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Belle II/SuperKEKB Overview

e+ e− collision experiment at SuperKEKB in Tsukuba, Japan

Operation at the Υ(4S) resonance

Aim for high statistics to enable precision measurements (luminosity goal:
L = 6× 1035 cm−2 s−1)
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Belle II/SuperKEKB Overview



Theoretical Motivation

SM Null Test (”Isospin Sum Rule”)
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Theoretical Motivation

1. Sum rule as null-test to the SM.
2. Holds in isospin symmetry limit (equal quark masses) (right?)
3. Not exactly = 0, but expected deviation from zero is still much smaller then experimental

uncertainties.
4. Highlight the B → Kπ decay modes appearing in sum rule.
5. Highlight that B0 → K0π0 is measured worst (also as not self tagging)
6. NP (particles) could contribute to loops.



Continuum Background
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Continuum Background

1. Point to the event shape figure.
2. Explain uniform qq background in resonances figure.



Continuum Suppression

General Idea

Use topological differences to classify signal and background → thrust frames

Usual Approach

Variables engineered for continuum
suppression

BDT for classification

Proposed Approach

Low level momentum and decay vertex
variables

Attempt to use DNNs, expecting them to
excel in extraction of information from
low level variables

Past research: Common CS variables augmented with low level variables. Never low level
variables exclusively.
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Continuum Suppression

1. Make sure to explain thrust frames!
2. Momentum/vertex variables in theory should contain all the information of event shape.



Reconstruction and Data

Chose B0 → K0
S(π

+π−)π0(γγ) as an example

Reconstruct charged tracks and calorimeter clusters

Tracks/clusters not matched to B decay form the rest of event (roe)
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Reconstruction and Data
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CS with NNs for Belle II

Reconstruction and Data

1. Explain signal thrust/roe thrust using figure on the right



Continuum Suppression Variables

Momentum vector: p, θp, ϕp, decay vertex position: d, θd, ϕd

Use same number of tracks/clusters from roe as available for signal

→ Fit variables: ∆E, probability integral transform (denoted µ)
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CS with NNs for Belle II

Continuum Suppression Variables

1. Note that we attempted to use more variables from roe which did not result in a
significant performance gain

2. Explain chosen orders tracks/clusters for variables
3. Explain notation (briefly)
4. Explain variables that do not fall under the naming scheme
5. Explain intuition for polar angle distribution based on antiparallel/random alignment of

thrust axes.



Classifiers Used

Boosted Decision Trees (BTDs)

Robust classifiers

Give good baseline for expected
performance

Here no in-depth hyperparameter tuning

Deep Neural Networks (DNNs)

Initial motivation: Possibly better at
utilizing information from low level
variables → better performance?

Turn out to be much more
delicate/difficult to handle

Main subject of studies for this thesis
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Classifiers Used



The Need for Decorrelation

If trained as is, continuum
suppression with DNNs
results in highly sculpted
distribution of ∆E

Can’t fit such a distribution

BDT appears (partially)
immune to sculpting
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The Need for Decorrelation

1. Explain expected shape using left plot.
2. Highlight that fit with observed level of sculpting is clearly impossible.



Tools(s) for Decorrelation
Distance Correlation

Efficiently estimable correlation metric, capturing also non-linear correlations

Only one further hyperparameter introduced

Total loss:
Ltotal = Lclassifier(

#—y , #—ytrue) + λ · dCorr( #—z , #—y )

However tuning still difficult:

Too large λ degrades performance

Effectiveness of decorrelation also influenced by other hyperparameters (batch size,
network architecture)

Systematic tuning extremely difficult due to conflicting objectives

→ Studies with preliminary hyperparameters to better understand behavior
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Tools(s) for Decorrelation

1. Also mention that adversary networks have been implemented, but could not be
sufficiently tuned for this thesis.

2. Explain symbols in the equation!
3. Mention that classifier loss is binary cross-entropy.
4. Explain the conflicting objectives of best performance and effective decorrelation

(problem: performance always better for correlated classifier).



