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Abstract

We develop the event selection of τ∓ → K∓π∓π±ντ for data from the Belle II
electron-positron collider experiment at SuperKEKB, Japan. The aim is that
the event selection will be used for further spectroscopy analysis. We tested
two event selection approaches to achieve a highly pure τ∓ → K∓π∓π±ντ
selection sample. In the first approach we trained Boosted Decision Trees
(BDT) based on the previous preselection with a 3x1 prong topology, i.e.
one τ decays to three charged final states particles (3-prong) and the other
τ to one charged final state particle (1-prong). To this end, we tuned the
hyperparameters of the BDT for an optimal event selection performance.
Considering future acceptance corrections, we also tested a second event
selection approach where we applied manual cuts on the particle identification
(PID) variables and combined them with a BDT that was trained with the
remaining variables. Performance comparison showed the first approach
achieves significantly higher performance of 80% purity for 6.7% signal
efficiency. We also studied acceptance effects and remaining background
kinematics in the selected sample. The background is composed of various
decays, mainly τ -decays to other hadrons. Noteworthy, the acceptance is not
strongly modulated despite the restrictive selection.
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Chapter 1

Introduction

The τ lepton belongs to the third generation of leptons. It is the heaviest
known lepton in the SM with a mass of about 1.777 GeV/c2. The τ lepton
decays via the weak force with a lifetime of around 290 fs [27]. Notably,
its large mass allows it to decay into the other leptons, i.e. electrons (e)
and muons (µ), as well as into lighter hadrons such as kaons (K) and pions
(π) 1. Hadronic τ decays offer a controlled environment for the precise
study of Quantum Chromodynamics (QCD), the theory of strong interaction.
These decays serve as ideal tools for investigating the low-energy regime of
QCD under pristine conditions. Additionally, τ decays hold the potential to
reveal new physics (NP) phenomena, such as the violation of lepton flavour
conservation and CP conservation laws through a non-zero ντ mass [21].

An interesting field of studies using τ decays is spectroscopy of hadronic
resonances, especially excited mesons. Spectroscopy investigates the proper-
ties of mesons and sheds light to the strong interaction. Excited mesons are
short-lived states, which decay rapidly via the strong force. Characterizing
these resonances is essential for understanding the strong interaction’s influ-
ence on quarks. Partial wave analysis (PWA) emerges as a crucial tool in
this pursuit. It allows extracting resonance properties, such as its spin (J)
and parity (P ), as well as its mass and width, from the distribution of its
decay products. Especially spectroscopy of strange mesons is interesting, as
they are not fully measured yet.

In this work we study the τ decay to three mesons, i.e. τ∓ → K∓π∓π±ντ ,
where the kaon has strangeness flavour: We develop an event selection
method to select an as pure as possible sample of our signal decay. The
goal is to select a sample that can be used for further meson spectroscopy
studies. Since the kaon as one of the final state particles has strangeness,
we can study strange resonances embedded within this final state. Various

1The τ lepton predominantly decays into hadrons with a branching fraction of about
65% and purely into leptons with a branching fraction of about 34% [27].
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resonances appear in this final state including K1(1270), K1(1400), K
∗(892)

and ρ(770). A precise knowledge of this decay is also an input for other
analyses e.g. in analyses where the other τ on the tag side decays via such
an 3-prong decay.

In this thesis we develop the selection of τ∓ → K∓π∓π±ντ for data from the
Belle II electron-positron collider experiment at the SuperKEKB accelerator
in Japan. Through this electron-positron collisions τ leptons are produced
and can further decay to our signal τ∓ → K∓π∓π±ντ state. Belle II aims
to collect a dataset corresponding to an integrated luminosity of 50 ab−1,
i.e. about 50 times larger than its predecessor Belle. Currently they have
accumulated a 362 fb−1 data set at Υ(4S) resonance.

The hadronic τ -lepton decays are predominantly either 3-prong decays to
three charged hadrons or 1-prong decays to one charged hadron. ”Prong”
refers to the number of charged particles in the final state of the τ decay.
Additionally to charged hadrons, final states often also include a π0. The
hadronic decays with the highest branching fraction are listed in table 1.1.
These decays have been studied since the discovery of the τ lepton. The
branching fraction of our signal is much lower than τ decays to only pions
in the final state. The reason is that the τ∓ → K∓π∓π±ντ decay is CKM
suppressed, compared to e.g. τ∓ → π∓π∓π±ντ by a factor of approximately
20. That is why the main challenge in ths work will be to distinguish signal
decays from much larger background. Because of the CKM suppression we
expect that τ∓ → π∓π∓π±ντ decays are the main background in our sample.
Non-τ decays, especially qq̄, BB̄ and Bhabha are also very frequent. A
special focus of this work is therefore to suppress and study the background.
Particulary cuts based on particle identification (PID) are important because
the only difference between τ∓ → K∓π∓π±ντ and τ∓ → π∓π∓π±ντ is the
particular species of one of the charged particles.

This thesis aims to address three main questions related to an optimal
event selection:
1. Optimal purity and efficiency: We seek to determine the ideal trade-off
between purity, i.e. the fraction of signal events in the selected sample, and
total efficiency, i.e. the fraction of produced signal events that we have
successfully reconstructed and selected. In the τ∓ → π∓π∓π±ντ analysis
of Belle II data [26] a total efficiency of around 30% for 90% purity was
achieved. Compared to this decay our signal is significantly suppressed and
we expect a significantly larger background than for τ∓ → π∓π∓π±ντ . Thus,
we have to apply very strict selection criteria, that may cause a significantly
lower efficiency compared to the τ∓ → π∓π∓π±ντ analysis.

2. Study of the acceptance in the final selection, i.e. the best model: We
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want to study how much our event-selection distorts the physics distribution
which is important for future acceptance corrections.

3. Study of background in the final fineselection: The last question addresses
how the background is composed and distributed in the selected which is
important for further PWA analysis.

To achieve our goal of a pure sample of τ∓ → K∓π∓π±ντ decays we test two
different event selection strategies: In the first approach we train Boosted
Decision Trees (BDT) to distinguish signal from background. In this context
we also tune hyperparameters, which are external configuration variables
that are used to manage the BDT training. In the second approach we train
a BDT but exclude the PID variables and cut manually on them. Therefore,
this event selection includes multidimensional BDT-cuts and 1-dimensional
PID-cuts. We test this approach because including PID variables in the BDT
makes future acceptance corrections difficult. We hope to achieve a similar
performance with the second approach so that we can use this as the final
event selection method.

In chapter 2 we outline the Belle II experiment with its seven subdetectors.
In chapter 3 we discuss our event selection scheme and introduce the selection
performance evaluation. In chapter 4 we present the first selection approach.
In chapter 5 we present the alternative approach. In chapter 6 we present
detailed studies of the overall best selection including acceptance effects and
the background composition. In chapter 7 we conclude the key findings and
provide an outlook for future research directions.

Table 1.1: Branching fractions of signal τ∓ → K∓π∓π±ντ and dominant
background events taken from PDG [27].

Event Branching Fraction

τ∓ → K∓π∓π±ντ (3.45± 0.07)× 10−3

τ∓ → π∓π∓π±ντ (9.31± 0.05)%

τ∓ → π∓K∓K±ντ (1.435± 0.027)× 10−3

τ∓ → π∓π0ντ (25.49± 0.09)%

τ∓ → π∓π∓π±π0ντ (4.62± 0.05)%

τ∓ → K∓π∓π±π0ντ (1.31± 0.12)× 10−3
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Chapter 2

Belle II Experiment

B-factories like Belle II offer ideal conditions for studying the properties of
τ leptons and in such also the decay τ∓ → K∓π∓π±ντ . The production
cross-section of a BB̄ pair is 1.05 nb and at the same energy the production
cross-section of a τ lepton pair τ−τ+ is 0.92 nb which is why a B factory is
eventually also a τ factory. The Belle II experiment is an electron-positron
collider experiment at the SuperKEKB accelerator in Tsukuba, Japan, with
a center of mass energy corresponding to the Υ(4S) resonance peak which
is just above the threshold for BB̄ meson-production. The collider with
assymentric beam energies of 7.0 GeV for electrons and 4.0 GeV for positrons
utilizes high beam currents (increased number of particles) and a cutting-edge
”nano-beam focusing” technique at the collision point, where the beams meet.
These advancements have propelled SuperKEKB to achieve world’s highest
luminosity of 4.7× 1034 cm−2s−1 in June 2022.
From 2019 to 2022 Belle II accumulated a data sample corresponding to an
integrated luminosity of 362 fb−1 at Υ(4S) resonance which provides among
other things large samples of τ leptons. The integrated luminosity Lint is
the time integral over the instantaneos luminosity and reflects the size of
the data sample, which is crucial to most of the physics studies in collider-
based experiments. It is related to the number of produced tau-pair (Nτ−τ+)
particles as well as the tau-pair cross-section(σe+e−→τ+τ−) as follows:

Nτ−τ+ = σe+e−→τ+τ−Lint (2.1)

Hence, for a large tau-pair production Lint and σe+e−→τ+τ− must be large
which is both given at Belle II. The target dataset is at 50 ab−1 integrated
luminosity compared to 988 fb−1 at Belle.

