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Abstract
This study aims to utilize a Convolutional Neural Network (CNN) to retrieve merged π0

mesons lost in the Belle II experiment, where they appear as individual photons. The issue

arises when dealing with high momentum π0 mesons, i.e., beyond 2 GeV in the Belle II

experiment, as the shower produced by both the π0 meson and gamma appear indistinguish-

able at the Electromagnetic Calorimeter (ECL) detector. Currently, reconstruction software

is utilized to match photon pairs created by the π0 → γγ decay; however, the efficiency

of this process can be affected by the γ produced by the rest of the events (ROEs), which

mimic the signal. One of the most challenging tasks in particle physics research is accu-

rately identifying and reconstructing subatomic particles. By the nature of the problem and

its importance, accurate reconstruction of π0 mesons is crucial for identifying various B/D

meson decays, including rare decays like D0 → γγ
(
8.5×10−7) ,D0 → ρ0γ

(
10−5) , and

D0 → φγ
(
10−5). These rare decays have dominant background arising from decays like

D0 → Ksπ
0 (1.24×10−2) ,D0 → π0π0 (8.26×10−4) , and D0 → φπ0 (1.17×10−3).

The Convolutional Neural Networks performed reasonably well on a test dataset, which

is identical to real scenarios, achieving an area under the curve (AUC) of 0.86 for the

Precision-Recall curve. These results demonstrate the potential of machine learning (ML)

algorithms and highlight areas for improvement in the current work to enhance the effi-

ciency of identifying π0 particles with energy deposits in the ECL. The findings suggest

that the ‘raw’ ECL images contain much more information than currently used expert-

engineered features.

Disclaimer:- This master thesis solely focuses on the barrel region of the ECL detector

within the Belle II Experiment. Furthermore, all the results presented in this work are based

on Monte Carlo simulations.
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Chapter 1

Introduction

Science emerged as a human endeavor to systematically understand and explore the natural

world. From ancient times, humans have sought to understand the world around them. This

quest for knowledge has led to the development of various scientific disciplines, one of

them being particle physics.

Particle physics aims to understand the universe at the subatomic level through the study

of elementary particles and their interactions. To the extent of our current level of explo-

ration, the fundamental structure of matter and forces are encapsulated in the theoretical

framework known as the Standard Model of particle physics. Particle Physicists try to test

and predict the accuracy of the SM predictions experimentally through three primary ap-

proaches characterized as cosmic, energy, and intensity frontier. Through these approaches,

they also tried to answer the questions unanswered within the standard Model framework,

such as “why is there an observed matter-antimatter symmetry in the universe?” Although

the CP violation observed in the quark sector is insufficient to explain the prevalence of mat-

ter in the universe, it suggests that undiscovered sources of CP violation may exist beyond

what is currently understood.

In order to push the boundaries of the current SM and delve into the realm of physics be-

yond the SM, it is imperative to persist with the aforementioned experimental approaches.

Among the numerous ongoing experiments in particle physics, The Belle II Experiment

emerges as a prominent contender operating at the intensity frontier. The goal of this ex-

periment is to search for new physics beyond the SM, and one of the ways is by exploring

the rare decays with unprecedented precision. In experiments like Belle II, understanding

the underlying physics principles governing particle interactions requires a stage known

as particle identification, a fundamental step in performing physics analyses. This method

entails using sub-detectors at various levels to identify the stable particles produced during

the experiment, which are then used to reconstruct intermediate particles involved in the

events. Chapter 3 provides a comprehensive overview of particle physics experiments, with
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a particular focus on the Belle II experiment.

This thesis addresses a challenging problem in particle identification, which involves

recognizing high momentum π0 clusters that imitate γ clusters in the Electromagnetic

Calorimeter at the Belle II experiment. The work focuses on using the neural network

known as CNNs. CNNs possess unique features, including automatic feature extraction,

parameter sharing, and translation invariance, making them a potent tool for analyzing large

datasets. They excel in tasks such as image recognition, where specific features may only

appear in some areas of an image. The network can also capture local connectivity in the

data, providing spatial relationships between neighboring pixels. Its implementation and

architecture are discussed in more detail in Chapter 5.

Currently, neutral particle identification of particles like γ and neutral hadrons is made

using the concept of the likelihood function, i.e., based on the kinematics, shower shape

variables, and timing information, which is carefully calibrated using known particles and

continually refined to improve the accuracy of the PID step. For the high momentum π0

mesons in the decay mode π0 → γγ , i.e., energies above about 2.5 GeV, e.g., from B →
π0π0, identification relies on multivariate classifiers and the π0 reconstruction is based on

the combination two photon candidates. But in the case of high energies, as given above,

the two photon-induced showers do not have separate maxima and are often reconstructed

as one photon candidate [9]. A more detailed explanation is given in Chapter 2.

The work in this thesis is done to improve the identification of above mentioned high

momentum π0 just by taking raw energy information stored in the ECL crystals of the

Belle II detector with the help of a neural network rather using expert-engineered features

like showers second-moment shape variable in the case of π0.

Starting from Chapter 2, the physics motivation and a brief overview of how this prob-

lem could be approached through CNNs are discussed. Chapter 3 discusses the Belle II

experiment, its sub-detector components, and, more importantly, ECL. Then in the central

part of the thesis, i.e., in Chapter 4, which discusses data generation through Monte-Carlo

simulation and its selection using modules of the basf2 and ROOT software. After that,

in Chapter 6, the behavior of our model is checked under different setups, and finally, the

performance of the model through simulated data with beam background collected only in

the Barrel region of the ECL detector is measured and also compared its performance with

basf2 by the help of a toy model discussed in the same section. Chapter 7 presents the

ultimate outcomes of the research and explores the broader implications of the findings.

Additionally, the chapter discusses potential enhancements to the research in various areas

related to the Belle II experiment.
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Chapter 2

Physics Overview & Motivation

Through particle physics, we have made significant progress in gaining a basic understand-

ing of our surroundings with the help of the Standard Model (SM). The SM is considered

the best-tested theory of nature at a fundamental level due to its current level of experimen-

tal precision and the energies it has reached so far.

2.1 The Standard Model

A well-known quantum theory called the Standard Model (SM) interprets the behavior of

subatomic particles by considering them to be excited quantum fields. Fermions and bosons

are the two types of particles that are categorized by the SM. The building components of

matter, known as fermions, have half-integer spin and adhere to the Fermi-Dirac statistics.

The interactions between fermions are mediated by bosons, which have integer spin and

adhere to the Bose-Einstein statistics. In accordance with the Standard Model (SM), there

are three basic forces1:

1. Electromagnetic force:- carried by photons(γ)

2. Weak force:- carried by the Z, W+, and W− bosons

3. Strong force:- carried by gluons.

Finally, the most recent discovery includes Higgs boson into SM, which gives mass to

elementary particles through the Higgs mechanism.

The fermions can further be classified into leptons (ℓ) and quarks (q). Quarks are non-

integer charge charged particles that can only exist in bound states known as hadrons (h).

Quarks have two different types of known bound states: mesons, which are restricted states

1The reconciliation of gravity with quantum mechanics is still pending and it is not currently regarded as

a component of the SM.
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of one quark and one antiquark, and baryons, which are confined states of three quarks.

Quarks come in six different flavors (up (u), down (d), charm (c), strange (s), top (t), and

bottom (b)), and they vary, for instance, in mass. Leptons can not feel a strong force, but

quarks may interact through all the basic forces. The electron (e), muon (µ), and tau (τ) are

three negatively charged leptons, whereas the neutrinos are three neutral leptons that are

each associated with a charged lepton (ν).

The below-mentioned Figure 2.1 provides an overview of the fundamental properties of the

particles in the SM and depicts the potential interactions that can occur among them.

(a) Standard Model of Elementary Particles (b) Elementary particle interactions in the Standard

Model.

Figure 2.1: The Standard Model: The SM consists of 12 fermions and 5 bosons. (a) shows

the elementary particles grouped by their fundamental physical properties. The lines in the

picture (b) represent possible interactions between the SM particles. Both figures adapted

from [4, 11].

As illustrated in Figure 2.1, the elementary fermions comprise only three generations.

The first generation comprises up and down quarks, electrons, and electron neutrinos, which

are relatively long-lived and constitute a significant proportion of visible matter. The charm

and strange quarks and top and bottom quarks form the second and third generations, re-

spectively, with their corresponding leptons. These fermions have a larger mass and can

decay into lighter particles via weak force.

The SM provides guidelines for permissible conversions and decays among particles

through quantum number conservation laws, and the likelihood of a specific decay occur-

rence is provided by its branching ratio (BR)2. Decays of elementary particles are of great
2Branching Ratio is the probability of a particular decay process occurring for a particle relative to all the

possible decay modes available to that particle.
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interest. Precise measurements of BR and particle lifetimes are valuable checks for SM

and its conservation laws like CP. While doing so puts us on a stage of finding the new

physics behind the SM.

2.2 B Physics

Flavor physics experiments primarily work on the intensity frontier emerged as a new sector

in particle physics, aiming for the indirect search for dark matter and the mechanism and

sources behind the CP violation. Exploring flavor physics offers an opportunity to gain

knowledge about the characteristics of new physics at the TeV scale, which is not feasible

through the direct production of particles at the CERN Large Hadron Collider (LHC) due

to the influence of quantum effects, which enable virtual particles to modify the outcome

of precise measurements in ways that reveal the underlying physics [6].

