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1. Introduction

After the discoveries of new particles like the Higgs boson or top quark, in recent years there has been
an ongoing drought without any discoveries of comparable importance. More importantly though
there are also no real hints on where to search. There are no clear theoretical predictions of a further
particle, as it was for example the case for the top quark, which could be predicted with great confidence
after verification of the Cabibbo–Kobayashi–Maskawa mechanism in the standard model. The focus
of most research has thus shifted towards precision tests of the standard model. Increasingly more
precise measurements are pursued in the hope of finding deviations from standard model predictions
that may hint on the existence of new physics. To enable the necessary precision, extremely high
statistics are necessary. To accommodate this, accelerator experiments started to aim for very high
luminosities in order to collect the necessary data in reasonable time. The prime example is the Belle
II experiment located at the SuperKEKB collider facility in Japan, but also for example the LHC is
pursuing a high luminosity upgrade.
At Belle II, a so called B factory, pairs of B mesons are produced in large numbers to study their
subsequent decays. B physics offers many opportunities for precision tests of the standard model,
where processes involving loop diagrams are especially interesting as they may be influenced by new
particles entering the loops. A group of decays of interest here are the B → Kπ decays, where the tree-
level amplitudes are suppressed, thus making them sensitive to loop contributions. Measurements of
branching ratios and CP asymmetries of those decays are expected to satisfy certain relations predicted
by the standard model, which may however be violated if new physics is involved. This allows for so
called null tests of the standard model. Some of the necessary measurements are however very difficult
as the decays are rare and backgrounds are high. In this situation thus the best possible background
suppression is desirable. Motivated by this, here a novel approach for qq background suppression
using low level variables and deep neural networks will be explored for the B0 → K0π0 decay.
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2. Theory and Motivation

The following sections serve to give an overview of the theoretical aspects and resulting motivations
important for this thesis. Some aspects which are not directly important for this theses but still worth
mentioning in context will only be covered very briefly.

2.1. CP Violation

CP symmetry is the combination of charge (C) and parity (P ) symmetries which was originally
conceived as an extension to P symmetry which was found to be violated in weak processes. Contrary
to the initial motivation, CP symmetry itself was found to also be violated. Again, violations of CP
symmetry have so far only ever been observed in weak processes. All available experimental evidence
suggests that the strong and electromagnetic interactions conserve CP . In practice CP violation
usually manifests in the differences between some processes and those involving the corresponding
antiparticles.

2.1.1. Types of CP Violation

There are different manifestations of CP violation which will be briefly introduced. For the following
explanations we consider a particle X which decays to some final state f . The CP conjugated particles
are denoted X and f . An observed asymmetry is then defined as

A =
Γ(X → f)− Γ(X → f)

Γ(X → f) + Γ(X → f)
. (2.1)

Direct CP Violation Direct CP violation, or CP violation in decay, means a difference in the
decay amplitudes of a given decay and its CP conjugate which manifests in different decay rates. This
may be expressed as

Γ(X → f) ̸= Γ(X → f), or

∣∣∣∣∣Af

Af

∣∣∣∣∣ ̸= 1. (2.2)

For direct CP violation there must be multiple (at least two) amplitudes contributing to the total
amplitude of the decay. We may write the total amplitudes for the decay and its CP conjugated
version in terms of the individual contributing decay amplitudes magnitudes Ak, CP even, so called
strong phases δk and CP odd, so called weak phases ϕk.

Af =
∑
k

Ake
i(δk+ϕk), Af =

∑
l

Ale
i(δl−ϕl). (2.3)

CP violation then can be seen to only occur if there are at least two contributing amplitudes which
have different strong and weak phases as

|Af |2 − |Af |
2 = 2

∑
k,l

AkAl sin (ϕk − ϕl) sin (δk − δl) . (2.4)
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2. Theory and Motivation

CP Violation in Mixing CP violation in neutral meson mixing occurs when the mass eigenstates
are not pure CP eigenstates. This introduces an asymmetry in the flavor changing oscillations where
now the transition rate from particle to antiparticle and from antiparticle to particle differ. For
example for the neutral B meson system this means∣∣∣〈B0

∣∣∣B0(t)
〉∣∣∣ ̸= ∣∣∣〈B0

∣∣∣B0(t)
〉∣∣∣. (2.5)

This effect for B mesons is however very small and can not be measured directly.

CP Violation in the Interference of Mixing and Decay If the final state f is chosen as an
CP eigenstate, meaning f = f , the decay chains X → X → f and X → f now may interfere. This
results in an observable asymmetry which is how CP violation in the B0 meson system was initially
experimentally verified. The experimental determination here requires a time-dependent measurement
of the asymmetry.

2.1.2. CP Violation in the SM - The CKM Matrix

CP violation in weak processes is described in the standard model. Weak phases enter the decay
amplitudes through the components of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix
[1] which is parametrized by three rotation angles and one complex phase. Complex phases can be
shown to only enter when there are at least three generations of quarks. This in turn implied that the
observation of CP violation as described by the CKM formalism hinted on the existence of a complete
third quark generation, which was subsequently discovered.
There are many parametrizations of the CKM matrix. One particularly useful one is the Wolfenstein
parametrization, which highlights the hierarchy of the CKM matrix elements.

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 1− λ
2

2 λ Aλ3(ρ− iη)

−λ 1− λ
2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (2.6)

λ here is approximately equal to 0.2. Couplings within the same generation are thus the largest and
decrease the more generations are traversed.

2.2. Search for New Physics in B → Kπ Decays

The B → Kπ decays offer a good probe for physics beyond the standard model due to comparatively
large contributions of loop diagrams to the total decay amplitudes. This is because tree level con-
tributions are suppressed by the involved small CKM couplings. Measurements of these decays thus
are sensitive to the loop contributions which in turn are expected to be sensitive to new physics, as
unknown particles may enter the loops. Two examples for the involved Feynman diagrams are shown
in fig. 2.1.

2.2.1. Isospin Sum Rule as a Null-Test of the Standard Model

In order to avoid large hadronic uncertainties which complicate direct measurements of loop contribu-
tions one combines measurements from flavor symmetry related decay modes. A common approach
is to combine measurements of decays which are related by isospin symmetry [21]. Assuming isospin
symmetry a sum rule leading to the relation

2ACP (π
0K+)

B(π0K+)

B(π−K+)

τ
B
0

τ
B
+
−ACP (π

+K0)
B(π+K0)

B(π−K+)

τ
B
0

τ
B
+
−ACP (π

−K+)+2ACP (π
0K0)

B(π0K0)

B(π−K+)
= 0

(2.7)
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2.2. Search for New Physics in B → K π Decays

can be derived. ACP are the direct CP asymmetries and B the branching fractions (averaged over b
and b). While initially believed to be violated by electroweak penguin diagram contributions, which
do not conserve isospin, Gronau [3] argued that within the standard model such contributions are
extremely small and the sum rule should hold with uncertainty much smaller than 1% [4]. Thus this
sum rule gives a precise null-test of the standard model with any new physics in the contributing loops
possibly leading to a violation of the sum rule.

d

b

d

b

W+

W+

t

g

d

s

u

u

d

d

d

s
Vub Vtb Vts

Vus

Figure 2.1.: Example for Feynman Diagrams describing the processes contributing to the decay am-
plitudes for the B → Kπ decays. On the left a color suppressed tree-level diagram and on
the right a QCD penguin diagram is shown. In the loop is drawn with a t but also c and
u can contribute.

While the current experimental results are compatible with the sum rule, some of the contributing
measurements still come with large uncertainties. Thus more precise measurements are required, which
is a challenging task as some of the contributing decays are especially hard to measure. Most notably
B → K0π0 introduces the additional difficulty of the reconstructed final state (K0

Sπ
0) being a CP

eigenstate and thus containing no information on the flavor of the decaying B. To still determine the
corresponding CP asymmetries, this information must therefore be obtained through flavor tagging.
Flavour tagging allows for deduction of the flavor of the reconstructed B by considering the decay of
the other B from a produced BB pair. This however comes at a statistical cost [4]. For the decays
appearing in the sum rule the current Belle II measurements of B and ACP are shown in table 2.1.
The uncertainties for B → K0π0 can be seen to be statistically dominated, especially for the CP
asymmetry.
As an attempt to reduce statistical uncertainties on those measurements, one can try to improve
background suppression for the concerned decays, which forms the main motivation for this thesis.
While here we will consider the decay B0 → K0

S(π
+π−)π0(γγ) specifically as an example, this is not

the only B → Kπ decay for which an analysis could benefit from better continuum suppression.

decay B [10−6] ACP

B0 → K+π− 20.67± 0.37± 0.62 −0.072± 0.019± 0.007

B+ → K0π+ 24.37± 0.71± 0.86 0.046± 0.029± 0.007

B+ → K+π0 13.93± 0.38± 0.71 0.013± 0.027± 0.005

B0 → K0π0 10.40± 0.66± 0.60 −0.06± 0.15± 0.04

Table 2.1.: Current Belle II measurements for branching fractions and CP asymmetries appearing in
the sum rule presented in eq. (2.7). The values are taken from [24]. The first contribution
to uncertainty is the statistical component and the second the systematic.
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3. The Belle II Experiment

3.1. The SuperKEKB Collider

SuperKEKB1 is an e+e− collider located in Tsukuba, Japan, operating mainly at the Υ(4S) resonance,
which corresponds to a center of mass energy of

√
s = 10.58GeV. Operation at slightly different ener-

gies is however also possible, as done for so called off-resonance runs where no Υ(4S) is produced. The
hadronic cross section of the e+e− collision as a function of the center of mass energy is illustrated in
fig. 3.1 which also shows the different bb resonances and the energy region for off-resonance operation.
Υ(4S) is chosen for normal operation of the collider as it almost exclusively (in more than 96% of
cases) decays to a pair of the desired B mesons [23]. The decays of the produced BB pairs are then
studied with the Belle II detector (introduced in the next section).

9.46

σ
(e

+
e−

→
h
ad

ro
n
s)

in
n
b

e+e− center of mass energy in GeV

continuum background

10.02 10.34 10.37 10.54 10.58 10.62
0

5

10

15

20

25

Υ(4S)
on-resonance

off-resonance

Υ(3S)

Υ(2S)

Υ(1S)

Figure 3.1.: Hadronic cross section of the e+e− collision as a function of the center of mass energy
(adapted from [25]).

A simplified representation of the collider is shown in fig. 3.2. The collider consists of two separate
rings: the high energy ring (HER) and low energy ring (LER) operating at around 7GeV and 4GeV
respectively [18]. The center of mass frame of the collision therefore has a boost of βγ = 0.28 in the
lab frame.

SuperKEKB together with the Belle II detector are operating at the precision forefront. This is
complementary to the energy forefront, which is the regime of operations of experiments at the LHC.
To enable the most precise measurements possible, large statistics are vital, which is why SuperKEKB
is aiming for a very high luminosity of 6×1035 cm−2 s−1, which however is yet to achieve. Nevertheless,
SuperKEKB holds the world record in peak luminosity at 4.71 × 1034 cm−2 s−1 [26]. The high peak
luminosities are reached by highly focussing the beams at the interaction point. This is enabled by

1
SuperKEKB is an upgrade of the KEKB collider which was operated in conjunction with the Belle detector.
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3. The Belle II Experiment

L
E
R

e
+

e +

H
E
R

injection

Belle II

e −

e
−

Figure 3.2.: Schematic depiction of the SuperKEKB colliders storage rings. Shown are the low energy
ring (LER), high energy ring (HER) as well as location of the Belle II detector and e+e−

injection.

the so called nano beam scheme [6], which was introduced as part of the upgrade from the predecessor
KEKB to SuperKEKB.
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3.2. The Belle II Detector

3.2. The Belle II Detector

The statements in this and the following sections will be based of the Belle II Physics Book [18] if not
specified otherwise.

The Belle II detector, a comprehensive upgrade of the Belle detector, is a general purpose spectrometer
build around the interaction point of the SuperKEKB collider. It is composed of different sub-detectors
which are build around the interaction point in a shell like structure. The detectors construction further
follows the asymmetry of the collisions along the beam axis to maximize geometrical acceptance. While
dependent on the different sub-detectors, in the lab frame the detector as a whole covers a polar angle
(measured form the detectors symmetry axis) of around 17◦ to 150◦, corresponding to a symmetric
acceptance of around 23◦ to 157◦ in the center of mass frame.

An overview of the detector, indicating the locations of the sub-detectors, is shown in fig. 3.3. As
indicated in the figure, the usual coordinate system is chosen such that the z-axis is the symmetry
axis of the detector, pointing in the direction of the boost of the collisions. The x-axis is chosen to
point horizontally away from the center of the colliders storage rings, which in a left handed coordinate
system fixes the y-axis to point upwards. The endcap part of the detector in the direction of the z-axis
is usually referred to as the forward region, the opposite side of the detector then as the backward
region. Everything in between is called the barrel region.

KLM

y

z
x

solenoid

TOP

CDC

ECL

ARICH

SVD

PXD

Figure 3.3.: Wireframe drawing of the Belle II detector. The different sub-detectors are shown in
different colors and are indicated by the corresponding labels. The indicated coordinate
system has its origin usually located at the interaction point. Here it is drawn translated
next to the detector for better visibility.

3.2.1. Vertex Detector (VXD)

The innermost layer of the Belle II detector is the vertex detector (VXD). It consists of 6 layers of
silicon detectors of different technologies. The innermost two layers, directly surrounding the beam
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3. The Belle II Experiment

pipe, are pixelated sensors of the DEPFET type positioned at r = 14mm and r = 22mm from the
z-axis. This part of the VXD is referred to as the silicon pixel detector (PXD). The remaining layers
at radii of 39mm to 135mm are double-sided silicon strip sensors, which are together referred to as the
silicon vertex detector (SVD). The pixelated sensors for the innermost layers are necessary to uniquely
determine hit positions for a large number of tracks simultaneously, as required for measurements at
the high luminosities the collider is operated at. Together the PXD and SVD allow for the precise
reconstruction of tracks of charged particles near the interaction point, which in turn enables the
precise determination of decay vertices.

