edges for these shallow tracks in the complete set, the maximum wire
distance is limited to

|𝛥𝑤𝑖𝑗| ≤ 6. (7.10)
By implementing two simple geometrical constraints, |𝛥𝑙𝑖𝑗| ≤ 2 and |𝛥𝑤𝑖𝑗| ≤ 6
respectively, the complete set of true edges is defined. It is now possible to specify
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the fraction of true edges resulting from a graph-building method that is included in
the complete set of true edges. The number of those included true edges is formally
defined as

𝑛incl. true edges = |{𝑥|𝑥 ∈ complete set of true edges ∧ 𝑥 ∈ built graph edges}|. (7.11)

With this, two metrics for the quality measurement of the graph-building are defined.
The true edge pur. is given by

true edge pur. =
𝑛incl. true edges

𝑛total edges
, (7.12)

and the true edge eff. is given by

true edge eff. =
𝑛incl. true edges

𝑛true edges
. (7.13)

The interpretation of the true edge eff. and the true edge pur. is not straightforward
and depends on the requirements of the classification task. High true edge pur.
indicates that most part of the edges in the input graph is true edges. This is desirable
because it means that the graph is mainly composed of valuable connections for the
GNN-pipeline. This may enhance the classification with the IN and provide mainly
useful relational information for tracking. The amount of noise is small in such a
graph.

High true edge eff. refers to the fraction of true edges included in the graph
compared to the complete set of true edges. Generally, a high true edge eff. is desired.
Nonetheless, including as many true edges as possible may not always be the optimal
solution case, as this also implies a larger graph. Some connections may also be
redundant and may not include additional information.

This case is shown in fig. 7.3. The illustrations show a graph highlighting two
redundant connections between the outer two true nodes, with and without an
intermediate true node. The green edges depict connections with a layer distance
of 𝛥𝑙 = 1, and the purple edge demonstrates a connection with a layer distance of
𝛥𝑙 = 2. Both connections are defined as true edges as both represent connections
between two true nodes. Using the IN for classification of the edges, information
is only passed from the lower node to the upper node if connections with 𝛥𝑙 = 2
are included in the graph-building. It is not a priori clear if both connections are
beneficial for the edge classification task. Therefore, it is essential to strike a balance
between true edge eff. and the complexity of the graph to optimize the performance
of the GNN-pipeline. To further understand the impact of additional true edges in
graph-building, a simple graph with a minimum amount of connections is defined in
the next section to benchmark the overhead of different graph-building methods.
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CDC Hits
Signal Hit

True Edge

Figure 7.3.: Three signal hits of a signal particle. The outer nodes can be connected
using an intermediate connection with the middle hit, resulting in two
true edges (colored green). Additionally, the outer hits can be connected
using a single trued edge (colored purple), skipping the intermediate hit.

7.3.2. The True Graph

A straightforward way to construct a true graph is to connect all true nodes in
the order of their hit in the CDC from the signal particle. However, the hit order
information was not available in the simulation data used in this thesis. Alternatively,
the order of hits could be calculated by determining the helix of the signal particle in
CDC. This would require storing the simulated true 𝑧-information for each CDC hit.
This information was also missing in this study as this information is not available in
the used simulation samples. Thus, it is not possible to calculate the particle’s exact
true path for the simulation samples used. Therefore, a method to estimate the true
graph is defined. Three boundary conditions are used for the true graph calculation.

(i) Only signal nodes with the same MC identity are connected, and

(ii) each true node may have a maximum of one incoming and one outgoing edge,
and

(iii) not all true nodes must be included in the graph.

The last condition is introduced to account for scenarios where a particle causes
multiple hits in close proximity, making it difficult to determine the correct order of
hits. A reasonable estimate of the true graph may already be obtained with a subset
of the true signal nodes. fig. 7.4 gives an illustration of this idea. The graphic shows
a particle traversing the CDC where hits are triggered in close proximity, making it
challenging to ascertain the order of hits in a single layer.

Additionally, curling tracks in the CDC can result in multiple hits in single layers,
as depicted in fig. 7.5. Connections between hits resulting from different traversals
of a layer should be omitted. Only one path is built per superlayer. For curling
tracks, multiple true paths exist per superlayer, and only one of them is intended to
be included in the true graph estimation. Consequently, the other paths are missing,
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CDC Hits CDC Hits CDC Hits

Figure 7.4.: An illustration of the true graph estimation. Blue dots represent signal
hits in the Central Drift Chamber, and green lines represent the true
graph edges. The middle panel shows a scenario where all true nodes
are included, even when they are in close proximity, resulting in a more
complex graph. In contrast, the right panel depicts are more streamlined
representation, where not all nodes are connected despite being true
hits. This approach may provide a better illustration of the underlying
trajectory pattern of the signal particle.

and some true graph edges are missing in the estimation of such events. A potential
solution involves using information about the correct path of a particle, which is
intended for future performance measurements.

The working principle of the used algorithm is shown in figure 7.6. In the first
step of the algorithm, all nodes with a hit from one signal MC particle are selected.
The next step calculates a distance matrix for each superlayer in the CDC. With this,
a path graph is built, starting with a node from the innermost layer with hits. A path
graph is a graph where the nodes are arranged in a linear sequence, and each node is
connected to its next node by a single edge. The starting node is selected randomly if
there is more than one hit in the innermost layer. Afterward, the path is created by
recursively connecting the node to the next neighbor.

The distance matrix is calculated using the wire and layer distance. Therefore, the
distance between two nodes 𝑖 and 𝑗 is defined as 𝑑𝑟2

𝑖𝑗 = 𝛥𝑤2
𝑖𝑗 +𝛥𝑙2𝑖𝑗, and for same layer

connections 𝛥𝑙𝑖𝑗 = 0, there is a bias added to the distance 𝛥𝑙𝑖𝑗 → 𝛥𝑙′𝑖𝑗 = 𝛥𝑙𝑖𝑗 + 1
to favor connections between layers. This is implemented as most simulated signal
particle tracks used for this analysis point outwards of the CDC.

Again it is possible to define the fraction of true edges resulting from the graph-
building that is included in the true graph estimate.

𝑛incl. true graph edges = |{𝑥|𝑥 ∈ true graph edges ∧ 𝑥 ∈ built graph edges}|. (7.14)

With this, the true graph purity can be defined as

true graph pur. =
𝑛incl. true graph edges

𝑛total edges
, (7.15)
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early

Figure 7.5.: Event display after graph-building. The hits of the two signal muons
are colored red and blue. Background hits are colored black. The graph-
building incorporated true and false edges, which are colored accordingly.
The true graph is colored green. Only one true graph is created per
superlayer and particle, resulting in an incomplete true graph for the
curling track.

and the true graph efficiency is defined as

true graph eff. =
𝑛incl. true graph edges

𝑛true graph edges
. (7.16)
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Selection Distance matrix Connect with nearest neighbour

Figure 7.6.: The true graph calculation. First, the set of nodes {𝑣𝑖} matched to one
signal Monte Carlo identity are selected per superlayer. A distance matrix
between the nodes is calculated, and finally, a path graph is built by
connecting nodes with their nearest neighbor. The first node of the path
is selected as the innermost node, with the lowest layer number 𝑙.

High true graph eff. is generally desired in graph-building, as it indicates effective
capturing of true graph edges, which provide crucial relational information between
signal nodes for subsequent steps in the GNN-pipeline. However, alternative true
graph paths may exist and are not accounted for by the true graph estimation and
the true graph eff. calculation, implying that other true edges may offer valuable,
albeit redundant, information.

Moreover, in some cases, the GNN-pipeline might benefit from additional true
edges, as they can provide supplementary information to the graph. Consequently,
achieving the highest true graph pur. may not be the optimal solution in the graph-
building step. On the other hand, a high true graph pur. demonstrates the ability to
minimize false edges and redundant or additional true edges in the graph, ensuring
that the information in the graph is concisely reduced to the most important edges.
This contributes to better background noise reduction. It is a matter of background
clean-up with the IN to find the right balance between the additional true edges and
the true graph edges.

Consequently, achieving perfect true graph eff. and true graph pur. should not be
the sole criterion for determining the performance of a graph-building method. In
practice, a method with slightly lower true graph eff. could still perform well if it
captures the true nodes of a particle’s paths and forms sufficient true edges providing
the necessary relational information for the background clean-up in the GNN-pipeline.
In the following subsection, the overhead of the true graph edges is defined to measure
the additional true edges from a graph-building method.

7.3.3. Overcount Metric

Due to the computational constraints, it is advantageous if the graph contains fewer
edges for the input in the GNN-pipeline. While the true graph estimates the minimum
number of edges that are needed to connect the true hits of a signal particle, additional
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connections may be useful for the classification task. The overcount metric

overcount =
𝑛incl. true edges

𝑛true graph edges
, (7.17)

is estimating the number of these additional edges. Values greater than one refer to
additional edges but do not necessarily mean that the true graph eff. of a graph is
one. In an ideal scenario, a graph-building method should maximize the true graph
eff. but also the true edge pur.. A lower overcount value, together with a constant
true graph eff., indicates that the graph-building method is more selective in including
additional true edges, thus potentially reducing the computational complexity of the
subsequent classification task.

7.4. Graph-Building Models

Because background hits in the CDC are expected to be approximately two orders of
magnitude higher than signal hits [32], connecting all nodes in the CDC in a fully
connected graph, results in a large number of false edges yielding a low true edge pur.
and true graph pur. Thus, one of the objectives of graph-building is to minimize the
number of edges connecting background hits.

Particles traversing the CDC are expected to leave hits in close proximity and with
distinct patterns. Previous trigger algorithms make use of these expected patterns.
The Belle II experiment uses a Track Segment Finder (TSF) [21, 49] at the trigger
level, employing hourglass-shaped segments to trigger particle tracks. Details on the
tracking algorithms can be found in subsection 2.4.1.

In fig. 7.7, the left side displays an hourglass-shaped segment from the TSF.
The current trigger is optimized for pointing tracks originating directly from the
IP. However, for searches for new physics, the expected tracks may originate from
displaced vertices, which may be non-pointing to the IP. Therefore, the expected
patterns in the CDC may differ.

In this section, graph-building models are introduced and analyzed, designed for
the simulation presented in section 5.4. The simulation involves two signal muons
that are uniformly displaced in the CDC in 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 in the range of 0 cm
to 100 cm. Hits originating from these particles are signal hits, while other hits in the
CDC are considered background. The graph-building is performed on the simulation
with two types of backgrounds. The nominal Phase 3 background refers to the full
expected background for Belle II, and the early Phase 3 background refers to current
background conditions. Details on the two simulated background conditions are given
in section 5.4.

This chapter focuses on the nominal Phase 3 backgrounds, as the GNN-pipeline
is expected to be employed under this background condition. Additional information
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Graph Building

Figure 7.7.: Left: wires used for the Track Segment Finder [1] in the superlayer 2 to
9. Right: Wires considered for the graph-building models.

for the graph-building on the early Phase 3 background can be found in appendix B.
This analysis is performed using all CDC wires, thus referring to the full available
information after data taking. The following analysis for the nominal Phase 3
background is performed on 30 000 simulated events with a simulated dark Higgs
mass in the range of 𝑚ℎ′ = [1.1, 1.2, ...4, 0] GeV c−2. Each of investigated masses is
regarded with 1000 simulated events.

The two signal muons are expected to leave signal hits in spatially close sense
wires. Thus, it is useful to connect spatially neighboring nodes. Adding connections
to spatially further separated sense wires in the graph-building may include additional
relational information in the graph. Therefore, different models are analyzed to
determine the necessary allowed connections in the graph-building. The aim is to
construct graphs that capture the relevant information about particle tracks in the
CDC while minimizing false edges and maintaining high true graph eff.. Figure 7.7
presents the connections considered in this analysis on the right.

First, wires with hit information in the CDC are selected for each event. Then,
hits are grouped by layers, and edges are built by comparing pairs of layers iteratively.
The spatial distance of two compared hits decides whether an edge is built. For this,
a distance matrix is calculated using wire distances 𝛥𝑤 and wire distances 𝛥𝑙.

fig. 7.8 shows exemplary the graph-building algorithm. Each node 𝑣𝑖 in a layer in
the CDC is compared to the nodes from the other layer in the layer pair with a layer
distance 𝛥𝑙 = 0, 1, 2. The connections are defined as undirected edges. Therefore, for
connections in the same layer, only one neighbor with

𝛥𝑙𝑖𝑗 = 0 and 𝛥𝑤𝑖𝑗 = +1, (7.18)

must be considered in the graph-building, as otherwise, the connection within the
same layer would be doubled.
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Graph Building, Graph Building, Graph Building, Node with all 
connections

Node with

Node with

Node with

Figure 7.8.: Illustration of the implemented graph-building algorithm, here displayed
for model 10. The light green central node is connected within layer pairs
with 𝛥𝑙 = 0, 1, 2. The graph-building process is iteratively repeated for
each layer pair in the Central Drift Chamber (CDC). As the connections
are built undirected, the final graph allows possible connections of the
central node also downwards.

Ten different graph-building models are investigated for this analysis. They are
illustrated in fig. 7.9. Starting with model 01, which introduces a graph-building
algorithm allowing connections with a layer distance 𝛥𝑙 = 1 and a wire distance of
𝛥𝑤 = 0, the different models progressively add more connections, such as connections
with a wire distance of 𝛥𝑙 = 2 and connections in the same layer with 𝛥𝑙 = 0. The
latter connections are allowed to address also low 𝑝𝑇 particles with shallow tracks in
the CDC.

The best graph-building model out of the presented one is ultimately determined
by analyzing its performance in the GNN-pipeline. Note that this thesis focuses on
the edge classification with the IN, therefore evaluating the performance on this step
of the GNN-pipeline in chapter 8.

Node with all 
connections

Node with dl =2

Node with dl = 1

Node with dl = 0

Model 01 Model 02 Model 03 Model 04 Model 05

Model 07 Model 08 Model 09 Model 10Model 06

Figure 7.9.: Ten different graph-building patterns analyzed in this thesis, showing
possible connections for a node in the Central Drift Chamber.
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7.4.1. Characterization of Graph-Building Models

The ten different graph-building models are characterized based on the information
provided in the tables 7.1 and 7.2 below. Values are given using the median to measure
the central tendency of the events, as these contain outliers with very different amounts
of signal and background hits. The median is more resistant to such outliers. Errors
are approximated using the standard error on the median

𝜎median = 1.253 ⋅ 𝜎mean, (7.19)

with the standard error of the mean 𝜎mean.