In the following we will provide an overview [15, 22] of the Belle II detector
in section 2.1.
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2.1 Belle II Detector

Figure 2.3 shows the Belle II detector. The Belle II detector is formed by
seven individual subdetectors, each one dedicated to a specific task. We use
a right-handed Cartesian coordinate system for the detection system. The
z-axis points along the beam-line, in the direction of the electron beams, the
y-axis vertically upwards [15]. In the context of Belle II the barrel region is
the cylindrical central part of the detector, as opposed to the endcaps which
cover the forward and backward directions. The “forward” direction is the
direction in which the high energy electron beam points, while “backward”
is the direction in which the lower energy positron beam points. Figure 2.4
shows the three different regions of the Belle II detector.

The interaction point 1 (IP) where the electrons and positrons collide is sur-
rounded by a low-mass beryllium beam pipe with a 2 cm diameter. This com-
pact design facilitates the placement of two high-resolution DEPFET 2silicon
pixel detector layers in close proximity to the IP for high spatial resolution,
enabling precise reconstruction of the τ decay vertices, the points at which
particles originating from the collisions experience further decay. Addition-
ally, four layers of double-sided silicon strip detectors surround the pixel
detectors. The strips are orthogonally oriented on each side and thus provide
crucial x− y track and vertex information to further enhance track recon-
struction capabilities of the Belle II experiment [22].

The main track reconstruction is provided by a Central Drift Chamber (CDC)
filled with helium and ethane in a 50:50 mixture. Via ionization energy de-
position (dE/dx) particle identification is provided [9].

Electrons and photons as well as π0 are reconstructed in the electromagnetic
calorimeter (ECL). They deposit nearly all their energy in the ECL by pro-
ducing electromagnetic showers which are then used to measure the energy
of the particle [16, 23, 22].

The electromagnetic calorimeter itself is located inside a large-bore solenoid
coil which provides a 1.5 T axial magnetic field. It measures the momentum
of charged particles and hence provides kinemtic and event shape information
[9].

The solenoid’s magnetic flux return serves for a combined detection system
dedicated to identifying solely muons and neutral hadrons (KL) that traverse
the calorimeter due to their minimal interaction probability. This system
reads out signal via wavelength-shifting fibers [22].

1Here the origin of the coordinate system is located
2a combined detector-amplifier structure, s. ref.[19]
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For enhanced PID the TOP and ARICH detectors utilize the Cherenkov
effect, a phenomenon where charged particles exceeding the speed of light
in a specific medium emit characteristic light. The angle (θC) at which this
light is emitted depends on the particle’s velocity (v) and the refractive index
(n) of the medium:

cos θ = c/vn (2.2)

where c is the speed of light in vacuum. Essentially, lighter particles travel
faster and emit Cherenkov light at larger angles.

The TOP detector, which is short for Time of Propagation, is positioned
in the central “barrel” region of the detector and covers the entire inner
surface of the electromagnetic calorimeter in the barrel part. It employs a

Figure 2.1: Visual presentation of Cherenkov light emission with angle θc
for kaon (red) and π (blue) separation. The detection plane is made of the
photo sensors mentioned in the text. Taken from [4]

novel configuration of a ring-imaging Cherenkov device which utilizes the
total internal reflection of Cherenkov photons in synthetic quartz bars. As a
charged particle, such as a pion or kaon, traverses this bar, it emits Cherenkov
light at a specific angle (θc) with respect to the incident particle direction as
shown in figure 2.1. This difference in θc for different particle types results
in a slight difference in the light’s path length to the photo sensors that are
attached at the end of the quartz bar. They detect each photon with an
extreme time precision of 50 picoseconds, which is the world-best timing
precision for a single photon [4].

The TOP counter is extended in the forward endcap region by an aerogel-
based proximity focusing ring imaging Cherenkov system (ARICH) [5] which
detects Cherenkov photons [9, 22]. Its primary objective is particle identi-
fication at the full kinematic range of the experiment, for K/π separation
typically spanning momenta from 0.5 to 4.0 GeV/c. After the Cherenkov
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Figure 2.2: Visual presentation of the ring-imaging Cherenkov photons.
Taken form ref.[28]

light is emitted within the aerogel which is the the ”radiator” medium for
Cherenkov light generation, it travels through a dedicated space before reach-
ing the photon detector. This space allows the light to spread out, and
because all the photons were emitted at the same angle inside the aerogel,
they create a distinctive ring-shaped pattern when they hit the detector, as
shown in Figure 2.2. For a pion with a given momentum, the ring radius
is larger than the one corresponding to a kaons of the same momentum as
illustrated below [5].

The detectors cover almost the full solid angle which are the spherical angles
(θ, π) between the z- or x-axis and the direction of the track. This means
it can detect particles coming from nearly any direction. This extensive
coverage offers a significant advantage, allowing for precise reconstruction of
the complete initial state kinematics. Moreover, Belle II enables accurate and
efficient measurements with its outstanding vertex resolution of particle de-
cays, advanced particle identification (PID) algorithms and high-performance
calorimetry.
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Figure 2.3: Overview of Belle II detection system taken from ref.[8]

Figure 2.4: Side-view of the arrangement of the Belle II detector. It is
composed of three distinct components: the barrel, the forward endcap,
and the backward endcap. The barrel is located at the central region of
the detector, surrounding the interaction point. The forward endcap is
positioned in the forward direction relative to the interaction point, whereas
the backward endcap is located in the opposite direction from the interaction
point. Taken from ref.[17].
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Chapter 3

Event Selection

This chapter lays out the foundation of our analysis by introducing key
concepts and methodologies. We begin by outlining the event selection scheme
in section 3.1. Following this, we explore the essential concepts employed
in this study: Boosted Decision Trees along with their input variables are
covered in section 3.2 and 3.3, respectively. The available dataset is detailed
in section 3.4 and we lastly conclude with performance evaluation metrics:
receiver operating characteristic (ROC) graphs in section 3.5 and binary log
loss in section 3.6.

3.1 Scheme of the Event Selection

The event selection for τ∓ → K∓π∓π±ντ is divided into two stages: firstly
reconstruction and preselection and secondly fineselection which is done in
this thesis.

In the first stage a rough preselection of 3x1 prong topology was done, which
is cut-based with high efficiency but less selective. The 3x1 prong topology
was chosen because it turned out to be the most selective topology. The
motivation behind this choice is that if the signal τ lepton decays into three
charged tracks in one hemisphere, the other τ lepton on the opposite side
(tag-side) has an approximately 80% probability of decaying into a single
charged track. This means we lose minimal data by restricting our selection
to the 3x1-prong topology. The preselection achieves a final signal efficiency
of 41.269%.

The subsequent stage, the fineselection, aims to achieve a maximally pure
sample of τ∓ → K∓π∓π±ντ events. We utilize generic Monte Carlo (MC)
data for this purpose where we employ a subset of 47.5× 106 events, repre-
senting 6/32 of the total generic MC data. This subset is then weighted to
correspond to the full 362 fb−1 integrated luminosity, a data sample Belle II
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collected at Υ(4S) resonance from 2019 to 2022. Further details regarding
our data selection can be found in section 3.4.

3.2 Boosted Decision Trees (BDT)

For the fineselection we use boosted decision trees. Boosted decision tree
classifier, also known as gradient boosted trees (GBTs), belong to the cat-
egory of ensemble learning algorithm that delivers predictive performance
for classification 1 problems. Ensemble learning techniques combine multi-
ple models to achieve better performance than any individual model could
achieve alone. In figure 3.1 a qualitative visual representation of an ensemble
decision tree is shown. In the case of GBTs, the ensemble consists of a series
of weak learners, typically decision trees, that are sequentially trained to
improve the overall prediction accuracy.

The training process of a GBT typically involves the following steps [20]:
Initialization: The algorithm starts with an initial model, often a simple
decision tree, as the baseline.
Weak Learner Training: The algorithm builds a new weak learner, typi-
cally a decision tree, using a subset of the training data. The subset is chosen
to emphasize the areas where the previous model made mistakes.
Predictions and Error Calculation: The new weak learner makes pre-
dictions for the entire training set. The algorithm then calculates the error
between these predictions and the actual labels (target values).
Error Weighting: The error of the weak learner is used to calculate weights
for each training sample. Samples that were misclassified receive higher
weights, indicating that they require more attention from the next weak
learner.
Weak Learner Adjustment: The weights assigned to the training samples
are used to adjust the learning process of the next weak learner. This ensures
that the new learner focuses on correcting the errors made by the previous
one.
Repetition: The process of building, training, evaluating, and adjusting
weak learners is repeated until the desired performance level is achieved or a
stopping criterion is met.

1Classification involves categorizing data points into predefined classes, a form of
supervised learning, where the model learns from labeled data to predict the class labels
for new, unseen data points.
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Figure 3.1: Qualitative representation of single decision trees and ensembles.
Retrieved from ref. [24]

3.3 Input Variables for BDT

To achieve high efficiency and purity in the BDT, it is crucial to select
variables that effectively distinguish between signal and background events.
The variables used in this work are listed in Table 3.1. We can categorize
these variables into five groups based on the information they provide:
Vertex reconstruction: These variables, like the distances from each track
to the vertex (drprong1,2,3 ), help us understand the track origin.

Photon and π0 rejection: These variables, including the number and
energy of photons, aim to suppress background events with photons or neutral
pions.
Event-shape:Variables like visible energy and thrust describe the overall
characteristics of the event and can help differentiate signal from background.
Kinematics:These variables capture the momentum and energy information
of particles in the event which is why they provide valuable insights for
classification.
Particle identification: kaonIDNN variables are neural-network based
[23] and used to differentiate between kaons and pions for each final state
track. They are very important in our study because, as outlined in the
introduction, the dominant backgrounds are τ decays to three hadrons h,
where h can either be a kaon or pion and only PID can separate signal from
them.

