
Fast Simulation and Validation
of the Time of Propagation

Detector at the Belle II
Experiment

Isabel Haide

Masterthesis

16th July 2021

Institute of Experimental Particle Physics (ETP)

Advisor: Prof. Dr. Günter Quast
Coadvisor: Prof. Dr. Ulrich Husemann

Editing time: 7th June 2020 – 16th July 2021

ETP-KA/2021-8

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Fast Simulation und
Validierung des Time of

Propagation Detektors am
Belle II Experiment

Isabel Haide

Masterarbeit

16. Juli 2021

Institut für Experimentelle Teilchenphysik (ETP)

Referent: Prof. Dr. Günter Quast
Korreferent: Prof. Dr. Ulrich Husemann

Bearbeitungszeit: 7. Juni 2020 – 16. Juli 2021

ETP-KA/2021-8

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, 16. Juli 2021

. .
(Isabel Haide)

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 The Standard Model . 3
2.2 Machine Learning and Generative Models 5

2.2.1 Artificial Neural Networks . 5
2.2.2 Generative Modeling . 8

2.3 Probability Metrics and Two-Sample Tests 14
2.3.1 Kullback-Leibler Divergence . 14
2.3.2 D-Dimensional Kolmogorov-Smirnov Metric 15

3 Experimental Setup 19
3.1 The Belle II experiment . 19

3.1.1 The TOP Detector . 21
3.2 The Belle II Analysis Framework . 23
3.3 Geant4 . 24

4 Validation Framework 25
4.1 Baseline of Current Simulation . 26

4.1.1 Time Requirement . 27
4.1.2 Photon Detection Values . 29
4.1.3 Track Identification . 34

4.2 Design . 40
4.2.1 Validation Mechanisms . 40

4.3 Generalization Possibilities . 43

5 Generative Modeling of Reduced Datasets 45
5.1 Experiment Design . 45

5.1.1 GAN design . 45
5.1.2 CVAE Design . 46
5.1.3 Cone Model . 47
5.1.4 Reduced Number of Reflections . 49

5.2 Generative Adversarial Network . 50
5.2.1 Cone Model . 50

5.3 Conditional Variational Autoencoder . 56
5.3.1 Cone Model . 56

VII

VIII Contents

5.3.2 Reduced Number of Reflections . 57

6 Conclusion 69

1. Introduction

The study of nature of matter and light has been one of the main focuses of physics since
its origins. The theory of matter being made out of discrete building blocks originated
in ancient Greece and ancient India and today has culminated in the Standard Model
(SM) of Particle Physics [1]. The SM describes the elementary particles and three of their
four fundamental interactions, currently excluding gravity, with high precision and has
correctly predicted several results, such as the experimental detection of the top quark [2]
and the Higgs boson [3]. Despite its great success, there are still several discrepancies and
inexplicable phenomena, including as the baryon asymmetry, the inclusion of gravity and
the existence of neutrino oscillations.

The SuperKEKB collider is an electron-positron collider operating at the Υ(4S) resonance
with the Belle II experiment positioned at the collision point. This allows high precision
measurements of the properties of B mesons and their decays and thus to find possible
deviations of Standard Model predictions. [4]

For this purpose the Belle II detector is built with several layers of detector components
centered around the collision point. The different interactions of the collision products with
each detector part can be measured and stored for further purposes. These measurements
are then analysed and compared to theory predictions to possible find discrepancies to the
SM or to further verify its predictions.

For a correct analysis, an accurate simulated dataset is crucial. Large amounts of collisions
need to be created, where both the particle and its decays as well as the interaction of each
detector component with the particle have to be simulated to a high precision. As simulation
time and resources become bottlenecks for physical analyses due to higher luminosities,
the study of more efficient simulation methods gains higher traction in the field of physics
([5], [6], [7]).

The currently largest contributor to overall detector simulation time at the Belle II ex-
periment is the imaging Time of Propagation (TOP) detector. This detector is part of
the particle identification done through the detection of Cherenkov photons emitted by
charged particles crossing the detector. This thesis is exploring the concept of replacing the
TOP simulation by a simulation done through machine learning methods, also called fast
simulation. A focus of this thesis is validating a possible fast simulation, thus ensuring a
correct modeling of the detector.

1

2 1 Introduction

The thesis is structured as follows: chapter 2 explains the theoretical and mathematical
background needed for a fast simulation in particle physics, including a high-dimensional
Kolmogorov-Smirnov metric which was developed during this thesis. In chapter 3 the
experimental setup is explained, including the Time of Propagation detector. chapter 4
then explores the uncertainty of the current simulation and the development of validation
processes, with the creation of a possible validation framework. In chapter 5 two neural
network architectures, conditional variational autoencoders and generative adversarial
networks, are tested and applied to simplified datasets as a proof-of-principle.