The number of edges per event generated by each graph-building method is crucial
when implementing the GNN-pipeline. An increased number of edges generally implies
increased computational demands and bandwidth requirements. This is discussed in
more detail for the interaction network in section 8.4. Table 7.1 shows the median
number of edges obtained for each model in total and the number of incl. graph
connections and included true edge connections. The latter two are discussed in
more detail in the following two sections. The total number of edges is expected to
correlate directly to the maximum number of possible connections allowed by the
graph-building method. table 7.1 shows the allowed connections in the last column. A
Pearson correlation 𝑝𝑟 = 0.9625 between these two columns provides good evidence for
this. Additionally, the number of edges is also dependent on the type of connections.
Models 04 and 05 both allow a maximum of 10 neighboring nodes for a single node in
the graph, but they still show significant differences in the median number of total
edges. Table 7.2 shows the number of edges obtained for each possible distance, the
edges within the distance of 𝛥𝑙 = 0, 1, 2 respectively. Indeed, the table demonstrates
that the total number of edges obtained is dependent on the investigated layer distance
𝛥𝑙. In general, the total number of edges is slightly decreasing for connections with
larger layer distances. One potential reason for this result may be that the graphs are
built for each superlayer independently. This leads to a dependency on the permitted
connections on the layer position within the superlayer. Investigating a single type
of connection with 𝛥𝑙 > 0, this behavior leads to a decrease of the total number of
edges while 𝛥𝑙 increases, as outer nodes in the superlayer have decreasing possible
connections.
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Table 7.1.: Median edges for the ten different graph-building models for nomi-
nal Phase 3 background. Each event possesses a median of 66.00 ± 0.21
true graph edges and 155.0 ± 1.9 true edges. The table lists the total
edges created from each model, including true graph edges and true edges.
Additionally, the maximum number of edges one single node can have in
the respective model is shown in the last column.

model total number of edges incl. graph incl. true edges max. connections

01 3100.0 ± 2.2 55.00 ± 0.19 63.00 ± 0.26 4
02 5810 ± 5 58.00 ± 0.19 74.0 ± 0.4 8
03 4017 ± 3 56.00 ± 0.19 86.0 ± 0.4 6
04 5834 ± 5 57.00 ± 0.19 107.0 ± 0.5 10
05 6727 ± 5 59.00 ± 0.19 99.0 ± 0.5 10
06 8545 ± 7 60.00 ± 0.19 120.0 ± 0.6 14
07 6435 ± 5 61.00 ± 0.20 102.0 ± 0.5 8
08 8253 ± 6 62.00 ± 0.20 123.0 ± 0.6 12
09 9145 ± 7 64.00 ± 0.20 113.0 ± 0.6 12
10 10 961 ± 8 65.00 ± 0.21 134.0 ± 0.7 16

Table 7.2.: Model-independent median number of edges with different wire and layer
distances for nominal Phase 3 background.

layer distance wire distance total number of edges max. connections

𝛥𝑙 = 0 𝛥𝑤 = 1 2418.0 ± 1.5 2
𝛥𝑙 = 1 𝛥𝑤 = 0 3100.0 ± 2.2 4
𝛥𝑙 = 1 𝛥𝑤 = 0, 1 5810 ± 5 8
𝛥𝑙 = 2 𝛥𝑤 = 0 917 ± 9 2
𝛥𝑙 = 2 𝛥𝑤 = 0, 1 2737.0 ± 2.5 6

7.4.2. True Edge Purity and True Edge Efficiency

The values for true edge eff. and true edge pur. obtained for the graph building models
are listed in table 7.3. As anticipated, the obtained true edge pur. is relatively low
due to the expected high background in the events, resulting in a considerably large
fraction of false edges. The true edge pur. of all models is in the order of 𝒪 (10−2).

Figure 7.10 shows the true edge pur. plotted against the total number of edges.
In general, the number of false edges is expected to correlate to the total number of
edges. Therefore, the true edge pur. should decrease with the increasing total number
of edges. This behavior is confirmed in the plot, but still, some models achieve higher
true edge pur. with a similar number of connections. In this comparison, model 04
does show a significantly higher true edge pur. than model 02, with a similar number
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Table 7.3.: true edge eff. and true edge pur. of the ten graph-building models.
model true edge eff. (%) true edge pur. (%)

01 47.44 ± 0.10 2.024 ± 0.008
02 51.92 ± 0.07 1.274 ± 0.006
03 65.47 ± 0.17 2.166 ± 0.009
04 83.45 ± 0.18 1.845 ± 0.008
05 69.58 ± 0.14 1.471 ± 0.007
06 88.10 ± 0.15 1.401 ± 0.007
07 72.29 ± 0.14 1.584 ± 0.007
08 90.48 ± 0.15 1.489 ± 0.007
09 76.47 ± 0.11 1.238 ± 0.006
10 95.24 ± 0.13 1.221 ± 0.006

of edges. Therefore model 04 is significantly better at catching true edges compared
to model 02.
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Figure 7.10.: The event median of the true edge pur. and the median of the total
number of edges created from each graph-building model. The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.

The true edge pur. is also expected to correlate with the number of maximal
allowed connections for a single node, as these are also an indicator of the increased
total number of edges. This correlation is well visible in fig. 7.11. The plot also shows
that the true edge pur. is not only dependent on the number of connections but also,
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some models perform better with a similar number of maximal connections. This
highlights the importance of the type of connection. The ratio of true edge pur. over
the total number of edges is, therefore, a good indicator to understand the importance
of connection types.
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Figure 7.11.: The true edge pur. plotted against the maximum number of allowed
connections for a single node in the graph-building models.The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.

Figure 7.12 shows the true edge pur. plotted against the true edge eff. for the
proposed graph-building models. The plot shown in this comparison features the
separation of the models into three clusters, highlighted in green, yellow, and red.
Each color denotes the allowed edges in a layer distance of 𝛥𝑙 = 2. Introducing more
allowed connections in this layer distance significantly increases the true edge eff..
This effect is partially explained by the calculation of the complete set of true edges,
which includes connections with a layer distance of 𝛥𝑙 = 2. Consequently, a method
including these connections is expected to have an increased true edge eff..

Figure 7.13 shows the efficiency plotted against the total number of edges, where
again, it is visible that some models are far more efficient in including the true edges
while keeping a similar total number of edges. Again edges in 𝛥𝑙 = 2 show significant
importance.
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Figure 7.12.: The event median of the true edge eff. and true edge pur . The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.
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Figure 7.13.: The median of true edge eff. and total number of edges calculated for
each graph-building model. The models are color-coded based on the
allowed connection within a layer distance of 𝛥𝑙 = 2. Green models do
not permit edges, and yellow models allow edges with a wire distance of
up to 𝛥𝑤 = 1. Red-labeled models permit connections with a maximum
wire distance of 𝛥𝑤 = 2.
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7.4.3. True Graph Purity and True Graph Efficiency

Turning now to the investigation of the true graph edges, fig. 7.14 shows a scatter
plot of the true graph eff. and the true graph pur. and table 7.4 shows the values
tabulated. As the expected number of true graph edges is smaller than the expected
number of true edges, shown in table 7.1, the true graph pur. is expected to be lower
than the true edge pur . Naturally, one would expect a trade-off between true graph
eff. and true graph pur. for the graph-building methods. Higher true graph eff. would
typically lead to a decrease in true graph pur. and vice versa. This trade-off should
manifest as a curve or line in the true graph pur.-true graph eff. plane where all models
are located. Indeed, this behavior is approximately demonstrated in the fig. 7.14.
In contrast to the plot for the true edges, the separation into three clusters is less
distinct. However, a similar tendency for the three groups of models is present, and
the highest true graph eff. is again achieved by Model 10 with an true graph eff. of
(98.667 ± 0.013) %. This indicates that model 10 is the graph-building method, which
is the most successful in incorporating true graph edges. The highest true graph pur.
is achieved by Model 01 with (1.785 ± 0.006) %, which implies that it is the model
with not only the smallest amount of edges but also the best model for including the
least false edges among the considered models for this simulation. It is now subject to
the edge classification task identifying the best model for the clean-up task with the
interaction network.
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Figure 7.14.: The event median of the true graph eff. and true graph pur.. The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.
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Table 7.4.: The true graph eff. and true graph pur. of the ten graph-building models
for nominal Phase 3 background.

Model true graph eff. (%) true graph pur. (%) overcount

01 90.12 ± 0.10 1.785 ± 0.006 1.0087 ± 0.0013
02 91.67 ± 0.07 1.003 ± 0.004 1.0935 ± 0.0019
03 92.31 ± 0.10 1.401 ± 0.005 1.4393 ± 0.0024
04 93.99 ± 0.10 0.981 ± 0.004 1.7805 ± 0.0027
05 93.62 ± 0.07 0.8793 ± 0.0028 1.5492 ± 0.0023
06 95.35 ± 0.07 0.7045 ± 0.0023 1.8442 ± 0.0027
07 95.12 ± 0.05 0.9513 ± 0.0030 1.6053 ± 0.0022
08 96.83 ± 0.04 0.7536 ± 0.0024 1.8889 ± 0.0027
09 97.115 ± 0.018 0.6990 ± 0.0022 1.7123 ± 0.0029
10 98.667 ± 0.013 0.5924 ± 0.0019 1.989 ± 0.004

7.4.4. Overcount

Figure 7.15 shows the true graph pur. of the graphs in relation to the overcount
metric. It is anticipated that the overcount would be correlated to the number of
edges generated by a graph-building method. Introducing more relational information
between signal nodes but also increasing the number of backgrounds in the CDC.
Therefore, leading to an increased background level in the graph but also introduces
valuable knowledge.

fig. 7.16 generally confirms this expected correlation. However, it also highlights
that some models have an increased overcount than others with a comparable number
of edges. For instance, model 04 exhibits a higher overcount than model 02, despite
both containing a similar total number of edges per event. This suggests that using
model 04 yields more true edges compared to model 02, which is useful for the
classification task as more relational information between the true nodes is provided
for the IN.

7.4.5. Recurring Patterns in the Metrics

The CDC has a specific pattern of wire distribution around the IP, resulting in
recurring patterns in graph-building metrics. The scatter plot of the 30 000 graphs
with the true graph eff. as a function of the opening angle between the two signal
muons in fig. 7.17 displays distinctive signatures with densely populated lines at
specific values. In this plot, the true graph eff. is evaluated for superlayer 2, which
consists of six layers.

Since expected tracks in the CDC are typically pointing outward, a particle
traversing a superlayer is expected to leave roughly one hit in each layer. Consequently,
the true graph is anticipated to have approximately five edges for each signal particle
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Figure 7.15.: The event median of the true graph pur. and the overcount.The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.

within superlayer 2. Since the true graph eff. calculation does take into account the
included graph edges over the total number of true graph edges, a sparse distribution
between zero and one is expected. Mathematically this can be expressed as

true graph eff. = 𝑘
𝑛true graph edges

, 𝑘 ∈ ℕ, (7.20)

with an expected number of 𝑛true graph edges = 10 for two signal particles in superlayer
2. This is verified in fig. 7.18, which shows the true graph eff. for superlayer 2 of the
30 000 events. The plot shows several distinct peaks. A large fraction of the events
reach a true graph eff. of one. As tracks may curl, or originate within a specific
layer, the number of 𝑛true graph edges may vary for some events, allowing several other
efficiency values.
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Figure 7.16.: The event median of the overcount plotted against the median number
of edges per event of the graph-building method. The models are color-
coded based on the allowed connection within a layer distance of 𝛥𝑙 = 2.
Green models do not permit edges, and yellow models allow edges with a
wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit connections
with a maximum wire distance of 𝛥𝑤 = 2.

Figure 7.17.: Scatter plot of the ten graph-building models for superlayer 2. The
graphic shows the simulated dimuon signal’s true graph eff. in relation
to the opening angle.
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8. Background Clean-Up in then Central
Drift Chamber Using the Interaction
Network

In order to obtain accurate and reliable results when analyzing particle collisions,
it is crucial to perform background clean-up. This process involves isolating the
traces of the specific particle of interest from extraneous signals that may interfere
with the later analysis. In the context of the Central Drift Chamber (CDC), the
background clean-up refers to the discrimination of hits, which can be associated with
a signal particle and the remaining hits, classified as background hits. In the context
of machine learning, this task can be understood as pattern recognition because
it involves detecting specific patterns or structures within the detector data that
correspond to the underlying physics of particle collisions. A more comprehensive
explanation of signal and background in the CDCs is presented in section 7.1, where
the concept of true and false edges is also introduced. The tracking GNN-pipeline’s
background clean-up fulfills three primary functions:

(i) Reducing the computational costs for subsequent tasks of the GNN-pipeline by
filtering the input graph, which is especially crucial in the online application.

(ii) Increasing accuracy when utilizing the Object Condensation (OC) approach [26]
to determine track parameters of signal particles in the CDC.

(iii) The facilitation of discoveries, where effective background clean-up may enable
new searches of rare signals and allow for more precise measurments, improving
sensitivity.

In chapter 4, the background clean-up is introduced as part of the GNN-pipeline,
utilizing the Interaction Network (IN). The Graph Neural Network (GNN) performs
a classification task, a machine learning process that identifies the category or class
to which a particular input belongs. In this context, the IN is trained to classify
edges of an input graph, which correspond to either true or false edges. True edges
represent connections between signal hits in the CDC, while false edges correspond
to connections between background hits or a mix of signal and background hits. By
successfully classifying edges, the IN is used to subsequently identify nodes in the
graph that correspond to signal hits.
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This chapter does focus on the analysis of the success of the classification task
on the ten graph-building models presented in chapter 7. For this, an IN is trained
on each graph-building model to discriminate the corresponding true and false edges.
Section 8.1 presents the configuration of the IN, with respect to the available input
features and section 8.2 presents metrics for the evaluation of the classification task.
In the following section 8.3, metrics are evaluated to measure the performance of the
classification task and the overall performance of the GNN-pipeline to the point of
the background clean-up.

A real-time implementation of the IN must be employed on specialized hardware to
process events in the sub-microsecond timescale. Therefore, the IN will be implemented
on designated Field-Programmable Gate Arrays (FPGAs), which imposes certain
limitations on the network and input size due to constrained computing resources.
A larger input size may require more bandwidth and may affect the latency and
throughput of an FPGA, while larger networks could exhaust the FPGA’s memory.
To gain first insights into the real-time implementation, the total number of floating
point operations required by each graph-building method is estimated. This helps to
understand the computational overhead better and sets the foundation for an initial
discussion of implementing the IN on an FPGA. Additionally, a first comparison of
the classification efficiency is presented, using input features with a reduced resolution,
aligning the anticipated resolution for the Level 1 Trigger (L1 Trigger) trigger.