The BDT utilizes this information to recognize signal events in the data. To
train the BDT all events, we call them full sample, are split into three sub
sets. The so-called ”training sample” contains 80% of the full sample events,
the ”test sample” and ”validation sample” consist of 10% each. Our signal
channel τ∓ → K∓π∓π±ντ makes up only 1% after preselection compared
to τ → π∓π∓π±ντ which instead accounts for approximately 34%. This
emphasizes the huge difficulty in selecting our signal channel.
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The BDT uses the input variables to learn to recognize signal as signal
and background as background. Before the BDT is trained the machine
learning hyperparameter values also need to be chosen. Motivated by the
τ∓ → π∓π∓π±ντ analysis we chose hyperparameters and values acording to
table 3.2 for our first approach. We refer to the LightGBM framework [7]
for more details about hyperparameters and their relation to each other.
To check for overfitting in our BDT models, we trained several models that
varied only in their number of iterations. This hyperparameter directly
controls the number of decision trees built within the BDT, which in turn
impacts its ability to learn from past errors and improve its classification
accuracy. Increasing the number of iterations can lead to higher accuracy
and reduced bias, but it also increases the risk of overfitting. Therefore,
finding the right balance between good performance and avoiding overfitting
is crucial.

In the original weighting we assumed that the BDT might not focus
on identifying signal since the signal fraction in the training data made
up around only 1%. To address this, we increased the signal weight in the
training data to achieve a 1:1 ratio with the background events, meaning same
contribution. This balanced weighting ensures that the BDT learns from
both signal and background information without introducing bias towards
either class.

Table 3.1: List of input variables for the BDTs: These variables provide
diverse information which can be categorized into groups relevant to event
selection, including vertex reconstruction, kinematic properties, particle
identification, event shape, and π0 rejection.

thrust ECMS
vis m2

miss. pCMS
miss.

θCMS
miss. dr3prong1 dr3prong2 dr3prong3

N3prong
γ,loose N1prong

γ,loose N3prong
π0 N1prong

π0

ECMS
3prong PCMS

t,3prong χprob,3prong d3prong

E3prong
γ,loose E1prong

γ,loose kaonIDNN3prong
track1,2,3
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Table 3.2: Hyperparameter List. Chosen hyperparameters for the BDT and
their definition.

hyperparameter definition

objective: binary picks loss function and minimi-
zes log loss

metric: binary logloss specifies evaluation metric used
to track the model’s performan-
ce during training and on un-
seen data. See section 3.6

num iterations: 1000 controls how many times the
algorithm refines the model
through the training data, i.e.
how many trees are build

learning rate: 0.02 controls the step size taken
during each iteration, affecting
how quickly it learns from
the data

num leaves: 127 maximum branches each
decision tree can have

boosting: gbdt type of algorithm used, here
gradient boosting

trainingsample.weight: 84.11 weight of signal in the train-
ing data

max bin: 1023 maximum number of bins
that the events will be
bucketed into
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3.4 Data Set

The data set serves two main purposes: training and testing the BDT
classifier’s performance. We require a data set that is large and covers
the whole kinematic range. Additionally, it should resemble real physics
distribution and the data must be unambiguous for each individual event,
meaning the type of particle or interaction (target species) is clearly identified.
Therefore we used so-called generic Monte Carlo data. As mentioned before,
Belle II accumulated a 362 fb−1 data sample from 2019 to 2022. For event
selection generic MC data was produced that corresponds to 4× 362 fb−1

although for very frequent decays like bhabha-scattering less was produced.
The data set is evenly divided into 32 chunks. We only use 6/32 of it due
to time constraints since the BDT training is time consuming. We call this
used fraction the full sample. For our study this dataset, which makes up
47,463,906 events, provides a statistically significant sample size for drawing
strong conclusions. We divided the full sample according to section 3.3.
In table 3.3 the total number of used events in the training sample as well as
its distribution on all channels is listed. We split the total events in events
originating from τ decays (tauBkg) and in events not from τ decays (’other’).
Additionally, we listed dominant decays from tauBkg separately which are
mentionend in the caption of table 3.3.
Over the course of this work we will refer to the actual used data as ”actual
data amount”. In the following chapters we also had to sometimes up-weight
our data for specific tasks. Because the channels have partailly different
luminosity and we want to simulate real physics we had to weight the samples
so that they correspond to 362 fb−1. We will refer to the number of this
events ”weighted number of events”.
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Table 3.3: Actual number of events in the training sample, where the training
sample makes up 80% of the full sample. The channel ”other” refers to
all decays not originating from τ decay. e.g. e+e− → BB̄. Note that the
qq̄ channel also belongs to ’other’ but we listed it separately because of its
high fraction. The same applies to π∓π∓π±ντ , π

∓π0ντ , π
∓K∓K±ντ and

K∓π∓π±π0ντ which belong to ’tauBkg’

Channels # events # fraction[%]

total 37,971,124 100.0

π∓π∓π±ντ 13,741,847 36.2

qq̄ 12,385,752 32.6

tauBkg 9,498,554 25.0

π∓π0ντ 1,271,954 3.3

signal 474,807 1.3

other 295,782 0.8

π∓K∓K±ντ 237,958 0.6

K∓π∓π±π0ντ 64,470 0.2

3.5 Performance Evaluation with ROC Curves

A receiver operating characteristics (ROC) curve is a useful technique for
performance measure classifiers based on their selection performance. It shows
the performance of a classification model at all classification thresholds 2 and
usually displays two essential performance measures against each other[10]:

True Positive Rate (TPR) =
TP

TP + FN
(3.1)

False Positive Rate (FPR) =
FP

FP + TN
(3.2)

where ”TP” stands for ”true positiv”, ”FN” for ”false negative” and ”TN”
for ”true negative”. ”True positive” means that the classification prediction
of signal, which is our positive class, is correct (true), while ”false negative”
means that the model incorrectly (false) predicts signal as background, our
negative class. ”True negative” refers to all backgrounds that were correctly
predicted. In figure 3.2 a so-called confusion matrix is illustrated. It shows
the terms used for evaluating a classification model’s performance on a
dataset including the terms mentioned above.
In a ROC curve, the horizontal axis represents FPR, while the vertical axis
represents the TPR. In High Energy Physics (HEP) we refer to TPR as
efficiency and to FPR as misidentification rate. In our work the efficiency is
the fraction of τ∓ → K∓π∓π±ντ events correctly classified as signal. Note

2The classification threshold is a cut-off point used to assign a specific predicted class
for each object [11].
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Figure 3.2: Confusion matrix. Retrieved from ref.[13, 25]

that in this work we use an uncommon approach of plotting efficiency against
purity instead of the false positive rate. Puritiy is defined as the fraction of
correctly classified signal events in the total selected sample, i.e.

Purity =
Ssel

Ssel +Bsel
, (3.3)

Where Ssel is the selected signal that is correctly classified and Bsel is the
selected background misclassified as signal. We use this approach because
signal events make up only around 1% of the full sample and we are specifically
interested in selecting a pure sample of them.

3.6 Performance Evaluation with Binary Log Loss

In machine learning, particularly for binary classification problems3, Binary
Log Loss (also known as Binary Cross-Entropy) is a widely used metric to
assess the performance of a model. It helps quantify the discrepancy between
the predicted probability distribution from the model and the actual binary
labels (0 or 1) present in the dataset. The log loss function is defined as
follows:

Log Loss = − 1

N

N∑
i=1

(yi · log(pi) + (1− yi) · log(1− pi)) (3.4)

where yi represents the actual class, i.e. signal or background, and pi is the
probability of signal while (1 − pi) is the probability of background. This
loss function compares each predicted score (output from the BDT) with
the corresponding true class label (0 or 1). It then calculates a logarithmic
penalty based on the difference between the predicted probability and the
expected value (0 or 1). Essentially, it penalizes predictions that deviate
significantly from the true labels [14].

3a type of supervised learning problem where the model predicts one of two possible
categories (classes) based on given data points.

18



In summary, since our goal is to minimize loss, we penalize incorrect pre-
dictions from the BDT. Ideally, the loss should be zero when the BDT
confidently predicts a signal event (output score of 1.0) and significantly
higher for low output scores (indicating a weak signal prediction). This loss
function essentially evaluates how well the BDT distinguishes between signal
and background events.
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Chapter 4

Fineselection Before and
After Hyperparameter
Tuning

Our goal of this project is to get an as pure as possible sample of the signal
decay. We approached this goal as mentioned in the introduction in two
ways. At first, we trained BDTs with event selection variables (see table 3.1).
We created several models and studied their outputs and performance. As
already discussed, for further PWA analysis it is challenging to correct for
acceptance effects when the PID variables are given as input to the BDT.
Hence, we tried a second approach called PID-based, in which we still use
a BDT but exclude the PID variables from the BDT and cut manually on
them.
In this chapter we start to look at the first approach after describing our event
selection scheme. We train models differing only by their number of iterations
with BDTs and compare their performance. In section 4.1, we train BDTs
using hyperparameter values inspired by the τ∓ → π∓π∓π±ντ analysis. We
then assess these models for overfitting. In section 4.2, we provide a general
explanation of hyperparameter tuning, followed by the specific tuning process
in section 4.2.1. After obtaining new hyperparameter values, we train BDTs
again. Section 4.3 evaluates these models for overfitting, while section 4.4
assesses their performance using binary log loss. Finally, section 4.5 analyzes
performance using ROC curves.