2. Theoretical Background

2.1 The Standard Model

The idea of a grand unified theory combining all fundamental forces has been the objective
of physics since their discovery. To our current knowledge, particle interaction is governed
by four different forces, the electromagnetic, the weak, and the strong force together with
the well known force of gravity. This following chapter is mainly based on [1].

Two of those four, the electromagnetic force and gravity, had been discovered before the
20th century. Enrico Fermi first postulated the existence of a non-contact force that has a
finite range as opposed to the long ranges of the electromagnetic and the gravitational force
to explain beta decay. The name weak interaction stems from the short range of this force.

To explain why an atomic nucleus is stable even though the electromagnetic force between
the protons is repulsive, a stronger attractive force inside the nucleus was postulated.
Through collider experiments, the existence of quarks that make up neutrons and protons
inside the nucleus was experimentally shown. The theory of quantum chromodynamics
could then explain the attractive force between quarks through the exchange of gluons.

All three forces are combined in the Standard Model (SM) of Particle Physics. It is used
to describe the interactions between elemental particles while not including the influence
of gravity. The model was developed in stages with the last addition being the Higgs
mechanism to explain the masses of particles. With the experimental confirmation of the
existence of quarks in the 1970s, the current version of the model was finalized.

The widely accepted version of the SM includes 12 fermions, which are particles with
a half-integer spin, and 5 bosons, which have integer spin. The fermions are broken
up into six quarks, three leptons, and their respective lepton neutrinos. Each fermion
has its corresponding anti-particle. In figure 2.1 all fundamental particles with their
corresponding mass, charge and spin are listed. Every fermion carries types of charge.
While all fermions carry electric charge and weak isospin, which defines their interaction
through the electromagnetic and the weak interaction, quarks are defined by also possessing
color charge which is the charge of the strong interaction. Bosons are separated into gauge
bosons and the Higgs boson. The gauge bosons are the carriers of the fundamental forces.
Fermions exchange gauge bosons to interact with each other through the respective force.
Photons are the exchange bosons of the electromagnetic force which can be described by the
theory of quantum electrodynamics. As the photon is massless, the electromagnetic force

3

4 2 Theoretical Background

Figure 2.1: The particles of the Standard Model of Particle Physics. The three columns on
the left list the fermions with the six quarks on top and the six leptons on the
bottom. On the second to right column the four gauge bosons are shown, while
the right column shows the Higgs boson. The figure is taken from [8].

is long-range. The gauge bosons of the weak interaction are the W+, W−, and Z-bosons.
In comparison to the electromagnetic force, the weak force is short-range which can be
explained by the masses of the gauge bosons. Those masses exceed the masses of the
neutron and proton, making the exchange bosons short-lived and the field strength of the
weak force over a given distance smaller than that of the strong or electromagnetic force. In
the 1960s the electromagnetic force and the weak interaction were unified in the electroweak
theory. The strong force describes the interaction between colored particles inside the
nucleus and is mediated by gluons. As the current theory includes three colors and every
gluon carries a color-anticolor pair, eight different gluons exist. All gluons carry an effective
color charge and are therefore able to interact amongst themselves as well. The Higgs boson
is the only spin-0 particle in the SM, as the gauge bosons all carry spin 1. It is massive
and therefore short-lived. Its role inside the SM is to explain the existence of masses of all
other particles. In particular, the existence of the Higgs boson explains why three of the
four bosons of the electroweak theory (W+, W−, and Z-bosons) are massive and the fourth
boson, the photon, is massless. Through a different interaction, the mass of the leptons
and quarks are also generated by the Higgs boson. The experimental confirmation of the
existence of the Higgs boson in 2012 ([3]) further strengthened the position of the Standard
Model. Even though many experimental results support the validity of the SM, several
effects cannot be explained by it. A prominent example is the appearance of Dark Matter in
the universe, which to our current knowledge does not consist of any of the known particles.
Other examples are neutrino oscillations, the matter-antimatter asymmetry, and the task
of combining gravity with the other fundamental forces. To provide more information on
physics beyond the Standard Model, high-energy and high-precision experiments are built to

2.2 Machine Learning and Generative Models 5

measure processes that may contain information on new physics. One of these experiments
is the Belle II experiment designed to measure flavor physics to very high precision, which
will be explained in section 3.3.

2.2 Machine Learning and Generative Models

Machine learning algorithms are a class of computer algorithms where the optimal model
is learned from the data instead of classically implemented into an algorithm structure.
Through machine learning the computer iteratively learns to make decisions and improve
on its predictive performance through experience.

In general, there exists three types of machine learning: supervised, unsupervised, and
reinforcement learning. Different application domains need different types of machine
learning and all three types have their own regions of expertise. We will focus on supervised
learning in this thesis.

In supervised learning, the task is to learn a function g that maps an input to an output
based on example data. The algorithm is given a set of inputs X and their corresponding
labels Y . The learning task is then to infer a function g : X → Ŷ , where the space of
predicted labels is denoted by Ŷ and ideally given through Ŷ = Y . In most cases, g is a
subset of the hypothesis space G, which is the space of possible functions. To evaluate
the performance of g, oftentimes a loss function l : Y × Ŷ → R+ measures the difference
between the predicted and true label. The optimal function g is then defined as predicting
the labels, that minimizes the loss function f .