8.1. Interaction Network Training and Dataset Description

The IN is trained on graphs generated by the ten different graph-building methods
proposed in chapter 7, predicting true and false edges corresponding to the defini-
tion in section 7.1. The same dataset was used for the analysis of the INs as for
the graph-building. Details regarding the simulation are presented in section 5.4.
This chapter analyzes the IN with the full expected beam background, respectively
nominal Phase 3 background. Studies performed on early Phase 3 background can be
found in appendix C. The dataset includes 30 000 simulated events, with a simulated
dark Higgs mass in the range of 𝑚ℎ′ = [1.1, 1.2, ...4, 0] GeV. Each of the investigated
masses is taken into account with 1000 simulated events.

The dataset is randomly split into a training set with 24 000 events, a validation
set with 3000 events, and an evaluation set with 3000 events. The random splitting
of the dataset leads to a varying number of events in the evaluation dataset for each
mass in the specified range, resulting in a diverse representation of masses. This
diversity is taken into account by calculating the median value of the events in the
evaluation dataset and then determining the uncertainties based on the statistical
error derived from the events’ distribution. The error is estimated by

𝜎median = 1.253 ⋅ 𝜎mean. (8.1)
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Input features for the classification task are the spatial position of the CDC hits, 𝑥, and
𝑦, time information of a hit in the form of the Time-to-Digital Converter (TDC) count,
and information about the deposited energy in a hit, the Analog-to-Digital Converters
(ADCs) count. The spatial information is valuable because hits of a particle in the
CDCs are expected to be close, forming a path of consecutive hits in the CDC. The
TDC count and the ADC provide additional orthogonal discriminatory information
between signal and background hits, which has been shown in the chapter 6.

The edge attributes of the input graphs represent relational spatial information
between the connected nodes in cylindrical coordinates, specifically 𝛥𝜌 and 𝛥𝜙. Here,
𝜌 does correspond to the spatial distance in the 𝑥 − 𝑦 plane of the detector, and 𝜙 is
the respective angle in the plane.

8.1.1. Implementation in PyTorch Geometric

In this PyTorch implementation, the IN consists of two Relational Models and one
Object Model, comprising a total of 1987 trainable parameters. In the IN, information
flows from a sender to a receiver through directed processes. As a result, the edges
generated during the graph-building process are changed into undirected edges. In
PyTorch Geometric (PyG), this is achieved by duplicating the edges with opposite
directions. The layer sizes of the IN were selected to keep the number of parameters
relatively small.

Edge Block Aggregation Node Block Edge Block

Interaction Network
nodes, edges edges

Figure 8.1.: An illustration of the Interaction Network implemented for this thesis.
The network comprises two relational models and one object model. The
input to the Graph Neural Network is a graph consisting of nodes 𝑣𝑖
and edges 𝑟𝑘, and the output delivers classified edges 𝑟″

𝑘. This figure is
adapted courtesy of Lea Reuter [44] and is based on [25].

The same model architecture is used for nominal Phase 3 and early Phase 3
samples. Figure 8.1 shows an illustration of the IN implemented for this analysis
and in table 8.1 the model is summarized. A detailed mathematical description of
the IN is given in subsection 4.2.1. The network consists of three submodels and an
aggregation block. Each of the four components implemented in PyG is introduced
below:

Relational Model𝑹𝟏 The model 𝑅1 is responsible for computing the effects of pairwise
interactions between the nodes in the system. It does compute updated edge
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states 𝑟′
𝑘. It consists of three fully connected layers with Rectified Linear Unit

(ReLU) activation functions in between. The first linear layer has 220 parameters,
followed by a second linear layer with 420 parameters, and a final linear layer
with 42 parameters.

Aggregation The aggregation step is implemented with a summation function. In
this step, the updated edges (messages) 𝑟′

𝑘 from the relational network 𝑅1
are aggregated for each node. This step intrinsically uses directed edges, and
therefore it is important that the input graph has undirected edges to use the
relational information for each node. The output for each node is denoted as ̃𝑟′

𝑖.

Object Model𝑶 The object model 𝑂 processes the effects computed by the relational
model and calculates updated object states 𝑣′

𝑖 accordingly. The input of the
network is the aggregation out ̃𝑟𝑖 along with the initial input nodes 𝑣𝑖. This
network also comprises three fully connected layers with ReLU activation func-
tions in between. The first linear layer has 140 parameters, followed by a second
linear layer with 420 parameters, and a final linear layer with 84 parameters.

Relational Model𝑹𝟐 The second relational model 𝑅2 computes pairwise interactions,
considering the updated object states 𝑣′

𝑖. The structure is similar to the first
relational model, with three fully connected layers and ReLU activation functions.
The first linear layer has 220 parameters, the second has 420 parameters, and
the third has 21 parameters. This model gives a one-dimensional output where
a sigmoid function is applied, creating the final output.

Each model has one hidden layer, an input layer, and an output layer. The size of the
hidden dimension is 20 for the hidden layers, and the input dimension is determined
from the input graph, as is the output dimension of the intermediate blocks, as they
are aligned with the input graph dimensions.

Training the network aims to adjust the model’s weights and biases to reduce the
discrepancy between its predictions and the true labels. For this, a loss function is be
defined, which does represent the divergence of prediction and labels. More details
on the motivation for training are presented in subsection 4.2.3. Backpropagation
is performed to minimize the loss function using gradient descent. This updates
the model’s weights and biases by iteratively moving in the direction of the steepest
decrease of the loss function.

The learning rate is a parameter that determines the step size an optimizer
performs during the gradient descent toward the loss function. It does influence the
speed and convergence of the optimization process. For the IN, the learning rate is
adjusted using the learning rate scheduler ReduceLROnPlateau from PyTorch. This
scheduler adjusts the learning rate if no loss improvement is detected for a defined
number of epochs. Two parameters are specified, the decay factor, by which the
learning rate is reduced, and the patience, which defines the number of epochs the
scheduler takes into account before reducing the learning rate.
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During training, an optimizer is used to maintain an individual learning rate
for each parameter. For this training, the Adaptive Moment Estimation (Adam)
optimizer [27] is used. The Adam optimizer computes adaptive learning rates based
on the first and second moments of the gradients. It combines properties of two other
optimization techniques, AdaGrad [11] and RMSProp [19].

Table 8.1.: Model summary of the Interaction Network implemented in PyTorch with
a total of 1.987 trainable parameters.

Block Layer Type Number of Parameters

Relational Model 1
Linear 220
ReLU
Linear 420
ReLU
Linear 42

Object Model 1
Linear 140
ReLU
Linear 420
ReLU
Linear 84

Relational Model 2
Linear 220
ReLU
Linear 420
ReLU
Linear 21

8.1.2. Training of the Interaction Networks

The training of the IN is carried out with a batch size of 1024 events for graph-
building models 01 to 05 and model 07 and a batch size of 512 events for the remaining
models. The batch size was adjusted to accommodate the memory constraints on
the hardware, as some models contained larger graphs that required more memory
on the Graphics Processing Units (GPUs). The hyperparameters for the training are
displayed in table 8.2. Ten separate trainings were conducted for each of the proposed
graph-building models from chapter 7, resulting in ten trained IN.

One training epoch corresponds to the training of the IN on the entire training
data set. The backpropagation of the network is performed after each batch iteration
using the mean cross-entropy loss. It is important to note that the size of the training
set varies as the number the edges depends on the graph-building method. Due to
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this, the mean loss is calculated from a very different number of edges. Additionally,
due to the different batch sizes, the number of updates performed on the parameters
differs for the different IN.

Verifying the convergence of each model’s loss is therefore essential, as this is
typically taken as an indication that the network has reached maximum learning
potential. Figure 8.2 shows the losses on the training datasets after each epoch and
fig. 8.3 shows the losses of the corresponding validation datasets. Both presented loss
functions exhibit good convergence. The validation loss is particularly important, as
it measures the network’s generalization capability. This is because events from the
validation dataset are not used to optimize the IN. This importance becomes evident
when analyzing overfitting. Overfitting corresponds to a network that learns not only
the underlying patterns of a dataset but also the noise, causing the models to learn
the training data too well. As a result, the model performs poorly on unseen data.
This effect may be noticeable during training as an increase in validation loss and a
continuous decrease in training loss. Therefore, monitoring the relationship between
the two losses is essential.

After 100 to 150 epochs, both losses show minimal improvement, indicating well-
trained models. Artifacts like the peaks in the losses may result from a slightly too
high learning rate, which allows the model to overshoot the loss function’s minima.
Nevertheless, the loss functions demonstrate adequate training of the ten networks.
Throughout the training process of the ten IN, the optimal model is determined by
selecting the one that has the lowest validation loss across all epochs.

Table 8.2.: Hyperparameters for training of the Interaction Network.
Hyperparameter Value

Object Model Hidden Size 20
Relational Model 1 Hidden Size 20
Relational Model 2 Hidden Size 20
learning rate 0.0075
learning rate scheduler factor 0.2
learning rate scheduler patience 15
Number of Epochs 200
Batch size 1024 & 512

8.2. Metrics for the Classification Task

Evaluating the performance of the IN is important to determine how well it cleans
up the background and retains valuable information for the GNN-pipeline. In the
following subsection, various metrics are introduced for assessing the classification
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Figure 8.2.: Train loss the training with nominal Phase 3 background.
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Figure 8.3.: Validation loss the training with nominal Phase 3 background.

performance of the ten models based on the metrics used before for the graph-building
in chapter 7.

In section 7.3, several metrics are introduced to investigate the performance of
the graph-building. The metrics defined in the graph-building determine purities and
efficiencies of the graph-building by differences of the edges included before and after
the graph-building. A similar approach is employed for assessing the classification
performance of the INs. First, the analogon to the included true edges after the
classification is defined as the included predicted true edges, with its number defined
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as

𝑛incl. pred. true edges = |{𝑥|𝑥 ∈ complete set of true edges ∧ 𝑥 ∈ predicted true edge}|.
(8.2)

Similarly, the included predicted true graph edges are defined as

𝑛incl. pred. true graph edges = |{𝑥|𝑥 ∈ true graph edges ∧ 𝑥 ∈ predicted true edge}|.
(8.3)

These two numbers reflect the fraction of true edges and true graph edges included
after the classification step. Regarding the classification task performed on the graphs,
𝑛incl. pred. true edges can also be referred to as the true positives.

8.2.1. Definition of Classified Purities

In a classification task, purity is a metric that measures the proportion of correctly
classified positive instances out of all instances classified as positive. In other words,
purity represents the fraction of true positive predictions among all positive predictions.
To account for this interpretation, definitions of the true graph pur. and true edge
pur. from chapter 7 are revised.

The included number of edges 𝑛incl. true edges and 𝑛incl. true graph edges are replaced
with 𝑛incl. pred. true edges and 𝑛incl. pred. true graph edges, respectively. Furthermore, the
number of edges in the denominator is represented by 𝑛total predicted edges. The purities
after classification are given as

class. true edge pur. =
𝑛incl. pred. true edges

𝑛total predicted edges
, (8.4)

class. true graph pur. =
𝑛incl. pred. true graph edges

𝑛total predicted edges
. (8.5)

A high purity indicates that the classifier successfully discriminates true edges
and true graph edges, which is essential for the effectiveness of the GNN-pipeline. A
low purity indicates a noisy classifier selection, as many false edges are included in its
predictions.

8.2.2. Definition of Classified Effciencies

The definition of true graph eff. and true edge eff. are also revised for the performance
measurement of the classification. Typically efficiency is determined by calculating
the proportion of a subset that successfully passes a classification task from an entire
set. For the classification with the IN, this entire set is defined as the included fraction
of the true graph edges and true edges in the graphs. Therefore, the classified true
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edge efficiency is defined as

class. true edge eff. =
𝑛incl. pred. true edges

𝑛incl. true edges

=
𝑛incl. pred. true edges

𝑛true edges
⋅ 1

true edge eff.
, (8.6)

and the classified true graph efficiency

class. true graph eff. =
𝑛incl. pred. true graph edges

𝑛incl. true graph edges

=
𝑛incl. pred. true graph edges

𝑛true graph edges
⋅ 1

true graph eff.
. (8.7)

Both newly defined efficiencies not only make use of the prediction output of the
classification but also change the set of available edges for the calculation to the
input of the classification, respectively 𝑛incl. true edges and the 𝑛incl. true graph edges. This
approach allows the efficiency to focus more on the performance of the classification
task itself without directly involving the underlying graph-building method.

Overall efficiency can be determined by multiplying each classification efficiency
with their counterparts from the graph-building to get insights into the efficiency of
incorporating the true graph edges and true edges of the complete sets presented in
section 7.3.

A high efficiency indicates that the classifier successfully finds true edges or the
true graph edges. This is crucial for the GNN-pipeline, as these edges are expected to
be helpful in the following OC task. A low efficiency implies that the classifier misses
a significant fraction of true edges or the true graph edges.

8.2.3. Threshold Determination Using the F1 Score

The output of the IN is continuous, with a value between zero and one for each
edge. The output is converted into a discrete class type using a threshold value. It
is important to note that the choice of the threshold does influence class. true edge
pur. and class. true graph eff. The final choice involves finding a balance based on
prioritized goals. Since this decision depends on the subsequent requirements of the
OC and the whole GNN-pipeline, this initial analysis focuses on optimizing the F1
score, thus optimizing the harmonic mean of the two metrics. The F1 score is defined
as

F1true_edge = 2
class. true edge pur. × class. true edge eff.
class. true edge pur. + class. true edge eff.