4.1 Overtraining Check Before Hyperparameter
Tuning

The trainig sample consists of 37,971,124 actual events. Given the hyper-
parameter values in table 3.2 we trained models with 400, 1000 and 3000
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number of iterations using the BDT-LightGBM framework [6]. Figure 4.1
shows a histogram of the BDT output for all three models for the training
(steps) and test (data points) sample. For classification tasks, the output
is typically a classification value between 0 and 1, where 0 indicates that
the model is certain that the event belongs to background class, and 1
indicates that the model is certain that the event belongs to signal class.
In all plots, signal peaks at 1 in the training sample, meaning the BDT
was able to recognize signal as expected. Background peaks at 0, also as
expected. However, both have a tail, for signal towards zero and for back-
ground towards one, meaning the BDT couldn’t exactly assign the events.
The difficulty of selecting Kππντ events is emphasized by the fact that the
tail of the background is at the same height as the peak of signal events.
All three models perform similar on the training sample. To evaluate the

(a) (b) (c)

Figure 4.1: Models trained using hyperparameters from table 3.1 for (a) 400,
(b) 1000 and (c) 3000 number of iterations. The small errors of the data
points are statistical only.

models’ performance and check for overtraining we must look at how well
they generalize on an independent data sample. Therefore the BDT output
for the signal and background events in the test sample are shown as green
and red data points in figure 4.1, respectively. For models with 400 and
1000 number of iterations they have the same distribution as in the training
sample, meaning the models generalize well. The third model after 3000
iterations however, shows discrepancies in the lower region near 0 for the
signal events. This is a sign for overtraining, meaning the model adapted
too much to the fluctuations in the training set and thus generalizes worse
on independent data than the other models. We can conclude that model 1
and 2 (400 and 1000 number of iterations) are hence better suited in terms
of overfitting.
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4.2 Hyperparameter Tuning

Hyperparameter tuning, also called hyperparameter optimization, effectuates
optimal results for model performance, i.e. the trade-off between efficiency
and purity. This process is an essential part of machine learning and crucial
for success. Hyperparameter optimization finds a set of hyperparameters and
optimizes a chosen objective function which is a measure for performance.
We used the area under the ROC curve, the so-called AUC-score, as the
objective function and aimed to maximise it in an optimization process. The
tuning contained 201 trials where a trial is a single execution of the tuning
process. Finally, we chose the set of hyperparameter values that yielded the
largest AUC-score. We used the optuna framework [1], which is designed
for the automation and the acceleration of the hyperparameter tuning. The
study runs on the training data. Optuna then generalizes the model from
each trail on an independent data, the validation sample, to determine the
AUC-score for the respective trial.
The software enables users to adopt state-of-the-art algorithms for sampling
hyperparameters and pruning unpromising trials. Samplers focus on selecting
the most promising hyperparameter combinations to try next. The default
sampler, which we also used, is Tree-structured Parzen Estimator (TPE) [2],
which uses a bayesian strategy. Bayesian optimization uses past trial results to
estimate the potential of different hyperparameter configurations, prioritizing
areas that seem likely to yield good results. TPE is also based on a so-called
independent sampling meaning it determines a value of a single parameter
without considering any relationship between the hyperparameters [1]. This
sampling strategy together with pruning helps to speed up optimization
time and performance greatly compared to traditional methods such as
GridSearch. Hyperparameter tuning is usually computationally intensive
and pretty time-consuming. In our case it continued for around ten days.

4.2.1 The Tuning Process

We chose from table 3.2 maximal bin, minimum child samples, number of
iterations and leaves as well as the training sample weight of the signal events
to be tuned based on our assumption that these hyperparameters might
have the highest effect on the overall performance. For signal weight in
the training sample we increased the weight to 50% in the previous models,
assuming this yields best performance because of no bias. However, this must
not neccesarily be the case which makes an further investigation relevant.
Figure 4.2 shows the objective value as a function of the trial number. We
observe that the best objective value improved steadily over the course of the
study. The algorithm quickly finds a relatively high value for the objective
function. At the beginning, small improvements are still visible, but after
50 trials, there are hardly any improvements to be observed. We therefore
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Figure 4.2: Objective value as a function of the trial number. For each trial
the AUC-score was calculated. The current best value is also included as a
line in the plot.

assume that there is no significantly better value and that 201 trials are
sufficient to find an optimal value. It is unlikely that there will be any
major improvements after 201 trials. The best objective value that we found
after 180 trials differs only marginally from the value after 50 trials. This
difference is so small that it is not visible in the plot. The plot also shows
that there is some variability in the objective values. This is because bayesian
optimization is a stochastic algorithm, meaning that it uses random sampling
to explore the hyperparameter space. This spread is expected and does not
necessarily indicate that the algorithm is not performing well. We will see in
section 4.3 that the model with this hyperparameter values in fact performs
well.
When tuning hyperparameters their relation is important to consider to

obtain a good performance. We visualized this with a so-called parallel
coordinate plot shown in figure 4.3. We defined for each hyperparameter the
range in which the algorithm should look for the optimal value. We have
multiple vertical axes which correspond to this ranges.
The plot shows that there are a number of different hyperparameter combi-
nations that achieve a similarly high objective value. For instance, a high
number of iterations regards with a low number of leaves to yield a good
performance. This is expected since a high number of iterations allows the
model to explore the data more thoroughly, while a low number of leaves
helps to prevent the model from overfitting. For maximum number of bins
the darker lines cover almost the whole range. Thus, we conclude that this
hyperparameter doesn’t have a significant impact on the performance. The
same holds for the minimum child sample.
The best hyperparameter values are stated in table 4.1. It is note worthy
that a lower weighting of 35,24% instead of the previous 50% for signal in the
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Figure 4.3: The objective value is shown on the first vertical axis. The
hyperparameter values are shown on the other vertical axes. One line
represents one hyperparameter combination. The darker the line, the higher
the objective value and hence, the better the hyperparameter configuration.

training sample yields better performance. It makes sense that the model
might not be able to effectively learn from data with very high sample weight
because we want to accurately reflect real physics and hence in the data the
fraction of signal events should also be less than background.

Table 4.1: List of the hyperparameters chosen for hyperparameter tuning
and their optimal values.

max bin: 595 trainingsample.weight: 45.767662

num iterations: 1994 num leaves: 51

min child samples: 73
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4.3 Overtraining Check After Hyperparameter Tun-
ing

Again we trained BDT classifiers, i.e. models, analogous to section 4.1
but this time with tuned hyperparameter values. First, we checked for
overtraining by analyzing the BDT output. In figure 4.4 the outputs for
400 (model 1), 1000 (model 2) and 3000 (model 3) number of iterations are
shown. Model 1 has a lower tail both for signal and background meaning the
algorithm was better able to assign the correct classification. For model 2,
compared to the previous model, there are no signs of overtraining at the end
of the signal tail. Model 3 also shows only minor indications for overfitting,
indicating the tuning process was succesful and emphasizing its importance
in the machine learning process. In total, comparing with model (b) and (c)

(a) (b) (c)

Figure 4.4: Models trained using the optimal hyperparameters from table 4.1
for (a) 400, (b) 1000 and (c) 3000 number of iterations. The models were
trained with the training sample and then generalized on the test sample
which are both shown in the plot.

from figure 4.5 overfitting effects first start to appear for much larger number
of iterations, which are not in our region of interest, since the optimization
process yielded 1994 as the optimal number of iterations. The BDT output of
the model trained for 1994 iterations, i.e.using the hyperparameter values in
table 4.1, is shown in figure 4.5. There are slight discrepancies between test
and training sample at the end of the signal tail assuming overtraining this
model. However, this is neglectable since this observation is not in our region
of interest. When applying a threshold cut later the region near zero will
be cut in any case, because we want to select a pure signal sample and thus
will have to apply a threshold cut near 1. In total this model still achieves a
better performance while succesfully controlling overtraining und recognizing
signals better which is visible by a small tail of signal and background. In
the following section we will study the performance of the models in detail.
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(a) (b) (c)

Figure 4.5: Same es figure 4.4 but for (a) 1994, (b) 5000 and (c) 10,000
number of iterations.

Overall, the models control overtraining better so that in our region of
interest, we don’t have to consider and reduce overfitting effects.

4.4 Overtraining Check with Binary Log Loss Func-
tion

In figure 4.6 the best model with optimal hyperparameter values is potrayed
with a log loss function as a function of the number of iterations. As already
discussed with higher number of iterations more trees are build and hence
the algorithm trains and recognizes signal better. Therefore we expect a
lower log loss value with increasing number of iterations.

In the plot we can see the performance of the best model on the training and
on the validation set. The validation set is 10% of the full dataset we set aside
to validate the performance of the model. For lower number of iterations the
loss function increases exponentially while with higher iterations it decreases
slowly. These observations agree well with our expectation that the BDT
predicts better with increasing iterations.

We see that both losses decrease steadily and show a converging behaviour for
increasing iterations. A good fit is characterized by exactly this observation
and a saturation at a certain point. A stabilization point might had been
visible if we had trained the model with more number of iterations. However,
since we don’t want to run towards overfitting and the loss functions show
no signs of overfitting we are satisfied enough with our hyperparameter
configurations and won’t tune them any further during this thesis.
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Figure 4.6: Binary Logg Loss against number of interations for training and
validation sample.