Many different algorithms can be used in supervised learning, most widely known are for
example support-vector machines, decision trees, K-nearest neighbor algorithms, and neural
networks. As only neural networks have been used in this thesis, they will be explained in
the next section.

2.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are computational models crudely based on the workings
of a biological neuron. They were invented as an attempt to model the human brain
and perform tasks too difficult for conventional algorithms. The algorithm is taught to
perform certain tasks by giving examples of correctly performed actions and thus iteratively
improving its performance. [9] An artificial neural network consists of nodes, which resemble
neurons in the brain. These neurons are connected to each other similar to biological
synapses and can transmit signals. Generally these connections are called edges. Each
connection is weighted to determine the strength of the influence between nodes. The
explanation in the following paragraphs is based on [10].

The structure of a single node can be seen in figure 2.2. The artificial neuron receives one
or several signals, which are real numbers, being either the original input or coming from
another neuron. This signal is then processed and put into a connection. This connection
is usually a non-linear function and transmits this signal to the next neuron. Both neurons
and edges are weighted by a real number, which is adjustable during the learning process.
Through this weight the impact of the respective neuron or edge can be adjusted. Neurons

6 2 Theoretical Background

Figure 2.2: A singular node of an artificial neural network. The node receives several inputs
with their respective weights. All inputs and their corresponding weights are
multiplicated and summed up in that node. This node output is then put
through a typically nonlinear activation function and then propagated to the
next nodes.

are typically aggregated into layers of nodes, as can be seen in figure 2.3. In this figure, the
layers are fully connected layers, where every node in the n-th layer is connected to every
node in both the n− 1-th and the n+ 1-th layer. Other layer types include convolutional
layers, recurrent layers etc. depending on the application. Different layers can then learn
different aspects of the problem posed.

The parameters of an ANN can be separated into learnable parameters and hyperparameters.
Hyperparameters are variables that need to be specified by the user and are not determined
by the learning algorithm. The learnable parameters on the other hand are adjusted during
the process by the neural network itself.

Artificial neural networks are a way to approximate any well-behaved function g through
its learnable parameters. This has been shown by the universal approximation theorem,
which proved that an ANN with either arbitrary width and bounded depth or an ANN with
bounded width and arbitrary depth with a non-linear activation function can approximate
any such function g. That however only proves the existence of such a solution, but gives
no information about the design details of such a solution.

The most commonly used algorithm for adjusting the learnable parameters during training is
called backpropagation. It is mostly used in feedforward neural networks, where connections
between nodes are acyclic. During the training process, the gradient of the loss function is
computed with respect to the weights of the networks for every input-output pair. This can
be done efficiently by computing the gradient of the loss function by the chain rule. the
gradient is computed one layer at a time, iterating backward from the last layer. This is
faster than a direct computation of the gradient and therefore feasible to use in multilayer
networks. According to the computed gradient, the weights are adjusted so that the loss
function can be minimized. The key requirement for the use of backpropagation is therefore
that the gradient is defined everywhere to perform parameter updates. This introduces

2.2 Machine Learning and Generative Models 7

Figure 2.3: Overview of an ANN architecture. ANNs typically consist of an input layer,
one or several hidden layers and an output layer. The nodes inside the layers
are connected to each other via learnable parameters which are adjusted during
the training process. The figure is taken from [11].

requirements on the used loss function and on the design of the networks itself, as seen
later in section 2.2.2.2.

The learning process based on backpropagation is called gradient descent. Gradient descent
uses the gradient of a multivariate function, in the case of a neural network the loss function
f , at the current position a to adjust the parameters of the network in the direction of the
negative gradient −∇f(a). For standard gradient descent, the calculation of the gradient is
done for every data sample and summed up to calculate the empirical gradient

an+1 = an − η∇f(a) = an −
η

n

n∑
i=1

∇fi(a) . (2.1)

The parameter η is called the learning rate and controls the speed at which the model
learns. It is a configurable hyperparameter needed to be chosen in the range of [0.0, 1.0]. It
can be proven that gradient descent will converge to a local minimum of f(x) [12].

If the training set is very large, calculating the gradient for the complete dataset has a high
computational cost. For a more efficient calculation of the gradient, stochastic gradient
descent is used as an approximation. In stochastic gradient descent the gradient is calculated
on one randomly chosen example of the whole dataset and then applied to all weights.

an+1 = an − η∇fi(a) . (2.2)

If the chosen examples are i.i.d., the algorithm will update the parameters in the direction of
a minimum of the empirical gradient as long as the data set is finite. Additionally, through
the noise introduced by the randomly chosen samples, the algorithm may converge towards
the global instead of a local minimum as may happen in standard gradient descent. [12]

To alleviate some of the randomness in the full stochastic gradient descent, in most
applications mini-batch gradient descent is used. The gradient is computed on more than

8 2 Theoretical Background

one training example, where the number of training examples used, called batch size, is a
hyperparameter that needs to be set before training. A larger batch size leads to a more
exact gradient calculation, while also resulting in a higher computation time.