As precise measurements are crucial to uncovering new physics beyond the Standard

Model, probing this B physics from the flavor sector has emerged as a significant area of

study in particle physics, primarily focused on demonstrating the consistency of the CKM

mechanism and exploring rare decays through precise measurements. Historical examples,

such as beta decay, have shown that discoveries in rare processes can lead to a deeper

understanding of nature. For ex., the observation of the W boson was ultimately predicted

by beta decay, which provided insight into the electroweak mass scale.

B physics, also known as “beauty physics”, mainly deals with the study of particles

containing the bottom quark (also called beauty quark). The two main experiments which

provide insights towards this are the KEKB collider for the Belle experiment3 at KEK and

the PEPII collider for the BaBar experiment at SLAC also known as B factories.

The two current B factories have contributed significantly to the confirmation of the

quark mixing pattern proposed by CKM and the identification of new processes. Some

recent results from these prove to be difficult to explain within the SM, such as the values of

the angle φ1 measured in some penguin process b → sqq̄ and the precisely measured value

in B → J/ψK0
S differ by two to three standard deviations (B0 → π0π0K0

S , B0 → K+K−K0)

[3] and may suggest the existence of a new CP phase in this penguin process.

In search of other sources of CP-violating processes through the above experiments,

Neutral B meson mixings are one of the most important FCNC processes in B physics.

In the Standard Model, the Bd − B̄d mixing involves the CKM matrix element Vtd and

thus gives a CP violating amplitude, which induces a variety of CP-violating observables

through its quantum mechanical interference with other amplitudes. On the other side, in-

3This thesis work is based on the Super KEKB collider known as Belle II experiment, upgraded version

of KEKB collider described in Chapter 3 .
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direct CP-violation results from the quantum mechanical interference of the mixing and

decay amplitudes. There are several ways to estimate the angles of the Unitarity Trian-

gle, thanks to the mixing-induced asymmetry. So to prove this, measurement of sin2φ1

through various processes and decay modes involving many rare decays to a precision

level is important e.g. At the hadron level, the corresponding modes are B0 → φKs and

B0 → η ′Ks, B0 → KSKSKS,B0 → π0KS,B0 → ρ0KS,B0 → ωKS, etc. The CP phases can

also be obtained through D meson intermediate states. e.g., The angle φ3 can be obtained

by measuring the interference among different decay amplitudes in B → Dπ and DK de-

cays [3]. This can involve the study of many rare decays like D0 → γγ
(
8.5×10−7) ,D0 →

ρ0γ
(
10−5) ,D0 → φγ

(
10−5), etc. where the dominant background arises from D0 →

Ksπ
0 (1.24×10−2) ,D0 → π0π0 (8.26×10−4) ,D0 → φπ0 (1.17×10−3) this decays4.

The above-provided examples of the rare decays which are crucial to CP measurements

mainly involve π0 and γ , and also approximately one-third of the B-decay products consist

of π0’s or other neutral particles that generate photons across a broad energy spectrum

ranging from 20 MeV to 4 GeV [2]. So to conduct various B physics analyses for the Belle

II experiment, it is crucial to distinguish neutral hadrons such as π0’s that imitate γ in the

range of high momentum5.

2.3 π0 Meson

The π0 meson, known as the neutral pion, is one of particle physics’s lightest and most

fundamental particles. It is a neutral meson composed of two quarks - an up quark and

an anti-up quark, or a down quark and an anti-down quark, bound together by the strong

nuclear force. It has a mass of 135.0 MeV/c2 and a mean lifetime of 8.5×10−17 sec [12].

The π0 meson has a crucial role in strong nuclear interactions. It is produced during

high-energy particle collisions, such as in B factories, where positrons and electrons are in-

volved. Additionally, it is also associated with the decay of several other particles, including

numerous hadrons like D0, B0, ρ → π0γ , and η → π0π0, etc.

One of the unique features of the π0 meson is its decay mode. The π0 meson decays

almost exclusively into two photons due to its spin and parity properties. It decays through

the electromagnetic force, which explains why its mean lifespan is substantially shorter

than the charged pion’s (which can only decay via the weak force).

4The mentioned value in bracket is the branching fraction of the corresponding decays.
5The focus of this thesis work is on the energy range above 2.5 GeV/c, which is considered sufficient for

studying the imitation of π0 into single gamma in the Belle II experiment. [9]
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2.3.1 Decay of π0 into two gammas

Figure 2.2: A general decay scheme of π0 which has a branching ratio of 98%.

Let’s take a given π0 has a velocity v and mass m that goes into two gammas with angular

separation θ , i.e., θ1 +θ2.

Rest Mass of a π0(mπ0) = 135 Mev/c2

Rest Mass of a γ = 0

Therefore, Total Energy of a γ = KEγ

From momentum conservation, in the x and y direction

Pπ◦ = Pγ1 cosθ1 +Pγ2 cosθ2 (2.1)

Pγ1 sinθ1 = Pγ2 sinθ2 (2.2)

From Energy Conservation,

Etotal(π0) = Eγ1 +Eγ2 (2.3)

In natural units, where c = 1, the Energy-Mass relation is

E2
total = P2 +m2

0 (2.4)

where m0 is the rest mass.

For θ1 = θ2,

Upon Solving eq 2.1 & 2.2 and using eq 2.3 to substitute the result in eq 2.4, we get,

cosθ =
Pπ0√

mπ0 +P2
π0

(2.5)

which gives the desired relation between angular separation and momentum of the pion(π0).

The above relation gives us the plot as shown in figure 2.2, and it clearly shows that for

momentum above 2.5 Gev/c, the decay angle almost approaches less than 7◦. So, in general,

at high momentum range, both the gamma’s of the π0 appears to be merged, and therefore

shower of π0 looks like a shower of one gamma to a detector, and this is the domain of our

problem in this thesis.
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Figure 2.3: Plot between momentum of π0 and its decay angle.

2.4 Particle Identification

Particle identification is a crucial component of High Energy Physics investigations in

which the 4-momenta of secondary particles must be determined. Particle 3-momenta are

typically acquired by detecting their trajectory deflection in a magnetic field. The mass,

energy, or velocity is then calculated to get the value of the fourth component of the four-

momentum. As it uniquely identifies the internal quantum numbers of particles based on

their mass, this measurement is known as “particle identification.”

In a standard particle physics experiment like SuperKEKB or LHCb, particles are iden-

tified based on their identifiable signatures left in the detector [10]. These detectors are

divided into a set of components where each component tests for a specific set of particle

properties to get the 4-momenta of the particles produced in a collision with the help of

different methods like tracking, time-of-flight, Cherenkov radiation, and calorimetry.

This thesis study involves the identification of π0 and γ , neutral particles that do not

leave visible traces or tracks in a detector. Detecting these particles relies solely on mea-

suring their energy, achieved using calorimetry.

2.4.1 In the Belle II Experiment

The Belle experiment utilizes the Electromagnetic Calorimeter (ECL) to achieve optimal

resolution and efficiency in reconstructing the energy and position of deposition from neu-

tral and charged particles. Using the clustering code of release 00-05-03 (MC5) photon
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energy resolution and photon reconstruction efficiency for different background levels in

the Barrel region of ECL is shown in figure 2.4 [9].

(a) Photon energy resolution as a function of true

photon energy.

(b) ECL reconstruction efficiency for single pho-

tons for different background levels.

Figure 2.4: Efficiency plots related to (a)photon energy (b) and its reconstruction in the

barrel region of the ECL detector of the Belle II. Both figures adapted from [9].

Particle identification is carried out by analyzing shower shape variables and tracks

matched to clusters, allowing for the identification of various particles such as electrons,

muons, charged and neutral hadrons, and photons.

As for neutral particles in the Belle II experiment, the only source of information is

ECL, which gives us energy and the hit position of a particle, and using a combination

of these gives different variables like Zernike moments, Lateral moment(LAT), E9oE21,

Highest energy crystal, Cluster Id, etc. [5]. These variables are used for the purpose of

identification. In addition, the Belle II experiment uses a shower second-moment shape

variable in the case of merged π0 mesons, where two photons can not be separated into two

different clusters.

Our Approach

Our approach involves directly identifying a π0 shower that looks like a gamma shower by

using energy deposited in the ECL crystals for each shower in the barrel region of ECL.

Just by using raw energy information from the crystals and the position of the crystal that

has the highest energy (known as seed crystal) for each affected crystal per event and took

this energy as pixel intensity. So that we can have an image structure per shower per event

to deploy the ML model, i.e., CNNs. A general layout of our method is shown in figure 2.5.
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Figure 2.5: Schematic of how to deploy CNNs.

Note:- Our region of study is only the barrel area of the ECL detector, as endcaps are

very irregular. Due to this, there is a chance that we can’t get a uniform structure for energy

deposition because of large leakage through the in-between gaps of ECL crystals. Also, we

can’t have the same resolution in energy measurements of photons (particles of interest in

our case) compared to the barrel region used in our study.
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Chapter 3

The Belle II Experiment

The Belle II experiment, as described, works primarily for the flavor sector of particle

physics, performed with the help of the SuperKEKB accelerator at KEK in Tsukuba, Japan.