4.5 Performance Comparison Before and After Hy-
perparameter Tuning with Roc Curves

We visualize the performance of the models after hyperparameter tuning
with ROC curves to analyze whether the tuning process also improves the
performance. The results are shown in figure 4.7. Additionaly we plotted
the ROC curves of two more models, one with 50 number of iterations and
one with 10000.
We observe by increasing the number of iterations from 50 to 1994 that the
performance significantly improves from the orange to the purple curve. We
achieve an efficiency of around 6.7% for a purity of 80% for the model with
1994 number of iterations. When further increasing the number of iterations
the performance only marginally improves from 1994 to 10000 which suggests
a saturation of the performance around the tuned value of 1994.
For further performance comparison we compare the performance of the

model with hyperparameters from τ∓ → π∓π∓π±ντ , we will call it model 1,
with the model that was trained with the tuned hyperparameters in figure 4.8,
which we will model 2 in this section. To study the necessity of hyperpa-
rameter tuning we have also included a model with default hyperparameter
values from LightGBM (see ref. [3, 7]) that we will refer to as model 3 in
the text.
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Figure 4.7: Signal efficiency against purity for models differing only by their
number of iteration after hyperparameter tuning.

Figure 4.8: Comparison of three different BDT approaches: training with
default LightGBM hyperparameter values (green curve), training with values
from τ∓ → π∓π∓π±ντ analysis (red curve) and training with hyperparam-
eters after tuning (orange curve). Model 1 and model 3 were trained with
1000 number of iterations, model 2 with the tuned value of 1994 iterations.
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All three models yield the same performance for purity up to 65 %. Above
this value the model 1 and 3 first start to differ from each other. The classifier
with default values achieves a maximum purity of approximately 81%. It
drops fastest for increasing purity, meaning it performs worse than the other
two. Model 1 and 2 start to differ from 88% purity onwards. While both
perform better than the classifier with default values our best model still
achieves a slightly higher maximum purity of 97% compared to maximum
91% of model 1.
Overall, we observe that the model with default hyperparameter values
performs worse than the other two but there is no significant performance
improvement between model 1 and 2. The optimization process still payed
off because the BDT outputs and the loss function indicate very successful
overfitting control.

29



Chapter 5

PID Approach

As already mentioned in the introduction we test two approaches to select
a pure sample of τ∓ → K∓π∓π±ντ . In the previous chapter we presented
the first approach where we solely used BDTs. In this chapter we introduce
the second approach, where we additionally use the classical approach of
manual cutting next to the BDT: We exclude the kaonIDNN PID-variables,
which were explained in section 3.3 from the BDT and apply manual cuts on
these PID-variables. We then combine these cuts with a BDT model that is
trained with the tuned hyperparameters and all variables in table 3.1 except
for kaonIDNN.

Over the course of this study we will refer to this approach as the so-called
PID-based approach. The motivation behind this approach is that we hope
to achieve a similar or even better performance than the first approach so
that we use this method to train our final model and make future acceptance
corrections easier.

In the following we present our cut scheme in section 5.1 and proceed with
the method explained above. In section 5.2 we set PID cuts for all three
charged tracks and evaluate the performance. We repeat this in section
5.3 but this time apply a PID cut only to the kaon track and evaluate the
performance as well as the background distribution. In section 5.4 we cut on
the kaon and opposite charged track to find a minimum requirement, i.e. the
minimum number of tracks to apply a cut to for good performance. For this
last method we again evaluate the performance and background distribution.
Finally, in the last section 5.5 we compare all three cutting methods and
discuss their performance.

5.1 Cut Scheme

In this approach we trained a model with the optimal values after hyper-
parameter tuning, but excluded the three PID variables, the kaonIDNN
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variables, in order to manually apply a cut to them as explained above. The
PID cutting works as follows: We require that from the three charged tracks1

two must have the same charge as the τ∓ lepton they originated from, as
visualizied in figure 5.1 (a). We also require that one of the same-charged
tracks must be identified as a kaon because in the τ∓ → K∓π∓π±ντ decay
the kaon has the same charge as τ . Now we number the tracks and look at
the following cases: If for example the opposite charged hadron is in the first
track the kaon can either be found in the second or third track. In a more
technical way this means that when the opposite charged hadron is found in
the first track, we apply PID-cuts so that above a certain PID-threshold a
kaon should be identified in one of the two remaining tracks. For the case
where the opposite charged track is found in the second or third track the
cut scheme works analogous. At the end we scan this PID-threshold while
we simultaneously set a fix BDT-threshold for the BDT model trained with
tuned hyperparameters but without kaonIDNN variables. To sum up, for
each model in this approach we apply a BDT and a PID cut. We used this

x
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h+τ−

ντ
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x

x
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π−

π+τ−
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Figure 5.1: Schematic view of (a) τ− → h−h−h+ντ decay where h is either
a kaon or π and (b) τ− → K−π−π+ντ decay. For τ+ the charges are
conjugated. [courtesy S.Wallner]

cut scheme for the cut strategies in the following sections.

5.2 Cut on all Tracks

At first, we apply cuts simultaneously on all three tracks where we scaned
through the PID thresholds and set the BDT cuts for three different thresh-
olds: 0.5, 0.6, 0.7. In figure 5.2 the ROC curves of the models for these
three cases are presented and for comparison also the best model of the
previous chapter. A trade-off relationship between efficiency and purity is
visible. With higher threshold purity increases, however, at the cost of less
efficiency. For comparison, the model with a BDT threshold of 0.7 yields a
maximum purity and efficiency of approximately 76% and 5%, respectively.

1We only consider hadrons as final state particles because leptonic τ decays are extremely
suppressed.
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The green curve achieves 67% and 20% for purity and efficiency and the
red curve 31% for efficiency and 72% for purity, respectively. Nonetheless,
these performances are still considerably worse than the case where the
PID variables are given as input to the BDT. One reason could be because
cutting on all three tracks might have been too hard of a constraint. It is
the minimum requirement to know which track is the kaon, because then we
can directly exclude π∓π∓π±ντ events. It is also important to know this for
the determination of the four-momenta in PWA.

Figure 5.2: Efficieny against purity for models in the PID-based approach
with PID-cuts on all tracks but different BDT-threshold of 0.7, 0.6 and 0.5.
The purple ROC curve shows the BDT model with tuned hyperparameter
and kaonIDNN variables.
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5.3 Cut on Kaon Track

In our second approach we cut only on the kaon track, expecting the per-
formance, especially the efficiency to improve. Figure 5.3 shows the results.
Again, the models differ only by their BDT threshold. For comparison we
have also plotted the model with the tuned hyperparameters and kaonIDNN
variables from the previous chapter. Contrary to our expectation, the per-
formance worsened, especially the purity of all models. In order to study

Figure 5.3: Same as figure 5.2 but with PID cut on only the kaon track and
different BDT-thresholds of 0.5, 0.53, 0.57, 0.6 and 0.7.

this worsening, we analyzed the background composition. In figure 5.4 the
impurity, shown through background composition, as well as the efficiency
are plotted as a function of the PID threshold for the case with cuts on all
tracks (discussed in section 5.2) and a BDT threshold of 0.6. The legend
lists dominant backgrounds. In figure 5.5 we show the same but where we
only cut on the kaon track. It is evident that with higher PID threshold the
impurity from π∓K∓K±ντ events increases (violet curve in fig. 5.4 and 5.5)
when only cutting on the kaon track, whereas it remains very suppressed
when cutting on all tracks. Hence, in the following we cut on two tracks, the
kaon track and the opposite charge track, to see whether this is enough as a
minimum requirement to suppress background, especially π∓K∓K±ντ , and
achieve a high performance.
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Figure 5.4: Background distribution, i.e. impurity, as well as signal efficiency
as a function of PID-threshold. In this plot we apply PID-cuts on all three
charged tracks. The BDT-threshold is fixed to 0.6.

Figure 5.5: Same as figure 5.4 however, we apply PID-cut on only the kaon
track, i.e. for τ− → h−h−h+ντ the kaon is only identified in one of the two
tracks that have the same charge as the τ lepton they originating from.
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5.4 Cut on Kaon and Opposite Charged (OC)
Track

The τ∓ → π∓K∓K±ντ and our signal channel τ∓ → K∓π∓π±ντ only
differ by their opposite charge (OC) track, i.e. for signal it is a pion, for
π∓K∓K±ντ a kaon. Therefore, in addition to identifying the kaon track,
we require the opposite charged particle to be a pion. Taking these two
cuts into account we train models analogous to the previous section for
different BDT-thresholds and study their background composition. First
we look at the background composition to see whether we could suppress
the τ∓ → π∓K∓K±ντ decay again. The results are shown in figure 5.6. As

Figure 5.6: Same as figure 5.5 however, we apply PID-cuts on the kaon and
opposite charge track.

one can see, we were succesfully able to suppress π∓K∓K±ντ events. The
impurity is under 15% for all channels except for τ∓ → π∓π∓π±ντ . This is
however, not a problem because if we chose a PID threshold above 0.95 all
backgrounds including τ∓ → π∓π∓π±ντ are well controlled. We therefore
assume that cutting on two tracks is a sufficient minimum requirement.
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Figure 5.7: Same as figure 5.3 but with PID cut on the kaon as well as the
opposite charge.