3.2.2. Central Drift Chamber (CDC)

The central drift chamber (CDC) is the main tracking device in the Belle II detector. It is a large-
volume wire chamber extending from r = 16 cm to r = 113 cm, surrounding the VXD. Its volume is
filled with a 50 : 50 mixture of helium and ethane and traversed by 14 336 sense wires and 42 240 field
wires. The total of 56 layers of sense wires are arranged in 9 superlayers which alternate between axial
and stereo orientation of the wires [15]. The wires in the axial superlayers are parallel to the z-axis while
for the stereo layers they are slightly skewed relative to the z-axis. Combination of the hits from axial
and stereo layers then allows for reconstruction of three dimensional tracks. As the tracks are curved
due to the magnetic field of the surrounding solenoid (described in detail later), the reconstructed
tracks allow for determination of particle momenta from the track curvatures. Further the CDC allows
for determination of the energy loss dE

dx of the traversing particles, which depends on the velocity and
thus, together with information on the momenta, can be used for particle identification. Finally the
CDC is used as the (only) input to the track trigger due to its fast readout.

3.2.3. Particle Identification (TOP, ARICH)

There are two sub-detectors dedicated to particle identification. While both of them fundamentally
rely on Cherenkov radiation to obtain information on the velocity of the traversing particles, their
construction and working principle is remarkably different. The time-of-propagation (TOP) counter
is a novel Cherenkov detector utilizing total internal reflection of Cherenkov light in a rectangular
quartz bar of length 2.6m and width 45 cm. The quartz bar at the same time acts as the Cherenkov
radiator and light guide to guide the Cherenkov photons to one end of the bar where they will be
detected. The other end of the bar is formed into a spherical mirror. 16 such quartz bars are placed
around the perimeter of the CDC. As the Cherenkov light is only detected at one end of the quartz
bar, the TOP can be build to be very compact, allowing for a larger volume of the CDC.

In the TOP, the two dimensional information for a Cherenkov ring image is obtained from the signals
from an array of 16-channel micro-channel plate photomultiplier tubes (MCP-PMTs) located at one
end of each of the quartz bars. One spacial dimension as well as the arrival time of the photons
already gives enough information to reconstruct the two dimensional Cherenkov ring image. This
however requires a very high single-photon time resolution of at least around 100 ps, which is on the
order of the propagation time difference for Cherenkov light from kaons and pions (the main particle
types which the TOP is designed to discriminate) at 2GeV. The required single photon time resolution
is achieved with purpose build MCP-PMTs and readout electronics, reaching a resolution of around
40 ps [5]. Further this method also requires precise knowledge of the particle production time, which
is provided by the other sub-detectors.

While the TOP covers the barrel region of the detector, covering polar angles from 31◦ to 128◦, the
forward endcap region is covered by an aerogel ring-imaging Cherenkov (ARICH) detector, covering
the angles from 14◦ to 30◦. There is no dedicated particle identification for the backwards region. The
ARICH detector is a more traditional ring imaging Cherenkov detector. It uses 2 cm thick aerogel as
the radiator to then sample the Cherenkov photons directly in a two dimensional image plane located
20 cm behind the radiator.
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3.3. Continuum Background

3.2.4. Electromagnetic Calorimeter (ECL)

The electromagnetic calorimeter (ECL) is dedicated to the detection of photons, which are not visible
in the other sub-detectors. Besides this it is also used to identify electrons with the intend of separating
them from hadrons like the charged pions. The calorimeter consists of a large array of a total of 8736
thallium-doped caesium iodide CsI(Tl) crystals and is subdivided into barrel, forward and backwards
regions. In total, a polar angle from 12◦ to 155◦ with small gaps on the order of 1◦ between the
three regions is covered. While most of the ECLs structure, including the crystals, was inherited from
the Belle detector, the readout electronics were upgraded to accommodate wave-form-sampling. This
was necessary as due to the higher luminosities at Belle II the background levels will increase to an
extend where the comparatively long decay time of the scintillators can cause pulses from neighboring
(background) events to overlap, which could not be resolved with the old readout electronics.

3.2.5. Superconducting Solenoid

The ECL is surrounded by a superconducting solenoid magnet with an inner radius of 1.7m. All
sub-detectors located within the solenoid are submerged in its homogeneous magnetic field of 1.5T.
Only the K0

L and µ detector (described in the next section) is located outside the solenoid. The
purpose of the magnetic field is to curve the tracks of charged particles in the detector as required for
determination of their traverse momenta from track curvatures.

3.2.6. K
0
L and µ Detector (KLM)

The K0
L and µ detector (KLM) is the outermost component of the Belle II detector. It consists of a

structure of alternating layers of 4.7 cm thick iron plates and active detector elements. While muons
do not produce any showers in the ECL, they can be detected as tracks by the detector elements
of the KLM. To identify muons, tracks from the CDC are matched with hits from the KLM under
the assumption that the muon must traverse the KLM completely, which distinguishes muons from
hadrons. Hadrons, in particular the K0

L, are then identified by a cluster of hits in the KLM that cannot
be matched to any charged tracks in the detector. The K0

L further induce showers in the ECL when
traversing it. If possible information from both the KLM and ECL is combined.

3.3. Continuum Background

While the Υ(4S) resonance is the desired state to be produced in the collisions, it is by far not the
only possible one. For example e−e+ → e−e+ (Bhabha scattering) has a cross section about 300 times
the one for production of a Υ(4S) resonance [10].

The dominating non-hadronic backgrounds, like Bhabha scattering, can be easily rejected. However,
hadronic processes of the type e+e− → qq , where q are the quarks lighter than the b quark, result in
complicated hadronic showers in the detector and are much more difficult to reject. These processes
are what is referred to as continuum background or qq background in the context of Belle II. As there
is a sufficient mass difference between the b quark and the lighter quarks, continuum background
appears uniformly throughout the operating range of the SuperKEKB collider. This is also indicated
in fig. 3.1.

Continuum background then forms the main background for many analyses, including those of the
decay B0 → K0

S(π
+π−)π0(γγ). For this low multiplicity decay a signal peak in the variables chosen

for signal yield extraction can essentially not be identified without applying a continuum background
suppression.
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3. The Belle II Experiment

3.4. Common Approaches to Continuum Background Suppression

The general task for a continuum background suppression (usually just referred to as continuum sup-
pression) is to find some variable that allows for differentiation between signal and background events
by means of placing a cut on that variable. This becomes a non-trivial task when high background
rejection has to be paired with high signal efficiencies, as required for a low multiplicity decay with
high background.
Signal events can be distinguished from the continuum background by their different topologies. In
background events, where quarks of invariant masses below those of the b quark are produced, the
remaining energy causes the subsequent hadronic showers to be strongly aligned with the direction
of momentum of the initial quark and anti-quark. In the rest frame of the collision this means
that the hadronisation will be confined to two back-to-back hadronic jets. For BB events however
there is almost no energy excess, implying that the decay products will exhibit an approximately
isotropic angular distribution with no correlation between the directions of decay products from the
two produced B mesons (illustrated in fig. 3.4).

q

q

B B

Figure 3.4.: Illustration of the different event shapes for BB decay events and qq background events
(adapted from [25]). The B mesons only very slowly move apart and their decay products
are approximately spherically distributed. In qq events the hadronisation is confined to
two back-to-back jets.

A fundamental concept to capture information regarding the event shape are thrust frames. A thrust
frame is defined as a polar coordinate system where the z-axis points in the average direction of
momentum in a decay (referred to as the thrust axis). The boost is that of the rest frame of the
collision. We define two thrust frames for a reconstructed event: one for the decay of the signal B,
meaning the reconstructed B, and one for the rest of event, meaning everything reconstructed that
was not matched to the signal B. The definition of signal B and rest of event is illustrated in fig. 3.5.
For a qq event then the thrust axes will preferably align antiparallel while for BB events there is no
preferred alignment.
To capture those differences, for continuum suppression commonly a set of ”high level” event shape
variables, like Cleo Cones, KSFW moments and further thrust related variables are used. These
variables are specifically designed to be sensitive to the topological differences between continuum and
signal described above. More detailed explanations of them can be found in [7].
To combine the information contained in all of those variables, one usually relies on methods from
multivariate analysis. The tools at hand are boosted decision trees (BDTs), a form of recursive
partitioning, or (deep) neural networks (DNNs). Those are then trained on simulated data, allowing
for supervised training. The training target is a number encoding whether a simulated event is signal
or background. Usually one chooses 1 for signal events and 0 for background events. As a BDT/DNN
cannot be trained perfectly, its output will fall somewhere in the range between 1 and 0. If trained
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3.4. Common Approaches to Continuum Background Suppression

B0 B0

K0
S

π0

γ

γ

π+

π−

Υ(4S)

Rest of Event (roe)

Signal Side

Figure 3.5.: Illustration of the decay of a Υ(4S) into a BB pair. The B0 on the right is shown to decay
in the signal mode for B0 → K0

S(π
+π−)π0(γγ). This B0 is referred to as the signal B.

The decay products from the remaining B0 are referred to as the rest of event (roe). As
the shown signal decay is also possible for B0, the B0 and B0 in the drawing could as well
be swapped.

correctly, most signal (background) events are assigned numbers close to 1 (0). In essence the training
is equivalent to finding a (rather complicated) function that transforms a set of input variables to a
single output variable suited for a continuum suppression cut. Such a function, be it in form of a BDT
or DNN, in the following we refer to as a classifier.
While for many measurements a continuum suppression as outlined above may be sufficient, especially
for low multiplicity decays the best possible continuum suppression is desirable. There have been some
past investigations on the additional suppression power gained by introducing further continuum
suppression variables. Some only introduce a few, like the total traverse momenta or ∆z [17], while
others included a very broad set of variables, comprising for example information on the decay vertices
and low level momentum variables [14].
However, usually these new variables are paired with a set of the common (engineered) ones, the
general idea being to augment the traditional approach. The additional variables may be specific to
the decay to which the continuum suppression is to be applied. Examples are the momenta of the
particles in the final state or the decay vertex positions of intermediate particles. While this allows
for potentially more efficient continuum suppression, at the same time some generality is lost. This
can complicate for example estimation of systematic uncertainties.
In this thesis a slightly different approach is pursued, where the engineered variables are discarded
completely in favor of a new set based purely on low level variables, which will be introduced in
section 4.2. The philosophy being that if one already attempts to augment the conventional variables
by introducing a few ”new” low level variables to capture information not available through the
conventional ones, one may as well choose a set of exclusively low level variables. The event shape
information should of course still be extractable from the chosen variables. This could be thought of
as as a more direct approach as it is attempted to find a function to directly calculate a highly effective
continuum suppression variable from exclusively fundamental variables.
In this thesis we demonstrate that such an approach does function, but also address and discuss the
difficulties and problems introduced by it.
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4. Continuum Background Suppression for
B0 → K0

S(π
+π−)π0(γγ)

4.1. Reconstruction and Selection for B0 → K0
S(π

+π−)π0(γγ)

For the reconstruction we follow a present approach [22] which will be outlined here.

Reconstruction and preliminary selection The K0
S → π+π− candidates are reconstructed from

π+π− candidates, which in turn have been reconstructed as charged tracks in the detector. The
dipion invariant mass is required to lie in the region between 450MeV and 550MeV. The π0 → γγ
candidates are reconstructed from the detected photons, which are required to have a minimal energy
depending on the calorimeter region they have been detected in. We require the energies to be larger
than 22.5MeV for the forward region and larger than 20MeV for the barrel and backwards regions.
Further the π0 mass is required to lie between 105MeV and 150MeV and the absolute value of the
cosine of the helicity angle of the π0 is required to be less than 0.98. These criteria are imposed in order
to suppress contributions from misreconstructed π0 candidates. A mass-constrained fit is applied to
the π0 after the initial reconstruction.
The B meson candidate is reconstructed by combination of the reconstructed K0

S and π0 candidates.
Here we impose constraints on two kinematic variables, the beam constrained mass, denoted Mbc and
the difference between the reconstructed energy and half the center of mass energy, denoted ∆E. The
definitions are as follows:

Mbc =
√

E2
beam − #—p 2

B , ∆E = EB − Ebeam, (4.1)

where Ebeam is half the energy of the collision in the center of mass system of the collision. We require
5.2GeV < Mbc < 5.3GeV and |∆E| < 0.3GeV. Further a vertex fit is applied to the complete decay.

Final selection For the final selection we re-compute the kinematic variable Mbc to have no direct
dependency on the magnitude of the π0 momentum. The π0 momentum is reconstructed purely
from the photons detected in the ECL and is usually measured rather poorly compared to the track
momenta1.

M ′
bc =

√√√√√E2
beam −

 #—p
K
0
S
+

#—p
π
0∣∣∣ #—p

π
0

∣∣∣
√(

Ebeam − E
K
0
S

)2

−m2

π
0

2

. (4.2)

For the final selection then the following criteria are applied:

5.24GeV < M ′
bc < 5.3GeV, |∆E| < 0.3GeV, (4.3)

482MeV < m
K
0
S
< 513MeV, 120MeV < m

π
0 < 145MeV. (4.4)

Off-resonance Where off-resonance data will be used, the same reconstruction and requirements
are applied, except for M ′

bc where 5.2GeV < M ′
bc < 5.26GeV is required instead to account for the

shift introduced by the different beam energy.