SuperKEKB is a two-ring, asymmetric energy, e+e− collider. It accelerates asymmetric

electron and positron beams with energies 7 GeV and 4 GeV, respectively, along its 3 km

circumference ring to collide with a center of mass energy equal to the mass of the γ(4s)

resonance1, i.e., 10.58 GeV. The two rings, respectively known as the High Energy Ring

(HER) and Low Energy Ring (LER), are made to cross at the point called Interaction point

(IP), where the Belle II detector was installed to measure various particles and their effects

produced from the collision. A layout of the SuperKEKB accelerator and a 3D model of

the Belle II detector is shown in Figure 3.1.

Figure 3.1: The SuperKEKB accelerator along with a 3D view of Belle II Detector. Figure

adapted from [1].

1The resonance is an excited state in the bottonium spectrum.
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Belle II detector is designed to hold on to the experiments at extremely high luminosity,

i.e., 8× 1035cm−2s−1, which is 40 times higher than the previous Belle experiment. It

retains the framework and certain elements of its predecessor, Belle, but all its sub-detectors

are upgraded. One of the unique features of this experiment is that it produces a very clean

sample of B0B̄0 pairs in a quantum correlated 1−− state, and due to a large amount of B

meson production it referred to as B-factory. A general production scheme of Belle II is

shown below:

e+e− → γ(4S)→ BB̄ cross-section = 1.2 nb (3.1)

Also Continuum-events e+e− → qq̄ where q ∈ {c,s,d,u} also occur with a production

cross-section of 2.8 nb.

3.1 Belle II Detectors

The Belle II detector consists of concentric layers of sub-detectors stacked around the in-

teraction region at different levels. To fully reconstruct events, each sub-detector has a

unique function and contributes broadly into three categories: tracking, calorimetry, and

particle identification. Tracking detectors provide information on position and momentum;

calorimetry enables the measurement of energy, while data on energy loss and penetration

depth aids in particle identification. The various components of the Belle II detectors are

described below:

Vertex Detector (VXD)

It is in the innermost part of the Belle II detector that consists of two sub-devices, silicon

pixel detector (PXD) and silicon vertex detector (SVD), with a total of Six layers around

the beam pipe (radius = 10 mm). The first two layers make up the PXD with a cylindrical

assembly of rectangular-shaped modules containing arrays of depleted field effect transis-

tors (DEPFET). The next four layers consist of double-sided silicon strip sensors, which

make up the SVD. Both PXD and SVD task is to measure the spatial location of charged

particles emitted from the IP and help in the precise measurement of the decay vertex of

particles that decay within the radius of the beam pipe, such as B mesons. The first two

layers are different from the next ones to provide high granularity pixel detectors, as larger

beam backgrounds are expected at the IP region.

Central Drift Chamber (CDC)

After PXD and SVD, the next sub-detector is CDC consists of sense and field wires parallel

to the beam direction, contributing to fully reconstructing a three-dimensional (3D) helix
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track with the combined information from PXD and SVD. It also measures the energy

losses from the particles.

Particle Identification System (TOP and ARICH)

The time-of-propagation (TOP) surrounds the CDC from the barrel region, i.e., parallel

to the beam pipe, and aerogel ring-imaging Cherenkov detector counters (ARICH) covers

the endcap region. Both have aerogels in which Cherenkov photons are created when a

particle passes through them. In TOP, these photons are guided through a quartz radiator

that forms the image in a ring and helps in PID by using the arrival time and position of

these Cherenkov photons to determine the mass of the incident particle, whereas in ARICH,

photons rings are formed on the detector surface, i.e., an array of photo-sensor modules

helps in the detection of charged particles.

Electromagnetic Calorimeter (ECL)

The next sub-detector in the series is ECL, whose foremost purpose is to provide energy and

position of the particles. It surrounds the TOP and ARICH with a highly segmented array of

thallium-doped cesium iodide CSI(TI) crystals. The working principle of ECl is based on

scintillation, as when particles penetrate into these crystals create a shower of lower-energy

photons and electrons. These secondary particles ionize the atoms in the crystal, causing

them to emit light, which is detected by photomultiplier tubes (PMTs) placed at the ends of

the crystals. The amount of light produced is taken as a signal and then calibrated with the

help of the data acquisition system of the Belle II experiment to reconstruct the properties

of the particles produced in the collision.

The detector primarily helps in the detection of neutral particles as, for them, the start-

ing point for information is ECL. Additionally, it helps in the detection of other charged

particles like electrons, muon, etc., based on their shower shape in combination with other

sub-detector information. Since both π0 and γ particles are neutral, this sub-detector is the

focal point for the thesis work. The discussion of this sub-detector is continued in the next

section.

KL muon detector (KLM)

It is the last and outermost detector of the Belle II which consists of an alternating sandwich

of 4.7 cm thick iron plates and sensitive detector elements located outside the superconduct-

ing solenoid. It helps identify particles with long decay times and enough energy, such as

K0
L mesons by glass electrode resistive plate chambers (RPC), present between iron plates.
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3.1.1 The Belle II Electromagnetic Calorimeter

ECL serves our main purpose, i.e., measurement of energy through the principle of scintil-

lation as described above. In detail, if we talk about this, it consists of a 3 m long barrel

region with an inner radius of 1.25 m and endcaps at a distance z = 1.96 m (forward) and z

= -1.02 m (backward) from the interaction point. The ECL crystals are arranged to achieve

the smallest gap between crystals, which leads to minimum energy leakage.

The barrel region consists of 6624 crystals in 29 distinct shapes, and endcaps have 2112

crystals in 69 shapes with slight offset (irregularity) toward the IP. Figure 3.2 represents the

schematic view of ECL with the arrangement of crystals and geometrical parameters given

in Table 3.1.

Figure 3.2: Schematic View of overall Cs(TI) Electromagnetic calorimeter. Figure adapted

from [7].

ECL Region θ Coverage (in degrees) No. of Crystals

Full Detector [12.4,155.1] 8736

Forward Endcap [12.4,31.36] 1152

Barrel [32.2,128.7] 6624

Backward Endcap [131.5,155.1] 960

Table 3.1: Geometrical Parameters of ECL Detector

The ECL detector comprises three named regions that collectively cover 91% of 4π .
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The gaps between the endcap and barrel facilitate cabling and piping. Additionally, each

crystal segment is slightly tilted at an angle of 1 2◦ in both theta and phi directions to prevent

photons from escaping between crystals. However, the tilt angle was not incorporated for

the endcap phi direction due to challenges in mechanical construction.

Typically, the ECL barrel crystal takes on the shape depicted in Figure 3.3, with a trape-

zoidal cross-section resulting from its pointed design. Its front face measures around 5.5cm

while its back face measures around 6.5cm, and the length of each crystal is approximately

30cm. There are a total of 29 distinct types of barrel crystal, each weighing roughly 5kg

[7].

Figure 3.3: Geometry of ECL Barrel Crystal. Figure adapted from [7].

3.1.2 Belle II Analysis Software Framework (basf2)

The Belle II Analysis Software Framework (basf2) provides the complete package for the

Belle II experiment, from collecting data from detectors to simulating the same events,

including the framework for post-analysis tasks such as reconstruction, clustering, and PID

through its built-in modules and libraries on the acquired data. The basic pipeline of Data

handling and processing at the Belle II experiment is shown in Figure 3.4..

15



Figure 3.4: Basic Pipeline in Belle II Experiment

A module is basf2’s fundamental processing unit. Everything is done in modules,

which are typically written in C++. A user can choose which modules should be performed

and in what sequence they should be executed. Typically, event processing is represented

as a linear chain of modules on a path. A Python script defines commands for creating the

path, loading modules, and running the path. This Script for particular analysis is known

as the steering file. During event processing, the data sets required by basf2 are saved

in “DataStore,” a shared storage location. basf2’s data storage format is ROOT I/O, which

means that information or output can be printed after event processing or recorded in a ROOT

file.

In essence, the whole event cycle is defined in basf2 as a chain of modules representing

event production, geometry creation, simulation, reconstruction, and user analysis [8]. The

well-known third-party libraries such as EvtGen (Event Generation), Geant4 (Detector

Simulation), and ROOT (Data Processing and Analysis) are used in the Belle II experiment

to execute the above-shown pipeline.

Note:- basf2 is not used for analysis like (histogramming, fitting 1D distributions,

.......). These final steps are usually called the “offline” analysis done by other software.
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Chapter 4

Data Generation & Analysis

Simulations1 have gained massive popularity in the 21st century as they predict the outcome

of our theories without actual experiments—especially Monte Carlo simulations, which are

one of the first steps before doing any particle physics analysis. Experiments like Belle

II are tedious and demand a considerable workforce to operate the detector at its best to

provide the collision data. So it becomes necessary for physicists in this field to analyze

simulated data, i.e., MC data, before plugging their theory into real data. As by utilizing

MC simulation, physicists can better understand particle properties and behavior, as well

as the detector’s performance. The simulated data produced through MC is analyzed and

processed similarly to real data, except that MC samples contain the reconstructed objects

and the ”truth” information of the originally generated events.

Throughout this thesis, Monte Carlo-generated and simulated events (MC Data) are

utilized, and the underlying truth information provided by this data is crucial for training

the Convolution Neural Network introduced in Chapter 5. This chapter outlines the methods

for generating and selecting events that the models are trained and evaluated on.