. (8.8)

To determine the optimal threshold 𝑡class, the F1 score is calculated for a range of
thresholds in 𝑡class = [0.01, 0.02, ..., 0.99]. The threshold that maximizes the F1 score
of the validation dataset is considered to be the optimal threshold.
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8.2.4. Classification of Nodes

The previous sections focused on metrics for evaluating the classified edges, which is
the output of the IN. These metrics target an intermediate output of the background
clean-up. As the emphasis now shifts to the primary goal of this chapter, the following
section introduced metrics, focusing on the background clean-up. In the final step,
nodes connected to a true edge are kept, while nodes without connections to a predicted
node are classified as background. For the final analysis, two metrics are considered
to evaluate the performance of the node classification. The node efficiency

node efficiency =
𝑛predicted signal

𝑛signal nodes
(8.9)

with the number of true nodes 𝑛predicted signal, included after the background clean-up
task, and the total number of signal nodes in the event 𝑛signal nodes. The node purity
is defined as the fraction of predicted true nodes out of the total number of predicted
nodes 𝑛predicted nodes

node purity =
𝑛predicted singal

𝑛predicted nodes
. (8.10)

The node efficiency quantifies the effectiveness of the GNN-pipeline to retain the
signal nodes up to the background clean-up stage, which is critical for the success
of the subsequent track-finding and track-fitting processes. Thus, achieving a high
node efficiency is essential for ensuring accurate and high-quality results. The node
purity, on the other hand, gives insights into the output of the classification task. Its
result reflects the GNN-pipeline’s ability to discriminate between background and
signal nodes. It is important to note that the node efficiency generally has a more
direct and significant impact on the accuracy and quality of track reconstruction. This
is especially true, as subsequent steps of the GNN-pipeline also provide additional
background discrimination.

8.3. Performance Measurements

Accurate performance measurements not only help evaluate the effectiveness of the IN
but also contribute to optimizing the track-finding task, which is one of the ultimate
goals of the GNN-pipeline. The following section aims to investigate the performance
of the ten INs to understand which metrics are powerful to determine the performance
of the INs. Ultimately, the performance of the background clean-up using the classified
edges of the INs is determined.

8.3.1. F1 Score of the True Edges

The ten graph-building methods produce input graphs with an unbalanced dataset, as
the majority of included edges are not the edges of interest. This results in low true

86



8.3. Performance Measurements

edge pur.. When evaluating the classification performance of such a dataset, using
the well-established accuracy metric alone may not provide enough information, as
high accuracy could be achieved by identifying a high number of false edges without
accurately classifying the true edges. In this case, the F1 score is a more useful
metric, as it measures the purity and efficiency of the minority class, which is the
true edges. This section evaluates the F1 score defined in eq. (8.8) for the true edge
classification over different Higgs masses for the ten models. Figure 8.4 shows the
median F1 score, evaluated over the different higgs masses. A high F1 score indicates
that both the class. true edge pur. and the class. true edge eff. are well-balanced.
The IN trained with the ten different graph-building methods presents an F1 score
with values between 0.6 and 0.8. These results remain consistent over the investigated
dark Higgs masses, with a slight decrease of the F1 score for higher simulated Higgs
masses.

The decline in F1 score for higher masses may be due to the increased complexity
of events with larger Higgs masses, which are expected to have wider opening angles
and, therefore, can have two signal tracks with more complex displaced signatures.
The IN trained on model 08 consistently demonstrates the best F1 score performance
of the ten models.
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Figure 8.4.: Median F1 score for the true edges of the classification task for different
simulated Higgs masses. The ten Interaction Networks provide consistent
results across the investigated dark Higgs masses with a slight decrease
for higher simulated masses. Model 08 consistently demonstrates the best
F1 score performance among the ten models.

When examining an IN with a relatively low F1 score, like the one trained on
model 02, it is helpful to examine the efficiency-purity plane to determine whether low
purity or efficiency is the primary contributing factor. Figure 8.5 shows both values
for each trained neural network. The ten INs align along a line with a strong positive
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correlation between class. true edge eff. and class. true edge pur. of 𝑝 = 0.953. This
indicates that when one of these metrics improves, the other is likely to improve. This
confirms the training of the networks on the harmonic mean of both and makes it
evident that model 08 is the best-performing network, achieving the highest class.
true edge pur. and class. true edge eff.. The highest F1 score can be achieved from
networks trained on models 06 to model 10, including same-layer connections to their
next neighbor. This underlines the importance of same-layer connections for analyzing
the displaced dark Higgs samples. The increased efficiency may be due to particles
with concentric tracks to the Interaction Point (IP), which can leave hits with parallel
signatures to the layers of the CDC. These signatures can occur with low 𝑝𝑇 tracks
but can also result from displaced tracks, such as the ones simulated for this analysis.
Therefore, the additional same-layer connections might be specifically helpful for
finding hits of tracks originating from displaced vertices.

Model 10 incorporates the same and additional connections as model 08, but the
network trained on this graph-building model shows a slightly worse F1 score, with
lower class. true edge pur. and class. true edge eff. than model 08. This implies that
the IN used for this analysis does not benefit from the additional relational information
in the nodes with a wire distance of |𝛥𝑤| = 1 in the layer distance 𝛥𝑙 = 1. In fact,
the additional edges of model 10 seem to increase the difficulty of the classification
process for the IN.

A more detailed view of the performance of the GNN-pipeline up to the classifica-
tion task can be obtained by calculating the total efficiency. The total true edge eff.
is given as the product of the true edge eff. and the class. true edge eff.

total true edge eff. = true edge eff. × class. true edge eff. (8.11)

=
𝑛incl. pred. true edges

𝑛true edges
. (8.12)

The total true edge eff. provides a detailed overview of the remaining true edges from
the complete set of true edges after completing the classification task. It allows a
detailed comparison of the ten models. Table 8.3 displays three metrics, the true
edge eff., which measures efficiency in graph-building, the class. true edge eff., which
measures efficiency in classification tasks and the total true edge eff., which measures
the efficiency of the combined tasks. The results indicate that model 08 and model
10 provide the highest total true edge eff. scores, and model 10 does outperform
the efficiency of model 08 slightly. Although model 10 does not benefit from more
connections than model 08 in the classification task, it does so in the combined step
of graph-building and edge classification.

8.3.2. F1 Score of the True Graph

The IN is trained on predicting the true edge in the graph. Nevertheless, it is
interesting to investigate whether these true edges correspond to true graph edges,
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Figure 8.5.: Median class. true edge eff. and class. true edge pur. of the ten
investigated Interaction Network. The models are color-coded based on
the allowed connection within a layer distance of 𝛥𝑙 = 2. Green models
do not permit edges, and yellow models allow edges with a wire distance of
up to 𝛥𝑤 = 1. Red-labeled models permit connections with a maximum
wire distance of 𝛥𝑤 = 2. Model 08 achieves the highest class. true edge
pur. and class. true edge eff..

Table 8.3.: The true edge eff., the class. true edge eff., and the total true edge eff. for
models 01 to 10. Values are represented as percentages.

Model true edge eff. (%) class. true edge eff. (%) total true edge eff. (%)

01 47.44 ± 0.10 64.0 ± 0.4 30.79 ± 0.21
02 51.92 ± 0.07 58.6 ± 0.4 32.61 ± 0.22
03 65.47 ± 0.17 64.9 ± 0.4 41.0 ± 0.4
04 83.45 ± 0.18 63.8 ± 0.4 52.2 ± 0.4
05 69.58 ± 0.14 60.5 ± 0.5 42.65 ± 0.30
06 88.10 ± 0.15 63.1 ± 0.4 56.7 ± 0.4
07 72.29 ± 0.14 65.9 ± 0.4 47.6 ± 0.4
08 90.48 ± 0.15 68.9 ± 0.4 62.7 ± 0.4
09 76.47 ± 0.11 66.3 ± 0.4 51.5 ± 0.4
10 95.24 ± 0.13 66.0 ± 0.4 65.2 ± 0.4

meaning edges associated with the particle’s estimated path. The F1 score definition
for the true graph edges is given as

𝐹1true_graph = 2
class. true graph pur. × class. true graph eff.
class. true graph pur. + class. true graph eff.

. (8.13)
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Figure 8.6 shows the F1 score as a function of the simulated dark Higgs mass.
Interestingly, the graphic presents a strong contrast in the F1 score. Model 01
and model 02 have significantly better scores compared to the remaining models,
contrasting with the F1true_edge, where model 02 achieved the lowest scores.

After the graph-building process, the class. true graph pur. is expected to be lower
than the class. true edge pur., as the former considers a subset of the latter. This is
due to the incl. true graph edges being a subset of the incl. true edges, formally

incl. true graph edges ⊆ incl. true edges. (8.14)

This is a result of the used graph-building methods, which only consider edges, which
can be included in both, the true graph and the complete set of true graph edges. By
default, each true graph edge is also a true edge.
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Figure 8.6.: Median F1 score for the true graph edges of the classification task for
different simulated Higgs masses.

Figure 8.7 presentes the efficiency-purity plane. The models’ purity shows large
differences, with models 01 and 02 having a much higher class. true graph pur., which
explains the higher F1 score of these models. This behavior can be explained by the
fact that the networks are not optimized for the best 𝐹1true graph score but for the
highest 𝐹1true edge score, as the target edges for the classification are all true edges
for the final background clean-up. Therefore, the model is not optimized to minimize
the predicted edges to the true graph edges but to a superset of these. The network
is not trained to improve the class. true graph pur., as all true edges are utilized for
the subsequent background clean-up. The ten models are clearly separated into three
regions where class. true edge pur. decreases significantly with an increased allowed
wire distance in the layer distance 𝛥𝑙 = 2. This implies that most included edges at
this layer distance are not true graph edges.
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Figure 8.7.: Median class. true graph eff. and class. true graph pur. of the ten
investigated models. The models are color-coded based on the allowed
connection within a layer distance of 𝛥𝑙 = 2. Green models have no
allowed edges, yellow ones allow edges up to a wire distance of 𝛥𝑤 = 1,
and red-labeled models allow connections with a maximum wire distance
of 𝛥𝑤 = 2.

As the incl. true graph edges are a subset of the incl. true edges, the IN is
implicitly trained to increase the class. true edge eff.. To analyze the predicted true
graph edges, class. true graph eff. is the metric of interest. Again, model 08 presents
the highest classification efficiency.

Table 8.4.: The true graph eff., the class. true graph eff., and the total true graph eff.
for models 01 to 10. Values are represented as percentages.

model class. true graph eff. (%) true graph eff. (%) total true graph eff. (%)

01 64.9 ± 0.4 90.12 ± 0.10 58.5 ± 0.4
02 62.8 ± 0.4 91.67 ± 0.07 57.6 ± 0.4
03 62.7 ± 0.5 92.31 ± 0.10 57.9 ± 0.5
04 62.5 ± 0.4 93.99 ± 0.10 58.7 ± 0.4
05 61.3 ± 0.4 93.62 ± 0.07 57.4 ± 0.4
06 64.4 ± 0.4 95.35 ± 0.07 61.4 ± 0.4
07 65.8 ± 0.4 95.12 ± 0.05 62.6 ± 0.4
08 69.3 ± 0.4 96.83 ± 0.04 67.1 ± 0.4
09 67.3 ± 0.4 97.115 ± 0.018 65.4 ± 0.4
10 68.5 ± 0.4 98.667 ± 0.013 67.6 ± 0.4
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For further investigation of the true graph, a total true graph efficiency is calculated

total true graph eff. = true graph eff. × class. true graph eff. (8.15)

=
𝑛incl. pred. true graph edges

𝑛true graph edges
. (8.16)

This efficiency provides a detailed overview of the remaining true graph edges resulting
from the true graph estimation after the classification. Table 8.4 shows the calculated
efficiencies. Model 08 and model 10 again achieve the highest efficiency.

Comparing models 03 to 06 with models 07 to 10, the added same-layer connections
led to a significant increase in class. true graph eff. with a comparably small influence
on class. true graph pur.. Thus, connections with a layer distance of 𝛥𝑙 = 0 again
seem to be crucial for improving the classification task. This additional performance
can be determined by calculating the fraction

𝛿𝑔08−04 =
𝜀08 ̃𝜀08𝑇 − 𝜀04 ̃𝜀04𝑇

̃𝜀08𝑇 − ̃𝜀04𝑇
=

𝜀08 ̃𝜀08 − 𝜀04 ̃𝜀04

̃𝜀08 − ̃𝜀04
= 2.0 ± 0.5 (8.17)

where for easier readability, the set of true graph edges 𝜀 indicates the class. true
graph eff., ̃𝜀 denotes the true graph eff. and 𝑇 denotes the total number of true graph
edges resulting from the true graph estimation. The fraction 𝛿𝑔 measures the ratio of
additional true edges added and predicted by the GNN-pipeline over the additional
true edges included by graph-building. Therefore, a significant value greater than one
indicates that a graph-building model not only includes more edges but is also capable
of improving its performance on the subset included in the compared graph-building
model. This formula can only be employed and understood in this manner if one
graph-building model produces a graph that is a subset of the other. Model 08’s graph
is a superset of model 04’s graph as model 08 adds the same-layer connections. These
edges seem to capture important local information. Through the IN, this information
is passed on to neighboring edges, which in turn improves the prediction accuracy on
these.

8.3.3. Beam Background Clean-Up and Node Classification

The final goal of the edge classification is to clean up events in the CDC from their
background by removing hits that cannot be associated with a signal particle. This
step can be understood as pattern recognition because it involves identifying and
connecting signal hits in the CDC that follow a specific pattern, respectively, the
trajectory of the signal particle. The predicted nodes are selected by determining all
edges passing the threshold determined from the training. Each node connected to an
edge passing the threshold is kept. Other nodes are considered classified as false.

Figure 8.9 presents node efficiency and node purity after the selection. Model
08 exhibits the highest node purity, and a high node efficiency, indicating superior
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performance in the background clean-up process. Its node efficiency is only surpassed
by Model 10. On the other hand, Model 01 stands out as an outlier with high purity
and reasonable efficiency.

The initial results of the OC condensation approach have shown promising results
in discriminating background nodes from signal nodes [18]. Therefore, high node
purity might not be the primary goal for the tracking. However, the OC must be
optimized to be accommodated on an FPGA. This optimization may include parameter
reduction of the network, which may influence its performance in the discrimination
task. Furthermore, one major objective of the background clean-up is reducing the
input size for the OC. Therefore it is important to provide a high node purity. In
the end, finding a good trade-off between node efficiency and node purity for the
GNN-pipeline is important.

Subsection 8.3.3 provides a visual representation of the background clean-up for
an event in the Central Drift Chamber with an input graph of model 10. The picture
shows the possibilities of the IN impressively. The central event display demonstrates
the output of the IN network showcasing the predicted edges with their predicted
values. The right side of the image shows the final cleaned-up event after applying the
threshold and selecting the nodes. The remaining hits are noticeably streamlined and
show a clear pattern that follows the trajectory of the signal particles. The display
also shows some contamination from additional background hits.