1
The default version of Mbc is also known to enhance correlations with ∆E, which is a further common reason for
re-calculation. However this is of no further concern for this thesis as here Mbc will not be used for a signal yield fit.
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+π−)π0 (γγ)

4.1.1. Topologically Similar Control Channel

B0 → D0(K+π−)π0(γγ) was selected as a topologically similar control channel to be used in the
verification of MC modeling, as well as for some studies with the trained classifiers. The structure of
two charged tracks and two photons is the same as for the signal channel. The reconstruction applied
is exactly the same as for B0 → K0

S(π
+π−)π0(γγ) up to the replacement of K0

S by D0.

The most notable difference is the, compared to K0
S, much shorter lifetime of the D0. This implies that

the decay vertex positions are different to those of the signal channel, which one has to keep in mind
when comparing evaluations of classifier performance on this control channel with the signal channel.

Another candidate for a topologically similar control channel would be B+ → D0(K0
S(π

+π−)π0(γγ))π+.
While this decay is of higher multiplicity than the above introduced control channel, there are some
difficulties with it due to the intermediate D0 state. For example it is not clear how to define the rest
of event to make it comparable to that of the signal channel. While the BB pair is almost at rest in the
center of mass frame for the signal channel, in this control channel the rest of event would originate
from a B still approximately at rest in the center of mass frame, while the K0

S and π0 originate from
a boosted D0. The question then is in which frame to represent the variables used for the continuum
suppression. The consequences of whichever choice are not immediately clear.

4.1.2. Data Samples Used

The following are the data samples used throughout this thesis:

• Generic MC2 (qq where q = u,d, s, c & BB): 1 ab−1

• Pure signal MC for signal channel and control channel: 4 × 106 and 2 × 106 events produced
resulting in 1 019 638 and 523 183 reconstructed events respectively

• Physics data: 361.65 fb−1

• Off-resonance generic MC (qq where q = u, d, s, c): 169.328 fb−1

• Off-resonance data: 42.28 fb−1

The above listed MC samples do not contain any τ−τ+ contributions. While τ−τ+ pairs are produced
in the collisions, for analyses of the decays of B mesons they are usually already rejected by a pre-
selection (skim) of the data that happens prior to reconstruction. Therefore τ−τ+ was expected to
be a negligible background for the reconstructed decay and was not included in the reconstruction
for the MC samples. Despite initial assumption, the data available for this thesis eventually turned
out to not have the skim applied as intended. This as well as a further problem with not correctly
applied momentum and energy corrections for the physics data is discussed in detail in appendix A.1.
In essence the MC samples and thus also trainings and evaluations of the classifiers on MC are
unaffected. Comparisons of physics or off-resonance to MC however may be affected. This will be
discussed in context where necessary.

For off-resonance only qq events for quarks lighter than b are possible, which is why for off-resonance
only those components of MC were reconstructed.

Generic MC and data were reconstructed for both, the signal channel B0 → K0
S(π

+π−)π0(γγ) as well
as the control channel B0 → D0(K+π−)π0(γγ). Off-resonance MC and off-resonance physics data was
only reconstructed for the signal channel.

2
Generic MC in the context of this thesis always means run-independent MC. For future studies one could e.g. use run
independent MC for the training and run-dependent MC for later studies using the classifiers.
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4.2. Continuum Suppression Variables

4.2. Continuum Suppression Variables

4.2.1. Introduction of Variables Used

In the following the chosen continuum suppression variables will be introduced and motivated. Some
examples of their distributions are given and finally the used naming scheme is introduced. As the
naming scheme can only be introduced sensibly after the variables have been introduced conceptually,
it is explained last. For the plots shown prior to introduction of the naming scheme, the corresponding
caption will explain the shown variables sufficiently to make sense of them without knowledge of the
naming scheme.

Momentum Variables In the case of the decay B0 → K0
S(π

+π−)π0(γγ), the final state particles
measured by the detector are two charged pions and two photons, which are detected in the VXD and
CDC as tracks or ECL as clusters respectively. The reconstruction gives for each event at least two
charged tracks, one positive and one negative (on the signal side for the two pions), as well as two
clusters (on the signal side for the two photons). All reconstructed tracks and clusters, for signal side
and rest of event separately, are ranked by momentum in the center of mass frame to then select the
highest ranking ones for each type to be used for the continuum suppression variables.

The numbers of reconstructed tracks and clusters chosen for continuum suppression from the rest of
event were chosen to be the same as for the signal side. This means one positively charged track, one
negatively charged track and two clusters. Chosen are the tracks and clusters of highest momentum
as they are the most significant. Attempts to include more than only the highest ranking ones showed
that the suppression power gained is very limited. For decays different than the one considered here
however the effectiveness of inclusion of more tracks and clusters from the rest of event should be
reevaluated.

For each of the tracks and clusters then a representation of their momenta in a thrust frame is
computed to be used for the continuum suppression. Two different thrust frames are used: the signal
side thrust frame, defined by the momenta of the signal decay, and the rest of event thrust frame,
defined by the momenta of all reconstructed tracks and clusters in the rest of event.

Some suppression power is obvious to be inherent in this representation: For example, a signal side
track momentum in the corresponding rest of event frame will for signal events have no real preferred
direction relative to the thrust axis. For background events however, due to the jet like structure
the relative orientation of signal side thrust frame and rest of event thrust frame is essentially fixed
(with the thrust axes oriented antiparallel). In this case the angle between thrust axis and momentum
vectors will be generally small. This implies that the cosine of the angle between the signal side tracks
momenta and the rest of event thrust axis will be distributed almost flat for signal events while for
background events the distribution is peaked at ±1. An example for this is shown in fig. 4.1 (upper
left). While for this example the different distributions can be intuitively explained, for example the
distributions of the azimutal angle of the signal track momenta in the rest of event thrust frames3

(example shown in fig. 4.1, upper right) are more difficult to interpret. Anyhow, the distributions for
signal and background events are clearly different, suggesting the suppression power of the variables,
which is sufficient here. Correlations between variables may also contribute some suppression power.
Thus some variables with seemingly very similar distributions for signal and background events may
also be useful for the background suppression.

Vertex Variables Further we introduce, this time only in the thrust frame of the signal side4, the
vertices corresponding to the two charged tracks (for both signal side and rest of event) as

3
The oscillating component for the azimuthal angle is most likely related to the center of mass frames z-axis being the
detectors z-axis which ends up not exactly aligned with the direction of the boost.

4
The variables are not introduced for the rest of event thrust frame as by doing so the only information gained should
be the same as already conveyed by the momentum variables being represented in both thrust frames.
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Figure 4.1.: Examples for different distributions of signal/background of used continuum suppression
variables. Shown are polar and azimutal angle of momentum of the negative track of the
signal side (π−) in the thrust frame of the rest of event (upper left and right) as well
as length and polar angle of the displacement vector corresponding to the decay vertex
assigned to the negative track of the signal side (lower left and right). The variable naming
is explained in detail in section 4.2.1. All distributions are normalized.

input variables. On the signal side, for signal events the vertices assigned to the tracks then correspond
to the decay vertex of the K0

S. As for the photons in the final state the ECL cannot determine their
directions accurately, reliable vertex reconstruction is not possible. Thus vertex variables are only
used for the charged tracks.

For signal events, on the signal side the vertices will be displaced from the interaction point by the
amount the K0

S traveled. For qq background, while per the reconstruction the tracks should still be
matched preferably to the K0

S contained in the jets, those now may be of different boost. Due to the
large number of tracks in the jets, there also is the possibility for reconstruction of some fake K0

S.
Considering the corresponding distribution of distance traveled by the reconstructed K0

S (shown in
fig. 4.1, lower left), clearly the K0

S in signal decays tend to travel farther.

Further a vertex position is assigned separately to each of the two tracks as a result of the vertex fit.
For signal events the vertices associated with the positive and negative track should be exactly the
same. Per the reconstruction however small differences are possible. Especially for background events
non-coinciding vertex positions may be more frequent as the matched particles may be secondary
particles in the hadronic shower from a qq event. This is of course already suppressed by the nature
of the reconstruction where tracks are required to originate from approximately the same point.

While, as outlined above, there is some intuitive motivation for introduction of the decay vertex
variables, this is also motivated by the work of Weyland [14], where such variables were already
shown to be effective for improvement of continuum suppression. Their suppression power is further
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4.2. Continuum Suppression Variables

suggested by the indeed different distributions for signal and background for for example the angular
components of the vertex vector. An example for an angular component is shown in fig. 4.1 (lower
right). Finally also the traveled distance of the signal B projected onto the z-axis (∆z) is added to
represent its decay vertex5.

Frame Orientation Variables In order to also capture the relative orientations of the thrust
frames as well as the absolute orientation of those in the detector, (the cosine of) the angle between
the thrust axes as well as between signal thrust axis and z-axis are used as further variables.

Fit Variables The classifiers are trained for the purpose of being applied to a sample from which
then, by means of a fit, a signal yield is to be extracted. One has to decide which variables to use
for the fit, the canonical choice being ∆E and Mbc. A popular replacement for Mbc is the probability
integral transform of the classifier output. The transform is computed by evaluating the cumulative
distribution function of the classifier output distribution for only signal events. This can be denoted as
FX(Z), whereX is the classifier output sample for only signal events and Z the classifier output sample
for all events. As it can be shown that FX(X) is of standard uniform distribution, in the transformed
distribution FX(Z), the signal part will appear as a constant component. The background part
usually takes an approximately exponential form. If the background part can be sufficiently modeled,
the signal yield can be simply extracted as a constant component.

If Mbc is not used for the fit, it is customary to place a cut on the variable. An alternative is to use
Mbc as an additional input for the continuum suppression. The classifier used will then learn what is
roughly equivalent to placing a cut, while also being able to utilize any further information possibly
encoded in Mbc. Here it is chosen to use Mbc (or more precisely M ′

bc) as a further input variable for
the classifiers.

Variable Naming

For the kinematic and vertex variables a naming scheme is used that encodes which frame they are
represented in, which track or cluster they belong to as well as whether they correspond to the
decay of the signal B or the rest of event. Superscripts are assigned to the variables indicating the
corresponding track or cluster. The superscripts are three symbols each, where the first indicates if
the variable corresponds to a positive track (+), negative track (−) or cluster (0). The second symbol
is either s or r indicating correspondence to the signal side or rest of event. Finally the appended
number indicates the order of the track or cluster (as sorted by momentum). As in the context of this
thesis we chose to only use one track of each type and two clusters, for tracks this number is always 0
and for clusters it is either 0 or 1. The used symbols to which the superscripts are assigned are listed
and explained in table 4.1. For the polar angles usually the cosine of the angles are used. To further
express in which frame the variable is represented in, we write S(·) or R(·) for the signal side and rest
of event thrust frames respectively (the dot is to be replaced by the corresponding variable).

For example the momentum p of the zeroth positively charged track from the rest of event represented
in the thrust frame of the signal side would be denoted as S(p+r0).

The remaining variables, for which the above notation is not sensible are ∆z, M ′
bc, cos(θSR) and

cos(θSz). The latter two are denoting the cosine of the angle between the z-axes of signal and rest of
event thrust frames and the cosine of the angle between the z-axis of the signal thrust frame and the
z-axis of the detector respectively.

5
There are further variables describing the B decay vertex. They were not available with the data samples used here
but should be considered for future studies.

23



4. Continuum Background Suppression for B0 → K 0
S (π

+π−)π0 (γγ)

variable name explanation

p magnitude of momentum vector
θp polar angle of momentum vector
ϕp azimuthal angle of momentum vector
d magnitude of vertex vector
θd polar angle vertex vector
ϕd azimuthal angle of vertex vector

Table 4.1.: Explanations of variable names used for the naming scheme.

Correlations and Final Variable Choice

The momentum magnitude variables are by definition the same in the different frames and thus always
100% correlated. As there is no information gained by keeping both of them, one will be discarded. It
is chosen to discard the representations in the rest of event thrust frame, but the choice is arbitrary.
The final set of variables is shown in table 4.2. The distributions for signal and background events for
all of the chosen variables (for MC samples) are shown in appendix A.2.1 for the signal channel and
appendix A.2.2 for the control channel.

∆z R(cos(θ+s0
p )) R(ϕ0s0

p ) S(cos(θ−s0
p )) S(ϕ−r0

d ) S(p+s0)

cos(θSR) R(cos(θ−r0
d )) R(ϕ0s1

p ) S(cos(θ+r0
p )) S(ϕ−s0

d ) S(ϕ0r0
p )

cos(θSz) R(cos(θ−s0
d )) R(ϕ−r0

p ) S(cos(θ+s0
p )) S(ϕ+r0

d ) S(ϕ0r1
p )

M ′
bc R(cos(θ+r0

d )) R(ϕ−s0
p ) S(cos(θ−r0

d )) S(ϕ+s0
d ) S(ϕ0s0

p )

R(cos(θ0r0p )) R(cos(θ+s0
d )) R(ϕ+r0

p ) S(cos(θ−s0
d )) S(p0r0) S(ϕ0s1

p )

R(cos(θ0r1p )) R(ϕ−r0
d ) R(ϕ+s0

p ) S(cos(θ+r0
d )) S(p0r1) S(ϕ−r0

p )

R(cos(θ0s0p )) R(ϕ−s0
d ) S(cos(θ0r0p )) S(cos(θ+s0

d )) S(p0s0) S(ϕ−s0
p )

R(cos(θ0s1p )) R(ϕ+r0
d ) S(cos(θ0r1p )) S(d−r0) S(p0s1) S(ϕ+r0

p )

R(cos(θ−r0
p )) R(ϕ+s0

d ) S(cos(θ0s0p )) S(d−s0) S(p−r0) S(ϕ+s0
p )

R(cos(θ−s0
p )) R(ϕ0r0

p ) S(cos(θ0s1p )) S(d+r0) S(p−s0)

R(cos(θ+r0
p )) R(ϕ0r1

p ) S(cos(θ−r0
p )) S(d+s0) S(p+r0)

Table 4.2.: The final set of variables. The names follow the conventions explained in section 4.2.1.