Monitoring DNN Training
Evolution of ∆E (Background) Distribution

Preliminary hyperparameters
with different values for λ (0, 1,
1.8)

Achieved decorrelation still not
satisfactory

Sculpting (partially suppressed)
suddenly starts after sufficient
number of epochs
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Monitoring DNN Training

1. Highlight that after sufficient training (or epochs), correlation (more or less suddenly)
starts → decorrelation is unstable.

2. Mention that here the goal was to reach lower sculpting than BDT in hope of this
improving fit quality (i.e. lowering the statistical uncertainties). Thus the best
decorrelation is still not satisfactory.

3. Distributions are normalized at each epoch!



Choice of Hyperparameters

prelim. value final value description

nlayers 5 5 number of layers
nneurons,0 100 100 1st dense layer neurons
nneurons,1 100 100 2nd dense layer neurons
nneurons,2 4 6 3rd dense layer neurons
nneurons,3 100 100 4th dense layer neurons
nneurons,4 100 100 5th dense layer neurons
weight decay 0.000142 0.000142 Weight decay for AdamW
learning rate 0.002 0.015 learning rate
dCorr on bgn True True choice to compute dCorr on only background events
λ 1.8 2 scale of dCorr in total loss
sλ 7.5 7.5 scale factor for λ when dCorr computed on bgn only
batch size 2048 16384 number of events in a minibatch

→ In the following DNN with applied decorrelation and final hyperparameters is referred to as DisCoDNN
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Choice of Hyperparameters

1. Highlight the ”unusual” hyperparameters: Large batch size, bottleneck architecture



Performance Evaluation
Classifier Outputs, ROC Curves

Output distributions shaped as expected

Clear performance drop when applying
decorrelation

Maximum signal efficiency lower for
DisCoDNN
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Performance Evaluation

1. Note that prelim. DisCoDNN only shown as reference for not good output distribution.



∆E and µ after Continuum Suppression

Cuts always chosen for 90% signal efficiency

∆E:

Effective decorrelation with DisCoDNN

Remaining (but acceptable) sculpting
for BDT

→ Could further investigate decorrelation
for BDTs

Overall better background suppression
with BDT at same signal efficiency

µ:

Shapes unaffected by decorrelation

Reasonably flat signal contributions
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∆E and µ after Continuum Suppression

1. Maybe mention how cut positions were determined/that they were determined using an
appropriate procedure.



Fits on MC
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Both fits of decent quality
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1. Shapes fixed on MC, final fit of only yields



Classifier Generalizability

Apply to topologically similar control channel
B0 → D0(K+π−)π0(γγ)

All classifiers fail to identify signal

Surprisingly good continuum suppression
possible with very loose cuts

DNN without decorrelation fails
spectacularly
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Classifier Generalizability

1. Mention that this demonstrates the problem of generalizability!
2. Note that DNN (no DisCo) seems not to just ”compute” or estimate ∆E and then more

or less cut on that, as BB background remains!
3. Possibly the correlations are then what allows the DNN to sculpt ∆E. This would make

sense as DisCoDNN does not really rely on correlations.



Conclusion & Outlook

Introduced set of low level continuum suppression variables

Prepared BDT and DNNs using introduced variables, expecting DNN to profit from those

DNNs require decorrelation, which most likely limits their performance

Fits on MC show similar accuracies for BDT/DNN but slighly better than BDT with
common CS variables

→ Low level CS variables could reduce statistical errors but further investigation (e.g.
systematics etc.) needed for final judgement

For the Future

Study influence of single variables on sculpting (to possibly exclude them)

Impact on performance with alternative decorrelation method (e.g. adversarial networks)

Application of similar decorrelation to BDT

Application within a fully fledged analysis (including systematics etc.)
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Conclusion & Outlook

1. In fact the sculpting also happens with only engineered variables. It’s just that so far
everyone always used BDTs which are not subject to that issue.