Table 8.5.: Efficiency and Purity for the true nodes after selection. Values are presented
as percentages.

model node efficiency (%) node purity (%)

01 67.8 ± 0.4 69.6 ± 0.4
02 68.3 ± 0.4 64.1 ± 0.4
03 67.8 ± 0.5 63.0 ± 0.4
04 71.2 ± 0.5 64.0 ± 0.4
05 69.4 ± 0.5 63.5 ± 0.4
06 74.3 ± 0.5 64.3 ± 0.4
07 76.2 ± 0.4 66.1 ± 0.4
08 80.0 ± 0.4 71.6 ± 0.4
09 78.9 ± 0.4 69.7 ± 0.5
10 80.6 ± 0.4 67.4 ± 0.4

8.3.4. Conclusion on the Background Clean-UpWith the Interaction
Network

In this study, the performance of the IN is evaluated for edge classification and
background clean-up. Additionally, the performance on the true graph edges was
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Figure 8.9.: Median node efficiency and node purity of the ten investigated models.
The models are color-coded based on the allowed connection within a
layer distance of 𝛥𝑙 = 2. Green models do not permit edges, and yellow
models allow edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled
models permit connections with a maximum wire distance of 𝛥𝑤 = 2..

analyzed. The metrics are found to have interdependencies with each other. The
correlation between the metrics is investigated in dependency on the ten analyzed
models. The resulting correlations are presented in fig. 8.10. The following interesting
relationships can be found:

True Edges and True Graph Edges Choosing a model with high class. true edge eff. is
likely to positively impact the true graph eff., as the incl. true graph edges are
a subset of the incl. true edges in this analysis.

True Edges and Signal Nodes Choosing one of ten models with improved class. true
edge pur., positively impacts the node purity, as it helps dismiss background
nodes connected to edges not passing the threshold.

True Graph Edges and Signal Nodes True graph edges appear most important for the
classification task. A model with a high total true graph eff. will likely signif-
icantly impact the node efficiency. This assertion is supported by the strong
correlation of 𝑝 = 0.98 between the two metrics. The high correlation between
class. true graph eff. and node efficiency in the ten models underlines the
importance of incorporating true graph edges in graph-building. This may be
due to the increased information they provide for the classification task, as
they are edges estimating the particle’s true path. The class. true graph pur.
negatively correlates with node efficiency, suggesting that true graph edges are
essential but not the only crucial edges for high node efficiency. The network
can benefit from additional true edges.
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Figure 8.10.: Correlation of the metrics presented in this chapter for the nomi-
nal Phase 3 background with the ten analyzed graph-building models.

Among the models evaluated, Model 08 demonstrated the most robust performance
of the analyzed models. This suggests that the underlying architecture and training
of the IN contribute to its success in the background clean-up task.

8.4. Discussion on Real-Time Implementation

Implementing the GNN-pipeline in real-time (online) on the L1 Trigger level may
be a crucial step in improving the efficiency and sensitivity of particle collision
analysis in future data-taking periods of the Belle II experiment. More selective
data acquisition, an anticipated outcome of this implementation, could significantly
enhance the experiment’s sensitivity. For instance, a displaced vertex trigger for the
Inelastic Dark Matter with a Dark Higgs (IDMDH) model discussed in this thesis
may increase the sensitivity to this model for the Belle II experiment [12]. Thus,
the implementation on L1 Trigger level may not only tackle challenges posed by the
increased beam backgrounds condition but also increase the feasibility of novel particle
discoveries or physics discoveries.
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This section focuses on the potential real-time, or online, implementation of this
system. Here, ”real-time” emphasizes the necessity for immediate processing and
response, allowing the system to react instantaneously to changing conditions in
the detector, while ”online” refers to continuous, uninterrupted processing. These
terms underscore the need for a trade-off between increased input sizes incorporating
additional information on the physics event for the IN and the computational overhead.

It is crucial to understand the comparability of this thesis analysis with an online
implementation, where specialized hardware like FPGAs are used, and to recognize
the limitations when comparing the results to the potential performance on an FPGA.
The following points highlight some of these limitations:

Precision The PyG implementation employs high-precision (32 Bit) floating-point
operations. However, for the implementation on an FPGA, lower precision
arithmetic (e.g., fixed-point or half-precision floating point) may be used to
reduce the utilization on the FPGA. This change in precision may influence the
network’s accuracy.

Ressource consideration To meet latency and throughput needs, space multiplexing is
used instead of time multiplexing, which is common in software implementations
on traditional hardware architectures, such as Central Processing Units (CPUs).
This choice increases resource usage on the FPGA, directly affected by the
size of the IN and the size of the input graphs. Therefore, it is important to
consider FPGA resources and hardware requirements for the implementation of
the GNN-pipeline.

Memory limitations Memory available on an FPGA is usually limited to a few mega-
bytes, and relying on external memory does introduce significantly increased
latency. Thus, optimizing the size of input graphs and neural network models
for the FPGAs to maintain low latency levels is crucial.

Clock frequency and parallelization As the FPGA clock frequency is typically lower
than that of GPUs and CPUs, the latency is highly dependent on efficient
pipelining and parallelization on the FPGA. With regard to the IN, pipelining
the graphs through the FPGA may be especially problematic due to layer
skipping, where information must be retained or forwarded to a register.

Although implementing the IN in PyG can offer valuable insights when comparing the
classification performance of the input graphs, the comparison does not account for the
computational overhead of different methods, a critical factor for the implementation.
The hardware must be efficient enough to build and process the graphs in a sub-
microsecond timescale. Additionally, the results may be impacted by the reduced
available resolution in the online application.

To address these challenges, the following two sections discuss a potential method
to estimate the computational complexity of the IN and present a first analysis on
the reduced input features.
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8.4.1. Floating Point Optimization

To better understand the computational complexity of the IN and the potential
performance on an FPGA, the number of Floating Point Operations (FLOPs) used
from the IN is compared for the ten different graph-building models. FLOPs is a
common metric for quantifying the computational workload of an algorithm. However,
it is essential to recognize that the FLOP count derived from the profiling tool may
not directly correspond to the actual performance on an FPGA. Due to the hardware
differences, variations in how efficiently the operations are executed may affect the
overall computational workload. Furthermore, the implementation on the hardware
level may vary from the implementation in PyG, and therefore the FLOPs may not
be directly comparable. Furthermore, the Pytorch profiler used for the FLOP count
analysis accounts only for additions combined with matrix multiplications, like in the
fully connected layers. The scatter addition, performed during the aggregation step, is
not accounted for. Despite these limitations, the FLOP count can still provide valuable
insights into the computational complexity of the IN and serve as an approximate
comparison metric between the different graph-building models. Table 8.6 shows the

Table 8.6.: Median estimated Floating Point Operations of the Interaction Network
for models 01 to 10. FLOPs are estimated using the PyTorch profiler.

model total FLOPs (MFLOP)

01 20.23 ± 0.05
02 33.94 ± 0.08
03 24.79 ± 0.06
04 34.03 ± 0.08
05 38.51 ± 0.09
06 47.53 ± 0.12
07 37.11 ± 0.08
08 46.15 ± 0.10
09 50.53 ± 0.11
10 59.97 ± 0.14

estimated flops for each model. It has been shown that model 10 does present a
slightly better node efficiency and node purity than model 08. From the table, it is
directly visible that this slight increase comes with a vastly increased computational
complexity. Given these considerations, model 08 from the ten graph-building models
studied offers a promising balance between performance, as measured in node efficiency
and node purity, and computational complexity, represented by the FLOPs.
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8.4.2. Performance Assessment of Edge Classification With Downscaled
Resolution Inputs

A fundamental consideration in the development and real-time implementation of
the graph-based machine learning models for the Belle II experiment is not only
the computational constraints of the FPGAs utilized but also the reduced available
resolution of the input features. Details on the expected information and resolutions,
available in future data-taking periods of the Belle II experiment, can be found in
subsection 2.2.2.

This section presents an initial investigation to assess the edge classification
performance with the same IDMDH simulation, using the same nominal Phase 3
background overlays, but with a post-processing downscaled resolution of input
features to address the anticipated resolution available after Long Shutdown 2 (LS2).
The reduced resolutions concerned are:

(i) Reduced sense wire information. Only the information from a fraction of the
sense wires in the CDC is provided to the L1 Trigger.

(ii) Reduced resolution of the TDC information and an unknown event time Tevt.
Therefore the absolute values of the TDC count lose their meaning in an event.
The resolution is anticipated to be reduced from 1 ns to 2 ns.

(iii) Reduced resolution of the ADC count and a reduced sampling rate of the ADCs
count. The latter may yield differing values from the highly sampled information
passed to the Data Acquisition (DAQ) system. The anticipated resolution is to
be within a few bits.

It’s worth noting that the anticipated resolutions and information availability after
LS2 detailed above are preliminary and non-official. They are subject to change based
on decisions related to hardware use, configuration, and other system design aspects
for the following period.

In an effort to adjust to these constraints, several changes were made to the data
processing techniques. Instead of using all available wire information, only trigger
wires were utilized. The resolution of ADC counts was utilized with three flags in
the range of [0, 30] ADC counts, [30, 150] ADC counts and [150, 600] ADC counts to
emulate the expected drop in resolution. The TDC resolution was reduced by binning
the TDC counts in bins of two TDC counts, referring to the halved resolution.

Finally, the original input features were adjusted to contain the low resolution
ADC information and the spatial information 𝑥, 𝑦. To address the unknown absolute
values of the TDC, it was not employed as a node feature but utilized as an additional
edge attribute 𝛥TDC. This approach allows using the potentially informative relative
differences between the TDC values. The metrics for the evaluation are generally
adopted for the graph-building from section 7.3 and for the edge classification task
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section 8.2. The underlying sets of true graph edges and true edges were matched to
the available sense wires at the L1 Triggers level.

A slightly adjusted model of the IN was utilized as shown in table 8.7 to accom-
modate the adjusted input feature dimensions. The models were trained with a batch
size of 1024.

Table 8.7.: Summary of the adapted Interaction Network implemented in PyTorch
Geometric for reduced resolution inputs. The model contains 1.947 train-
able parameters.

Block Layer Type number of parameters

Relational Model 1
Linear 220
ReLU
Linear 420
ReLU
Linear 63

Object Model 1
Linear 140
ReLU
Linear 420
ReLU
Linear 63

Relational Model 2
Linear 200
ReLU
Linear 420
ReLU
Linear 21

Table 8.8 shows the classification metrics for the true edges and table 8.9 presents
the total true graph eff., additional metrcis are listed in appendix C.2. Comparing the
model’s performance before and after the reduction in resolution indicates a decrease in
efficiency and purity across the board. For instance, the class. true edge eff. decreased
from values ranging between 58.6 % to 68.9 % to a range of 47.2 % to 57.6 %. Similarly,
class. true edge eff., class. true edge pur., and class. true graph pur. all experienced
similar drops. Model 08 again achieves the highest efficiency. It is important to note
that these results still hold considerable promise for online applications as the model
maintains the capability to learn and predict edges accurately. This capability is
particularly encouraging, given the high beam background and the fact that the model
has not been optimized regarding parameter space and optimal training. Furthermore,
achieving higher efficiency at the expense of a drop in purity is possible and, therefore,
a suitable configuration for the whole tracking GNN-pipeline.
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It has been demonstrated that the overall total true graph eff. plays a crucial
role in the background clean-up. The graph-building model heavily influences this
efficiency. Thus, graph-building plays a key role in achieving high node efficiency in
background clean-up.

As the same graph-building models were employed, similar efficiency in the graph-
building is expected on the considered fraction of the CDC. Therefore, a cautious
forecast of the background clean-up implies similar drops in the node efficiency and
node purity as for the other investigated metrics.

In essence, the challenges of real-time implementation of IN on FPGA, such as
hardware limitations and reduced resolution of input features, are indeed significant
obstacles. However, with the use of appropriate graph-building models and the
application of the IN, effective background clean-up may be achievable, and sufficient
resolution may be achieved in the subsequent particle tracking task of the GNN-
pipeline. This underscores the potential of these methods to significantly increase the
experiment’s sensitivity, paving the way for new particle or physics discoveries.

Table 8.8.: The class. true edge eff. and the class. true edge pur. of the ten Interaction
Networks with nominal Phase 3 background and the reduced resolution
inputs with Level 1 Trigger information.
Model class. true edge eff. (%) class. true edge pur. (%)

01 53.7 ± 0.4 62.1 ± 0.5
02 47.2 ± 0.5 49.3 ± 0.4
03 57.1 ± 0.5 66.2 ± 0.5
04 54.5 ± 0.5 63.5 ± 0.5
05 54.0 ± 0.5 63.9 ± 0.5
06 50.6 ± 0.5 61.8 ± 0.5
07 57.0 ± 0.5 66.7 ± 0.5
08 57.6 ± 0.5 65.3 ± 0.5
09 54.8 ± 0.5 65.9 ± 0.5
10 55.6 ± 0.5 65.4 ± 0.5
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8. Background Clean-Up in then Central Drift Chamber Using the Interaction
Network

Table 8.9.: The true graph eff., and the total true graph eff. of the ten Interaction
Networks with nominal Phase 3 background and the reduced resolution
inputs with Level 1 Trigger information.

Model true graph eff. (%) total true graph eff. (%)

01 86.36 ± 0.10 46.9 ± 0.4
02 88.00 ± 0.08 45.2 ± 0.5
03 90.24 ± 0.11 48.6 ± 0.5
04 93.15 ± 0.11 49.9 ± 0.5
05 91.67 ± 0.08 48.9 ± 0.5
06 94.44 ± 0.08 48.6 ± 0.5
07 94.20 ± 0.05 52.9 ± 0.5
08 97.14 ± 0.05 55.7 ± 0.5
09 96.296 ± 0.024 53.7 ± 0.5
10 98.630 ± 0.018 56.0 ± 0.5
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9. Conclusion and Outlook

The aim of the present research was to determine the feasibility of a GNN-pipeline for
particle tracking in the main tracking detector, the Central Drift Chamber (CDC), of
the Belle II experiment. For this, the thesis set out three primary goals.

(i) Examine the discriminatory power of detector outputs when employed as input
features for a neural network. Focusing on a first comparison of differences
between simulation and real detector data, as this can have a significant impact
on the performance of the GNN-pipeline.

(ii) Explore the influence of different graph-building methods, gaining a better
understanding of important connections in the graphs.