4.2.2. MC Modeling of Variables Used

As the variables introduced are not very commonly used for continuum suppression, care must be
taken to verify their MC modeling. The classifiers will be trained on a MC sample and if this sample
does not model the physics data sufficiently well, the classifiers may behave in unexpected ways when
applied to physics data. As analyses at Belle II (and also in HEP in general) are usually conducted
blind, the MC modeling in the signal channel cannot be verified by comparing an MC sample to
physics data in that same channel. To work with this constraint, off-resonance data and the control
channel (as introduced in section 4.1.1) are employed. The following comparisons are considered:

• Signal channel: off-resonance MC ↔ off-resonance data

– Allows for verification of MC modeling for qq background events

• On-resonance MC (with off-resonance M ′
bc cuts) ↔ off-resonance MC

– Shows to which extend the MC modeling conclusions from the off-resonance comparison
can be translated to on-resonance (physics) data
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4.2. Continuum Suppression Variables

• Signal channel: side-band MC ↔ side-band data (physics data where the usual M ′
bc cut is

replaced by 5.2GeV < M ′
bc < 5.27GeV)

– Allows for verification of MC modeling for qq and BB background events together, also
higher statistics than for off-resonance

• Topologically similar control channel: MC ↔ data

– Approximates complete set of events to be modeled, however signal events are only present
in a very small fraction

• High purity control channel MC ↔ data (prospective, not part of this thesis)

– Possible candidate: B+ → D0(K+π−)π+

– Could allow for verification of MC modeling (of only the track related variables, if above
candidate is used) of signal events

No single comparison is suited for a judgment of all aspects of the MCmodeling. Thus, the comparisons
presented above are supposed to complement each other and should always be considered together.

Comparison of the Distributions

Here for each of the considered comparisons a series of plots was created, one for each variable,
overlaying the distributions for the two compared types of data.

√
N is taken as the uncertainty for

each bin, where N is the number of events in that bin. Using these uncertainties, the pull is computed
and also shown.
The distributions for the cos(θ) like variables tend to be extremely peaked at ±1. This makes it
difficult to visualize them using a histogram, as possibly a large region between the peaks will be almost
empty. To work around this, an invertible transformation is employed that flips the distributions in
the regions [−1, 0) and [0, 1]. This causes the peaks near ±1 to now be located just above and below
zero respectively. In mathematical terms the transformation is

T (x) :=

{
−x+ 1 for x ≥ 0

−x− 1 for x < 0
= −x+ (2H(x)− 1) , (4.5)

where H(x) is the Heaviside step function. If the transformation is applied for a variable, the corre-
sponding label of the plot will be T (x), where x is the variable. As the transformation only makes
sense for the cosine variables which take values exclusively between −1 and 1, the transformation will
only ever be applied to those. Also note that the transformation will only be used for the plots, not
as a general processing of the data.
All the plots can be found in appendix A.3, appendix A.4, appendix A.5 and appendix A.6 for the
above listed comparisons respectively.

Discussion of MC Modeling

Below some of the most prominent discrepancies observed will be highlighted, referencing some ex-
ample distributions. Definitive conclusions are difficult due to the known problems with the available
data samples explained in appendix A.1.

Off-Resonance Data vs MC For most of the variables most of the bins of the plotted histograms
agree within 2.5 sigma. Notable exceptions are the momentum magnitudes, which for both tracks and
clusters appear shifted. Some examples for the affected variables are shown in fig. 4.2. The observed
disagreements here are expected to be related to the not applied momentum and energy corrections
as mentioned in appendix A.1. Whether the disagreements for the track variables can be resolved by
the very small track momentum corrections remains to be seen.
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Figure 4.2.: Selection of distribution comparisons of off-resonance MC to off-resonance data where
significant discrepancies could be observed.

Off-Resonance MC vs On-Resonance MC Overall agreement is surprisingly good considering
that the two samples correspond to different beam energies. For a good fraction of the variables
agreement is within 2 or less sigma. However, a few of the distributions are entirely off. For M ′

bc

a disagreement is expected as the variable is directly connected to the beam energy. For others like
S(cos(θ0s0p )) a connection to the beam energy is not obvious but nevertheless large disagreements are
observed. As the disagreements for a given variables are always either acceptable (meaning within 2.5
sigma) or extremely pronounced, we assume that the clear disagreements are an effect of the differing
beam energies. Thus we conclude that for the variables used here qq background for off-resonance
behaves essentially the same as for on-resonance up to some disagreements directly tied to the different
beam energies. This however ideally should be further investigated in future studies.

Side-Band MC vs Data For the sideband statistics are higher than for off-resonance which high-
lights some of the disagreements that were hard to observe from the off-resonance comparison. Most
notably a clear shift in M ′

bc and cos(θSz) is observed. This is a clear sign of a problem with the data
as those are very common variables which are expected to be modeled well. Thus most likely the
disagreements can be traced back to the not applied corrections. Notably now also some disagree-
ments in the vertex variables become obvious. Whether the discrepancies are again caused by the
not applied corrections is unclear and cannot be judged until a data sample with applied corrections
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4.2. Continuum Suppression Variables

is available. Further the disagreements for momentum variables are now due to the higher statistics
more pronounced. Examples for the above explicitly mentioned variables as well as an example for a
vertex and momentum variable each are shown in fig. 4.3.
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Figure 4.3.: Selection of example distribution comparisons of side-band MC to side-band data where
significant discrepancies could be observed. For the momentum variables (here shown is
S(p0r0)) the same disagreement as also observed for the off-resonance comparison (shown
in fig. 4.2) can now seen to be more pronounced due to higher statistics.

Control Channel MC vs Data The same discrepancies as observed for the sideband comparison
are also observed for the control channel. The only notable exception are the S(cos(θ±...)) like variables
where some bins near the peaks at ±1 disagree by around 10 sigma.

We conclude that given the known issues with the data MC modeling appears reasonable but note
that a definitive conclusion is not possible with the available data samples.
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4.3. Training of Classifiers

4.3.1. Data Samples for Training

There are two requirements for the data samples used for training and to some extend also the
performance evaluation of the classifiers:

1. Each sample should contain the same number of signal and background events to avoid bias
towards either of the categories.

2. The samples for training and evaluation of classifier performance during and after training should
be completely disjoint.

The samples of same number of signal events are also generally needed for performance evaluation, as
the fraction of signal events in the generic MC sample is very small.
With the available data samples, the background MC events for training must be taken from the
generic MC sample. The signal events will be taken from the dedicated signal MC sample. To assure
the disjoint samples for training and evaluation, the generic MC sample as well as the signal MC
sample are first split into three parts. 60% of events will be dedicated to training (training sample),
10% to performance evaluation during training (test sample) and the remaining 30% to performance
evaluation and studies of the classifiers after training (validation sample). For each of the training, test
and validation samples from the generic MC only the qq background events are taken and combined
with the same number of signal events from the corresponding part of signal MC. This then results
in three samples of same number of signal and background events6. The above described process is
illustrated in fig. 4.4. The designations training, test and validation sample will be used for both, the
corresponding generic MC samples as well as the samples of equal number of signal and background
events. Which of the two is used should either be clear from context or otherwise will be mentioned
explicitly.

30 %

10 %

generic MC qq
and generic MC BB

signal MC

60 %

30 %

10 %

60 %

validation sample

test sample

training sample

Figure 4.4.: Visualization of the division of the generic and signal MC samples to form training, test
and validations samples of equal number of signal and background events.

6
There happen to be more events in the signal MC sample than there are background events in the generic MC sample.
This results in some portion of the signal MC sample remaining intentionally unused.
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4.3.2. Base Loss Function and Performance Metrics

As the problem of continuum suppression is a binary classification problem, the base loss function for
the classifier training is chosen as the binary cross-entropy. Mathematically the binary cross-entropy
over some set of events (a batch) can be formulated as

L = −
∑

i ∈ batch

[
yitrue log(y

i) + (1− yitrue) log(1− yi)
]
. (4.6)

yitrue are the labels which are 1 for signal and 0 for background and yi are the predictions. During the
training the index i then usually runs over a batch of events, meaning the events considered for one
training step.

While the binary cross-entropy is used as the quantity to be minimized during training, for a measure
of the performance of a trained classifier we rather choose the area under the receiver operating char-
acteristic (ROC) curve, usually denoted as AUC. In the case of a continuum suppression, the ROC
curve is the curve characterizing a classifier through its signal efficiency (fractions of signal events
retained after continuum suppression) as a function of background rejection (fraction of background
events rejected by the continuum suppression)7. The AUC can maximally reach 1 in the ideal case
of rejecting all background events but not a single signal event. As this metric is much more compu-
tationally intensive, it is not suited for maximization during the training and is only ever computed
after a completed epoch. An epoch meaning a complete iteration over the whole training sample
corresponding to some number of optimization steps, depending on the chosen size of the batches.
The AUC computed on the test sample is what is used to measure classifier performance during the
training (at each epoch).

4.3.3. Introduction of Classifiers Used

Boosted Decision Trees (BTDs)

BDTs are known to produce very robust classifiers and are frequently applied for continuum suppres-
sion. Thus they are chosen as a reference to compare with the deep neural networks (DNNs, introduced
in the next section) for this thesis. For the training of the BDTs the LightGBM implementation [12]
was chosen. Compared to the DNNs, there are fewer hyperparameters to adjust for BDT training. As
BDTs are known to be very robust, an in-depth tuning of hyperparameters was deemed unnecessary.
The chosen hyperparameters have been selected manually, where care was taken to avoid overtraining
(which can be regulated by choosing a sufficiently small number of leaves). The number of leaves was
set to 20 and the learning rate to 0.01. Finally the parameter min sum hessian in leaf was used
and set to 100 to make the BDT more robust against overtraining. Otherwise the defaults of the
LightGBM implementation were used.

Deep Neural Networks (DNNs)

The focus in this thesis is on deep neural networks (DNNs) as classifiers. The initial motivation was
that they were believed to possibly be more capable than the BDTs, especially when it comes to
extracting information from the set of low level continuum suppression variables used for this thesis.
DNNs however turn out to be much more delicate and difficult to handle than BDTs. The problems
encountered in the application for continuum suppression will be discussed thoroughly in the following
sections.

All neural networks used were implemented using Tensorflow [9] together with the Keras API [8]
(which as of now is bundled with Tensorflow).

7
ROC curves for the final classifiers are shown in fig. 4.12.
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Neural Network Architecture In this thesis exclusively multilayer perceptron architectures with
batch normalization layers between the dense layers are used. The batch normalization layers will
learn the mean and variance of each input during the training and use this information to transform
the inputs such that the corresponding output distributions are of mean zero and variance one. While
the number of layers and neurons per layer are treated as tunable hyperparameters, the activation
functions as well as batch normalization layers between the dense layers are always the same. The
overall structure of data flow is illustrated in fig. 4.5. The very first layer is also a batch normalization
layer which serves to normalize the raw input variables. This is followed by blocks of one dense layer,
one activation layer and finally a batch normalization layer. For the activation functions leaky rectified
linear unit (leaky ReLU) activation was chosen. This was found to speed up the training by orders of
magnitude when compared to hyperbolic tangent activations8 as used in the study by Weyland [14].
The in-between batch normalization layers prevent possible problems with very small or very large
activations by re-scaling them before they are fed into the next dense layer. The number of blocks as
well as the number of nodes in each dense layer is left as a tunable hyperparameter. In the following
a network of n blocks will always be referred to as a network of n layers. After the last block one
further dense layer reduces the activations to a single value which is finally mapped to the range [0, 1]
by a sigmoid function.

dense

in: 64

out: n1

batch norm.

in: 64

out: 64

leaky relu

in: n1

out: n1

batch norm.

in: n1

out: n1

dense

in: n1

out: n2

sigmoid

in: 1

out: 1

dense

in: nk

out: 1

leaky relu

in: n2

out: n2

batch norm.

in: n2

out: n2

repeat k times ...

classifier output

Figure 4.5.: Visualization of the structure of the used neural network architectures. The first layer
is a batch normalization layer to normalize the raw input variables which is followed
by a variable number of blocks of one dense layer, activation function layer and batch
normalization layer. The last layer reduces everything to one output which is passed
through a sigmoid function.

8
Hyperbolic tangent activations are known to introduce problems with (almost) vanishing gradients in the optimization.
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Optimizer and Training For the optimizer AdamW was chosen, which is an implementation of
the popular Adam optimizer that also correctly incorporates weight decay, a way of regularization
which serves to prevent overtraining [13, 20]. This optimizer has besides the learning rate one further
hyperparameter for the weight decay. The learning rate can be controlled by means of a learning rate
schedule. This is a common technique that can help with (faster) convergence. For this thesis however
the increased complexity due to the additionally introduced hyperparameters was found to outweigh
the benefits. Therefore a constant learning rate was used.

4.3.4. Decorrelation

The DNNs, if trained without any countermeasures essentially always evolve in a direction where the
classifier output is strongly correlated with ∆E. This means that depending on the cut chosen for
the classifier output, the shape of the distribution of ∆E for continuum background is sculpted to
an extend where the signal peak is not clearly distinguishable from the background anymore9. A fit
separating signal and background of such a distribution is of course not reliable. The sculpting issue
must be addressed, as for an analysis here the final goal would be a signal yield fit, which happens after
continuum suppression. If this cannot be achieved, any studies of the classifiers for the continuum
suppression are of limited significance.