4.1 Monte-Carlo Simulation

The basf2 described in the last section of the previous chapter is the same computing tool

used to perform our necessary MC simulation2 that generates the particles according to our

given requirement.

For this thesis work, π0 and γ events are generated using the ParticleGun3 module

from the Event Generator package of the basf2. This module could generate single or

1Simulation is the use of computing tools to generate a virtual model of a physical system using mathe-

matical equations and algorithms to mimic its behavior under various situations.
2It utilizes random numbers to solve complex problems, models PDFs for the given system, and obtains

results by averaging over multiple simulations.
3The module is purposefully used to know the effects of π0 and γ in the detector separately.
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multiple particles without specifying any given decay reaction. Basically, it shoots parti-

cles with a specified momentum from a designated vertex position in the direction indicated

by the coordinates (θ ,φ). The simulation is completed by adding the remaining packages

and modules, which account for the response of the Belle II detector when generated parti-

cles interact with sub-detectors. Moreover, for ease of post-analysis, we have included the

ECLFillCellIdMapping module in the steering file4, which populates a data object that

facilitates mapping between cell ID and store arrays. This neighbor map enables mapping

between cell ID and the ECLCalDigit store array. At the start of the steering file, the total

number of events is given by EventInfoSetter module received by the generator, and the

output is saved as a ROOT file with the help of Output module. In the appendix, in listing

A.1, the sample source code (steering file) and a more detailed description of these modules

can be found.

4.2 Data Preprocessing

Our study employs the above-described general framework for steering files, which we use

to create two separate steering files: one for π0 and the other for γ . Through these files,

we simulate particles for each π0 and γ , with momenta, θ (Polar angle), and φ (Azimuthal

angle) within the specified range for different setups, respectively. Chapter 6 provides a

more comprehensive explanation of these setups.

The above data is preprocessed to get the desired features, i.e., energies deposited in the

crystals and the position of the Seed crystal (Crystal of maximum energy) as inputs given

to CNN for each particle.

4.2.1 Events Selection

If both merged π0,s and γ are involved in an event from different mother particles, then

the showers’ hit pattern in the form of an ECL image is shown in Figure 4.1. The image

shown represents the deposited energy by the merged π0,s and γ when interacting with

the ECL detector’s barrel crystal at different hit locations. Also, it clearly illustrates the

challenging task of distinguishing merged π0,s and γ showers, which our method aims to

address. At present, various clustering algorithms and shower shape momenta variables

are employed in basf2 to identify these particles and their associated showers. Therefore,

determining which shower corresponds to which particle can be challenging with basf2,

making it impossible to obtain accurate information.

4A steering file or script refers to a piece of Python code designed to configure and initiate a specific data

processing or analysis task by compiling several modules with given parameters.
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Figure 4.1: Showers of π0,s and γ at different hit locations in Barrel region of ECL.
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Therefore, in order to train the CNN effectively, a well-controlled environment is the

first step to accurately interpreting and comprehending the performance of a Convolutional

Neural Network (CNN) while ensuring comparability with the current basf2 algorithm for

identifying these particles. Furthermore, in machine learning, utilizing a set of specific

samples free from outliers can lead to stable training. So to obtain such reliable samples for

training, the focus must be on obtaining distinct ECL clusters exclusively associated with

either π0 or γ particles. This requirement underscores the importance of carefully selecting

events for training and testing our model.

The arguments mentioned above are reinforced by creating individual root files for each

π0 and γ particle that solely encompasses these particle’s effects without interference5 from

other particles. This approach ensures that each shower accurately reflects the unique char-

acteristics produced by these specific particles, resulting in a more representative signature.

This signature is the Region of Interest (ROI) containing a window of 7×7 neighborhood

crystals around the seed crystal, obtained with the help of variables related to ECL. These

variables are stored in a ROOT file after getting from the steering file and looked for this

purpose using Uproot library with the help of stored variables like ECLLocalMaximums,

ECLCalDigits, and ECLCellIdMapping. This provides us with the desired features that

are stored in a CSV file. A piece of code to handle and get the desired feature from the

ROOT file is mentioned in listing A.2 of the Appendix.

4.2.2 Feature Engineering

The selection of a 7×7 window around the seed crystal ensures the 49 features, i.e., pixel

values with their label stored in a CSV file. As stated earlier in this section, these features

are obtained as the raw form of energy, so to improve model performance, these features

are further refined. The following images are shown in Figure 4.2 illustrates the processing

of one gamma sample, with each step demonstrated in sequence. Also, the techniques used

for this refinement are described in sequence,

1. Centering

• The centering transformer shifts the image such that its center (seed crystal) is

aligned with the center of the image.

• It can help improve image quality and make it easier for CNN to extract mean-

ingful features. This is useful when the same cluster has two showers of differ-

ent particles.

5This interference is completely avoided by associating each event with either only one merged π0 or one

γ , means that setting parameter ‘ntracks = 0’ while creating root file for each particle.
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(a) Raw Sample Image for One γ

→

(b) Centering transformation on (a)

(c) Centered image with intensity

→

(d) Scaling transformation on (b)

(e) Noise reduction on scaled image i.e,(d)

→

(f) Normalization transformation on (e)

Figure 4.2: Images of one γ cluster after sequential steps of transformation to obtain a final

image for feeding into the model.

2. Clipping and Noise reduction

• This transformer removes extreme pixel values from the image and reduces the

noise by setting all pixels to 0 if the pixel intensity is below the provided thresh-

old.

• The purpose of this is to ensure that the object of interest in the image is in the

center, which can improve the performance of the CNN during training.
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3. Scaling

• It scales the image’s pixel values to a typical range between 0 and 1.

• It helps to ensure that all the images have the same range of values, which can

improve the performance of the CNN during training.

4. Normalization

• The normalization transformer scales the image’s pixel values such that the sum

of all pixel intensities is equal to 1.

• It ensures that the image represents a probability distribution, which can be

helpful in applications such as object detection or segmentation.

In general, using these transformers, which ultimately enhance the quality of images being

input into the CNN, improved the model’s accuracy.
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Chapter 5

Convolution Neural Network

When it comes to classifying images, feature extraction is a critical process, and several

effective methods are available for different visual recognition tasks. However, Convo-

lutional Neural Networks (CNNs) have emerged as the most widely used and successful

method for image recognition tasks. One of the reasons for their success is their ability to

learn hierarchical representations of image features directly from raw pixel values, achieved

through deep learning. This approach eliminates manual feature engineering and provides

more flexibility, making CNNs well-suited for various image recognition tasks. Due to this

reason, In this thesis, CNN is used to classify our dataset as it consists of images created

from a raw matrix of 7x7, with energy values taken as pixel intensities. In the upcoming

sections, we will take a closer look at the basic theory of CNN, also its architecture and

implementation for our dataset.

5.1 Basics

Convolutional Neural Network (CNN) is a deep learning neural network architecture de-

signed to work with images and other grid-like structures, such as time-series data. It is

inspired by the organization of the visual cortex in animals, where neurons in different

layers of the cortex respond to increasingly complex visual features.

The network comprises multiple layers, each of which performs a specific operation

on the input data and is therefore trained to classify images into multiple classes, typically

using a softmax activation function at the output layer to produce probability scores for each

possible class. However, in our case, the task involves binary image classification, assigning

images to one of two possible classes. While this task may seem simpler than multi-class

classification, it still requires an effective approach (discussed in the implementation section

5.2) for distinguishing between the two classes. So, we will focus on using CNNs for

binary image classification, exploring how these networks can be trained to classify images
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accurately into two distinct classes.

The main components of a CNN are:

1. Convolutional layers: These are responsible for extracting features from the input

image. They consist of a set of learnable filters, also known as kernels or weights,

that are convolved with the input image to produce a set of feature maps. Each filter

has a feature map highlighting a specific pattern or feature in the input image, such

as edges or corners. The convolution operation can be mathematically expressed as

follows:

Fi, j =
M

∑
m=1

N

∑
n=1

Ii+m−1, j+n−1Km,n, (5.1)

where I is the input image, K is the convolution kernel or filter, and F is the resulting

feature map. M and N are the dimensions of the kernel, and i and j are the indices of

the output feature map.

The size of the feature map F after applying the convolution operation can be com-

puted using the following formula:

nrow
out =

nrow
in − krow +2prow

srow
+1, ncol

out =
ncol

in − kcol +2pcol

scol
+1 (5.2)

Where nrow
in and ncol

in are the number of rows and columns in the input feature map,

respectively. Similarly, nrow
out and ncol

out are the number of rows and columns in the

output feature map, respectively. krow and kcol are the size of the convolution filter in

the row and column dimensions, respectively. prow and pcol are the amounts of zero

padding (if any) in the row and column dimensions, respectively. Finally, srow and

scol are the stride sizes in the row and column dimensions, respectively.

2. Pooling layers: These are used to reduce the spatial dimensionality of the feature

maps produced by the convolutional layers. They achieve this by downsampling

the feature maps using max or average pooling. Max pooling selects the maximum

value within a local region of the feature map, while average pooling computes the

average value within the same region. Pooling layers help make the network more

robust to small variations in the input image and reduce the network’s computational

complexity. The max pooling operation can be expressed as follows:

Fi, j =
M

max
m=1

N
max
n=1

IiM+m−1, jN+n−1, (5.3)

where M and N are the dimensions of the pooling kernel, and i and j are the indices

of the output feature map.