(iii) Assess the feasibility of a background clean-up by classifying edges of the graphs,
resulting from the graph-building with the Interaction Network (IN), to find
patterns of the signal particles and discriminate them against the background.

This study has identified that the Analog-to-Digital Converter (ADC) count, which
refers to the deposited energy in a cell of the CDC, and the Time-to-Digital Converter
(TDC) count, referring to associated timing information, offer orthogonal discrimina-
tion power for signal-to-background separation. This makes them valuable features for
pattern recognition in the CDC, additional to spatial information. This information is
crucial for the Belle II experiment’s future data-taking periods. An increase in beam
background is expected, which will pose a challenge to hit discrimination and affect
the performance of the current pattern recognition systems.

This thesis examined the application of graph-building in the context of a Graph
Neural Network (GNN)-based approach for track finding within the CDC. Graph-
building models were analyzed using different patterns for possible connections to
neighboring sense wires in the CDC. The analysis used simulated events of a Inelastic
Dark Matter with a Dark Higgs (IDMDH) physics model, which encompasses displaced
vertices in the CDC. It is necessary to create graphs for the GNN-pipeline that
effectively capture crucial information about particle tracks to reconstruct tracks and
determine track parameters accurately, while it is beneficial to exclude extraneous
edges. This thesis elaborates on two sets of essential metrics to assess this task by
defining a subset of edges with relational information between signal hits in the CDC.

(i) The complete set of true edges represents an extensive set of edges.
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(ii) The true graph represents a minimal set of true edges by estimating the path of
a particle.

Subsequently, the graph-building models were used as input for analyzing the
IN, using ADC and TDC as additional input features to classify edges. The thesis
emphasizes that a high true graph eff. in the graph building and a high class. true graph
eff. in the edge classification ensure that the essential edges are present, connecting
signal hits of a particle. The combined efficiency metric total true graph eff. highlights
this significance with a strong correlation to the node efficiency, representing the
fraction of remaining signal hits after the background clean-up.

Additional true edges to the minimal set can offer supplemental information to
a certain extent but generally, a trade-off between purity and efficiency must be
considered in graph-building. To aid this decision, the fraction 𝛿𝑔 is introduced,
which measures the ratio of additional true graph edges added and predicted by the
GNN-pipeline over the additional true graph edges included by graph-building. This
metric offers an assessment of the classification task’s benefit of additional true graph
edges when one graph-building model produces a graph that is a subset of the other.

Choosing the optimal graph-building model for a physical model relies on the
specific analysis being conducted. In this thesis, the GNN-pipeline was assessed
using a IDMDH simulation. Model 08 and model 10 emerged as the most promising,
achieving the highest node efficiency. Both models permit connections within the
same layer of the CDC and use connections within a layer distance of 𝛥𝑙 = 2. Model
10 uses the same connections as model 08 but introduces additional connections in
the layer distance of 𝛥𝑙 = 2. This introduces significantly more edges to the overall
GNN-pipeline while leading to slightly higher node efficiency.

Background removal employing the IN showed promising results. The IN suc-
cessfully learned the discrimination between true and false edges. The node purity
outcomes ranged from(63.0±0.4) % to (71.6±0.4) % accross the ten analyzed models.
The node efficiency could reach a value of up to (80.6 ± 0.4) % with the full expected
background of Belle II.

This thesis also presented an initial analysis towards real-time implementation.
For this, the input to the graph-building and the edge classification was adjusted to
align the anticipated resolutions on Level 1 Trigger (L1 Trigger) level in the future
data-taking periods of Belle II. It finds that the increase in computational complexity
can be estimated by the number of Floating Point Operations (FLOPs), which is
particularly relevant for the real-time application as this faces several computational
constraints and aids the discussion for the implementation on Field-Programmable
Gate Arrays (FPGAs). The classification showed reduced efficiencies and purities.
For instance, the class. true edge eff. decreased from values ranging between 58.6 %
to 68.9 % to a range of 47.2 % to 57.6 %. However, the networks could still learn and
predict edges, presenting promising results for online implementation.
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In summary, the results obtained in this thesis are encouraging, indicating that
the GNN-pipeline can be effectively applied to the Belle II experiment.

Several limitations to this study need to be acknowledged.

The input feature analysis was designed with the primary goal of a broad, albeit
fast, comparison. A limited number of runs with a small dataset of the Belle II
experiment were analyzed. Thus, further investigations could benefit from additional
data for a more comprehensive understanding. Additionally, no corrections were
applied to the reconstructed signal, which introduce additional uncertainty in the
selection.

The analysis of the graph-building models was constrained by a narrow scope
of ten models, and the metrics were only evaluated on these models. A further
limitation lies in the specificity of the simulations used. The graph-building, the
edge classification, and the background clean-up processes were only analyzed with a
IDMDH, thus potentially limiting the generalizability of these findings.

Lastly, the online implementation of the GNN-pipeline on an FPGA introduces
several challenges and may make an adjustment of resolution necessary. The results
presented in this study are not directly applicable to a real-time implementation but
serve as a basis for in-depth studies.

In the future, several aspects of the current work can be explored and expanded
upon. The input feature analysis can be improved by applying corrections to the signal
tracks and refining the run selection with runs with increased luminosity. This may
help understand the details of further modeling optimization to map the simulation to
the real detector signal. This will be crucial for optimized training of the GNN-pipeline.
More broadly, research is also needed to determine if simulations accommodate the
expected increased beam background, as this will be the primary application of the
GNN-pipeline. The findings of this study and related studies have encouraged the
Belle II collaboration to make efforts to make ADC and TDC information available
on the trigger level for future real-time applications.

A reduced resolution of the ADC and TDC values are expected for the imple-
mentation on L1 Trigger. Future studies could access the optimal utilization of this
reduced resolution. This includes finding optimal flags for the ADC count. This
would help maximize the performance of the GNN-pipeline under these constraints
and ensure the best results in real-world applications.

A first implementation of the graph-building on an FPGA is ongoing. A detailed
analysis of the subsequent performance of the IN on the hardware will give more de-
tailed insights into optimization requirements regarding the input size of the networks.
The IN model used for this analysis has a rather small number of parameters. Future
studies should therefore examine the hardware’s limits in terms of larger parameter
space of the IN and investigate its benefit on the classification efficiencies.
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A key aspect will also be to evaluate the effect of node efficiency and node purity
on the accuracy of the track parameter estimation in subsequent GNN-pipeline steps
to understand the background clean-up requirements in more detail.
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A. Appendix: Input Feature Analysis

This appendix presents additional plots of the input feature analysis, a run-dependent
analysis of the data, and additional runs for the input feature analysis.

A.1. Input Feature Analysis

Figure A.1.: Distribution of the momentum 𝑝𝑥 of reconstructed tracks for experiment
24, run 888, and run-independent Monte Carlo simulation after selection.
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Figure A.2.: Distribution of the momentum 𝑝𝑦 of reconstructed tracks for experiment
24, run 888, and run-independent Monte Carlo simulation after selection.

A.2. Run-Dependent Analysis

This section presents figures corresponding to Experiment 24 with Run 888, with an
MC simulation using run-dependent background files.

Table A.1.: Selection efficiency comparison for the skimmed data sample of experi-
ment 24, run 888, and run-dependent simulation. The data consists of
36.802 pb−1, and the simulation consists of 14 778 events.

Order No Selection Exp. 24, run 888 (%) MC simulation (%)

1 Theta cut 76.40+0.27
−0.27 75.8+0.5

−0.5
2 L1 selection stt 94.91+0.16

−0.16 98.28+0.17
−0.18

3 Dimuon track selection 87.80+0.24
−0.24 94.0+0.3

−0.3
4 Dimuon mass cut 94.69+0.18

−0.18 99.87+0.4
−0.6

5 PID cut 94.37+0.19
−0.19 95.10+0.29

−0.30

Total efficiency 56.9+0.3
−0.3 66.5+0.5

−0.5
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Figure A.3.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks for
experiment 24, run 888, and run-dependent Monte Carlo simulation after
selection.

0

100

200

300

400

500

600

en
tri

es
 / 

(0
.1

43
 G

eV
/c

)

Simulation (run-dependent): ee , 
Simulation (run-dependent): ee , +

Data: exp 24 run 888,
Data: exp 24 run 888, +

4 2 0 2 4 6 8
pz (GeV/c)

5
0
5

da
ta

sim
ul

at
io

n
sim

Belle II (own work)
dt = 36.802 pb 1  

Figure A.4.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks
for experiment 24, run 888, and run-dependent Monte Carlo simulation
after selection.
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Figure A.5.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions for ex-
periment 24, run 888, and run-dependent Monte Carlo simulation after
selection.
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Figure A.6.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after
selection. for experiment experiment 24, run 888, and run-dependent
simulation.
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A.2. Run-Dependent Analysis

Figure A.7.: This plot demonstrates the ratio of the experimental (experiment 24, run
888) and run-dependent simulated Analog-to-Digital Converter counts
of Central Drift Chamber hits as a function of the polar angle 𝜃. The
angle 𝜃 is measured from the beam axis. The plot illustrates the relative
agreement between the data and simulated distributions.

Figure A.8.: Comparison of Analog-to-Digital Converter (ADC) count distributions
for signal and background hits. Two blue histograms represent hits
assigned to reconstructed signal tracks for data and simulation, while the
two red histograms denote the background hits. The figure highlights the
separation potential between signal and background using ADC counts
as an input feature for analysis. Experimental data from experiment 24,
run 888, and run-dependent Monte Carlo simulation.

121



A. Appendix: Input Feature Analysis

Figure A.9.: Comparison of Time-to-Digital Converter distributions for signal and
background hits in experiment 24, run 888, and run-dependent simulation.
The blue histograms represent hits assigned to reconstructed signal tracks
for data and simulation, while the red histograms denote the background
hits. The figure highlights a discriminatory potential between signal
and background TDC counts due to the distinctive characteristics in the
signal distribution. Oscillations observed in the data’s TDC distribution
require further investigation.

Figure A.10.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter (ADC) and Time-to-Digital Converter (TDC) counts
for Central Drift Chamber (CDC) hits, providing a method for evaluating
the relative agreement between the two distributions. Experimental
data from experiment 24, run 888, and run-dependent Monte Carlo
simulation.
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A.3. Experiment 20, Run 672

This section presents figures corresponding to Experiment 20 with Run 672.

Table A.2.: Selection efficiency comparison for the skimmed data sample of experi-
ment 20, run 672, and run-independent simulation. The data consists of
47.573 pb−1, and the simulation consists of 80 000 events.

Order No Selection Exp. 20, run 672 (%) MC simulation (%)

1 Theta cut 74.79+0.27
−0.27 75.46+0.22

−0.22
2 L1 selection stt 94.12+0.17

−0.17 99.56+0.4
−0.4

3 Dimuon track selection 87.14+0.25
−0.25 95.50+0.12

−0.12
4 Dimuon mass cut 94.76+0.18

−0.18 99.839+0.023
−0.026

5 PID cut 94.05+0.19
−0.20 95.47+0.13

−0.13

Total efficiency 54.7+0.3
−0.3 68.39+0.24

−0.24
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Figure A.11.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks for
experiment 20, run 672, and run-independent Monte Carlo simulation
after selection.
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Figure A.12.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks for
experiment 20, run 672, and run-independent Monte Carlo simulation
after selection.
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Figure A.13.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions for exper-
iment 20, run 672, and run-independent Monte Carlo simulation after
selection.
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Figure A.14.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after
selection. for experiment experiment 20, run 672, and run-independent
simulation.

Figure A.15.: This plot demonstrates the ratio of the experimental (experiment 20,
run 672) and run-independent simulated Analog-to-Digital Converter
counts of Central Drift Chamber hits as a function of the polar angle 𝜃.
The angle 𝜃 is measured from the beam axis. The plot illustrates the
relative agreement between the data and simulated distributions.
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Figure A.16.: Comparison of Analog-to-Digital Converter (ADC) count distributions
for signal and background hits. Two blue histograms represent hits
assigned to reconstructed signal tracks for data and simulation, while the
two red histograms denote the background hits. The figure highlights the
separation potential between signal and background using ADC counts
as an input feature for analysis. Experimental data from experiment
20, run 672, and run-independent Monte Carlo simulation.
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Figure A.17.: Comparison of Time-to-Digital Converter distributions for signal and
background hits in experiment 20, run 672, and run-independent sim-
ulation. The blue histograms represent hits assigned to reconstructed
signal tracks for data and simulation, while the red histograms denote
the background hits. The figure highlights a discriminatory potential
between signal and background TDC counts due to the distinctive char-
acteristics in the signal distribution. Oscillations observed in the data’s
TDC distribution require further investigation.

Figure A.18.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter (ADC) and Time-to-Digital Converter (TDC) counts
for Central Drift Chamber (CDC) hits, providing a method for evaluating
the relative agreement between the two distributions. Experimental
data from experiment 20, run 672, and run-independent Monte Carlo
simulation.
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A.4. Experiment 20, Run 874

This section presents figures corresponding to Experiment 20 with Run 874.

Table A.3.: Selection efficiency comparison for the skimmed data sample of experi-
ment 20, run 874, and run-independent simulation. The data consists of
44.007 pb−1, and the simulation consists of 80 000 events.

Order No Selection Exp. 20, run 874 (%) MC simulation (%)

1 Theta cut 75.57+0.26
−0.26 75.46+0.22

−0.22
2 L1 selection stt 94.33+0.16

−0.16 99.56+0.4
−0.4

3 Dimuon track selection 87.77+0.24
−0.24 95.50+0.12

−0.12
4 Dimuon mass cut 94.89+0.17

−0.17 99.839+0.023
−0.026

5 PID cut 94.58+0.18
−0.18 95.47+0.13

−0.13

Total efficiency 56.2+0.3
−0.3 68.39+0.24

−0.24
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Figure A.19.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks for
experiment 20, run 874, and run-independent Monte Carlo simulation
after selection.
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Figure A.20.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks for
experiment 20, run 874, and run-independent Monte Carlo simulation
after selection.
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Figure A.21.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions for exper-
iment 20, run 874, and run-independent Monte Carlo simulation after
selection.
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Figure A.22.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after
selection. for experiment experiment 20, run 874, and run-independent
simulation.