An example for the distribution of ∆E after a continuum suppression cut using both a DNN and
BDT classifier is shown in fig. 4.6. The classifiers are applied to the generic MC (validation) sample.
As a reference for the expected shape of the distribution after continuum suppression without any
sculpting, the distribution for a sample with equal fraction of signal and background events is shown
(on the left). The applied DNN is without any decorrelation measures, causing the corresponding ∆E
distribution after the continuum suppression to be sculpted significantly. As long as no decorrelation
measures are applied, the sculpting in ∆E occurred for all tested network architectures.

The observed sculpting behaviour is understood to be favoured in the training as it allows for many
background events to be discarded relatively easily (those next to the signal peak) once the sculpting
has been learned. Interestingly however sculpting for the BDT appears suppressed. Apparently a
BDT is immune to such strong sculpting by the nature of its working principle.

Sculpting being connected to generally better background rejection also implies that performance
scores cannot directly be compared if one of the classifiers introduces sculpting but the other does not.

Two methods for decorrelation of the classifier output and ∆E have been considered for this thesis
and will be introduced below.

Adversarial Networks

Adversarial networks have been shown to be applicable for training neural networks such that their
output is independent of a given set of nuisance parameters [11]. For the continuum suppression here
the nuisance parameter corresponds to ∆E. Training with an adversarial network is set up in the
following way: A predictive model outputs a prediction which then is fed into a second predictive
model, the adversary model. The adversary model is supposed to predict the distribution of certain
nuisance parameters from only the output of the first predictive model.

To incorporate the adversary into the training, a metric quantifying its performance in predicting the
nuisance parameters distribution(s) from the first predictive models outputs must be chosen. The
chosen metric is then incorporated into the loss function for the first predictive model. This must be
done such that the model is encouraged to evolve into a direction where the adversary performs as
bad as possible. The adversary model however also must be trained, where the loss is chosen such,
that the adversary learns to better predict the nuisance parameter distribution(s) in order to catch
up with the evolution of the other predictive model.

9
The sculpting issue was already pointed out and addressed in [17], although there different continuum suppression
variables were used. The taken decorrelation measures are also different to those taken here.
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Figure 4.6.: ∆E distribution for MC sample with equal amount of signal/background events as ex-
ample for signal/background distribution shapes (left) and distributions of generic MC
sample after continuum suppression with DNN without decorrelation (upper right) and
BDT (lower right). The continuum suppression using the DNN introduces significant
sculpting of the background distribution of ∆E. The left plot shall serve as a reference of
the expected (not sculpted) signal and background shapes after continuum suppression.

For the application for decorrelation here the first predictive model is the DNN used for continuum
suppression. The adversary model is a second DNN producing parameters for a Gaussian mixture
model to approximate the distribution of ∆E. A more detailed explanation as well as formulation of
an adversary loss function can be found in [17].

Unfortunately there are some drawbacks with this method. First, for each training step of the main
predictive model the adversary model must be trained for a few steps, significantly slowing down the
overall training process. Besides this there is an inherent difficulty in the tuning of hyperparameters
of which a great number is additionally introduced. This is because the overall loss function to be
minimized is now significantly more complicated as it contains a component involving the output
from the adversary model. If the many hyperparameters for the adversary and its contribution to the
overall loss are not chosen correctly, it will turn out to ”weak”, and the classifier model may decent
into the same global minimum as for training without adversary. On the other hand if the adversary
is to ”strong”, its contribution to the loss will outweighing the classifier loss part, causing the classifier
training to be unstable or completely fail. One has to find just the right configuration to balance the
contributions to remain stable throughout the whole training. This is difficult because the balance is
influenced by many hyperparameters.

Nevertheless using adversarial networks can be, and has been shown to be effective for decorrelation,
even for the specific case of ∆E as the nuisance parameter in B0 → K0

S(π
+π−)π0(γγ) (but with other

input variables as used here) [14, 17]. Following the same approach, training with adversarial networks
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was implemented during research for this thesis.
Due to the difficulties with tuning already encountered with the distance correlation method (intro-
duced in the next section), which is supposed to be easier to tune, adversarial networks could not
be pursued much beyond a proof of concept for this thesis. However the lessons learned from the
hyperparameter tuning with the distance correlation decorrelation method are believed to be also
applicable to adversarial networks. As the hyperparameter tuning is beyond the scale of this thesis
and thus no properly decorrelated classifiers with adversarial networks could be reached, the results
will generally always use the distance correlation method.

Distance Correlation

As an alternative to adversarial networks, decorrelation using distance correlation (referred to as DisCo
in the following) can be used. This method has been shown to perform very similar to adversarial
networks for decorrelation [19]. The central idea is to use an efficiently estimable correlation metric
that is able to capture non-linear correlations, namely distance correlation, to punish the classifier
the more its output is correlated with a given nuisance parameter. To do so, the correlation metric is
simply scaled and added to the classifier training loss.
This addresses the main issue that comes with the use of adversarial networks: the number of hyper-
parameters. With DisCo there is only one hyperparameter, the scale of the distance correlation when
added to the classifier loss. Besides the reduced number of hyperparameters, training times are also
not increased as much as with adversarial networks, where usually more time is spend training the
adversarial network than the actual classifier. The loss for a classifier with DisCo becomes

Ltotal = Lclassifier(
#—y , #—ytrue) + λ · dCorr( #—z , #—y ), (4.7)

where #—y is the vector of predictions for a batch, #—ytrue the corresponding labels and
#—z the corresponding

nuisance parameters. dCorr( #—z , #—y ) is the distance correlation10 and λ the hyperparameter scaling it11.
One can choose to compute dCorr on only the background events in each batch. This is valid here as
the problematic sculpting only really occurs for the background part of the distribution of ∆E. Which
choice should be favoured is however not immediately obvious. To archive the same effectiveness of
the decorrelation, λ had to be chosen larger by a factor of around 7.5 when dCorr is computed on only
background events. It is known that the used estimator for dCorr introduces a bias scaling with 1

n ,
where n is the number of events in a sample [19]. This however would imply that for the now smaller
subset of only background events in a batch the bias should be larger. dCorr however has to be scaled
up for decorrelation to be effective. Thus some other effect must be at play. Possibly correlations for
the signal part are inherently larger. This however was not further investigated here.
While there now is only one extra hyperparameter, the training was found to be still very sensitive to
it. The classifiers would quickly evolve to produce still significantly correlated output if λ is not chosen
correctly. Simply choosing a large value for λ is also not possible as this will impact final performance
significantly. The process and results of the tuning are described in the next section.

Hyperparameter Tuning

Systematically tuning hyperparameters for a classifier with correlation countermeasures, here DisCo,
is difficult as there are two conflicting objectives: the best possible classification performance (as for
example measured by an AUC score) and sufficiently low correlation of the classifier output and ∆E.
The problem is that a correlated classifier usually performs better for signal/background separation.
Thus only tuning for classifier performance is not possible as λ would always be tuned to zero. Tuning

10
For computation of the estimator for dCorr the implementation (for Tensorflow) from [19] was used.

11
As pointed out in [19], technically the exponent of dCorr is another parameter to chose. However as it was found that
here λ alone is already difficult to tune and as there further is no direct motivation for adjustments of the exponent,
the exponent is always set to 1.
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for a joint metric, like the total loss (including the DisCo term as shown in eq. (4.7)) over the test
sample, introduces the difficulty of having to chose such a metric correctly in order to not have the
performance or the correlation measure be overrepresented, essentially introducing hyperparameters
of the hyperparameter tuning. This defeats the purpose of a systematic hyperparameter tuning.
While there are ways to optimize hyperparameters for multiple objectives with the hyperparameter
optimization frameworkOptuna [16], they are expected be rather inefficient as they require a significant
number of trainings to be run12. An alternative approach could be to attempt to automate the fitting
of the distributions after the continuum suppression and then optimize for lowest statistical uncertainty
of the signal yield extracted with the fit. While this would be the ideal optimization objective, many
technical difficulties are expected. Thus an implementation is far beyond the scale of this thesis.

The tuning is further complicated here as even with decorrelation measures, the DNNs would in
most cases after a sufficient number of epochs still suddenly introduce significant sculpting in ∆E,
making the final training result very unforeseeable. This will be further elaborated on in the following
paragraphs.

As, outlined above, the decision of whether a distribution of ∆E is sculpted too much or not is highly
non-trivial making it difficult to implement a tuning entirely in code. More sophisticated systematic
tuning attempts are expected to introduce further (technical) difficulties in their own right and are thus
not pursued in this thesis. Instead here the tuning was chosen to be conducted manually, verifying the
quality of the distributions by eye. While this introduces some subjectivity, the differences between
effective and insufficient decorrelation are pronounced enough to make the decision straight forward.
During the manual tuning the evolution of the distribution of ∆E (after application of continuum
suppression) would be monitored at each epoch, from which with some experience it was immediately
obvious whether a distribution may be usable for a fit or not. This worked well as the sculpting in
most cases was either only very slight or obviously too strong and transitions happened very quickly.

To reach a configuration where the decorrelation using DisCo would remain stable throughout the
whole training, first some studies with a preliminary set of hyperparameters were conducted. The pre-
liminary hyperparameters were determined through manual tuning with the goal of reaching a usable
configuration for preliminary studies. There was no real strategy besides simply attempting different
parameters based on experience until something deemed usable was found. The main objective was
to reach a configuration where sculpting is not immediately introduced. This had to be paired with
reasonable training times and general stability of the training. Some of the hyperparameter choices
here were also based on experience from prior attempts of tuning a classifier without decorrelation, as
was done prior to acknowledging the severity of the sculpting in ∆E. The tuned hyperparameters are
listed in table 4.3 with their preliminary values in the corresponding column.

One key observation during this preliminary tuning was that introduction of a bottleneck in the neural
network significantly helps with suppression of sculpting. While not completely suppressed in most
cases, the start of sculpting could generally be delayed much further compared to an architecture
without bottleneck. Something similar was archived by choosing very small networks (two layers, less
than 40 neurons each), which however also significantly impacted the final classification performance.

Evolution of ∆E Distribution To study the evolution of the sculpting behaviour with DNNs
in order to better understand and eventually completely suppress it, the background distribution of
∆E was recorded at each epoch for a set of trainings. Here we show three examples for the different
sculpting behaviours that were observed. The chosen examples are:

1. A DNN without any decorrelation measures (equivalent to λ = 0)

2. A DNN with slightly weakened DisCo-decorrelation to highlight start of correlations after suffi-
cient epochs (λ = 1)

12
This is also influenced by no support for pruning of trials when optimizing for multiple objectives.
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prelim. value final value description

nlayers 5 5 number of layers
nneurons,0 100 100 1st dense layer neurons
nneurons,1 100 100 2nd dense layer neurons
nneurons,2 4 6 3rd dense layer neurons
nneurons,3 100 100 4th dense layer neurons
nneurons,4 100 100 5th dense layer neurons
weight decay 0.000142 0.000142 Weight decay for AdamW
learning rate 0.002 0.015 learning rate
dCorr on bgn True True choice to compute dCorr on only background events
λ 1.8 2 scale of dCorr in total loss
sλ 7.5 7.5 scale factor for λ when dCorr computed on bgn only
batch size 2048 16384 number of events in a minibatch

Table 4.3.: Preliminary and final choice of the tuned hyperparameters for the DNN.

3. DisCo-decorrelated DNN with preliminary hyperparameters (λ = 1.8)

All three trainings used the preliminary hyperparameters as shown in table 4.3, except for λ which
was adjusted accordingly.

The evolutions of the background distributions of ∆E after a continuum suppression cut (here chosen
at 0.9) for the three trials are shown in fig. 4.7. The distributions have been normalized (meaning
separately at each epoch) to highlight the changes in their shape rather than absolute scale.

If DisCo is not used, already after around 5 epochs the distribution is highly sculpted and stays
sculpted throughout the training. If DisCo is applied, but the training is continued for sufficiently
many epochs (with small enough λ), eventually sculpting suddenly starts. For the concrete example
here this happens after around 120 epochs. The exact value however may vary depending on the
hyperparameters, including λ. While less severe compared to the case without decorrelation, the
sculpting already is to an extend where the signal peak is not clearly separable from the background
anymore.

If further λ is tuned (i.e. preliminary hyperparameters are used), the start of significant sculpting can
be further delayed and sculpting at the end of training can be slightly more suppressed.

It appears as if the networks, given they are large enough, are capable of evolution in a direction
where the DisCo term has almost no effect. A possible interpretation could be the following: There
may be enough freedom to choose a path through the parameter space to the global minimum (of
the total loss) where at some point the gradients of the DisCo term are negligible compared to those
of the binary cross-entropy term. Even if this imbalance occurs only temporarily, once the barrier
introduced by the DisCo term has been overcome (or avoided) there is usually no way back to a less
correlated classifier, as even if the loss in now biased by the DisCo term, the gradients may not be
influenced if the bias is constant. This fits in with the classifiers usually training without significant
correlations until a certain point where they then very quickly evolve, within a few epochs (of course
also depending on exact hyperparameters) into a correlated classifier, and stay this way thereafter.

While the point of suddenly increasing sculpting can be generally delayed by adjusting the hyper-
parameters, complete suppression until convergence13 is difficult. To delay the start of sculpting
(possibly beyond the defined end of training) λ can be increased. However, too large values for λ were
found to at some point cause the loss to be overwhelmed by the DisCo term, leading to unstable or
suboptimal training. This effect might be significant especially later in the training where gradients of

13
The definition of convergence of a DNN may vary as this depends on for example how many epochs are run as well as
possibly an early stopping policy, if applied.
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Figure 4.7.: Evolution of the distribution of ∆E (only background) throughout the training for three
DNN examples: without DisCo, with DisCo but λ = 1 and with DisCo and λ = 1.8
(in that order). The remaining hyperparameters are the preliminary hyperparameters as
listed in table 2.1.

the cross-entropy term are expected to be small14. Thus generally the smallest λ that still sufficiently
suppresses sculpting throughout the entirety of the training is desirable. This is further assisted by
the here chosen bottleneck architecture (as already mentioned above).