An important factor of an ANN is the non-linear activation function. In theory, any such
function would suffice, but popular functions are amongst others the sigmoid function

fsigmoid(x) =
1

1 + e−x
, (2.3)

the rectified linear unit (ReLu) function

fReLu(x) = max{0, x} , (2.4)

or the leaky ReLu function

fleaky ReLu(x) =

{
x if x > 0,

0.01x otherwise.
(2.5)

Activation functions should have three main properties to work in an ANN. Firstly they
should be non-linear as explained earlier, to ensure the universal approximation theorem.
Secondly activation functions with a finite range seem to stabilize gradient-based training.
Lastly for an activation function used in combination with backpropagation, a gradient needs
to be defined everywhere. For easier computation, a continuously or mostly continuously
differentiable activation function is of advantage.

The success of ANNs can be explained by their variability. Many different neural network
techniques have been developed to tackle different kinds of problems. One network design
that has been particularly successful for example are convolutional neural networks in image
recognition [13]. Other notable types of networks are transformer networks [14], which
are very useful in natural language processing, or generative models such as generative
adversarial networks (GAN) or variational autoencoders (VAE). As this work focuses on
the generative modeling of the TOP detector, both GANs and VAEs have been used. The
general concept of these network types is presented in the following section.

2.2.2 Generative Modeling

Generative modeling is a subset of machine learning algorithms. Given a set of data X and
a corresponding set of labels Y , generative modeling describes the process of capturing the
joint probability distribution P (X|Y) and being able to sample data points xi from this
distribution. The model distribution is learned by giving the network data points drawn
from the original distribution (e.g. pictures of handwritten numbers where the overall
distribution is all handwritten numbers). The network then has to be able to accurately
model P (X|Y) without ignoring a subset of this distribution, e.g. certain labels in Y . [?]

The difficulty of generative modeling is generating new samples instead of reproducing
samples given in the training dataset. Deciding if a given sample is part of the overall
distribution and mimicking this sample is a much simpler task than modeling the distribution
itself so that new samples can be drawn.

2.2 Machine Learning and Generative Models 9

The ability to generate new data from a learned distribution has long been sought after
by the community of information science. Classical methods have three main problems:
they often require strong assumptions about the data, have to make severe approximations
for the modeled distribution, or might rely on computationally expensive algorithms, such
as Markov chain Monte Carlo [15]. Deep learning solutions for generative modeling via
backpropagation do not share the same drawbacks as classical algorithms. Different kinds of
generative networks have been designed and offer promising results. In the following section
two popular network designs, generative adversarial networks and conditional variational
autoencoders, will be explained.

2.2.2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) were first proposed in [16] as a class of machine
learning algorithms to generate new data given a training set. Two models are simultaneously
trained and set to compete against each other. One of these networks, called the generator
G, is trained to generate the wanted data, while the other network (the discriminator D) is
trying to discriminate between real and generated data. The networks then contest against
each other. The training objective of G is maximizing the probability of D making a mistake.
This competition improves the performance of both networks until the generator produces
samples indistinguishable from the originals. Most often the input to G is random noise,
which the network then has to learn to map to the distribution P (X).

Both networks G and D are trained alternately. The training goal is to learn the generator’s
distribution pg over data x with a true distribution pt. This distribution pg is mapped
from the input noise variables z that follow the distribution pz(z) through a differentiable
function G(z; θg). G is represented by a neural network with parameters θg. The second
network D(x; θd) is trained to differentiate between samples from pg and pt. The output of
D is a single number, which represents the probability of x originating from pt instead of
pg. The training objective is the following minimax function defined with a value function
V (G,D):

min
G

max
D

V (D,G) = Ex∼pt(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.6)

In figure 2.4 the structure of a GAN is shown. The input noise variables z drawn from pz
are fed into the generator, which outputs samples drawn from pg. These samples together
with real training samples drawn from pt are then used as an input to the discriminator. A
variation of the classical GAN is the conditional GAN (CGAN) shown in red. Both the
generator and the discriminator of the CGAN receive an additional input c, which defines
the mode to be generated by the networks. This can for example be one digit of the MNIST
dataset or particle energies or momenta.

In [16], the authors show that given the training criterion equation (2.6), the generator G
can learn the optimal result pg = pt if both G and D have enough capacity. While this
result is theoretically possible, optimizing equation (2.6) means finding a Nash equilibrium
of a non-convex game with continuous, high-dimensional parameters [17]. As G and D are
typically trained by finding a minimum of a cost function using backpropagation instead of

10 2 Theoretical Background

Input z Conditions c

x G(z)

Real/Fake

Discriminator
D

Generator
G

Figure 2.4: Model of a generative adversarial autoencoder. A GAN consists of two networks,
the generator and the discriminator. The modules in black show the structure of
a standard GAN while the red modules are the additions needed for a conditional
GAN.

directly searching for the Nash equilibrium, the training process may, and often does, fail
to converge.