Figure A.23.: This plot demonstrates the ratio of the experimental (experiment 20,
run 874) and run-independent simulated Analog-to-Digital Converter
counts of Central Drift Chamber hits as a function of the polar angle 𝜃.
The angle 𝜃 is measured from the beam axis. The plot illustrates the
relative agreement between the data and simulated distributions.
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Figure A.24.: Comparison of Analog-to-Digital Converter (ADC) count distributions
for signal and background hits. Two blue histograms represent hits
assigned to reconstructed signal tracks for data and simulation, while the
two red histograms denote the background hits. The figure highlights the
separation potential between signal and background using ADC counts
as an input feature for analysis. Experimental data from experiment
20, run 874, and run-independent Monte Carlo simulation.
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Figure A.25.: Comparison of Time-to-Digital Converter distributions for signal and
background hits in experiment 20, run 874, and run-independent sim-
ulation. The blue histograms represent hits assigned to reconstructed
signal tracks for data and simulation, while the red histograms denote
the background hits. The figure highlights a discriminatory potential
between signal and background TDC counts due to the distinctive char-
acteristics in the signal distribution. Oscillations observed in the data’s
TDC distribution require further investigation.

Figure A.26.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter (ADC) and Time-to-Digital Converter (TDC) counts
for Central Drift Chamber (CDC) hits, providing a method for evaluating
the relative agreement between the two distributions. Experimental
data from experiment 20, run 874, and run-independent Monte Carlo
simulation.
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A.5. Experiment 21, Run 116

This section presents figures corresponding to Experiment 21 with Run 116.

Table A.4.: Selection efficiency comparison for the skimmed data sample of experi-
ment 21, run 116, and run-independent simulation. The data consists of
47.118 pb−1, and the simulation consists of 80 000 events.

Order No Selection Exp. 21, run 116 (%) MC simulation (%)

1 Theta cut 75.40+0.27
−0.27 75.46+0.22

−0.22
2 L1 selection stt 94.33+0.16

−0.17 99.56+0.4
−0.4

3 Dimuon track selection 87.82+0.24
−0.24 95.50+0.12

−0.12
4 Dimuon mass cut 95.05+0.17

−0.17 99.839+0.023
−0.026

5 PID cut 94.30+0.19
−0.19 95.47+0.13

−0.13

Total efficiency 56.0+0.3
−0.3 68.39+0.24

−0.24
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Figure A.27.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks for
experiment 21, run 116, and run-independent Monte Carlo simulation
after selection.
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Figure A.28.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks for
experiment 21, run 116, and run-independent Monte Carlo simulation
after selection.
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Figure A.29.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions for exper-
iment 21, run 116, and run-independent Monte Carlo simulation after
selection.
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A.5. Experiment 21, Run 116
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Figure A.30.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after
selection. for experiment experiment 21, run 116, and run-independent
simulation.

Figure A.31.: This plot demonstrates the ratio of the experimental (experiment 21,
run 116) and run-independent simulated Analog-to-Digital Converter
counts of Central Drift Chamber hits as a function of the polar angle 𝜃.
The angle 𝜃 is measured from the beam axis. The plot illustrates the
relative agreement between the data and simulated distributions.
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Figure A.32.: Comparison of Analog-to-Digital Converter (ADC) count distributions
for signal and background hits. Two blue histograms represent hits
assigned to reconstructed signal tracks for data and simulation, while the
two red histograms denote the background hits. The figure highlights the
separation potential between signal and background using ADC counts
as an input feature for analysis. Experimental data from experiment
21, run 116, and run-independent Monte Carlo simulation.
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A.5. Experiment 21, Run 116

Figure A.33.: Comparison of Time-to-Digital Converter distributions for signal and
background hits in experiment 21, run 116, and run-independent sim-
ulation. The blue histograms represent hits assigned to reconstructed
signal tracks for data and simulation, while the red histograms denote
the background hits. The figure highlights a discriminatory potential
between signal and background TDC counts due to the distinctive char-
acteristics in the signal distribution. Oscillations observed in the data’s
TDC distribution require further investigation.

Figure A.34.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter (ADC) and Time-to-Digital Converter (TDC) counts
for Central Drift Chamber (CDC) hits, providing a method for evaluating
the relative agreement between the two distributions. Experimental
data from experiment 21, run 116, and run-independent Monte Carlo
simulation.
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A.6. Experiment 21, Run 128

This section presents figures corresponding to Experiment 21 with Run 128.

Table A.5.: Selection efficiency comparison for the skimmed data sample of experi-
ment 21, run 128, and run-independent simulation. The data consists of
37.740 pb−1, and the simulation consists of 80 000 events.

Order No Selection Exp. 21, run 128 (%) MC simulation (%)

1 Theta cut 75.2+0.3
−0.3 75.46+0.22

−0.22
2 L1 selection stt 94.70+0.18

−0.18 99.56+0.4
−0.4

3 Dimuon track selection 86.91+0.28
−0.28 95.50+0.12

−0.12
4 Dimuon mass cut 94.76+0.20

−0.20 99.839+0.023
−0.026

5 PID cut 94.74+0.20
−0.21 95.47+0.13

−0.13

Total efficiency 55.6+0.3
−0.3 68.39+0.24

−0.24
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Figure A.35.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks for
experiment 21, run 128, and run-independent Monte Carlo simulation
after selection.

138
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Figure A.36.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks for
experiment 21, run 128, and run-independent Monte Carlo simulation
after selection.
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Figure A.37.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions for exper-
iment 21, run 128, and run-independent Monte Carlo simulation after
selection.
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Figure A.38.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after
selection. for experiment experiment 21, run 128, and run-independent
simulation.

Figure A.39.: This plot demonstrates the ratio of the experimental (experiment 21,
run 128) and run-independent simulated Analog-to-Digital Converter
counts of Central Drift Chamber hits as a function of the polar angle 𝜃.
The angle 𝜃 is measured from the beam axis. The plot illustrates the
relative agreement between the data and simulated distributions.
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A.6. Experiment 21, Run 128

Figure A.40.: Comparison of Analog-to-Digital Converter (ADC) count distributions
for signal and background hits. Two blue histograms represent hits
assigned to reconstructed signal tracks for data and simulation, while the
two red histograms denote the background hits. The figure highlights the
separation potential between signal and background using ADC counts
as an input feature for analysis. Experimental data from experiment
21, run 128, and run-independent Monte Carlo simulation.
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Figure A.41.: Comparison of Time-to-Digital Converter distributions for signal and
background hits in experiment 21, run 128, and run-independent sim-
ulation. The blue histograms represent hits assigned to reconstructed
signal tracks for data and simulation, while the red histograms denote
the background hits. The figure highlights a discriminatory potential
between signal and background TDC counts due to the distinctive char-
acteristics in the signal distribution. Oscillations observed in the data’s
TDC distribution require further investigation.

Figure A.42.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter (ADC) and Time-to-Digital Converter (TDC) counts
for Central Drift Chamber (CDC) hits, providing a method for evaluating
the relative agreement between the two distributions. Experimental
data from experiment 21, run 128, and run-independent Monte Carlo
simulation.
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A.7. Experiment 22, Run 32

A.7. Experiment 22, Run 32

This section presents figures corresponding to Experiment 22 with Run 32.

Table A.6.: Selection efficiency comparison for the skimmed data sample of experi-
ment 22, run 32, and run-independent simulation. The data consists of
39.656 pb−1, and the simulation consists of 80 000 events.

Order No Selection Exp. 22, run 32 (%) MC simulation (%)

1 Theta cut 74.62+0.26
−0.27 75.46+0.22

−0.22
2 L1 selection stt 94.33+0.16

−0.16 99.56+0.4
−0.4

3 Dimuon track selection 88.41+0.23
−0.23 95.50+0.12

−0.12
4 Dimuon mass cut 94.64+0.17

−0.18 99.839+0.023
−0.026

5 PID cut 94.42+0.18
−0.18 95.47+0.13

−0.13

Total efficiency 55.61+0.3
−0.4 68.39+0.24

−0.24
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Figure A.43.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks
for experiment 22, run 32, and run-independent Monte Carlo simulation
after selection.
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Figure A.44.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks
for experiment 22, run 32, and run-independent Monte Carlo simulation
after selection.
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Figure A.45.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions for ex-
periment 22, run 32, and run-independent Monte Carlo simulation after
selection.
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Figure A.46.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after
selection. for experiment experiment 22, run 32, and run-independent
simulation.

Figure A.47.: This plot demonstrates the ratio of the experimental (experiment 22,
run 32) and run-independent simulated Analog-to-Digital Converter
counts of Central Drift Chamber hits as a function of the polar angle 𝜃.
The angle 𝜃 is measured from the beam axis. The plot illustrates the
relative agreement between the data and simulated distributions.
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Figure A.48.: Comparison of Analog-to-Digital Converter (ADC) count distributions
for signal and background hits. Two blue histograms represent hits
assigned to reconstructed signal tracks for data and simulation, while the
two red histograms denote the background hits. The figure highlights the
separation potential between signal and background using ADC counts
as an input feature for analysis. Experimental data from experiment
22, run 32, and run-independent Monte Carlo simulation.
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A.7. Experiment 22, Run 32

Figure A.49.: Comparison of Time-to-Digital Converter distributions for signal and
background hits in experiment 22, run 32, and run-independent simu-
lation. The blue histograms represent hits assigned to reconstructed
signal tracks for data and simulation, while the red histograms denote
the background hits. The figure highlights a discriminatory potential
between signal and background TDC counts due to the distinctive char-
acteristics in the signal distribution. Oscillations observed in the data’s
TDC distribution require further investigation.

Figure A.50.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter (ADC) and Time-to-Digital Converter (TDC) counts
for Central Drift Chamber (CDC) hits, providing a method for evaluating
the relative agreement between the two distributions. Experimental
data from experiment 22, run 32, and run-independent Monte Carlo
simulation.
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A.8. Experiment 22, Run 546

This section presents figures corresponding to Experiment 22 with Run 546.

Table A.7.: Selection efficiency comparison for the skimmed data sample of experi-
ment 22, run 546, and run-independent simulation. The data consists of
38.853 pb−1, and the simulation consists of 80 000 events.

Order No Selection Exp. 22, run 546 (%) MC simulation (%)

1 Theta cut 74.46+0.28
−0.28 75.46+0.22

−0.22
2 L1 selection stt 93.92+0.17

−0.18 99.56+0.4
−0.4

3 Dimuon track selection 87.65+0.25
−0.25 95.50+0.12

−0.12
4 Dimuon mass cut 95.12+0.17

−0.18 99.839+0.023
−0.026

5 PID cut 94.05+0.19
−0.20 95.47+0.13

−0.13

Total efficiency 54.8+0.3
−0.3 68.39+0.24

−0.24

0

500

1000

1500

2000

en
tri

es
 / 

(0
.1

 G
eV

/c
)

Simulation (run-independent): ee , 
Simulation (run-independent): ee , +

Data: exp 22 run 546,
Data: exp 22 run 546, +

1 2 3 4 5 6
pT (GeV/c)

5
0
5

da
ta

sim
ul

at
io

n
sim

Belle II (own work)
dt = 38.853 pb 1  

Figure A.51.: Distribution of the transversal momentum 𝑝𝑇 of reconstructed tracks for
experiment 22, run 546, and run-independent Monte Carlo simulation
after selection.
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Figure A.52.: Distribution of the longitudinal momentum 𝑝𝑧 of reconstructed tracks for
experiment 22, run 546, and run-independent Monte Carlo simulation
after selection.
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Figure A.53.: Reconstructed muon Particle Identification 𝑃(𝜇) distributions for exper-
iment 22, run 546, and run-independent Monte Carlo simulation after
selection.
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Figure A.54.: Distribution of the reconstructed invariant Dimuon mass 𝑀𝜇𝜇 after
selection. for experiment experiment 22, run 546, and run-independent
simulation.

Figure A.55.: This plot demonstrates the ratio of the experimental (experiment 22,
run 546) and run-independent simulated Analog-to-Digital Converter
counts of Central Drift Chamber hits as a function of the polar angle 𝜃.
The angle 𝜃 is measured from the beam axis. The plot illustrates the
relative agreement between the data and simulated distributions.
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A.8. Experiment 22, Run 546

Figure A.56.: Comparison of Analog-to-Digital Converter (ADC) count distributions
for signal and background hits. Two blue histograms represent hits
assigned to reconstructed signal tracks for data and simulation, while the
two red histograms denote the background hits. The figure highlights the
separation potential between signal and background using ADC counts
as an input feature for analysis. Experimental data from experiment
22, run 546, and run-independent Monte Carlo simulation.
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Figure A.57.: Comparison of Time-to-Digital Converter distributions for signal and
background hits in experiment 22, run 546, and run-independent sim-
ulation. The blue histograms represent hits assigned to reconstructed
signal tracks for data and simulation, while the red histograms denote
the background hits. The figure highlights a discriminatory potential
between signal and background TDC counts due to the distinctive char-
acteristics in the signal distribution. Oscillations observed in the data’s
TDC distribution require further investigation.

Figure A.58.: This plot depicts the ratio of experimental to simulated Analog-to-
Digital Converter (ADC) and Time-to-Digital Converter (TDC) counts
for Central Drift Chamber (CDC) hits, providing a method for evaluating
the relative agreement between the two distributions. Experimental
data from experiment 22, run 546, and run-independent Monte Carlo
simulation.
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B. Appendix: Graph-Building

This appendix presents additional information for the analysis of the graph-building
model with a nominal Phase 3 background overlay on the signal simulation and an
analysis with early Phase 3 background.

B.1. Additonal Information on the Graph-Building With
Nominal Phase 3 Background

This section presents additional tables and figures corresponding to the graph-building
analysis with nominal Phase 3 background overlays.
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B.2. Graph-Building Analysis with early Phase 3 Background

B.2. Graph-Building Analysis with early Phase 3 Background

This section presents figures and tables corresponding to the graph-building analysis
with Early Phase 3 background overlays.