Coincidence of dCorr Increase and Sculpting Further also the coincidence of start of sculpting
and an (expected) increase of dCorr was verified. For this a DNN was trained with three different
batch sizes (16 384, 2048, and 512 events per batch), as if the batches are too small the distance
correlation is expected to not be sufficiently representative of the whole training sample anymore.
The resulting training histories are shown in fig. 4.8. The hyperparameters besides batch size and λ
were the preliminary hyperparameters from table 4.3. λ was again set to 1 to reduce training times
until sculpting starts. As the value of dCorr does fluctuate between steps to an extend where it can
be hard to resolve the overall trend from the plots, the average over 100 steps each is also drawn (in
red). For the smallest batch size any trend of dCorr appears to get lost in the fluctuations. For the
larger batch sizes a clear trend is visible. The increase of dCorr around the epochs where sculpting
begins is for both cases approximately 0.0006. Thus the quantification of the degree of sculpting by
means of dCorr appears to be approximately independent of the sample size used for computation of

14
Here one could attempt to decrease λ over the course of the training, which however was not further pursued here.
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dCorr. This of course only holds as long as the overall trend is not overwhelmed by the fluctuations.
dCorr can be seen to be biased by an amount depending on the sample size, as expected. As already
mentioned above, the bias is an artifact of the used estimator for dCorr and scales with 1

n , where n is
the size of the sample (here a batch).

The takeaway from this study is that a larger batch size is desirable in order to ensure better numerical
stability of the DisCo term. As evident from fig. 4.8, the preliminary batch size of 2048 appears to be
smaller than optimal. Thus for the final hyperparameters 16 384 is chosen instead. However note that
a too large batch size may also not be desirable as using too many events for a single optimization
step will encourage overfitting. Here one could attempt to implement a training loop where dCorr is
computed on more events than used for the classifier loss at each step. This could allow for even better
numerical stability of dCorr while also retaining the effect of small batch sizes to prevent overfitting.
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Figure 4.8.: Evolution of dCorr and distribution of ∆E throughout the training for three different
batch sizes. The start of sculpting coincides with an increase in dCorr where however for
too small batch sizes the increase is overwhelmed by the numerical instability of dCorr.

dCorr on test sample There still remains the concern of dCorr computed on the training sample
possibly not sufficiently representing dCorr in general (similar to overtraining). For the trial with
batch size 2048 the average of dCorr computed on the test sample was additionally recorded. For the
technical reason of insufficient GPU memory on the available hardware but also to match the bias with
dCorr computed at each training step, the computation was again done in batches of the same size as
used for the training (meaning 2048). The results for dCorr for all batches corresponding to an epoch
are then averaged. The resulting history of dCorr is shown in fig. 4.9 (upper plot). dCorr computed on
the training sample appears to overall represent the correlations for the test sample reasonably well.
Thus the conclusions deduced from results related to dCorr on only the training sample are assumed
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to be sufficiently generalizable.

Total and Classifier Loss Next to dCorr at each epoch also the classifier loss (meaning only the
binary cross-entropy) as well as total loss (see eq. (4.7)) are considered to assess the change in the
total loss expected to coincide with the step in dCorr. This is expected as the classifier is not stably
decorrelated yet. Total loss and classifier loss are shown in fig. 4.8 (lower plot).

It can be seen that during the transition to a sculpted distribution (around step 11 500, marked in the
plot), the drop of the classifier loss is not entirely compensated for by the DisCo term as a (smaller)
drop can still be observed for the total loss. This means that despite of the decorrelation measure,
the total loss as a function of the parameter space still exhibits regions where a decrease is associated
with the behaviour of introduction of sculpting. The overall takeaway is, that the DisCo term appears
effective but not sufficiently strong throughout the whole parameter space. To address this, for the
final hyperparameters we increase λ to 2. This could be later verified to result in stably decorrelated
trainings.
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Figure 4.9.: History of dCorr computed on both the training and test sample (upper plot) as well as
corresponding total and classifier losses (lower plot). Evidently the contribution of dCorr
to the total loss is still to weak as a clear step in the total loss remains. The shown data
is from the same training as used for the corresponding plot in fig. 4.8 (batch size 2048).

Final Hyperparameter Choice Incorporating the changes already mentioned in the discussions
above, the final hyperparameters for the DNN in this thesis are fixed. The learning rate was increased
to 0.015, as this would delay overtraining and thus yield overall better final performance. For the
lower learning rates overtraining started to become an issue. Further the bottleneck was widened from
only four nodes to six, as this was still sufficient for stable decorrelation. The complete set of final
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hyperparameters is shown in the corresponding column of table 4.3. With the final hyperparameters
five full trainings (with an early stopping after 20 epochs of no improvement) were run. From those
the model with overall best AUC score was chosen to be used for the following studies. In the following
this will be referred to as the DisCoDNN.

4.3.5. Handling of NaN Values

Reconstruction of some of the final state particles can fail for some events, which results in a value of
NaN in some of the variables. A overview of the NaN occurrences relative to the total number of events
in a sample is shown in fig. 4.10. Shown are 10 variables each for which the highest occurrences of NaN
values in the corresponding sample was found. Further we consider this for generic MC signal/back-
ground separately as well as off-resonance physics data and MC. From the generic MC occurrences it
is apparent that for background NaN occurrences are higher. Comparing occurrences for off-resonance
MC and physics data shows that the occurrences in MC and physics data are approximately on the
same order of magnitude. As no alarming differences are observable, we assume in the following that
NaN values can be treated the same for all samples15. In most of the cases the variables related to the
second photon in the final state are most probable to contain NaN values. Here the NaN occurrences
are almost the same for all of them, indicating that the NaN values occur when reconstruction of the
second photon fails completely.
As the neural network can only operate on floating point numbers, we must decide how to handle
NaN values. Unfortunately there seems to be no single right procedure. A common thing to do is to
replace them with some fixed value. For this thesis they are always chosen to be set to 0. Completely
removing events with at least one NaN value would discard too many events (here up to 15%). It
was found that classification is not influenced by setting NaN to zero in any significant way. The
final classifiers were applied to a subset of events including at least one NaN value in one of the input
variables as well as the subset of events without any NaN values. Interestingly the AUC score dropped
by approximately 0.0005 (0.0003) when evaluated on only events without NaN values and increased
by approximately 0.002 (0.001) when evaluated on only events with at least one NaN value, using the
final DisCoDNN (BDT). This indicates that the classifiers are able to use the information conveyed
by a variable not being defined for an event (which now is encoded in the value of exactly zero). The
higher occurrences of NaN values for background events are probably a decent criterion which can be
considered for classification. Thus the slight performance increase here is not unexpected. In any
case, the performance differences are small, which shows that setting all NaN values to zero should not
introduce any unexpected instabilities.

15
Optimally a high multiplicity control channel (not available here) should also be checked to verify the occurrences of
NaN values for physics data signal events.
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Figure 4.10.: Occurrences of NaN values in each variable (shown are the top 10) for generic MC sig-
nal/background and off-resonance MC/data. The occurrences are normalized to the total
number of events in the respective samples.

4.4. Classifier Evaluation

4.4.1. Classification Performance

In the following the DisCoDNN and BDT are compared while also considering a DNN without decor-
relation (generally labeled just DNN ) as a reference.

Classifier Output Distributions First we consider the distribution of classifier outputs computed
over the validation sample (with same number amount of signal and background events). Any anoma-
lous shapes here may indicate incomplete or suboptimal training. The distributions are shown overlaid
for DisCoDNN, DNN without DisCo, DisCoDNN with preliminary hyperparameters and BDT (sep-
arately for signal and background events) in fig. 4.11. The DNN with preliminary hyperparameters
shall serve as an example for anomalies in the distribution. Those are most likely connected to the
training not having converged properly as training here was stopped just around the epoch where
sculpting starts (the classifier here is the same as for the ∆E evolution shown in fig. 4.7, bottom
plot). All classifier output distributions but the one of the preliminary DNN follow the expected
shape. They are strongly peaked near zero (one) for background (signal) events. No bumps in the
middle of the distributions are observed as are present in the distribution produced by the preliminary
DNN. For background events notably the DisCoDNN classifier output distribution is slightly more
peaked for values near 1 than the distributions of BDT and DNN without DisCo. Signal events are
however assigned very similar classifier outputs for all three classifiers. Only near zero the DNNs with
and without DisCo appear slightly more inclined to misclassify some signal events. Overall thus the
DisCoDNN is expected to perform similar to BDT and DNN without DisCo for signal extraction but
worse for background rejection. This makes sense as the DisCo term specifically imposes the condition
to only reject background events such that the background distribution of ∆E retains its shape. This
extra constraint then may make it overall harder to reject some of the background events, resulting
in slightly worse background rejection.

40



4.4. Classifier Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

classifier output

103

104

105

co
u
n
ts

background events

DNN (no DisCo)

DisCoDNN (prelim.)

BDT

DisCoDNN

0.0 0.2 0.4 0.6 0.8 1.0

classifier output

103

104

105

co
u
n
ts

signal events

Figure 4.11.: Distributions of classifier output for DisCoDNN, DNN without DisCo, DisCoDNN with
preliminary hyperparameters and BDT. The DisCoDNN with preliminary hyperparam-
eters shall serve as an example of anomalies in the distribution. The remaining distribu-
tions approximately follow the expected shapes, indicating healthy classifiers.

ROC Curves When applying the continuum suppression there is the freedom to choose the contin-
uum suppression cut depending on the desired amount of signal events to be retained or background
events to be rejected. The signal efficiencies and background rejections for all the possible choices are
visualized by the ROC curves shown in fig. 4.12. Overall when compared to the BDT, the DisCoDNN
provides worse background rejection at the same signal efficiency. The DNN without disco can be
seen to be of slightly better performance than the BDT. The performance gap can be attributed to
the inferior background rejection capabilities of the DisCoDNN, as already indicated by the classifier
output distributions.

Classifier Cut Positions For later comparisons of results using DisCoDNN and BDT, the contin-
uum suppression cuts have to be chosen such that a fair comparison is possible. The condition imposed
here will be equal fixed signal efficiency for the compared classifiers. Depending on the circumstances
however a different condition may be preferred. The optimal choice here would be to choose the con-
tinuum suppression cut such that the uncertainties from a final signal yield fit (on MC) are minimal.
This is however a non-trivial condition. As the concerned decay is very rare, it is generally desirable
to not discard too many signal events when applying the continuum suppression in order to retain
sufficient statistics for the signal. Thus as a compromise the condition of fixed signal efficiency is
chosen. In the following discussion always 90% signal efficiency will be required.
While ROC curves visualize the performance for all possible continuum suppression cut positions,
they do not directly indicate where to place the cut in order to reach a desired signal efficiency or
background rejection. To compute the continuum suppression cut position for a given signal efficiency,
the signal efficiency as a function of the cut position is sampled. This, together with the background
rejection as a function of the cut position, is shown in fig. 4.13. The dashed lines indicate the required
signal efficiency as well as corresponding cut positions and background rejections. The cut positions
are determined by numerically inverting the sampled signal efficiency function. Comparing the curves
for BDT and DisCoDNN it again becomes obvious that the DisCoDNN performs only slightly worse
for signal extraction and the main contribution to the overall performance difference stems from worse
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Figure 4.12.: ROC curves for DisCoDNN, DNN without DisCo and BDT. The DNN without DisCo
barely outperforms the BDT whereas the DisCoDNN appears to perform noticeably
worse.

background rejection.

The DNN without DisCo can be seen to perform slightly better for both signal efficiency and back-
ground rejection when compared to the BDT. The latter may be related to the extra events that the
correlated DNN is able to discard by learning the correlation with ∆E.

4.4.2. Fit Variable Distributions After Continuum Suppression

To also assess suitability for signal yield fits, examples for the distributions of ∆E as well as the prob-
ability integral transform will be discussed here. The distributions of ∆E for the generic MC sample
after continuum suppression with both the DisCoDNN and BDT are shown in fig. 4.14. As mentioned
above, the continuum suppression cut was chosen such that 90% of signal events are retained. The
background distribution for the DisCoDNN can be seen to follow the same shape as before continuum
suppression (as shown in fig. 4.6, left plot), indicating effective decorrelation of classifier output and
∆E. For the BDT the distribution is sculpted, but can still be modeled well enough to be suitable for a
fit. Comparing the two background distribution shapes, it appears that indeed the inferior background
rejection of the DisCoDNN may at least partially be induced by the condition to keep the shape of
the distribution in ∆E untouched. The BDT was able to reject many events that fall left (towards
negative values) of the signal peak in ∆E. The DisCoDNN however cannot (if the decorrelation is
effective) reject background events that fall only into a specific region in ∆E. Only ever background
rejection over the whole spectrum of ∆E at once can be improved. Otherwise sculpting would be in-
troduced. Comparing the number of remaining background events in the region under the signal peak,
the BDT can be seen to only slightly excel in background suppression there. Thus there is no large
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Figure 4.13.: Signal efficiency and background rejection as a function of the continuum suppression
cut position. The performance gap between DisCoDNN and BDT/DNN without DisCo
can be seen to be rooted mainly in inferior background rejection.

difference in classification capability between DisCoDNN and BDT for events that closely resemble
signal events, at least in their corresponding value of ∆E. The DisCoDNN therefore appears to be
limited in overall performance by its ability to suppress the hardest to suppress background events
(i.e. those that the closest resemble signal events). If performance for those events is not improved,
the decorrelation condition prohibits performance for also the technically easier to classify events to
improve.