One reason why the network may not learn the optimal result is the discriminator loss
converging too quickly. In [18] the authors show that pt and pg are both concentrated on a
low dimensional manifold, although the space they represent is often high-dimensional. The
distributions pt and pg can therefore be disjoint and may have no overlap. This leads to
a nearly trivial discriminator with a quickly converging gradient that can distinguish real
samples from fake samples with perfect accuracy. As the discriminator’s gradient is used
for updates to the generator, the learning process for the generator is terminated as well.

Another problem of GANs is the so-called mode collapse. This happens when the generator
fails to reproduce the entire distribution pt but instead collapses on a subset of it. The
generator maps several different input values to the same output point, leading to low
diversity in the generated samples [16].

Several features and training techniques have been proposed to improve and simplify the
training of GANs. Those methods include feature matching, which sets a new objective
for the generator which minimizes the statistical difference between the features of the
real and generated images; minibatch discrimination, where real and generated images are
fed into the generator separately to avoid mode collapse; or one-sided label smoothing,
which penalizes the discriminator if the prediction for real images goes beyond a certain
probability. A detailed explanation and further methods are discussed in [17].

An extension to the standard GAN is the Wasserstein GAN (WGAN) ([19]). The WGAN
can improve the stability of learning, reduce mode collapse and provide meaningful learning
curves. In a WGAN, instead of the discriminator predicting if generated data is ”real“, the

2.2 Machine Learning and Generative Models 11

discriminator works as a critic model deciding on the ”realness“ of the generated data. If
such a critic neural network is trained, it can approximate the Wasserstein or Earth-Mover’s
distance and therefore more effectively train the generator model. Unlike a discriminator
model, a critic model trained to approximate the Wasserstein distance reliable provides a
linear gradient even after being well trained. This leads to a more stable training process.

Several changes have to made to a GAN implementation in order to build a WGAN. The
output layer of the critic model needs a linear activation function and the critic model
weights need to be constrained to a limited range after each mini batch update. Weight
clipping is a way to enforce a Lipschitz constraint, which is needed for the convergence
of the critic. For both the critic and the generator, the Wasserstein loss should be used.
For a better training process, the critic should additionally be trained more times than the
generator each iteration.

2.2.2.2 Conditional Variational Autoencoders

Conditional Variational Autoencoders (CVAEs) are a different class of generative machine
learning algorithms. Unlike GANs, a CVAE only consists of one network receiving training
data as input and directly generating new data. CVAEs received their name from classical
autoencoders which are used to learn a representation of a dataset, typically in a reduction
in dimensionality. Because CVAEs also have an encoder and a decoder, the structure of
the network is similar to that of an autoencoder even though they do not share the same
mathematical basis. The following derivation is adapted from [15], where a more detailed
explanation can be found. The theory of a conditional variational autoencoder is based on
a simple variational autoencoder (VAE) which will be explained first.

VAEs rely on the use of latent variables. To have an accurate representation of the
distribution of our dataset the model should have a set of latent variables z, distributed
according to the probability density function P (z) which helps the model generate samples
from the wanted distribution. If our data points X are samples of a high-dimensional space
X , then there exist deterministic functions f(z; θ), parametrized by a vector θ in space Θ,
that map f : Z ×Θ→ X . If z is a random variable and θ is fixed, then f(z; θ) is a random
variable in the space X . θ can then be optimized so that f(z; θ) (if z is sampled from P (z))
is similar to the original data points X. The optimization can then be defined as

P(X) =

∫
P(X|z; θ)P(z)dz. (2.7)

The goal of a VAE is finding a solution of equation (2.7). The main difficulty lies in the
definition of the latent variables as well as in solving the integral over z. VAEs solve the
first problem by not making assumptions about the dimensionality of z. Any distribution
in d dimensions can be mapped by using d variables distributed normally and transforming
them, as per the inverse transform sampling method [20]. Since any continuous function
can be accurately represented by a neural network with a sufficient amount of parameters,
the transformation from the normal to the wanted distribution can be done through a
network. If such a function exists, then with enough training the network will be able to
approximate it. Therefore, the optimization problem reduces to maximizing equation (2.7)
with P (z) = N (z|0, I).

12 2 Theoretical Background

One way to compute P (x) approximately is sampling a large number of z values {z1, ..., zn}
and reducing the integral into a sum, so that P (X) ≈ 1

n

∑
i P (X|zi) . Sampling enough

values to have an accurate representation of P (x) in high dimensional spaces is, however,
often not feasible. Variational autoencoders, therefore, try to change the sampling procedure
by only sampling those z values that produced samples more similar to X and approximate
P (X) from those samples. There should be a function Q(z|X) which takes a value of X
and can return a distribution of z values that are more likely to produce X. As this subset
is a lot smaller than the original space, computing for example Ez∼QP (X|z) is possible.