Table B.2.: Median edges for the ten different graph-building models for early Phase 3
background. Each event possesses a median of 66.00 ± 0.20 true graph
edges and 149.0 ± 2.2 true edges. The table lists the total edges created
from each model, including true graph edges and true edges. The maximum
number of edges one single node can have in the respective model is shown
in the last column.

model total number of edges incl. graph incl. true edges max. connections

01 231.0 ± 0.6 56.00 ± 0.17 63.00 ± 0.27 4
02 365.0 ± 1.1 58.00 ± 0.18 73.0 ± 0.5 8
03 282.0 ± 0.8 57.00 ± 0.18 88.0 ± 0.4 6
04 349.0 ± 1.1 58.00 ± 0.18 108.0 ± 0.5 10
05 416.0 ± 1.3 59.00 ± 0.18 99.0 ± 0.6 10
06 483.0 ± 1.6 60.00 ± 0.18 119.0 ± 0.7 14
07 468.0 ± 1.2 61.00 ± 0.18 102.0 ± 0.5 8
08 535.0 ± 1.5 62.00 ± 0.19 122.0 ± 0.7 12
09 602.0 ± 1.7 63.00 ± 0.19 112.0 ± 0.7 12
10 669.0 ± 2.0 65.00 ± 0.19 132.0 ± 0.8 16

Table B.3.: Model-independent median number of edges with different wire and layer
distances for early Phase 3 background.

layer distance wire distance total number of edges max. connections

𝛥𝑙 = 0 𝛥𝑤 = 1 187.0 ± 0.5 2
𝛥𝑙 = 1 𝛥𝑤 = 0 231.0 ± 0.6 4
𝛥𝑙 = 1 𝛥𝑤 = 0, 1 365.0 ± 1.1 8
𝛥𝑙 = 2 𝛥𝑤 = 0 50.00 ± 0.21 2
𝛥𝑙 = 2 𝛥𝑤 = 0, 1 118.0 ± 0.6 6
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B. Appendix: Graph-Building

Table B.4.: The true edge eff. and true edge pur. of the ten graph-building models
with early Phase 3 background overlays.

Model true edge eff. (%) true edge pur. (%)

01 49.46 ± 0.09 27.22 ± 0.08
02 52.38 ± 0.06 19.60 ± 0.07
03 70.00 ± 0.16 31.90 ± 0.09
04 87.66 ± 0.16 31.18 ± 0.09
05 72.91 ± 0.13 23.84 ± 0.08
06 90.83 ± 0.14 24.40 ± 0.08
07 76.14 ± 0.13 21.92 ± 0.07
08 93.98 ± 0.14 22.65 ± 0.07
09 79.17 ± 0.11 18.51 ± 0.07
10 97.25 ± 0.11 19.43 ± 0.07

Table B.5.: The true graph eff. and true graph pur. of the ten graph-building models
for early Phase 3 background overlays.

Model true graph eff. (%) true graph pur. (%) overcount

01 91.07 ± 0.09 24.02 ± 0.07 1.0120 ± 0.0013
02 92.16 ± 0.06 15.68 ± 0.05 1.0789 ± 0.0022
03 93.23 ± 0.09 20.19 ± 0.06 1.4902 ± 0.0023
04 95.00 ± 0.09 16.51 ± 0.05 1.7925 ± 0.0027
05 94.20 ± 0.06 14.10 ± 0.05 1.5714 ± 0.0025
06 95.95 ± 0.07 12.33 ± 0.04 1.843 ± 0.004
07 95.65 ± 0.04 12.94 ± 0.04 1.6250 ± 0.0023
08 97.33 ± 0.04 11.49 ± 0.04 1.8876 ± 0.0029
09 97.248 ± 0.016 10.38 ± 0.04 1.712 ± 0.004
10 98.750 ± 0.012 9.471 ± 0.029 1.975 ± 0.004
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B.2. Graph-Building Analysis with early Phase 3 Background

Figure B.1.: The event median of the true edge pur. and the median of the total
number of edges created from each graph-building model. The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.
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Figure B.2.: true edge pur. plotted against the maximum number of possible con-
nections for a single node in a graph-building model. The models are
color-coded based on the allowed connection within a layer distance of
𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.
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B.2. Graph-Building Analysis with early Phase 3 Background

Figure B.3.: The event median of the true edge eff. and true edge pur . The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.
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Figure B.4.: The median of true edge eff. and total number of edges calculated for
each graph-building model. The models are color-coded based on the
allowed connection within a layer distance of 𝛥𝑙 = 2. Green models do
not permit edges, and yellow models allow edges with a wire distance of
up to 𝛥𝑤 = 1. Red-labeled models permit connections with a maximum
wire distance of 𝛥𝑤 = 2.
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B.2. Graph-Building Analysis with early Phase 3 Background

Figure B.5.: The event median of the true graph eff. and true graph pur.. The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.
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B. Appendix: Graph-Building

Figure B.6.: The event median of the true graph pur. and the overcount. The models
are color-coded based on the allowed connection within a layer distance
of 𝛥𝑙 = 2. Green models do not permit edges, and yellow models allow
edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit
connections with a maximum wire distance of 𝛥𝑤 = 2.
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B.2. Graph-Building Analysis with early Phase 3 Background

Figure B.7.: The event median of the overcount plotted against the median number
of edges per event of the graph-building method. The models are color-
coded based on the allowed connection within a layer distance of 𝛥𝑙 = 2.
Green models do not permit edges, and yellow models allow edges with a
wire distance of up to 𝛥𝑤 = 1. Red-labeled models permit connections
with a maximum wire distance of 𝛥𝑤 = 2.

163





C. Appendix: Background Clean-Up

C.1. Background Clean-Up on Early Phase 3 Background

This section presents information on the analysis of the IN on the IDMDH simulation
with early Phase 3 background overlays. The models were trained with a batch size
of 1024.

Table C.1.: Median estimated Floating Point Operations of the ten Interaction Net-
works. Floating Point Operation are estimated using the PyTorch profiler
with early Phase 3 background.

Model Total FLOPs (MFLOP)

01 1.666 ± 0.013
02 2.352 ± 0.022
03 1.926 ± 0.017
04 2.267 ± 0.023
05 2.605 ± 0.026
06 2.95 ± 0.04
07 2.868 ± 0.024
08 3.209 ± 0.030
09 3.55 ± 0.04
10 3.90 ± 0.04
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C. Appendix: Background Clean-Up

Figure C.1.: Correlation of the metrics presented in this chapter for the early Phase 3
background with the ten analyzed graph-building models.
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C.1. Background Clean-Up on Early Phase 3 Background

Table C.2.: The true edge eff., class. true edge eff. and the total true edge eff.
with early Phase 3 background for models 01 to 10 with early Phase 3
background. Values are represented as percentages.

Model true edge eff. (%) class. true edge eff. (%) total true edge eff. (%)

01 49.46 ± 0.09 96.00 ± 0.29 47.48 ± 0.17
02 52.38 ± 0.06 95.54 ± 0.30 50.04 ± 0.17
03 70.00 ± 0.16 97.34 ± 0.28 68.14 ± 0.26
04 87.66 ± 0.16 96.59 ± 0.29 84.67 ± 0.30
05 72.91 ± 0.13 97.01 ± 0.29 70.73 ± 0.25
06 90.83 ± 0.14 95.63 ± 0.29 86.86 ± 0.30
07 76.14 ± 0.13 96.90 ± 0.29 73.78 ± 0.26
08 93.98 ± 0.14 96.32 ± 0.29 90.5 ± 0.4
09 79.17 ± 0.11 96.67 ± 0.29 76.53 ± 0.26
10 97.25 ± 0.11 96.07 ± 0.30 93.4 ± 0.4

Table C.3.: The class. true graph eff., true graph eff. and the combined total true
graph eff. for models 01 to 10 with early Phase 3 background. Values are
represented as percentages.

Model class. true graph eff. (%) true graph eff. (%) total true graph eff. (%)

01 96.07 ± 0.29 90.12 ± 0.10 87.49 ± 0.28
02 96.23 ± 0.29 91.67 ± 0.07 88.69 ± 0.28
03 96.91 ± 0.28 92.31 ± 0.10 90.35 ± 0.28
04 96.49 ± 0.29 93.99 ± 0.10 91.67 ± 0.29
05 96.89 ± 0.29 93.62 ± 0.07 91.27 ± 0.28
06 95.95 ± 0.29 95.35 ± 0.07 92.06 ± 0.29
07 96.61 ± 0.29 95.12 ± 0.05 92.41 ± 0.29
08 96.15 ± 0.29 96.83 ± 0.04 93.58 ± 0.29
09 96.67 ± 0.29 97.115 ± 0.018 94.01 ± 0.29
10 96.09 ± 0.29 98.667 ± 0.013 94.89 ± 0.29
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C. Appendix: Background Clean-Up

Table C.4.: Efficiency and Purity for the true nodes after the background clean-up,
using the Interaction Network.

model node efficiency (%) node purity (%)

01 94.6 ± 0.4 94.7 ± 0.4
02 96.59 ± 0.30 95.8 ± 0.4
03 96.1 ± 0.4 95.8 ± 0.4
04 96.2 ± 0.4 94.6 ± 0.4
05 97.83 ± 0.30 94.5 ± 0.4
06 97.56 ± 0.30 92.9 ± 0.4
07 98.21 ± 0.28 95.6 ± 0.4
08 98.21 ± 0.28 95.3 ± 0.4
09 98.31 ± 0.28 95.6 ± 0.4
10 98.20 ± 0.28 95.8 ± 0.4

Figure C.2.: Median F1 score for the true edges of the classification task for different
simulated Higgs masses. The ten Interaction Networks (INs) provide
consistent results across the investigated dark Higgs masses with a slight
decrease for higher simulated masses.
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C.1. Background Clean-Up on Early Phase 3 Background

Figure C.3.: Median class. true edge eff. and class. true edge pur. of the ten
investigated Interaction Networks (INs). The models are color-coded
based on the allowed connection within a layer distance of 𝛥𝑙 = 2. Green
models do not permit edges, and yellow models allow edges with a wire
distance of up to 𝛥𝑤 = 1. Red-labeled models permit connections with
a maximum wire distance of 𝛥𝑤 = 2.

Figure C.4.: Median F1 score for the true graph edges of the classification task for
different simulated Higgs masses.
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C. Appendix: Background Clean-Up

Figure C.5.: Median class. true graph eff. and class. true graph pur. of the ten
investigated models. The models are color-coded based on the allowed
connection within a layer distance of 𝛥𝑙 = 2. Green models have no
allowed edges, yellow ones allow edges up to a wire distance of 𝛥𝑤 = 1,
and red-labeled models allow connections with a maximum wire distance
of 𝛥𝑤 = 2.
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C.1. Background Clean-Up on Early Phase 3 Background
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C. Appendix: Background Clean-Up

Figure C.7.: Median node efficiency and node purity of the ten investigated models.
The models are color-coded based on the allowed connection within a
layer distance of 𝛥𝑙 = 2. Green models do not permit edges, and yellow
models allow edges with a wire distance of up to 𝛥𝑤 = 1. Red-labeled
models permit connections with a maximum wire distance of 𝛥𝑤 = 2..
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C.2. Edge Classification on Nominal Phase 3 Background With Reduced Input
Features

C.2. Edge Classification on Nominal Phase 3 BackgroundWith
Reduced Input Features

This section presents information on analyzing the IN on the IDMDH simulation with
nominal Phase 3 background overlays. The models were trained with a batch size of
1024.

Table C.5.: Median estimated Floating Point Operations of the ten Interaction Net-
works. Floating Point Operation are estimated using the PyTorch profiler
with nominal Phase 3 background and reduced input feature resolution.

model total FLOPs (MFLOP)

01 9.588 ± 0.020
02 15.45 ± 0.04
03 11.519 ± 0.026
04 15.20 ± 0.04
05 17.31 ± 0.05
06 21.02 ± 0.06
07 17.35 ± 0.04
08 21.05 ± 0.05
09 23.26 ± 0.06
10 26.84 ± 0.07

Table C.6.: The true edge eff., and the total true edge eff. of the ten Interaction Net-
works with nominal Phase 3 background, using reduced input resolution
aligned with the anticipated Level 1 Trigger information.

Model true edge eff. (%) total true edge eff. (%)

01 49.33 ± 0.10 26.49 ± 0.21
02 53.33 ± 0.08 25.17 ± 0.27
03 66.90 ± 0.17 38.2 ± 0.4
04 84.34 ± 0.18 46.0 ± 0.5
05 70.79 ± 0.14 38.2 ± 0.4
06 88.64 ± 0.15 44.9 ± 0.5
07 74.17 ± 0.14 42.3 ± 0.4
08 91.84 ± 0.15 52.9 ± 0.5
09 78.11 ± 0.11 42.8 ± 0.4
10 96.23 ± 0.13 53.5 ± 0.5
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C. Appendix: Background Clean-Up

Table C.7.: The class. true graph eff. and the class. true graph pur. of the ten
Interaction Networks with nominal Phase 3 background and Level 1
Trigger information.

Model class. true graph eff. (%) class. true graph pur. (%)

01 54.3 ± 0.4 56.4 ± 0.5
02 51.4 ± 0.5 43.1 ± 0.4
03 53.9 ± 0.5 42.01 ± 0.29
04 53.6 ± 0.5 35.59 ± 0.25
05 53.3 ± 0.5 40.17 ± 0.28
06 51.5 ± 0.5 33.75 ± 0.24
07 56.2 ± 0.5 41.02 ± 0.27
08 57.3 ± 0.5 35.20 ± 0.23
09 55.8 ± 0.5 40.57 ± 0.27
10 56.8 ± 0.5 35.01 ± 0.24

Figure C.8.: Median F1 score for the true edges of the classification task for different
simulated Higgs masses. The ten Interaction Networks (INs) provide
consistent results across the investigated dark Higgs masses with a slight
decrease for higher simulated masses. With nominal Phase 3 background
and Level 1 Trigger input features.
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C.2. Edge Classification on Nominal Phase 3 Background With Reduced Input
Features

Figure C.9.: Median class. true edge eff. and class. true edge pur. of the ten
investigated Interaction Networks (INs). The models are color-coded
based on the allowed connection within a layer distance of 𝛥𝑙 = 2. Green
models do not permit edges, and yellow models allow edges with a wire
distance of up to 𝛥𝑤 = 1. Red-labeled models permit connections with a
maximum wire distance of 𝛥𝑤 = 2. With nominal Phase 3 background
and Level 1 Trigger input features.

Figure C.10.: Median F1 score for the true graph edges of the classification task for
different simulated Higgs masses. With nominal Phase 3 background
and Level 1 Trigger input features.
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C. Appendix: Background Clean-Up

Figure C.11.: Median class. true graph eff. and class. true graph pur. of the ten
investigated models. The models are color-coded based on the allowed
connection within a layer distance of 𝛥𝑙 = 2. Green models have no
allowed edges, yellow ones allow edges up to a wire distance of 𝛥𝑤 = 1,
and red-labeled models allow connections with a maximum wire distance
of 𝛥𝑤 = 2. With nominal Phase 3 background and Level 1 Trigger
input features.
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