If we study the performance as shown in figure 5.7, the performance of the
models with cuts on two tracks and different BDT-thresholds is comparable
to that where we applied cuts on three tracks. The purity is slightly less.
For example, for the model represented by the brown ROC curve and with
BDT threshold 0.7 we achieve the highest efficiency of 5% and a purity of
68% compared to 72% purity and same efficiency for the three cut model.
Overall, all fineselections with manual cuts on the PID variables are worse
than including the PID variables in the BDT.
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5.5 Performance Comparison

To make a final statement about this PID-based approach we choose from
each of the three PID-cut strategies explained in the last three sections one
model and compare their performance with ROC curves. In figure 5.8 these
models from all three cut strategies are plotted. For each of the three PID-cut
strategies we chose the model with a BDT-threshold of 0.6 because it yields
a similar high purity as the models with 0.7 BDT-threshold but with a much
higer efficiency. For better comparison we also show the model with the
optimal hyperparameters found in chapter 4 in the plot. A general statement
on the performance between the models from the last three sections is difficult
since all ROC curves intersept. These three models are suitable for different
purposes. If we aim for highest purity, cutting on all three tracks yields the
best performance. If however, we are fine with a bit less purity but instead
more efficiency cutting on the kaon and opposite charged track is preferred. If
we are not interested in purity at all and only aim for highest efficiency, then
only cutting on the kaon track is helpful to maintain the highest efficiency.
This is for example the case when our signal channel is used on the tag side
and we have a perfect model of the signal side. The model trained purely
with BDT and with the tuned hyperparameters however, achieves a much
better performance in both, efficiency as well as purity.
Overall, the approach in chapter 4 yields a significantly better performance
then the PID-based approach illustrated in this chapter. Therefore we
recommend including the PID variables in the BDT even though this might
affect future acceptance corrections. In the following we will thus use the
model trained with the optimal hyperparameters as the overall final model
and will refer to it as the ”best model”.
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Figure 5.8: Performance comparison of the two approaches in this thesis
which are explained in this chapter and chapter 4. The red ROC curve shows
the BDT model that was trained with the kaonIDNN variables and with
tuned hyperparameters in chapter 4. The other curves show the models with
the PID-based approach in this chapter where we apply manually PID-cuts
on the final-state charged tracks while the BDT trains without the kaonIDNN
variables and applies cuts on the other variables. The blue, green and orange
model only differ by the tracks we applied the PID-cuts on which is stated
in the legend.
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Chapter 6

Study of the Best Model

Throughout this chapter we will use the average acceptance as a synonym
for signal efficiency. It is defined as the fraction of events generated by
Monte Carlo simulation that pass through specific selection criteria or rather,
the fraction of events that our BDT-trained model identifies as signal for
given BDT-threshold. In High Energy Physics (HEP) it is crucial to look at
acceptance effects because the detector distorts true underlying distributions
with its limited angular coverage, reconstruction and identification power.
Our Monte Carlo simulation, with which we perform a simulation of the
detector and the physics process, reproduces this acceptance effect, i.e. it
does not have 100% acceptance.
We will now study the best model, i.e. the final selection, by looking at
its acceptance effects 1 as well as background composition and distribution.
First, we will look at the individual background contribution in section 6.1
in the final selection and decide on a threshold tuned to achieve a good
signal purity while maintaining a sufficient efficiency. We will use this BDT
threshold to further analyze acceptance effects and kinematic distributions
in section 6.2 and 6.3 accordingly.

6.1 BDT threshold

Figure 6.1 depicts the split background of the best model. Impurity and total
efficiency are plotted against the BDT threshold. To reduce the background
we have to apply a very hard cut, for example, even for a threshold of 0.95
we still have more than 15% of τ∓ → π∓π∓π±ντ and 11% of qq̄ events in
the selected sample. We decided to go with a threshold of 0.987801 which
yields 80% purity and hence, suppresses the sum of background events to
20%. This decision relies on a purely qualitative judgement. The classical
approach would be to use a figure of merit (FOM) analogous to counter

1Also note, that in this work we exclusively analyze effects of the acceptance, leaving
the correction for further studies.

39



experiments. However, in the PWA analysis it is not so trivial to define a
FOM. Usually it is only possible after PWA to look which threshold would
had been optimal which is not within the scope of this thesis.

Figure 6.1: Efficiency (dashed curve) and impurity from different backgrounds
(solid curves) against the BDT-threshold. The colors indicate different
dominant backgrounds. The vertical line shows the BDT-threshold we chose.

The associated efficiency for 80% purity is 6.7%.
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6.2 Acceptance

For our study having a uniform acceptance is beneficial since it minimizes
the introduction of bias due to event selection and hence, ensures that the
measured angular distribution closely reflects the intrinsic distribution. In
total, it allows to study features across the entire angular range without
worrying about distortions introduced by our selection process.

In the following we will have a closer look at acceptance effects. In section 6.2.1
we introduce the isobar model that our acceptance study is based on. We
then proceed to look at acceptance in different subsystems of our decay. In
section 6.2.2 we look at acceptance effects in the invariant mass of the Kππ,
Kπ and ππ subsystems. Following this, we analyze acceptance in the helicity
angles in section 6.2.3.

6.2.1 Isobar Model and Phasespace Variables

Before analyzing acceptance effects we must first understand the underlying
topologies in this study. We need to do this to define a coordinate system
to study the acceptance in the Kππ phase-space variables. We consider in
particular a 3-body decay of the type:

X → a+ b+ c. (6.1)

For this process we employ the isobar model in which the decay of X happens
via a chain of sequential two-particle decays

X → ξ + c; ξ → a+ b (6.2)

with an intermediate state ξ, called the isobar.

x

x X−

π−

K−

π+ξτ−

ντ

(a)

x

x X−

K−

π−

π+ξτ−

ντ

(b)

Figure 6.2: Isobar model of both topologies used in this analysis. In general
we look at τ → Kππντ decays through resonances X and ξ in intermediate
subsystems. In (a) the isobar ξ0 decays to K−π+, in (b) to π−π+. [courtesy
S.Wallner]

In figure 6.2 we present both topologies for this thesis considering the
isobar model, where ξ decays either to K−π+ (a) or to π−π+ (b). For each
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Table 6.1: Subsystem list with their phase-space variables where the invariant
mass is the sum over the final state particles. The azimuth angle αCMS

τ

defines where τ lays on the cone. The difference between α and ϕ is that
α is defined in the rest frame whereas ϕ in the laboratory frame. The rest
frame, also called center of mass system (CMS) is the rest frame of e+e−.

subsystem Polar Angle Azimuth Angle

ξ → K−π+ cos θK
∓π±

π± ϕK∓π±
π±

ξ → π−π+ cos θπ
−π+

π± ϕπ−π+

π±

τ → Kππ in CMS cos θτ,CMS
Kππ αCMS

τ (≡ ϕ in CMS)

topology we can define a set of 8 phase-space variables fully describing the
process: the invariant masses and the two-body decay angles of each decay
vertex. The direction of a track is often expressed in spherical coordinates
(θ,ϕ). The polar angle θ is the angle between the z-axis and the direction
of the track. The azimuthal angle ϕ is the angle between the x-axis and
the direction of the track. The polar angles is in the range of [0, π] radians
and azimuthal angle is in the range [0, 2π] radians (resp. [−π, π]). In
the following sections we will look at some of the phase-space variables for
different subsystems from these topologies. To make it easier to follow we sum-
marized the discussed subsystems and their phase-space variables in table 6.1.

All histograms in this acceptance section are created with the same binning.
The uncertainties are purely statistical and weighted data are handled by
using squared weights for uncertainty calculation. To determine the average
acceptance, we used two datasets: the overall generated events and those
events that were reconstructed as the 3x1 topology and survived the event
selection. We used only signal MC for the study of acceptance effects. We
analyzed 395,582 actual events from the reconstructed subset and ultimately
selected 63,880 actual events, resulting in an average acceptance of 6.7%.
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6.2.2 Acceptance in mKππ, mK∓π± and mπ∓π±

As described in section 6.2.1 we look at two different topologies and their
subsystems for the decay to the final state of τ∓ → K∓π∓π±ντ . In figure 6.3
the invariant mass distribution of the Kππ system as well as its acceptance
are plotted. We observe two peaks for each, the total generated (blue
histogram) and selected data (orange), at approximately 1270 MeV/c2 as
well as 1400 MeV/c2. As for the acceptance, the ratio is constant on a wide
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Figure 6.3: Invariant mass distribution and acceptance of the subsystem
X− → Kππ. The two peaks in the generated data(blue histogram) corre-
spond to K1(1270) and K1(1400) which were both included in the τ -decay
generator mode. The selected data (orange histogram) follows this course.
The average acceptance is plotted as dashed lines in grey. In total the
acceptance is uniform although for invariant masses below 1.1 GeV/c2 it is
difficult to make a clear statement since the statistical uncertainties are very
high.

region between 1 GeV/c2 and 1.5 GeV/c2. Below and above this region the
acceptance is dropping. It is difficult to make a statement for the region
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below 1 GeV/c2 since the uncertainties are relatively high. Above 1.5 GeV/c2

we see a systematic trend where the acceptance drops. This agrees with the
general expectation: For higher invariant mass the remaining kinetic energy
is less which is why the decay particles are more spherically distributed in
contrast to the jet-like structure of light-particle decays such as our signal.
Since the BDT is also trained with event shape variables it rejects non jet-like
structures. Therefore the acceptance should drop for higher masses.
To evaluate the performance of our event selection the data sample is sufficient
but for future acceptance corrections a larger simulaton sample could be
to used for clarification since more MC data is actually available. We also
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Figure 6.4: Same plot as in figure 6.4 but for the subsystems (a) π∓π± and
(b) K∓π±. For both systems the acceptance is overall uniform although
above 1 GeV/c2 the statistical uncertainty increases and thus a definite
statement is difficult.

looked at the mass distribution of the π∓π± and K∓π± subsystems. The
results are shown in figure 6.4. Again the acceptance is approximately
uniform. For both systems we see a dropping trend of the acceptance in
the region above 1 GeV/c2. However, especially for mK∓π± the statistical
uncertainties increase a lot which is why a definit statements about regions
above 1.2 GeV/c2 cannot be made. In the π∓π± subsystem we don’t observe
a sharp peak as there is no resonance in the simulation. The observed

44



structures are rather kinematic reflexions from the K∓π± resonances because
we stil use the same data, but transform the coordinate system.
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6.2.3 Acceptance in Helicity Angles

Figure 6.5 depicts the distribution in the helicity angles of the π∓π± subsys-
tem. Again binned histograms for the distribution given by the generated
and selected data are created where the latter is the fraction of events that
passed the selection at each angle value. For both helicity angles the ratio,
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Figure 6.5: Acceptance of helicity angles cos θ and ϕ in the ππ subsystem.
The ratio is very constant through all angle values highlighting a very good
acceptance.

the acceptance, is overall approximately uniform.