In general, the size of the output feature map F after applying max pooling can be

computed using the formula:

F =

⌊
nin − k

s
+1

⌋
×
⌊

nin − k
s

+1
⌋
, (5.4)
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where nin is the size of the input feature map, k is the size of the pooling window, and

s is the stride. The symbol ⌊x⌋ denotes the floor function, which returns the largest

integer less than or equal to x.

3. Fully connected layers: These are used to map the extracted features to the binary

output. They are similar to the dense layers in a traditional neural network, in which

each neuron in the preceding layer is linked to every neuron in the layer above it and

vice versa. They are typically placed at the end of a neural network architecture after

one or more convolutional or pooling layers that extract relevant features from the

input data.

Working: Convolutional Neural Networks (CNNs) operate on a hierarchical approach,

where each layer builds upon the previous one to extract more complex and abstract fea-

tures from the input image. The first layer typically consists of convolutional filters that

slide over the input image and perform a dot product operation to extract certain features

and visual features, such as edges or corners. These filters can be of varying sizes and

depths and include additional parameters such as padding and stride. The convolutional

layer’s output is then sent through an activation function, such as ReLU, tanh, or others, to

introduce nonlinearity into the network. The subsequent layers learn more complex features

by combining the previous layers’ outputs, which include pooling layers, that downsample

the feature maps to reduce the computational cost and introduce translation invariance.

Finally, fully connected layers perform the final classification task based on the learned

features by giving output to some activation functions that provide probabilistic output. In

our case, the output of the last fully connected layer is fed to a sigmoid function, which

produces a probability score for the binary output. The sigmoid function can be expressed

as follows:

P =
1

1+ e−z , (5.5)

Where P is the probability score for the binary output, z is the output of the last fully

connected layer.

During training, the network is presented with a labeled set of images, and the network

weights are iteratively updated to minimize the difference between the predicted and actual

labels. This process is done by minimizing a loss function that quantifies the difference

between predicted and actual output, and it typically involves using backpropagation to

compute the gradient of the loss with respect to the network parameters and updating the

weights with an optimization algorithm such as stochastic gradient descent (SGD) or the

Adam optimizer.

The binary cross-entropy loss function can be expressed as follows:

25



L =− 1
N

N

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)], (5.6)

Where N is the number of samples in the training set, yi is the actual output (either 0 or

1) for the i-th sample, and ŷi is the predicted output for the i-th sample. The loss function

measures the difference between the predicted probability score and the actual output.

Some other techniques, such as Dropout and Batch Normalization and several hyper-

parameters, need to be tuned in a CNN, which involves the number of convolutional and

pooling layers, the size of the filters, the number of filters in each layer, and the learning

rate. The choice of hyperparameters depends on the specific problem and the size of the

training set. The goal is to find the set of weights that result in the lowest possible loss

on the training data, hopefully resulting in a good performance on new, unseen data. In

our case, i.e., binary classification, the binary cross-entropy loss function, and the Adam

optimizer are used. Once trained, the network can predict new, unseen images.

Some terms used above are described below:

1. Padding: It adds extra zeros (i.e., extra border pixels to an image) around the input

image to ensure the output size remains the same, allowing the convolutional filters

to extract features from the edges of the input image and prevent loss of information

due to border effects. Padding width should obey the given mentioned formula:

Padding width (p) =
k−1

2
(5.7)

Where k is the filter size.

2. Stride: It specifies how much the filter should move over the input image at each

step.

3. Dropout: It is commonly used in CNNs to prevent overfitting, where some neurons

in the network are randomly dropped out during training to reduce their interdepen-

dence.

4. Batch Normalization: It is also frequently used to standardize the inputs to each

layer, improving the stability and convergence of the network during training. It

normalizes the inputs to each layer, making the network less sensitive to the scale

of the input features. This helps to prevent the internal covariate shift problem and

allows for faster and more stable training.

In summary, CNNs are a powerful tool for binary classification tasks involving image

data.
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5.2 Network Architecture and its Implementation

In order to design an efficient CNN architecture for binary image classification, it is crucial

to carefully consider various significant factors, as discussed earlier. These factors primar-

ily comprise the input image size, the number, and dimensions of convolutional and fully

connected layers, the utilization of pooling and regularization techniques, and the selection

of the optimization algorithm and loss function.

Deep learning frameworks are essential tools for developing and training complex neu-

ral networks such as CNNs. Various open-source deep learning frameworks such as Keras,

TensorFlow, and PyTorch are available. These frameworks provide a high-level API that

allows developers to focus on the model’s architecture and design rather than low-level im-

plementation details, eventually helping to easily build and deploy their models by defining

the model’s layers, specifying the loss function, optimizer, and evaluation metrics, and

train the model on a labeled dataset. These frameworks also provide access to various pre-

trained models and architectures that can serve as a foundation for building a customized

CNN model. By utilizing these pre-built models, we can accelerate the process of creat-

ing a CNN architecture and streamline the development process, which further allows ex-

perimenting with different architectures and hyper-parameters faster and more efficiently,

ultimately resulting in the selection of the optimal model for the specific task.

Keras was chosen as the deep learning framework for this thesis project due to its

widespread adoption in the machine learning community due to its versatility, ease of use,

and compatibility with both CPU and GPU architectures. Keras is designed on top of

popular deep learning frameworks, including TensorFlow, Theano, and CNTK, and offers a

streamlined and consistent API across different backends. It provides a wide range of pre-

built layers and models, including convolutional layers, pooling layers, and fully connected

layers, making it easy to build complex models such as CNNs. It also supports many

optimization algorithms and loss functions, doing training and optimizing our models easy.

Additionally, Keras provides valuable data preprocessing and augmentation tools, which

can be critical for achieving high performance in computer vision tasks. These features

help explicitly with our problem also.

So basically, achieving optimal results in CNN-based binary image classification in-

volves an iterative process of experimenting with different architectures and hyper-parameters.

This entails evaluating various combinations of hyper-parameters and architectures to iden-

tify the best model for the given problem. Thus, building an effective CNN architecture

for binary image classification is a challenging yet critical undertaking that demands a pro-

found comprehension of CNNs and a willingness to engage in experimental approaches to

obtain the best possible results.
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5.2.1 Optimized CNN

A number of well-known CNN architectures, including AlexNet, VGG, ResNet, and Incep-

tion, have demonstrated exceptional performance in image classification tasks. We began

with a straightforward VGG structure comprising 2 to 3 convolution layers and two dense

layers for our specific problem. After that, applying several modifications to this base CNN

architecture by gradually increasing its complexity results in improved training set perfor-

mance. Some basic steps to achieve this optimal Configuration of CNN are:

• The Random Search Optimization method is employed for refining architecture by

randomly sampling hyperparameters such as kernel size, features, activation func-

tions, and dropouts from a specified distribution. The model is then trained and as-

sessed for each set of hyperparameters. This approach is advantageous for large data

sets as it is computationally less demanding.

• Subsequently, we explored different hyperparameter values, such as learning rate,

batch size, and number of epochs, to improve accuracy. Our results demonstrate

that reducing the learning rate and increasing the batch size significantly improved

accuracy, whereas increasing the number of epochs did not improve performance

beyond a particular limit.

• Also, implementing dropout regularization and weight decay prevents overfitting and

improves generalization. This led to a reduction in the validation loss and a better

trade-off between bias and variance.

Figure 5.1: Optimized CNN Architecture
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The optimized network architecture derived in this thesis is presented in Figure 5.1, and

Table 5.1 shows a summary of this optimized CNN. It comprises three hidden convolution

layers with 32, 64, and 64 nodes for the first, second, and third hidden layers. The rectified

linear unit (ReLu) is each layer’s activation function. The output layer consists of two

nodes and a sigmoid activation function. The model employs the Binary cross-entropy loss

function and Adam optimizer. The optimized network achieved an accuracy of 97%, which

was 7.2% higher than the base CNN (not shown in the thesis). The optimized network

section showcases our ability to modify CNN architecture to achieve better results.

Layer (type) Output Shape Number of Parameters

Input (None,7,7,1) 0

Conv2D (ReLU) (None,7,7,32) 320

MaxPooling2D (None,7,7,32) 0

Dropout (None,7,7,32) 0

Conv2D (ReLU) (None,7,7,64) 18496

Conv2D (ReLU) (None,5,5,64) 36928

MaxPooling2D (None,2,2,64) 0

Dropout (None,2,2,64) 0

Conv2D (ReLU) (None,2,2,64) 36928

MaxPooling2D (None,2,2,64) 0

Dropout (None,2,2,64) 0

Flatten (None,256) 0

Dense (ReLU) (None,128) 32896

Dropout (None,128) 0

Dense (softmax) (None,2) 258

Total number of parameters: 125,826

Table 5.1: Summary of the CNN Architecture

5.3 Measuring Performance

The Optimized Network section describes the modifications and enhancements to the CNN

architecture to improve accuracy and performance. This section discusses various evalua-

tion methods commonly used for Binary image Classification problems. These evaluation

methods assess the effectiveness of the modifications using several performance metrics.