To relate Ez∼QP (X|z) and P (X), we use the Kullback-Leibler divergence KLdiv([21])
between between P (z|X) and Q(z) for an arbitrary Q.

KLdiv[Q(z)‖P (z|X)] = Ez∼Q[logQ(z)− logP (z|X)] . (2.8)

Here we can use the Bayes’ theorem for conditional probabilities to insert P (X|z) and
P (X) into the equation. As logP (x) does not depend on z, we can put it outside of the
expectation value. If we reorder the equation and substitute equation (2.8), the equation
yields:

logP (X)−KLdiv[Q(z)‖P (z|X)] = Ez∼Q[logP (X|z)]−KLdiv[Q(z)‖P (z)] . (2.9)

Up until here, Q could have been any distribution. As Q should depend on X and minimize
KLdiv[Q(z)‖P (z|X)], we can insert Q(z|X):

logP (X)−KLdiv[Q(z|X)‖P (z|X)] = Ez∼Q[logP (X|z)]−KLdiv[Q(z|X)‖P (z)] . (2.10)

In equation (2.10) the left side shows logP (X) including an error term which leads Q to
produce useful z-values. This is the quantity we want to maximize. The right side of the
equation can be optimized with the help of stochastic gradient descent. This equation is
similar to that of an autoencoder: Q is encoding X into z whereas P is decoding it to
reconstruct X.

To perform stochastic gradient descent on the right side of equation (2.10), Q(z|X) has to
be defined. A standard choice is

Q(z|X) = N (z|µ(X; θ),Σ(X; θ)) , (2.11)

with µ and Σ being arbitrary deterministic functions with θ learned from data. Σ is
constrained to be a diagonal matrix, which has the computational advantage of simplifying
equation (2.10). We can now define KLdiv[Q(z)‖P (z)] as a KL-divergence between two
multivariate Gaussian distributions. We also directly insert P (z) = N (z|0, I) so that

KLdiv[N (µ(X),Σ(X))||N (0, 1)] =
1

2

(
Tr (Σ(X)) + (µ(X))> (µ(X))− k − log det (Σ(X))

)
(2.12)

For the first term in the right hand side of equation (2.10) we approximate the expectation
value by taking one sample of z and using logP (X|z) as an approximation. The exact

2.2 Machine Learning and Generative Models 13

Figure 2.5: Model of a variational autoencoder. Loss functions are shown in blue, non-
differentiable procedures are marked in red. Both networks are feedforward
networks, but only the right network can be trained with backpropagation.
Figure is taken from [15].

equation we want to optimize while performing stochastic gradient descent over different
values of X samples from a dataset D is

EX∼D[Ez∼Q[logP (X|z)]−KLdiv[Q(z|X)‖P (z)]]. (2.13)

The gradient can be performed inside the expectation values, so we compute the gradient of

logP (X|z)−KLdiv[Q(z|X)‖P (z)], (2.14)

with one sample of X and one sample of z.

In equation (2.14) there is no dependency of the first term logP (X|z) on Q. This network
can be visualised by the network in the left of figure 2.5. The sampling procedure of
sampling z from Q(z|X) is a non-continuous operation and therefore has no gradient.
Because backpropagation has to be performed throughout the whole network, the sampling
is moved to an input layer. This is called the “reparametrization trick” and is shown on the
right side of figure 2.5. The final equation on which the gradient is computed is then

EX∼D

[
Eε∼N (0,I)[logP (X|z = µ(X) + Σ

1
2 (x) · ε)]−KLdiv[Q(z|X)||P (z)]

]
. (2.15)

In many applications the sample space X is multimodal, which is a difficult distribution for a
VAE to learn out of finite samples. For that case, conditional variational autoencoders have
an extra input variable Y . This input determines the mode that the network is supposed
to generate. In figure 2.6 the structure of a CVAE at training (left) and test time (right) is
shown. The input variable Y can for example be the category of a CIFAR dataset or the
energy and momentum of a simulated particle.

14 2 Theoretical Background

Figure 2.6: Model of a conditional variational autoencoder. On the left is the training
procedure, with a sample input X and the input variable Y . On the right side,
the same model is shown at test time. The figure is taken from [15].

2.3 Probability Metrics and Two-Sample Tests

Two-sample tests are a method used in statistical hypothesis testing to decide whether two
samples are drawn from the same distribution. To decide whether or not that hypothesis is
true, a test statistic t is usually applied on the data and returns a usually scalar variable.
If t lies in the before defined critical region, the hypothesis is rejected. [22]

As probability metrics measure the distance between random quantities, these metrics can
be used as a test statistic in two-sample tests. Data drawn from two probability distributions
can be compared through an appropriate probability metric. While one-dimensional test
statistics are widely used in two-sample testing, reducing high-dimensional data to one
dimension results in a loss of information and therefore in a worse test performance. One
popular high-dimensional probability metric is the Kullback-Leibler (KL) divergence ([21]),
which is explained in the following chapter. During these thesis, a fast computation of a high-
dimensional ddKS metric was developed ([23]) which outperforms the KL divergence in high
dimensions and for non-symmetric distributions. This metric is explained in section 2.3.2.