To sum up, while it is evident that a huge amount of data was rejected
due to our hard BDT-threshold we still gained an approximately uniform
acceptance for both, cos θπ

−π+

π± and ϕπ−π+

π±
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Figure 6.6: 2-dimensional acceptance in both helicity angles of the ππ
subsystem.

In figure 6.6 the 2-dimensional acceptance in cos θπ
−π+

π± and in ϕπ−π+

π± for
the π∓π± subsystem is pictured. We observe no 2-dimensional structure that
could hint for higher or lower acceptance in specific regions which agrees well
with the 1-dimensional observations that the acceptance is overall uniform.

In Appendix A further helicity angle plots analogous to the ones discussed
above are presented for other subsystems (e.g. Kππ, K∓π±). For these
subsystems the overall acceptance is also approximately uniform.

We can also study decay angles of the τ decay in the center of mass
system (CMS) of e−e+ as displayed in figure 6.7. In the real data, we
know the direction of Kππ but not from τ because tauons decay mostly
inside the interaction region of colliding beams. Also, we cannot reconstruct
its 4-momenta, hence its direction, because of the missing ντ information.
Therefore, we have two unknown angles. Nethertheless, we can calculate one
angle through the information about energy and momentum of the τ particle
which is cos θ between the Kππ and the τ direction. We know that in the
CMS system each τ from a τ -pair has half of the avaible energy. Through
the energy-momentum relation we therefore also know the magnitude of the
momentum. We can also define αCMS

τ as the angle in the CMS frame that
defines where our τ lays on the cone around the X-resonance. In figure 6.7
(a) we see that all events outside of the range between cos θτ,CMS

Kππ = 0.97

and cos θτ,CMS
Kππ = 1.00 were rejected. We also observe that the acceptance in

αCMS
τ is approximately uniform between −π and π.

Since cos θτ,CMS
Kππ is defined in the e+e− restframe it is related to the thrust,

47



0.0

0.5

1.0

E
ve

n
ts

/
0.

50
×

10
−

3

×105

0.90 0.95 1.00

cos θτ,CMS
Kππ

0.00

0.05

0.10

0.15

R
at

io

(a)

0.0

0.5

1.0

E
ve

n
ts

/
0.

03
1

×104

−2 0 2

αCMS
τ

0.00

0.05

0.10

0.15

R
at

io

(b)

Figure 6.7: Acceptance of helicity angles for the subsystem τ → Kππ in the
center of mass system (CMS). The high acceptance for cos θ between 0.97
and 1 stems from the relation between cos θ and thrust in the CMS frame.
α is well accepted over all angle values between π and −π.

which is why we have a non-uniform acceptance between cos θτ,CMS
Kππ = 0.97

and cos θτ,CMS
Kππ = 1.00, a region corresponding to a jet like τ decay.

Overall, no strong acceptance effects are visible since the acceptance for
all phase space variables is approximately uniform. This is a very good
result for future acceptance corrections as it won’t require big corrections
and uncertainties.
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6.3 Study of Background

In the second part of this chapter we study the background composition
and distribution in the phase space variables for the best model to see its
localization. The motivation behind this is that in the PWA we also model
background. Therefore, it is important to understand its behaviour including
which backgrounds are present, how they are located and if we can thus
conclude how well the background differs from signal in the PWA fit, i.e.
whether we can cut it out.
In table 6.2 the weighted number of events of signal and of the different
backgrounds in the selected sample are listed. As mentioned in the intro-

Table 6.2: Weighted number of events in the selected sample, i.e. all events
that survived our fineselection

Channels # events # fraction[%]

total 159,187 100.0

signal 127,991 80.4

π∓π∓π±ντ 10,144 6.4

qq̄ 4,688 2.9

π∓K∓K±ντ 3,382 2.1

π∓π0ντ 3,281 2.1

K∓π∓π±π0ντ 3,055 1.9

K∓ω(→ π∓π±π0)ντ 2,991 1.9

other tauBkg 1,763 1.1

other 965 0.6

π∓π±π0ντ 923 0.6

duction the τ∓ → π∓π∓π±ντ is the dominant background which did not
change after the fineselection. However we were succesfully able to suppress
it from over 36% in the actual training sample to 6.4% after fineselection.
The amount of the other backgrounds are also just as expected except for
π∓π0 which has an unusual high presentation. We therefore studied which
particle it originated from and its decay to understand whether this high
presentation is a fake rate or real distribution. We found that this decay
stems from photon conversion (BR(98.823± 0.034)%) and the direct decay
π0 → e+e−γ (BR(1.174± 0.035)%) where the branching fractions are taken
from PDG and are the dominat decays for π∓π0 [27].
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6.3.1 2D Distribution Before and After Fineselection

Figure 6.8 depicts the relationship between thrust and visible energy in the
center-of-mass frame. Panel (a) shows the distribution before fineselection.
Panel (b) displays the distribution after applying the full set of fineselection
criteria. In panel (a) of figure 6.8, the distribution of signal events exhibits

total signal tauBkg qqbar otherx x

(a)

total signal tauBkg qqbar other

(b)

Figure 6.8: ECMS
vis vs thrust after preselection cuts (a) and after fineselection

cuts (b) for dominant decays.

a characteristic banana-like shape. The other τ decays also follow this
characteristic shape. During training, the Boosted Decision Tree learned to
effectively isolate this signal by placing cuts within the feature space. As
a result, in panel (b), the background events remaining after applying the
BDT cut have a distribution more similar to the signal than observed before
the cut. Non-τ decays such as qq̄ or ’other’ don’t follow this shape which is
why a huge amount of these decays were rejected during training. This is
visible in panel (b).

Overall,the BDT model was succesful in identifying and isolating signal from
background.

We observe similar behaviour in figure 6.9 and 6.10 for the variables θCMS
miss.

against mmiss. and θCMS
miss. against |−→p |CMS

miss. , respectively.
In Appendix B we added more plots highlighting the kinematic distribution
of the backgrounds in the phase space variables.
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Figure 6.9: Same as figure 6.8 but for θCMS
miss. against mmiss.. Missing mass

is distributed over all angles and is accumulated near 0 GeV/c2 meaning the
missing neutrino could propagate in any direction without favourism.
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Figure 6.10: Same as figure 6.8 but for θCMS
miss. against |−→p |CMS

miss. . In the signal
channel, the missing momentum primarily accumulates between 1 and 4
GeV/c and exhibits a relatively uniform angular distribution. The BDT
succesfully isolated this shape.
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6.3.2 Mass Distribution

In figure 6.11 we show the invariant mass distribution of signal and back-
ground after the final selection. The invariant mass is distributed between

1 2

mKππ [GeV/c2]

102

103

104

E
ve

n
ts

/
0.

02
5

G
eV

total

signal

tauBkg

qqbar

other

π−K−K+ν

π−π0ν

π−π−π+ν

Figure 6.11: Invariant mass distribution after fineselection with logarithmic
y-axis and background distribution. Signal contributes the most to the
distribution.

approximately 0.9 GeV/c2 and 1.8 GeV/c2. The contribution of signal events
make up most of the mass distribution. TauBkg, qq̄ and π∓K∓K± dominate
as main background noise in the lower phase-space region, π∓π∓π±ν on the
other hand, in the higher area. The unusual, relatively high presentation
of τ− → π−π0 stems from photon conversion and the direct decay of π0 to
e+e−γ as explained in section 6.3.
Overall, the BDT was succesful in selecting signal events although events
with a similar shape to signal survived.

In figure 6.12 the main background noise for the mass distribution of the
two subsystems ππ and Kπ after fineselection is displayed. We can identify
some interesting peaks for each channel. In m(ππ) the tauBkg shows a broad
distribution and a peak at about 0.5 GeV/c2 originating from Ks → π−π+

in τ∓ → π∓Ksντ decays. In the K∓π± subsystem the π∓π0 background
peaks at around 0.63 GeV/c2, the phase-space limit. We can explain this
observation with the wrong mass hypothesis in which we assume that K∓π±

is the right spectrum. If not we falsify the masses, so, when photon conversion
appears and we expect an invariant mass of 0 GeV/c2 it corresponds to the
minimum energy in the subsystems which is the invariant mass of K∓π±.