The primary evaluation metric is accuracy, which measures the percentage of correctly

classified images in the test set. However, accuracy may not always provide the best model
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performance evaluation, especially when the dataset is imbalanced or the misclassification

of certain classes is more critical than others. In such cases, precision, recall, and F1-

score can be utilized to assess the model’s performance for each class. Additionally, other

metrics, such as the Confusion matrix and Receiver Operating Characteristic (ROC) curve,

are also used in classification tasks to evaluate model performance. Each of these metrics

will be discussed in detail below:

1. Accuracy:- It determines the percentage of all correctly categorized observations. As

it takes into account the total number of true positives (TP), false positives (FP), and

false negatives (FN), it is also the global mean (micro-average) of the F1 score.

2. Precision:- It measures the percentage of the predicted positive cases that are actually

positive and tells how accurate the positive predictions are. High precision means that

the model predicts very few false positives.

Precision= T P
T P+FP

3. Recall:- It measures the percentage of actual positive cases that the model can cor-

rectly identify and how well it can identify positive cases. A high recall means the

model can identify the most positive cases.

Recall= T P
T P+FN

4. F1 Score:- It basically considers both precision and recall to provide a more balanced

summarization of performance.

F1 Score= T P
T P+ 1

2 (FP+FN)

5. Confusion matrix:- It provides a summary of the number of true positive (TP), false

positive (FP), true negative (TN), and false negative (FN) predictions for each class.

The confusion matrix can be used to calculate each class’s precision, recall, and F1

score.

6. ROC and AUC:- The ROC curve plots the true positive rate (sensitivity) against

the false positive rate (specificity), and the area under the curve (AUC) measures the

degree of separability between the two classes.
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Chapter 6

Training Analysis & Evaluation

In the realm of physics, machine learning algorithms are frequently employed for simu-

lating intricate systems, data analysis, and prediction-making. However, to ascertain their

efficacy, they must be tested against a baseline setup of the experiment. This establishes a

reference point for evaluating the performance of the algorithm and determining its degree

of success.

The experimentation process and methodology provide diverse scenarios for conduct-

ing various studies to optimize algorithms. This chapter aims to evaluate and comprehend

the CNN behavior in these scenarios to improve their efficiency. Starting with a controlled

setup, then evaluating the CNN behavior for more generalization in an uncontrolled envi-

ronment across the full region (i.e., Barrel Region of the ECL Detector). By conducting

these evaluations, we can thoroughly train the model and enhance its ability to reach the

optimal solution ( already provided in section 5.2.1).

6.1 Controlled Study

This investigation aims to evaluate the efficacy of CNN on the base setup of our study.

Doing so will ascertain the feasibility of utilizing CNN for the whole region of ECL to

classify the particles of our interest, namely, π0,s and γ .

Base Setup:- In this experimental configuration, our focus is on the vicinity of a ran-

domly selected ECL crystal. By utilizing the ParticleGun Module of basf2, We produced

multiple events within a specified momentum range, each consisting of a single π0 or a sin-

gle γ traveling toward the selected crystal. The relevant information, specifically energy

values, was recorded for each instance as the particle interacted with the crystal.

Considering the parameters mentioned in Table 6.1 will produce the effect of the hit

from both π0 and γ in the vicinity of the crystal located at θ = 90 and φ = 0 for different

momenta within the specified range above.
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(a) γ cluster at 2.5 GeV (b) π0 cluster at 2.5 GeV

(c) γ cluster at 3.0 GeV (d) π0 cluster at 3.0 GeV

(e) γ cluster at 3.5 GeV (f) π0 cluster at 3.5 GeV

(g) γ cluster at 4.0 GeV (h) π0 cluster at 4.0 GeV

Figure 6.1: Images of γ and π0 cluster at different momenta for the Controlled setup.
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The images above display shower patterns for π0 and γ at various momenta for the

mentioned region, as described in Table 6.1. After undergoing preprocessing steps outlined

in Chapter 4, these images were utilized for training a CNN for this particular setup.

Parameters Distribution Value

Momentum Uniform [2.5,4.0] (in GeV)

Phi Uniform [-1.25,1.25] (in degrees)

Theta Fixed 90 (in degrees)

Table 6.1: Randomly picked parameters for base setup

Analysis

In order to perform the analysis for this particular configuration, we produced a total of

0.5× 105 individual π0 and γ candidates utilizing the parameters mentioned above. For

each event, a window of 7×7 crystals containing the measured deposited energy was cho-

sen around the seed crystal of every shower for each candidate. This selection process is

explained in detail in section 4.2.1. Subsequently, the dataset was partitioned into three

parts, approximately 7.0×104 for training, 1.5×104 for validation, and 1.5×104 for test-

ing purposes.

To ensure accurate information was obtained for each shower or cluster, we limited the

event generation to a single particle for π0 and γ . This was achieved by setting the ”ntracks

= 0” parameter in the steering file, which we also discussed in the Event Selection section.

By doing this, we were able to obtain only one shower or cluster region that corresponded

to the generated particle in the entire Barrel region. That’s how true labels were assigned

to the data. This process constituted the entire dataset for both particles, which was used to

evaluate our model’s performance.

6.1.1 Efficiency & Performance

This controlled experiment provides us with a more objective and systematic evaluation of

the effectiveness of our optimized CNN model for further use in the generalization of the

whole barrel region. The various results obtained from this setup are shown as:

1. The model’s performance during the training phase was evaluated using the validation

loss and training loss plots, depicted in Figure 6.2 below. The plots demonstrated a

consistent decrease in both losses over time, signifying that the model was effectively

learning. Consequently, the model was able to classify the binary input data with a

high degree of accuracy.
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Figure 6.2: Loss Curve for controlled experiment

2. The confusion matrix evaluated the model’s performance on this binary classification

task. The model showed the predicted and actual values of a data set, indicating that

the model could correctly classify the majority of positive and negative samples in

this fixed region.

Figure 6.3: Confusion matrix for controlled experiment
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3. Also, various metrics, as described in the Measuring Performance section of Chapter

5, were analyzed on this setup to measure the efficiency of the CNN model. The table

below summarizes the metrics, revealing that the model’s accuracy on the controlled

setup was 98%.

Metric Precision Recall F1 Score Support

γ (Label: 0) 0.98 0.99 0.98 7529

π0 (Label: 1) 0.99 0.98 0.98 7471

Accuracy 0.98 15000

Macro Average 0.98 0.98 0.98 15000

Weighted Average 0.98 0.98 0.98 15000

Table 6.2: Performace of CNN Classification in Controlled Experiment

4. Figure 6.3 displays the ROC curve, which assesses the model’s proficiency in cate-

gorizing positive and negative samples. The calculated area under the curve (AUC)

was 0.99, signifying that the model performed exceptionally well on the binary clas-

sification task in the defined region on the cleaned window.

Figure 6.4: ROC Curve for controlled experiment

6.2 Uncontrolled Study

The results obtained from the controlled experiment are remarkable and provide ample

scope to implement this model for generalizing the entire barrel region of the ECL detector.

However, in order to generalize this model for the entire region, it is imperative to have
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a larger dataset covering nearly the whole Barrel region, which would require data to be

generated around each crystal. This leaves us with three potential scenarios shown in Figure

6.5 and described below:

Figure 6.5: Layout of 4 adjacent ECL crystals

1. When a particle hits the center of crystal (A).

2. When a particle hits the corner of the crystal (B).

3. When a particle hits the edge of the crystal (C)

Figure 6.6 illustrates the distinct behavior of π0 and γ at the specified locations. It includes

sample figures depicting the behavior of both particles. In this setup, several events for the

above-described cases are created using the same data generation method. The particleGun

module is modified to cover the entire barrel region by adjusting the values of theta and phi.

Additionally, to ensure that each 7×7 crystal window is properly labeled, only one particle

is generated per event ( same procedure followed described in previous sections).

A total of 105 individual π0 and γ candidates were generated for this study. Out of these

candidates, approximately 1.4×105 were used for training purposes, while 0.3×105 were

allocated for validation and another 0.3×105 for testing events. These sets were utilized to

assess and evaluate the performance of the CNN model.
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(a) γ cluster in case (A) (b) π0 cluster in case (A)

(c) γ cluster in case (B) (d) π0 cluster in case (B)

(e) γ cluster in case (C) (f) π0 cluster in case (C)

Figure 6.6: Images of γ and π0 cluster at three possible cases around any crystal.
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6.2.1 Efficiency & Performance

The findings of the uncontrolled experiment used to assess the effectiveness and perfor-

mance of the Convolutional Neural Network (CNN) model are shown in this section. We

examine a number of performance metrics for the model, including loss curves, confusion

matrices, and Receiver Operating Characteristic (ROC) curves. By doing additional testing,

discussed in the next section, 6.3, the study’s findings offer insights into the usefulness and

efficiency of the CNN model in real-detector instances.

1. Starting with an analysis of the model’s performance during the training phase was

again shown by validation loss and training loss plots, depicted in Figure 6.7 below.

The plots consistently show a decrease in both losses over time, and after 45 epochs, it

almost becomes constant, indicating that further improvement is not possible beyond

that point. The overall plot signifies that the model was effectively learning with a

high degree of accuracy on this cleaned data.

Figure 6.7: Loss Curve for uncontrolled experiment

2. The model’s performance on this binary classification task was evaluated on the test-

ing data set, which resulted in a confusion matrix shown in Figure 6.8 that shows

the predicted and actual values. The results indicate that the model could accurately

classify most positive and negative samples for the generated barrel region data.