Backup
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Backup
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Data Samples

Generic (run independent) MC (qq where q = u, d, s, c & BB): 1 ab−1

Pure signal MC for signal channel and control channel: 4× 106 and 2× 106 events
produced resulting in 1 019 638 and 523 183 reconstructed events respectively

Physics data: 361.65 fb−1

Off-resonance generic MC (qq where q = u, d, s, c): 169.328 fb−1

Off-resonance data: 42.28 fb−1

MC Modeling

Problems with the available samples (τ− τ+, momentum corrections) remain

MC modeling overall not bad, considering the above

→ Further investigation needed for final judgment
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Neural Network Architecture and Training

Network Architecture:

Blocks of dense, activation
function and batch normalization
layers (# layers = # blocks)

Initial batch normalization to
normalize raw input values

Final activation mapped to (0, 1)
by sigmoid function

DNN Training:

AdamW optimizer (implements
weight decay as regularization)

Fixed learning rate

dense

in: 64

out: n1

batch norm.

in: 64

out: 64

leaky relu

in: n1

out: n1

batch norm.

in: n1

out: n1

dense

in: n1

out: n2

sigmoid

in: 1

out: 1

dense

in: nk

out: 1

leaky relu

in: n2

out: n2

batch norm.

in: n2

out: n2

repeat k times ...

classifier output
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Data Samples for Training

Samples should contain same
number of signal and background
events to avoid bias towards either
type

Samples for training and
evaluation of performance during
as well as after training should be
disjoint

→ Combine qq and
B0 → K0

S(π
+π−)π0(γγ) events

from available MC samples

30 %

10 %

generic MC qq
and generic MC BB

signal MC

60 %

30 %

10 %

60 %

validation sample

test sample

training sample

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 5 / 10

Data Samples for Training

Samples should contain same
number of signal and background
events to avoid bias towards either
type

Samples for training and
evaluation of performance during
as well as after training should be
disjoint

→ Combine qq and
B0 → K0

S(π
+π−)π0(γγ) events

from available MC samples

30 %

10 %

generic MC qq
and generic MC BB

signal MC

60 %

30 %

10 %

60 %

validation sample

test sample

training sample

2
0
2
3
-1
2
-1
9

CS with NNs for Belle II

Data Samples for Training



Monitoring DNN Training
Coincidence of dCorr Increase and Sculpting

Very large batch sizes
required for numerical
stability

Clear coincidence of start
of sculpting and dCorr
increase (if observable)
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Monitoring DNN Training
Evolution of Loss

Too weak decorrelation
→ slight knee in total loss
curve

dCorr on training sample
sufficiently generalizable
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Monitoring DNN Training

1. Talk about intuition of barrier in parameter space. DisCo appear to introduce barrier but
never really plane the global (correlated) minimum.



Choosing Continuum Suppression Cuts
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Fits on MC
Fit Results Table

signal qq BB

true yield DisCoDNN 318 3313 71
true yield BDT 321 2134 75
yield DisCoDNN 310.6 ± 28.3 3343 ± 39 49.30 ± 31.28
yield BDT 337.5 ± 26.1 2149 ± 35 43.52 ± 27.83
rel. fit error DisCoDNN in % 8.902 1.178 44.06
rel. fit error BDT in % 8.144 1.626 37.1
rel. true error DisCoDNN in % 2.335 ± 8.902 0.897 ± 1.178 30.57 ± 44.06
rel. true error BDT in % 5.133 ± 8.144 0.710 ± 1.626 41.97 ± 37.10
pull DisCoDNN in σ -0.2623 0.7619 -0.6937
pull BDT in σ 0.6302 0.4367 -1.131
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Classifier Performance Stability & Input Variable Correlations

Bootstrapping

Models fluctuations of occurrences of
event types, not numerical fluctuations

All classifiers remain reasonably stable

Uncorrelated Toys

Do not model correlations, as nearly
impossible

Classifiers that do not significantly sculpt
∆E barely utilize correlations between
input variables
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Bootstrapping

Models fluctuations of occurrences of
event types, not numerical fluctuations

All classifiers remain reasonably stable

Uncorrelated Toys

Do not model correlations, as nearly
impossible

Classifiers that do not significantly sculpt
∆E barely utilize correlations between
input variables
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