2.3.1 Kullback-Leibler Divergence

The Kullback-Leiber divergence, also called relative entropy, is a probability metric that can
be applied in a two-sample test. For a two-sample test, two samples are drawn respectively
from P and Q, which are two probability distributions defined on the same probability
space X. The two-sample test then tests the hypothesis of P = Q through the calculation
of the KL divergence KLdivbetween both samples. This is calculated by

KLdiv(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (2.16)

2.3 Probability Metrics and Two-Sample Tests 15

This equation only holds if Q(x) = 0 implies P (x) = 0. For P (x) = 0, the contribution
of the corresponding term is also set to 0. While the KL divergence is non-negative, it is
neither symmetric nor does it satisfy the triangle equality. It is therefore not a distance
metric. [21]

The KL divergence is applicable in high dimensions and is widely used in machine learning
and statistical tests. [24]

2.3.2 D-Dimensional Kolmogorov-Smirnov Metric

The main drawbacks of common probability metrics are firstly the need for assumptions
about the underlying data, such as assuming a Gaussian distribution, and secondly the
difficulty expanding to higher dimensions.

One widely used one-dimensional metric is the Kolmogorov-Smirnov (KS) metric [25] [26],
which has several advantages over other metrics such as the χ2 test or the Earth Mover’s
metric. The KS test, where the KS metric is applied in a two-sample test, uses the maximum
difference between the two cumulative distribution functions as a distance. Besides being
nonparametric, the KS test is sensitive to difference in both location and shape of the two
tested probability distributions. Additionally, the KS test is applicable on samples with a
small number of data points, unlike for example the Ξ2 test.

The generalization of the one-dimensional KS test is a d-dimensional KS test (ddKS) based
on the two-dimensional version of Fasano and Franceschini [27]. The difficulty of extending
KS to higher dimensions is that the calculation of differences between higher-dimensional
CDFs is ambiguous.

For a two-sample test, there are two samples drawn from probability distributions in R,
denoted P and T here. The principle of calculating the KS test statistic between both
samples remains the same in ddKS, calculating the difference between the two CDFs of P
and T . For this distance calculation, the d-dimensional space is separated into 2d orthants
respective to a given point. In figure 2.7 this separation is shown in the example of three
dimensions.

The cumulative distribution function estimate is then the number of points positioned inside
one orthant. Given these two estimates CP (~x) and CT (~x), he ddKS test statistic is simply
the maximum distance between those.

D = max |CP (~x)− CT (~x)| (2.17)

As estimated CDFs do not change except at points existing in the respective sample, the
evaluation of equation (2.17) is only done at points in either sample. Therefore, both CP
and CT do not need to be continuous functions, but can be treated as tensors with the
shape C ∈ Rm × 2d, where m is the number of evaluation points. As m can denote either
the points of sample T or P , these cumulative distribution tensors are named CP,m and
CT,m. As using either sample is valid for calculating these tensors, but leads to varying
results, ddKS is defined as the maximum absolute difference between CDFs, averaged over
both evaluation point samples.

D =
max |CP,P (~x)− CT,P (~x)|+ max |CP,T (~x)− CT,T (~x)|

2
(2.18)

16 2 Theoretical Background

Figure 2.7: Separation of a three-dimensional space into octants respective to a given point.
The point marked black is the origin of the octant separation. The blue and red
points are samples drawn from different distributions. The number of points per
octant is the cumulative distribution estimation. This figure is taken from [28].

This can be implemented as a loop based calculation. An iteration is done for both samples
P and T , looping over every point in each respective sample. For every point, the orthants
are defined and the number of points of each sample located in every orthant is stored. For
each test point this orthant membership number is stored for both samples. For both sets
of test points, the maximum average difference between orthant membership for P and T
is calculated and averaged over both sets to achieve the result in equation (2.18).
The computational complexity for this method is O(2dN2) with N as the size of the largest
sample P or T . As N is often large in applications where probability metrics are needed,
an accelerated computation has been developed.

The accelerated computation is based on using tensor primitives from the pytorch library.
This ensures that implicit parallelism can be used for small N , thus reducing time complexity
in this case to O(1) as well as enabling calculation on GPU. For larger N , the accelerated
computation trades time complexity for memory complexity, which is not a bottleneck on
modern computational devices. The accelerated computation has been published in [23].