3. Also, again, various metrics used to summarize the model’s performance on binary

classification tasks are shown in Table 6.3, which reveals the model’s accuracy was

97%.
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Figure 6.8: Confusion matrix for uncontrolled experiment

Metric Precision Recall F1 Score Support

γ (Label: 0) 0.97 0.98 0.97 17194

π0 (Label: 1) 0.98 0.97 0.97 17261

Accuracy 0.97 34455

Macro Average 0.97 0.97 0.97 34455

Weighted Average 0.97 0.97 0.97 34455

Table 6.3: Performace of CNN Classification in Uncontrolled Experiment

We can conclude that our model act as a good classifier on this generated dataset.

6.3 Testing

It is important to note that the dataset used for training the model always contained a clear

window of either particle, meaning that no influence of other particles was present in this

window. However, in real scenarios, if we test our algorithm, we cannot guarantee the

presence of a clear window, as it may or may not contain the effect of other particles.

Therefore, additional testing is required to check the efficiency of our trained model. Also,

when feeding data for this testing, a separate algorithm is needed to provide a 7×7 window

around the seed crystal, as there are multiple π0 and γ in the barrel region. In such cases,

a separate resolving algorithm is required to provide a cleaned window, which is currently

beyond the scope of this work. However, for the sake of testing the model’s performance
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in real scenarios, we simulated scenarios where multiple π0 and γ exist in the same event.

By doing so, we are in a much better position to accurately determine the model’s ability to

classify particles.

For this testing, we selected a sample of 20000 events containing multiple π0 or γ ,

which provided us with 198178 sample images to evaluate the performance of our trained

CNN. The testing resulted in an accuracy of 0.81 for our model. These results are presented

in the metric Table 6.4 for quick reference.

Metric Precision Recall F1 Score Support

γ (Label: 0) 0.77 0.88 0.82 98220

π0 (Label: 1) 0.86 0.74 0.80 99958

Accuracy 0.81 198178

Macro Average 0.82 0.81 0.81 198178

Weighted Average 0.82 0.81 0.81 198178

Table 6.4: Performace of CNN Classification in general

Figure 6.9: ROC Curve to evaluate model performance.

The calculated area under the curve (AUC) was 0.86, which tells us that with this proba-

bility, our classifier will be more confident that a randomly chosen positive example (either

π0,s and γ) is positive than that a randomly chosen negative example is positive.

Furthermore, Figure 6.10 displays the predicted results of our model for a sample event

containing multiple π0,s and γ . The figure depicts the clusters present in the barrel region

and the model’s probability predictions for each shower, indicating the likelihood of it being

a certain particle with a corresponding probability value.
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Figure 6.10: Predicted particle with probability (p) by our trained model for each shower

of π0,s and γ in the Barrel region of ECL.
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Chapter 7

Discusssion & Conclusion

This chapter aims to thoroughly analyze our work and draw conclusive insights based on

the results mentioned in the previous chapter. In addition, we will explore potential future

implications, identifying areas for improvement and acknowledging the current limitations

of our study. Doing so will give us a comprehensive understanding of our research and its

implications.

In this work, we try to recover the merged π0,s lost in the current framework of basf2,

where they appear in the form of gammas. Currently, the point of identification for both

particles is the ECL detector of the Belle II experiment. This identification is based on

variables such as shower shape momenta, E9/E21, and Zernike moments. Also, the re-

construction algorithm on two gammas can recover π0,s. Still, these methods only partially

recover most of the merged π0,s. Since most of these variables rely on energy as the source

of information, we have explored the use of ML algorithms to recover these particles. By

considering the deposited raw energy information as pixel intensities to form images, the

most intuitive algorithm to distinguish these particles appears to us is CNN.

By using CNN and performing the different case studies in Chapter 6, we have satis-

fying results that leave us with a simple CNN model which have acceptable performance

in the defined region. The AUC value, which equates to 0.99, achieved in the controlled

setting (i.e., in proximity to a randomly selected crystal) attests to the near-perfect classi-

fication performance of our approach in differentiating π0,s and γ . This outcome not only

validates the efficacy of our proposed methodology but also underscores the potential for

CNN to address the problem at hand.

Upon applying our neural network to the barrel region, we achieved an accuracy of 0.97,

provided that the training and testing data sets were thoroughly cleaned. It is important to

note that this level of accuracy may not be achievable in real scenarios. Hence, towards the

end of our research, we assessed the performance of CNN in events that involved multiple

π0,s and γ . Ultimately, our analysis revealed that the accuracy of the model on such test

42



data sets was 81%. The reduced accuracy can be accounted for the following reasons:

1. During the model training process, it is possible that we may overlook the impact of

particles in certain regions. This is because the 160,790 samples used in the training

set may not fully represent the entirety of the region of interest. It would be advan-

tageous to include a wider variety of data samples near each crystal to increase the

accuracy of our method.

2. During the neural network training process, we ensure that the input window does not

contain the effects of other particles. This initial step helps to achieve high testing

accuracy. However, we observed a drop in accuracy when the model was tested on

real scenarios. One of the reasons for this drop in accuracy is the occurrence of

two γ particles in close proximity, which means our model input considers a region

around one maximum that may also contain the maximum of the other γ , leading to

the prediction of false π0,s.

While the aforementioned points represent the current limitations of our model, they can be

effectively addressed by incorporating a larger number of data points in the barrel region.

Additionally, we can deploy an appropriate algorithm that is capable of resolving the images

in the second scenario.

Furthermore, it should be noted that our current study is limited to the barrel region

of the ECL detector, as the endcaps exhibit irregularities that result in significant energy

leakage. Given that our current source of information is based solely on energy, we must

maintain the accuracy of our model. However, we can account for the endcaps by incorpo-

rating additional variables. It is worth mentioning that the generalization of endcaps will

require a substantial amount of data points, which may prove to be a tedious task, but that

can also be accomplished within the scope of our current study in the future.

In summary, our model has demonstrated satisfactory classification performance, achiev-

ing an accuracy of 86%. Based on these results, we have drawn several conclusions, which

are outlined below:

• The present findings demonstrate the potential of machine learning (ML) algorithms

in enhancing the efficacy of identifying π0 particles with energy deposits in the ECL,

suggesting that the raw ECL images contain a wealth of information beyond the

expert-engineered features currently utilized.

• Also, it forces us to draw a conclusion that CNN performance is superior since it does

not rely on the ECL cluster reconstruction algorithm.
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Appendix A

Codes: Algorithm & Analysis

The source code and all the analysis performed for this study can be found in the GitHub

repository at the following address: https://github.com/baghelnk10/Master_Thesis.

All the scripts, programs, and upcoming work for this study are accessible through the

repository. Readers can reproduce the findings of this study and learn more about the pro-

cedures and approaches used in this research through this repository. Additionally, Some

necessary sample codes are also given below in the following listings.

Listing A.1: Steering file to generate events

1 import glob

2 import argparse

3 import sys

4 import os

5 from basf2 import *

6 from simulation import add_simulation

7 from reconstruction import add_reconstruction

8 from reconstruction import *

9 from modularAnalysis import *

10

11

12

13 # suppress messages and warnings during processing:

14 set_log_level(LogLevel.WARNING)

15 # Create Modules

16 eventinfosetter = register_module(’EventInfoSetter ’) #

Create Event information

17 eventkinematics = register_module(’EventKinematics ’)

18 progress = register_module(’Progress ’) # Show

progress of processing
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19 gearbox = register_module(’Gearbox ’) # Load

parameters

20 geometry = register_module(’Geometry ’) #

Create geometry

21 particlegun = register_module(’ParticleGun ’) # Load

parameters

22 output = register_module(’RootOutput ’)

23 # Setting the random seed for particle generation

24 set_random_seed (123)

25 # Setting the option for all non particle gun modules: want to

process 100 MC events

26 eventinfosetter.param ({’expList ’: [0], ’evtNumList ’: [10000] ,

’runList ’: [0]})

27 eventkinematics.param ({’usingMC ’: True})

28 # Set parameters for particlegun

29 particlegun.param ({

30 # Generate pi0 if you want gamma then use [22]

31 ’pdgCodes ’: [111],

32 # Generate no. of particles

33 ’nTracks ’: 0,

34 # But vary the number of tracks according to Poisson

distribution

35 ’varyNTracks ’: False ,

36 # having a uniform transversal momentum

37 ’momentumGeneration ’: ’uniform ’,

38 # with a fixed momentum of 1 GeV

39 ’momentumParams ’: [2.0 ,4.0] ,

40 # use uniform distribution for phi

41 ’phiGeneration ’: ’uniform ’,

42 # with a mean of 90 degree and w width of 30 degree

43 ’phiParams ’: [-180,180],

44 # and generate theta uniform

45 ’thetaGeneration ’: ’uniform ’,

46 # between 17 and 150 degree

47 ’thetaParams ’: [33 ,126],

48 # finally , vertex generation , fixed , we use smearing module

49 ’vertexGeneration ’: ’fixed’,

50 ’xVertexParams ’: [0],

51 ’yVertexParams ’: [0],
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52 ’zVertexParams ’: [0],

53 # all tracks should originate from the same vertex

54 ’independentVertices ’: False ,

55 })

56 # Set output filename

57 output.param({"outputFileName":