To further assess this, preferably a BDT with decorrelation measures should be prepared (not done
here). This would give further insights on whether the DisCoDNN and BDT are of similar overall
capability for the continuum suppression.

The distributions of the probability integral transformation (denoted µ here) are shown in fig. 4.15.
The true signal distribution for the transform was taken to be that of signal MC. For all distributions
the signal portion is reasonably flat, as expected. The logarithmic plot reveals the background part
to take an approximately exponential shape. Next to the DisCoDNN and BDT we also consider the
distribution for a DNN without decorrelation to show that µ is not affected even if ∆E is strongly
sculpted. Further also technically a fit in only a single variable is possible. The accuracy of such a fit
however was found to be much worse when compared to fits in two variables and is thus not further
considered here.

4.4.3. Test Fits

To further judge the suitability of the distributions for signal yield fits, two simple fits have been set up.
Note that the fits have not been particularly optimized and shall only serve as a reference to roughly
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Figure 4.14.: Distribution of ∆E after continuum suppression cut for DisCoDNN and BDT. The dif-
ferent MC components are shown stacked. Sculpting of the background distribution can
be seen to be successfully suppressed for the DisCoDNN. For the BDT sculpting occurs
but appears inherently limited. The continuum suppression cuts are chosen to retain
90% of signal events.

assess if continuum suppression with either the DisCoDNN or BDT is obviously favored. As already
indicated, the fits are done in two variables: ∆E and µ. The fits for continuum suppression using
the DisCoDNN and BDT are shown in fig. 4.16 and fig. 4.17 respectively. The continuum suppression
cuts are again chosen for 90% signal efficiency. Further the slightly tighter cut |∆E| < 0.25 is applied
to remove some of the rounding of the ∆E distribution towards the edges which is believed to be
introduced by the vertex fit during the reconstruction.

The background is split into qq (continuum) and BB background which are separately modeled. The
signal peak in ∆E for both DisCoDNN and BDT is modeled as the sum of a Johnson’s SU -distribution
and normal distribution. For µ the signal is by definition flat and thus always modeled by a uniform
distribution. qq background in ∆E is modeled by a first order Chebyshev polynomial (essentially a
straight line) for the DisCoDNN and a normal distribution for the BDT. In µ exponential distributions
of the form exp [pn(x)] where pn(x) is an nth order polynomial of the form ax+ bx2 + cx3 . . . are used
for both qq and BB background. For qq , 4th and 3rd order polynomials were found to give decent
agreement for DisCoDNN and BDT respectively. For BB 2nd order polynomials are used. Finally
BB in ∆E is also modeled by an exponential with 2nd order polynomial in the exponent.

The shapes of the above named distributions are fixed by a fitting them to the generic MC validation
sample for qq background and to the signal MC sample for the signal shape. For the final fit only the
yields are left floating. The resulting yields for both fits as well as the true yields (known for the MC
sample) are listed in table 4.4. Uncertainties are determined by the ”Hesse” method as provided by
the used minimizer (minuit). Almost all of the resulting pulls for the yields can be seen to fall within
one sigma.

The uncertainties on the fit results differ slightly. When calculated relative to the true yields, the fit for
continuum suppression with the BDT shows a slight advantage of around 0.76% smaller uncertainty.
Despite the smaller errors on the fitted yields, for the BDT the difference of the fitted and true yield
relative to the true yield is around 2.8% larger than for the BDT. As the uncertainties here are however
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Figure 4.15.: Distribution of the probability integral transform (µ) for continuum suppression with
the DNN with DisCo BDT and DNN without DisCo. The signal portion in all cases is
reasonably flat, as expected. Continuum suppression cuts are chosen to retain 90% of
signal events.

on the order of 8%, this may be considered a fluctuation.

Thus evidently for continuum suppression with the DisCoDNN the extracted signal yield is slightly less
precise than for continuum suppression with the BDT. Overall however precision is on the same order
of magnitude making it difficult to rule out the DNNs immediately without further optimization of
the fits. One factor that may influence the signal yield precision is the chosen continuum suppression
cut, of which here only a single choice was used.

While the BDT performs slightly better for the fits attempted here, both BDT and DisCoDNN may
be of interest in their own right depending on the details of an analysis.

signal qq BB

true yield DisCoDNN 318 3313 71
true yield BDT 321 2134 75
yield DisCoDNN 310.6 ± 28.3 3343 ± 39 49.30 ± 31.28
yield BDT 337.5 ± 26.1 2149 ± 35 43.52 ± 27.83
rel. fit error DisCoDNN in % 8.902 1.178 44.06
rel. fit error BDT in % 8.144 1.626 37.1
rel. true error DisCoDNN in % 2.335 ± 8.902 0.897 ± 1.178 30.57 ± 44.06
rel. true error BDT in % 5.133 ± 8.144 0.710 ± 1.626 41.97 ± 37.10
pull DisCoDNN in σ -0.2623 0.7619 -0.6937
pull BDT in σ 0.6302 0.4367 -1.131

Table 4.4.: Results from test fits shown in fig. 4.16 and fig. 4.17. Note that the true MC yields are
slighly different due to numerical error introduced by the procedure to determine the cut
position.
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Figure 4.16.: Test signal yield fit in ∆E and µ (probability integral transform) after continuum sup-
pression with the DisCoDNN. The resulting yields are shown in table 4.4.

4.4.4. Classifier Stability

To assess the stability of the classifiers using our new continuum suppression variables, two studies of
the stability of the classifier output under under fluctuations of the input data were conducted. The
difficulty here is to obtain a large number of data samples to evaluate the classifiers performances
on. As the available MC data16 is only a single sample and generating more is very expensive, one
has to resort to methods to generate data samples mimicking the available sample. The two different
attempts made are described in the sections below.

Bootstrap Method

The bootstrap method is a procedure to select subsets of events from a given sample to generate
further samples [2]. The procedure is the following: The number of events for a sample is sampled
from a Poisson distribution for which the mean is set to the number of events in the original sample.
The obtained number of events is then drawn from the original sample, where the same event can be
drawn multiple times. This procedure is equivalent to generating samples under the assumption that
there is a known finite set of possible events.
The obvious flaw is that each event stays exactly the same and the fluctuations of the numerical
values of the variables corresponding to an event are not captured. The classifiers however should be
generalized to an extend where these fluctuations have negligible effect. This is also partially addressed
with the uncorrelated toy samples which have been generated and will be discussed in the next section.
The more important fluctuation modeled here is the one of the number of events of a given class of
events included in the sample. Even if not clearly defined, intuitively one expects certain classes of
a given abstract property to exist. An example may be a class of events that resemble signal events
very closely and are thus hard to classify correctly. Depending on how many events of such a class

16
The studies here could technically also be done on physics data, which here however is not permitted as the analyses
are done blind.
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Figure 4.17.: Test signal yield fit in ∆E and µ (probability integral transform) after continuum sup-
pression with the BDT. The resulting yields are shown in table 4.4.

are present in a sample, the classifier may perform slightly better or worse. Evaluating the classifier
performance on many samples generated by the bootstrap method then shows to which degree the
classifier performance remains stable under the modeled fluctuations.

2000 samples have been generated from the generic MC sample by the bootstrap method for Dis-
CoDNN, BDT and DNN without DisCo. For each generated sample and classifier the AUC score was
computed and recorded. The generic MC sample was chosen (as opposed to the sample with equal
amount of background and signal events) in order to obtain a representation of classifier performance
in a realistic setting. Realistic meaning the correct proportions of signal and background events. The
distributions of the AUC scores for all generated samples for both DisCoDNN and BDT are shown
in fig. 4.18. The distributions are of reasonable spread, indicating that the classifiers remain stable
under the modeled fluctuations. Further shown in the same plots is a fit to the distribution using an
asymmetric Gaussian. The parameters obtained from the fit are also shown where σl and σr are the
left and right side standard deviations respectively. Asymmetry of the distribution is expected when
a classifier is trained close to its theoretical performance limit. If most of the samples already result
in scores near the performance limit, it becomes increasingly unlikely for the fluctuations to induce a
performance score higher than the mean. The asymmetry is slightly more pronounced for the BDT
and DNN without DisCo than for the DisCoDNN. This is probably related to the inherently worse
performance of the DisCoDNN due to the imposed decorrelation. Overall the distributions for the
BDT and DNN without DisCo are also slightly less spread.

The means of the distributions are overall close to the AUC scores obtained on the validation sample
as shown with the ROC curves in fig. 4.12. This is expected as the samples have all been generated
from the same generic MC sample and thus for the most part contain the same background events as
have been used for the ROC curves.
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Figure 4.18.: Distribution of the AUC scores from 2000 samples generated from generic MC by the
bootstrap method. The distributions are fit with an asymmetric Gaussian also shown in
the plots.

Uncorrelated Toys

To generate a number of toy samples, events were generated by sampling the classifier input variables
from their corresponding distributions. The distributions were taken for background from the generic
MC validation sample and for signal from the dedicated signal MC sample. The number of signal and
background events is taken to be the same as in the generic MC sample. All of the variables were
sampled completely independently, meaning that no correlations are modeled.
It was attempted to model the correlations by sampling from higher dimensional histograms for groups
of significantly intercorrelated variables. However those groups were found to contain too many mem-
bers to fill a histogram of the same dimension. Even when correlations with Pearson correlation
coefficient smaller than 0.3 were neglected, groups of up to 8 intercorrelated variables were found.
While in any case there is insufficient data to fill an 8 dimensional histogram, it also requires unreal-
istic amounts of memory. Thus correlations were chosen to be disregarded completely. This however
happens to give an interesting perspective on their importance for classification performance.
Correlations are known to be significant for the chosen set of input variables. Most notably they also
differ significantly for signal and background events. The correlations between the chosen variables, as
well as the difference in correlations between signal and background events are illustrated in fig. 4.19.
Below the diagonal the Pearson correlations coefficients computed over the whole sample (here the
union of training, test and validation sample as introduced in section 4.3.1) are shown. Above the
diagonal the magnitude of the difference of the Pearson correlation coefficients for only signal and
only background events is shown17. This illustrates that there are significant differences in correla-
tions between signal and background events, which is information the classifiers can utilize. Thus, if
evaluated on samples without any modeled correlations, the classifiers are expected to perform worse,
given they properly utilize the correlations.
As for the bootstrap method, again 2000 samples were generated. The distributions of the corre-
sponding AUC scores for DisCoDNN, BDT and DNN without DisCo are shown in fig. 4.20. Again,
the distributions are well shaped and of reasonable spread, indicating overall stability of the classifiers
under the modeled fluctuations. Opposed to the bootstrap study, here all events are now actually
unique in terms of the exact numerical values of the corresponding variables. Compared to the dis-
tribution from the bootstrap method, the means are obviously lower and the spread is higher. The

17
One should keep in mind that the Pearson correlation coefficients shown only capture linear correlations, the classifiers
though are expected to be able to also learn more general correlations.
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Figure 4.19.: Pearson correlation coefficients for the variables used. Below the diagonal the correlations
for only background events are shown. Above the diagonal the absolute values of the
differences between the correlation coefficients for only signal and only background are
shown. This highlights that correlations between the variables are indeed different for
signal and background events.
Note: For unknown reason some PDF viewers display this figure blurred. It is not supposed to be blurred.
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distributions remain slightly skewed. The distribution for DisCoDNN is further skewed than with
the bootstrap samples while for the BDT the asymmetry remains similar. This does not fit in with
the interpretation of classifiers near the performance limit from above and is not entirely understood.
Notably the mean AUC for the DisCoDNN dropped only very slightly by 0.004, while for the BDT the
difference is 0.014. For the DNN without DisCo the performance drop is the largest with a difference
of 0.067. Further the spread of the distribution also increased the most for the DNN without DisCo
when compared to the other two classifiers. Thus the DNN without DisCo can be seen to most heavily
rely on the correlations. Interestingly however the DisCoDNN appears to rely on correlations less than
the BDT. Considering the heavy reliance of the DNN without DisCo on correlations, presumably the
decorrelation keeps the DisCoDNN from learning too much of the correlations. This may also be a
contributing factor to the overall slightly worse performance of the DisCoDNN when compared to the
BDT.
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Figure 4.20.: Distribution of the AUC scores from 2000 samples generated from generic MC by sam-
pling from the distributions of the input variables. This neglects any correlations between
the input variables, resulting in inferior classifier performance. The distributions are fit
with an asymmetric Gaussian also shown in the plots.

4.4.5. Classifier Generalizability

We apply the classifiers trained on the signal channel to the topologically similar control channel.
This will give insight on the extend to which the learned characteristics of the signal channel are
generally applicable for continuum suppression. Studied are the DisCoDNN, BDT and DNN without
DisCo. The resulting classifier output distributions are shown in fig. 4.21. Interestingly all classifiers
tend to misclassify fewer background events for the control channel. Thus apparently for the control
channel, background events are easier to identify. The DNN without DisCo behaves slightly different
as its output distribution shows overall worse performance when compared to the other two classifiers
applied to the control channel. As here the correlations with ∆E are not suppressed and thus used for
the classification, this indicates that the exact details of those correlations are specific to the signal
channel.
While showing expected behaviour for background events, the classifiers are essentially useless for
classification of signal events of the control channel. The classifier output distribution now is almost
symmetric. This is not entirely unexpected, as the background events for both channels are expected
to be similar, signal events however not necessarily are. Despite of the control channel being chosen to
resemble the topology of the signal channel, the decays appear different enough for all of the classifiers
to almost completely fail to identify any signal. This highlights that the chosen continuum suppression
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Figure 4.21.: Classifier outputs for DisCoDNN, BDT and DNN without DisCo applied to the signal
and control channel. While similar performance can be archived for background rejection,
all classifiers almost completely fail to identify signal events for the control channel.

variables are indeed very specific to a given decay. The overall performance difference is also evident
from the ROC curves for the classifiers on the control channel sample. They are shown, together
with the ROC curves for the signal channel sample for reference, in fig. 4.22. Differences in the input
variable distributions between control channel and signal channel are also directly visible from the
corresponding distributions. Plots of all the distributions are shown in appendix A.2.1 for the signal
channel and appendix A.2.2 for the control channel.