To sum up our observations, the background has similar shape as signal.
We see that the background decays are each broadly distributed within the
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Figure 6.12: Invariant mass distribution of π∓π± and K∓π± subsystems with
split background where the most dominant ones are separately presented.
The background channels contribute to different regions within the phase-
space, e.g. τ∓ → π∓π∓π±ντ contributes to the higher region, tauBkg on the
other hand to the lower area. qq̄ is evenly distributed but tends a bit more
to the lower region. π−π0 peaks at the lower phase-space limit in K−π+

subsystems as expected due to the wrong mass hypothesis.

phase space although a general localization trend in all three invariant mass
systems is visible.
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Chapter 7

Conclusion and Outlook

We developed a BDT-based approach to select a pure sample of τ →
K∓π∓π±ντ events, estimated its selection efficiency, studied the expected
backgrounds and studied acceptance effects on the the best model.

To this end, we trained a BDT classifier to distinguish signal decays from
various background processes. We gave the BDT input variables that contain
information about event shape, particle identification of e.g. π or kaons and
vertex reconstruction details.
In our first approach we explored three sets of hyperparameters to select
signal events with sufficient efficiency and purity:

1. Default hyperparameters: We used the default hyperparameter values
provided by the LightGBM library [7, 3].

2. Hyperparameters of τ∓ → π∓π∓π±ντ analysis: We used the hyperparam-
eter values employed in the τ∓ → π∓π∓π±ντ analysis without adjustments.

3. Hyperparameter optimization: We performed hyperparameter optimiza-
tion with the framework Optuna [1] to find the best hyperparameters for
our specific signal decay. We created different models which differed by their
number of iterations since this hyperparameter has the highest influence on
the performance and found that by tuning the hyperparameters we achieve
the best trade-off between purity and efficiency and best control of overfitting.
We therefore recommend tuning the hyperparameters mentioned in table 3.2
rightaway.

In our second approach we tested an alternative event selection method where
we didn’t include the PID variables in the BDT training. This alternative
approach has the advantage that it simplifies future acceptance corrections,
since incorporating PID variables into the BDT can complicate these correc-
tions. Here, we trained a BDT using the optimized hyperparameters, but
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excluded the PID variables. Instead, we applied manual cuts directly to the
PID variables. This approach involved a combined BDT and PID cut. The
selection performance for this approach was significantly worse compared to
the purely BDT-based method.

To sum up, after we evaluated the performance of both used approaches using
ROC curves and studying background proportions our analysis revealed that
employing a purely BDT-based event selection method with tuned hyper-
parameters and incorporating PID variables yielded the best efficiency and
purity.

For the overall best model,i.e. the final selection, we analyzed the back-
ground composition and distribution obtained. We chose the BDT threshold
0.987801 that leaves a background contamination below 20% in the final
sample and results in a total efficiency of 6.7%. Achieving higher purity
would significantly compromise signal efficiency.

We initially assumed that using very strict selection criteria might lead
to strong acceptance effects. However, we were surprised to find that the
acceptance in the phase space variables, i.e. the invariant masses and helicity
angles, are remarkably uniform. We looked at the invariant mass distribution
for different subsystems of both topologies mentioned in section 6.2.1 and
found that for π−π+ and K−π+ the acceptance is overall uniform within the
phase-space although for some corners the MC sample is too small to make
a definite statement. A clarification would require utilizing the full dataset
which can be done in the future. In total however, our final model is very
well suited for PWA.

In 2010, the Belle Collaboration published a measurement of branching frac-
tions for τ− → h−h−h+ντ [18] where h∓ is either a kaon or π. Their study
is based on a data set of 666fb−1 with a cut-based event selection. They
achieved an efficiency of (18.00±0.05)% for reconstructing τ∓ → K∓π∓π±ντ
decays. Since their purity was not explicitly stated, we approximated it from
the provided reconstructed mass distribution for the Kππ system (Figure
10(b) in [18]). Based on this approximation, we estimated the purity of 30%.
Chosing a threshold for our final model that yields the same purity (see figure
4.8) we achieve an efficiency of 27%. This shows a significant improvement
compared to their cut-based approach.

Our findings align with the general expectation that machine learning algo-
rithms can outperform manual cuts (discussed in Chapter 5). Certainly the
improved Belle II detector also contributes to the performance.

While our results are promising, there is still room for further improvement.
Usually the quantitative and standardized approach to threshold selection
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is through a figure of merit (FOM). However, our decision regarding the
purity-efficiency trade-off was primarily based on qualitative judgment be-
cause contrary to counter-experiments it is not trivial to define a FOM. Only
after PWA it is possible to find out the optimal threshold. Another potential
area for exploration involves incorporating other hyperparameters into the
hyperparameter optimization process. However, significant differences are
not expected based on the saturation effect observed in section 4.2. Deep
learning is emerging as popular alternative to BDTs, potentially offering
even better performance. Currently an alternative approach to BDTs with
TabNet for τ∓ → π∓π∓π±ντ is being conducted at Belle II as part of a
Bachelor’s thesis [12]. This approach also holds promise for application to
the τ∓ → K∓π∓π±ντ decay.
Another important step moving forward is the implementation and evalua-
tion of acceptance corrections. This is necessary in order to use the selected
sample in a Partial Wave Analysis.
In total, this work establishes a foundation for event selection for the
τ∓ → K∓π∓π±ντ decay at Belle II and can be well used for further PWA.
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Appendix A

Acceptance Effects

In this chapter we provide more plots of acceptance in different variables.
In section A.1 the acceptance in energy and transversal momentum of the
3-prong decay are shown. In section A.2 the acceptance in the helicity angles
of the K∓π± system are shown. In section A.3 the helicity angles of the
Kππ system with π∓π± and K∓π± topology are plotted. In section A.4
the acceptance in the helicity angles between τ and the Kππ system are
displayed. In section A.5 the 2-dimensional acceptance for different variables
is shown and in section A.6 the acceptance in 1-prong energy and transversal
momentum.
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A.1 3-Prong Energy and Momentum in CMS
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Figure A.1: Three prong energy (a) and transversal momentum (b) in the
center of mass frame where the orange histogram represents the selected
events whereas the blue one shows events after preselection. The ratio on
the lower panel is the acceptance and the dashed line in grey indicates the
average acceptance. Here, we only look at the acceptance relative to the
preselection because the illustrated quantities don’t have MC truth.
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A.2 Helicity Angles of Kπ Final State
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Figure A.2: Helicity angles (a) cos θK
∓π±

π∓ and (b) ϕK∓π±
π∓ in the Kπ topology

where the orange histogram represents the selected events whereas the blue
one shows all generated events. The ratio on the lower panel is the acceptance
and the dashed line in grey indicates the average acceptance.
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Figure A.3: 2-dimensional acceptance between the helicity angles in the Kπ
subsystem.

A.3 Acceptance in Kππ Final State in ππ and Kπ

Topology
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Figure A.4: Same as figure A.3 but for the Kππ final state in the ππ topology.
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Figure A.5: Same as figure A.2 but for the Kππ final state in the ππ topology.
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Figure A.6: Same as figure A.3 but for the Kππ final state in the Kπ
topology.
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Figure A.7: Same as figure A.5 but in the Kπ topology.
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A.4 Acceptance in τ for Kππ Final State
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Figure A.8: Same as figure A.3 but between τ and the Kππ system.
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Figure A.9: Same as figure A.2 but for the helicity angles between τ and
Kππ in the τ rest frame.
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A.5 Acceptance in 2-Dimensions
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Figure A.10: 2-dimensional acceptance in different variables: (a) θCMS
miss.

against mmiss., (b) θCMS
miss. against |p⃗|CMS

miss. , (c) ECMS
vis against thrust. Here,

only the acceptance relative to the preselection is shown because variables
like thrust don’t have MC truth.
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A.6 1-Prong Energy and Momentum in CMS
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Figure A.11: Same as figure A.1 but for 1-prong.
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Appendix B

Background Distribution in
the Helicity Angles

In this chapter we show the background distribution in the helicity angles
for different subsystems. In section B.1 we show the helicity angles in the
ππ topology, in B.2 in the Kπ topology. In section B.3 we show the helicity
angles in the Kππ subsystem in the ππ topology, in B.3 we show the same
but in the Kπ topology. The angles with a tilde above are an alternative
definition of the respective helicity angle where the τ direction, which is
important for some helicity angle calculation, is not known. We can calculate
the angles with a tilde above on the real data. While they have no direct
physical meaning they still give an impression of the distribution in the phase
space of the respective final state.
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B.1 Background Distribution in the Helicity An-
gles ππ Subsystem
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Figure B.1: Background distribution in the helicity angles for the ππ final
state in the selected sample. The ϕ̃ is an alternative definition for the helicity
angle ϕ but without the knowledge of τ direction.
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B.2 Background Distribution in the Helicity An-
gles Kπ Subsystem
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Figure B.2: Same as figure B.1 but for the Kπ final state.
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B.3 Background Distribution in the Helicity An-
gles Kππ Subsystem from ππ Topology
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Figure B.3: Same as figure B.1 but for the Kππ final state in the ππ topology.
Also, the alternative definition of cos θ is shown in the plot.
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B.4 Background Distribution in the Helicity An-
gles Kππ Subsystem fron Kπ Topology
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Figure B.4: Same as figure B.3 but for the Kππ final state in the Kπ
topology.
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