"gamma_final_testing_events.root", "branchNames": [

# Set output filename # mdst objects

58 ’MCParticles ’,

59 ’MCParticlesToECLHits ’,

60 ’MCParticlesToECLSimHits ’,

61 ’BremHitsToECLClusters ’,

62 ’ECLCalDigits ’,

63 ’ECLCalDigitsToMCParticles ’,

64 ’ECLCellIdMapping ’,

65 ’ECLClusters ’,

66 ’ECLClustersToECLShowers ’,

67 ’ECLClustersToExtHits ’,

68 ’ECLClustersToMCParticles ’,

69 ’ECLConnectedRegions ’,

70 ’ECLDiodeHits ’,

71 ’ECLDsps ’,

72 ’ECLDigits ’,

73 ’ECLDigitsToECLHits ’,

74 ’ECLHits ’,

75 ’ECLLocalMaximums ’,

76 ’ECLPidLikelihoods ’,

77 ’ECLShowers ’,

78 ’ECLSimHits ’]

79 })

80

81 # create processing path

82 main = create_path ()

83 main.add_module(eventinfosetter)

84 main.add_module(eventkinematics)

85 main.add_module(particlegun)

86 main.add_module(gearbox)

87 main.add_module(geometry)
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88 add_simulation(main) #

detector and L1 trigger simulation

89 add_reconstruction(path=main) #

reconstruction

90 main.add_module(’ECLFillCellIdMapping ’)

91 main.add_module(output)

92 main.add_module(progress)

93 # generate events

94 process(main)

95 print(statistics)

Listing A.2: Python code to generate CSV file for training CNN

1 column_list =[]

2 for i in range (0,49):

3 column_list.append("pixel_{f}".format(f=i))

4 import uproot

5 import time

6 import pandas as pd

7 import matplotlib.pyplot as plt

8 import seaborn as sns

9 import heapq

10 import numpy as np

11 # Record the start time

12 start_time = time.time()

13 # Open root file and get the desired branch

14 file = uproot.open("pi0_final_testing_events.root") # use

gamma or pi0 root file generated from steering file

15 dummy_data = pd.DataFrame(columns = column_list)

16 ECLLocal_maxCell_Id = file["tree"]["ECLLocalMaximums"]

17 ["ECLLocalMaximums.m_CellId"].array(entry_start =0, entry_stop =10000).tolist ()

# Entry_stop is the no. of events stored in root file

18 ECLCal_CellId = file["tree"]["ECLCalDigits"]

["ECLCalDigits.m_CellId"].array(entry_start =0,

entry_stop =10000).tolist ()

19 ECLCal_Energy = file["tree"]["ECLCalDigits"]

["ECLCalDigits.m_Energy"].array(entry_start =0,

entry_stop =10000).tolist ()

20 mapping = file["tree"]["ECLCellIdMapping"]

["m_CellIdToNeighbours7"].array(interpretation=None ,

entry_start =0, entry_stop =1, library=’pd’).tolist ()
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21 i = 0

22 while i < len(ECLCal_CellId):

23 print(i)

24 time_elapsed = time.time() - start_time

25 if not ECLCal_Energy[i]:

26 i += 1

27 else:

28 count = 0

29 shower = {}

30 top_10 = []

31 top_10_dict = {}

32 for j in ECLLocal_maxCell_Id[i]:

33 key = f’key{j}’

34 ECLNeighbours_mCellId = mapping [0][j]

35 pixel_intensity = []

36 for k in ECLNeighbours_mCellId:

37 if k in ECLCal_CellId[i]:

38 Cell_index = ECLCal_CellId[i].index(k)

39 centered_Cell_index =

ECLCal_CellId[i]. index(j)

40 ECLCal_CellEnergy =

ECLCal_Energy[i][ Cell_index]

41 centered_energy =

ECLCal_Energy[i][ centered_Cell_index]

42 pixel_intensity.append(ECLCal_CellEnergy)

43 else:

44 pixel_intensity.append (0.0)

45 if len(pixel_intensity) < 49:

46 num_zeros = 49 - len(pixel_intensity)

47 for k in range(num_zeros):

48 pixel_intensity.insert(0, 0)

49 if len(pixel_intensity) > 49:

50 num_zeros = len(pixel_intensity) - 49

51 for k in range(num_zeros):

52 pixel_intensity.remove (0)

53 image = np.array(pixel_intensity)

54 max_energy = max(image)

55 if max_energy not in top_10_dict:

56 heapq.heappush(top_10 , max_energy)
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57 top_10_dict[max_energy] = [image]

58 if len(top_10) > 10:

59 smallest = heapq.heappop(top_10)

60 del top_10_dict[smallest]

61 check_cluster = {}

62 for key , value in top_10_dict.items():

63 pixel_intensity_centered = CenterImage(’Local’,

7)._center_image(value , key).tolist ()

64 image2d = np.array(pixel_intensity_centered)

65 image_norm = (image2d - np.min(image2d)) /

(np.max(image2d) - np.min(image2d))

66 data = pd.DataFrame(image_norm).T

67 data.columns = column_list

68 data.insert(0, "Label", [1], True) # use [0] in

case of gamma

69 dataframe = dummy_data.append(data ,

ignore_index=True)

70 dummy_data = dataframe

71 count += 1

72 i += 1

73 dataframe.to_csv(’pi0_last_testing.csv’) # use other name in

case of gamma

The above listing contains some preprocessing transformers that are shown in the below

listing.

Listing A.3: Transformer used in preprocessing image data.

1 from sklearn.base import TransformerMixin

2 from sklearn.base import BaseEstimator

3 import numpy as np

4 from scipy import ndimage

5 class CenterImage(BaseEstimator , TransformerMixin):

6 """

7 The transformer takes as an input image in form of a

vector of length n x n and

8 applies transformation so that either MAX pixel or Local

pixel(any pixel that you want) will be in the image

center (n/2, n/2)

9

10 Parameters
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11 ----------

12 center_around : string

13 translate the image so that ’MAX’ pixel or ’Local ’

pixel(any pixel that you want) is in the image

center

14

15 image_size: int

16 size of the sqauare image (n x n)

17

18 order : integer , optional

19 order of interpolation used in the translation of the

image (default = 0)

20 """

21 def __init__(self , center_around , image_size , order =0):

22 self.center_around = center_around

23 self.image_size = image_size

24 self.order = order

25

26 def _center_of_maximum(self , data):

27 """ Returns the position of the MAX pixel """

28 maxPos = ndimage.maximum_position(data)

29

30 return maxPos

31

32 def _center_of_local(self , data , value):

33 """ Returns the position of the MAX pixel """

34 pos = np.where(data == value)

35 if isinstance(pos[0], np.ndarray):

36 return tuple(pos[i][0] for i in range(len(pos)))

37 else:

38 return tuple(pos[i] for i in range(len(pos)))

39

40

41 def _center_image(self , image , value):

42 """ Perform transformation on 2D image """

43

44 image2D =

np.resize(image ,(self.image_size ,self.image_size))

45 shift =[0.0 ,0.0]
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46 center =(float(self.image_size)/2., float(self.image_size)/2.)

47 if self.center_around == ’MAX’:

48 myMAX=self._center_of_maximum(image2D)

49 shift [0]= center [0]-myMAX [0] -0.5

50 shift [1]= center [1]-myMAX [1] -0.5

51 elif self.center_around == ’Local’:

52 mylocal=self._center_of_local(image2D , value)

53 shift [0]= center [0]- mylocal [0] -0.5

54 shift [1]= center [1]- mylocal [1] -0.5

55 else:

56 return image2D.ravel ();

57

58 image2D =

ndimage.shift(image2D ,shift ,order=self.order ,

mode=’grid -wrap’)

59

60 return image2D.ravel()

Listing A.4: CNN Model

1 import itertools

2 from keras.utils.np_utils import to_categorical # convert to

one -hot -encoding

3 from keras.models import Sequential

4 from keras.layers import Dense , Dropout , Flatten , Conv2D ,

MaxPool2D , MaxPooling2D

5 from keras.optimizers import RMSprop ,Adam

6 from keras.preprocessing.image import ImageDataGenerator

7 from keras.callbacks import ReduceLROnPlateau

8 from keras.regularizers import l1 , l2

9 from keras.layers import BatchNormalization

10 from keras.callbacks import EarlyStopping

11 # Define the optimizer

12 optimizer = Adam(lr=0.001 , beta_1 =0.9, beta_2 =0.999)

13 # Define the CNN model

14 model = Sequential ()

15 #

16 model.add(Conv2D (32, (3, 3), padding=’same’,

activation=’relu’, input_shape =(7,7,1)))

17 model.add(MaxPool2D(pool_size =(1, 1)))

18 model.add(Dropout (0.5))
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19

20 model.add(Conv2D (64, (3, 3), padding=’same’,

activation=’relu’))

21 model.add(Conv2D (64, (3, 3), activation=’relu’))

22 model.add(MaxPool2D(pool_size =(2, 2)))

23 model.add(Dropout (0.2))

24

25 model.add(Conv2D (64, (3, 3), padding=’same’,

activation=’relu’))

26 model.add(MaxPool2D(pool_size =(1, 1)))

27 model.add(Dropout (0.1))

28

29 model.add(Flatten ())

30 model.add(Dense (128, activation=’relu’))

31 model.add(Dropout (0.1))

32 model.add(Dense(2, activation = "sigmoid"))

33

34 # Compile the model

35 model.compile(loss=’binary_crossentropy ’, optimizer=

optimizer , metrics =[’accuracy ’])
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