To better interpret the above observations, we consider the distributions of ∆E after continuum sup-
pression for the control channel. The continuum suppression cuts are again chosen for 90% signal
efficiency. As the signal efficiency of the classifiers is very poor, the cuts must be chosen extremely
loose. This can best be seen from the signal efficiency and background rejection as a function of the
cut position as shown in fig. 4.23. Here again the background rejection can be seen to be overall
better than for the signal channel. To understand the cause for this further studies of the related
differences between signal and control channel are required. Interestingly the pattern for signal effi-
ciency of similar performance of BDT and DNN without disco but noticeably worse performance of
the DisCoDNN can be observed also for the control channel. For the background rejections however
the DNN without DisCo now performs much worse than the other two classifiers. The reason for
this, which is the same as for the differences in the classifier output distributions discussed above, is
related to the sculpting in ∆E. The distributions of ∆E for the control channel after the continuum
suppression with the determined cuts are shown in fig. 4.24. The DNN without DisCo can be seen
to fail spectacularly. This indicates that much of the performance of this DNN indeed stems from
the introduced sculpting. However, the distribution now is sculpted into a peak that is no longer
centered around zero. Apparently the method by which the DNN reconstructs ∆E from the input
variables introduces a bias in such a way that the distribution (as reconstructed by the DNN) ends
up slightly shifted towards positive values for the control channel. For DisCoDNN and BDT the con-
tinuum suppression however is, despite the very loose cuts, surprisingly effective. Compared to the
DisCoDNN the BDT obviously suppresses background better at the same signal efficiency, indicating
better generalizability of the BDT. The observed performance differences between DisCoDNN and
BDT already observed for the signal channel appear overall amplified for the control channel. Notably
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Figure 4.22.: ROC curves for the studied classifiers applied to control channel MC. The ROC curves
for the same classifiers applied to the signal channel data are shown for reference (dashed
lines). Evidently all classifiers perform much worse when applied to control channel MC
where depending on the classifier the performance difference however differs significantly.

now also a large B+B− background appears, which is believed to be a trait of the control channel. For
completeness the distributions in µ after continuum suppression are also shown in fig. 4.25.
We conclude that the variables used exhibit distributions which for signal events are indeed very specific
to a given decay as the classifiers generalize poorly for signal identification. While for the considered
control channel even with very loose cuts, the continuum suppression was found to be surprisingly
effective, it is hard to judge if this is generally the case. Preferably further control channels would
have to be considered.

52



4.4. Classifier Evaluation

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

cut position

0.70

0.75

0.80

0.85

0.90

0.95

1.00

b
a
ck
gr
ou

n
d
re
je
ct
io
n
or

si
g
n
al

effi
ci
en
cy

signal efficiency DisCoDNN

background rejection DisCoDNN

signal efficiency BDT

background rejection BDT

signal efficiency DNN (no DisCo)

background rejection DNN (no DisCo)

Figure 4.23.: Signal efficiency and background rejection as a function of the continuum suppression
cut position for the classifiers trained on the signal channel but applied to the control
channel.
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in 90% signal efficiency.
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Figure 4.25.: Distribution of the probability integral transform (µ) after continuum suppression with
the classifiers trained on the signal channel but applied to the control channel. Again
the cut positions are chosen to result in 90% signal efficiency.

54



5. Conclusion and Outlook

This thesis introduced a novel set of low-level continuum suppression variables and demonstrated their
applicability for continuum suppression in B0 → K0

S(π
+π−)π0(γγ). As the first step for this the MC

modeling of the introduced variables was verified. Decent agreement, given the known problems with
the data samples available for this thesis, was found for background events by considering off-resonance,
sideband as well as control channel data. MC modeling for signal events could not be directly verified
as the considered control channel is of rather low multiplicity. In any case, verification of MC modeling
for signal events is expected to be problematic as it was found that the chosen continuum suppression
variables for signal events are highly dependent on a given decay mode. This raises the question to
which extend conclusions drawn for a control channel decay can be extended to the signal channel
considered here. In a future study one or multiple control channels allowing for verification of MC
modeling of the used variables for signal events should be considered.
For the continuum suppression two classifiers, a BDT and a DNN, were prepared, with the initial
motivation being that the DNN might be more capable then a BDT when it comes to extraction of
information from the used low level variables. The training of the DNN however was significantly
complicated as large correlations between the classifier output and ∆E had to be avoided in order to
enable the final goal of a signal yield fit. The BDT interestingly appeared (to some extend) inherently
immune to this problem. To accomplish training of the DNN, trainings with adversarial networks as
well as well as the DisCo decorrelation method were implemented. The tuning of hyperparameters for
those training methods turned out to be difficult, partially because systematic approaches are hard to
apply. A configuration resulting in stable decorrelation was eventually reached with only the DisCo
method, resulting in a decorrelated DNN, here called the DisCoDNN. Tuning of the training with
adversarial networks is expected to be even more difficult and was thus deemed beyond the scale of
this thesis. Nevertheless we demonstrated that effective decorrelation, even though very laborious, is
possible.
The prepared DisCoDNN as well as the BDT were applied to MC samples to evaluate and compare
their performances. The BDT was found to achieve overall better background rejection at a given
signal efficiency. Assessment of the distribution of ∆E however showed that the performance difference
may be at least be partially traceable to the decorrelation, which was only applied for the DNN. To
further assess this, a BDT with similar decorrelation measures should be prepared for future studies.
From the results presented in this thesis we conclude that neither the BDT nor the DisCoDNN are
the obviously favored method for continuum suppression with the goal of a signal yield fit. Thus both
options may be considered for an analysis. The overall trend however seems to be that the DisCoDNN
is limited in performance due to the decorrelation measure and is unlikely to outperform the BDT
with the current setup, even if further tuning is applied.
Stability of the classifiers using the newly introduced continuum suppression variables was addressed
through studies using a large number of samples generated from the available MC sample. This
showed that both classifiers remain reasonably stable under the modeled fluctuations. As a side effect
of this study the dependence of the classifiers on the correlations between the input variables could be
assessed. This showed that compared to the BDT, the DisCoDNN appears to only very slightly rely
on the correlations. Whether in case of the DisCoDNN this is an effect of the applied decorrelation
could be further studied by repeating the studies for a BDT with applied decorrelation.
Finally to study the generalizability of the trained classifiers, they were applied to the control channel
B0 → D0(K+π−)π0(γγ). This showed that both DNN and BDT almost entirely fail to identify signal
events, which highlights the issue of generalizability of the used continuum suppression variables. To
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still achieve sufficient signal efficiency, cuts had to be chosen very loosely, which however resulted
in still surprisingly good continuum suppression. Whether this is specific to the considered control
channel remains to be investigated. The lack of generalizability is expected to complicate for example
the estimation of systematic uncertainties through the use of control channels. Thus this issue is likely
to have to be further addressed before sensible application of the proposed continuum suppression for
an analysis is possible.
The initial motivation for application of the DNNs was that they may excel when it comes to utilizing
the more subtile features hidden in the data. In the current state, any possible gain appears thwarted
by the additional constraints that come with the decorrelation methods, which must be applied to
make the DNNs usable for continuum suppression in the first place. Judging from the results presented
in this thesis, a significant gain in accuracy of measurements of the concerned branching ratios or CP
asymmetries with the current setup for decorrelation is not expected. Whether the decorrelation can
be further improved to reduce the impact on classification performance should however be investigated.
Possible things to cover in future research would be the following:

• Studies to determine which variables influence the sculpting the most (to possibly exclude them).

• Tuning of an adversarial network based decorrelation to see if performance is impacted similarly
to what was observed for the DisCo decorrelation method.

• Application of DisCo decorrelation to a BDT to verify whether the observed performance drop
is directly connected to the decorrelation.

• Investigation of further neural network architectures and their effect on the correlation induced
sculpting.
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A. Appendix

A.1. Known Issues with Data Samples Used

τ−τ+ Background The data samples prepared for this thesis were eventually found to not have the
usual skim for analyses of decays of B mesons applied, even though they were supposed to. Applying
it manually is only partially possible, as not all variables required for the cuts are included in the
available data samples. The only way to apply the skim correctly would be to re-process all of the
data. As the above described problem was discovered fairly late in the research for this thesis, re-
processing was not feasible. Thus in the used physics data samples a portion of what is believed to
be τ−τ+ background1 is contained. It can however not be verified if this contribution really can be
attributed to τ−τ+. Further investigation would require to either re-process while applying the correct
skims or study of the effects of τ−τ+ using the corresponding MC samples, which however were not
available (in time for this thesis). Despite of it not being entirely clear if the observed background
component can be assigned to τ−τ+, below it will be referred to as τ−τ+ for simplicity.

Approximating the skim by rejecting events with a low number of matched tracks (as also done as
part of the skim), was considered but turned out to be problematic. For the skim events with less than
three matched tracks are rejected, but even choosing four was not sufficient to resolve even some of the
largest disagreements between MC and data. Choosing more than four already rejects a significant
portion of events that are clearly not part of the τ−τ+ background.

Two of the available variables were found to separate the τ−τ+ contributions rather well: the ratio of
the second to the zeroth Fox-Wolfram Moment (denoted R2) and the angle between the thrust frame
of the signal side and the z-axis (denoted cos(θSz)). Both of those are peaked strongly near 1, which
is unexpected. The distribution for the named variables for off-resonance data are shown in fig. A.1
Further the distribution of one continuum suppression variable (introduced in detail in section 4.2)
where significant deviations were observed is shown. Eventually cos(θSz) was chosen for an additional
cut to reject the τ−τ+ contribution. We require cos(θSz) < 0.923. The contributions that are assigned
to the τ−τ+ and thus discarded are highlighted in fig. A.1. This also shows that the anomalous regions
are caused by the same group of events, which justifies the compromise of choosing a cut on cos(θSz)
to reject them. While here only examples are shown, anomalies observed in the distributions of many
other used variables were simultaneously resolved by placing the cut. The above mentioned cut will
be applied consistently to all samples. We note that similar anomalies were observed for the sideband2

and in smaller extend for the control channel B0 → D0(K+π−)π0(γγ). The exact reason as to why
anomalies were less pronounced for the control channel is unclear.

Missing Momentum and Energy Corrections It was further discovered that for the available
physics data corrections on the track momenta and photon energies were not applied, even though they
should have been. The track momentum correction is known to be small, the photon energy correction
however may be significant. Correctly applying those corrections also requires a re-processing of the
data. Possible MC modeling disagreements introduced by this will be discussed if encountered.

Further it is believed that this may be related to distorted reconstruction efficiencies on physics data,
which also have been found for the available samples. When compared to the MC samples, the physics

1
Anomalous parts in distributions of the used variables were found to be correlated with low numbers of tracks, as
expected for τ decays.

2
Sideband means signal channel samples with the M

′
bc replaced by 5.2GeV < M

′
bc < 5.27GeV to exclude signal events.
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Figure A.1.: Visualizations of the portion of events that are removed from off-resonance data by apply-
ing the additional cut cos(θSz) < 0.923. The cut at the same time removes large anomalies
in cos(θSz) itself, R2, as well as some of the continuum suppression variables (introduced
in section 4.2) of which one example (R(cos(θ−r0

d ))) is shown. Further the number of
tracks in an event for the removed events can seen to be generally low, indicating the
anomalous parts to be possibly caused by τ−τ+ contributions.

data samples are found to contain fewer events than expected from the integrated luminosities (which
are known for each sample). If computed relative to the 1 ab−1 generic MC sample, the data sample is
found to correspond to only 294 fb−1, where as 362 fb−1 would have been expected. Therefore either
the generic MC sample contains too many or the physics data too few reconstructed events. The latter
may be explained in relation to the not applied energy corrections: The distributions of the variables
used for cuts in the reconstruction have been found to have some discrepancies between data and MC
which are such that usually in the tails, which are discarded by the cuts, relative to the integrated
luminosity more events are contained for physics data than for MC. Thus applying the cuts may have
the effect of removing relatively more events for physics data than for MC. The result is a too low
reconstruction efficiency for the physics data. The too low efficiencies have been observed for both the
control channel and signal channel. The mentioned discrepancies in the distributions were observed
for off-resonance, sideband as well as the control channel. An example for the discussed above is M ′

bc

for which the distribution for the sideband is shown in fig. 4.3 (upper left). Here the shift of the
distribution towards lower energies for physics data may be one manifestation of the described above.

Considering all of the above, any studies involving physics data should definitely be repeated with
the corrected samples before any final conclusions are drawn. Further the reconstruction efficiencies
should be checked once the corrections are applied, as there is no guarantee that the explanation given
here is correct or accounts for the whole of the difference. As the problems outlined here only affect
physics data, the training of classifiers as well as their evaluation on MC data are not directly affected.
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A.2. MC Signal vs Background Plots

A.2.1. Signal Channel
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A.2. MC Signal vs Background Plots
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A.2. MC Signal vs Background Plots
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A.2. MC Signal vs Background Plots

A.2.2. Topologically Similar Control Channel
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A.2. MC Signal vs Background Plots
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A.3. Off-Resonance Data vs Off-Resonance MC Plots
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A.5. Sideband Data vs Sideband MC Plots
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