For this method we first construct tensors P and T with dimensions NP × d and NT × d,
respectively. NP (T) is the number of points in the sample, while d denotes the number of
dimensions. Both tensors are then expanded along a new axis, copying all elements in the
first two axes, creating new tensors P and T , being NP (T)×d×NP (T) dimensional. We then
clone P and T and permute their first and third axis. These new tensors we call QP and
QT . With this permutation P[i, j, k] is the jth element of the ith point while QP [i, j, k] is
the jth element of the kth point. With these tensors we first do an element-wise comparison

2.3 Probability Metrics and Two-Sample Tests 17

of each point in P and T

GP,P = P ≥ QP GT,P = T ≥ QP GP,T = P ≥ QT GT,T = T ≥ QT . (2.19)

Next we define a square wave function S(x, f), which is needed to sort points into their
respective orthants.

S(x, f) =
(−1)b2fxc + 1

2
(2.20)

S varies between 0 and 1 with a given frequency f. The membership tensor can then be
defined through the element-wise comparisons G and the square wave function.

MX,X [i, l] =
N∑
k=1

d∏
j=1

S

(
G1 [i, j, k] ,

l

2j−1

)
(2.21)

The frequency of S is set by the orthant l ∈ [0, 2d − 1] which we are currently evaluating,
while the evaluated point x is given by G. After constructing the membership tensor, we
can calculate the difference between the membership tensors belonging to the samples P
and T and finding the maximum. To fully recreate equation (2.18), we average over the
distance between membership tensors evaluated on points of sample P and the distance
evaluated on points of sample T :

D =
max |MP,P (~x)−MT,P (~x)|+ max |MP,T (~x)−MT,T (~x)|

2
. (2.22)

Using this implicit parallelization, this tensor based method has a time complexity of O(1)
for small N and d. The restriction is the memory of the processing unit used, which for
modern GPUs can store up to 10,000 points per sample in three dimensions.

Additionally, two methods to accelerate the computation of the ddKS have been developed
as well. The accelerated methods approximate ddKS using voxelization- and sorting-based
methods, using a tradeoff between speed and statistical efficiency. All three methods can
be found in [23] together with an analytic significance calculation.

3. Experimental Setup

3.1 The Belle II experiment
The Belle II detector is a particle physics experiment located at the SuperKEKB collider
in Tsukuba, Japan. The SuperKEKB collider is an e+e−-collider designed to operate at
the Υ(4S) resonance, which further decays into a B meson pair (see figure 3.3). It is an
upgrade of the original KEKB accelerator and recorded first collisions in April 2018. This
chapter is based on the Belle II technical report ([29]). The accelerator consists of two
storage rings, one for the high-energy electron beam and one for the low-energy positron
beam. Four experimental halls are positioned at every straight point in the accelerator ring,
which has a circumference of 3016 m. To study decay channels of B mesons the Belle II
detector is build around the only collision point to track the decay particles and measure
their properties. In figure 3.1 a schematic overview of the SuperKEKB accelerator is shown.

The Belle II detector consists of several sub-detector parts to maximize the information
measured during the decay process, which can be seen in figure 3.2. Centered around
the collision point are two layers of pixelated silicon sensors (PXD) and four layers of
double-sided silicon strip sensors (SVD). Those sensors are able to measure the decay vertex
positions of mainly B mesons but also of other particles that may be daughters of the
collision resonance. Further away from the collision point is the central drift chamber
(CDC). The CDC is a cylindrical wire chamber to track trajectories of charged particles.
Furthermore, it is also able to measure the momenta and dE/dx information of those
particles.
For the purpose of particle identification, the Time-of-Propagation (TOP) detector is located
in the barrel. It consists of 16 quartz bars positioned circular around the collision point
where each bar has a reflecting mirror on one side and an array of photomultiplier tubes on
the other. The TOP detector measures the position and propagation time of Cherenkov
photons propagating inside the TOP, which were created by particles passing through the
quartz bar. As this detector part is the focus of this thesis, its exact function will be
explained later (section 3.1.1). Another detector part used for particle identification is the
aerogel ring imaging Cherenkov (ARICH) counter in the forward region of the detector.
To measure the total energy of charged particles the electromagnetic calorimeter (ECL)
comprised of scintillator crystals is positioned just inside the superconducting solenoid coil.
The main tasks of the ECL are photon detection and exact determination of the photon
energy and angular coordinates as well as the separation between electrons and hadrons.

19

20 3 Experimental Setup

Figure 3.1: The SuperKEKB accelerator as a schematic view. The four straight sections
with the respective experimental halls are called Tsukuba, Oho, Fuji, and Nikko.
The Belle II detector is located at the interaction point in the Tsukuba section.
The figure is taken from [30].

Figure 3.2: An overview of the Belle II detector. The detector separated into subdetector
parts is centered around the collision point. The figure is taken from [31].

3.1 The Belle II experiment 21

Figure 3.3: The decay of the Υ(4S) resonance into two B mesons. At the collision point
electrons and positrons collide at the Υ(4S) resonance to produce B mesons.
Those B mesons then further decay into leptonic and hadronic particles which
can be measured by the detector.

Because of this, the ECL is also a major part of the particle identification process. The
superconducting solenoid coil generates a magnetic field of 1.5T inside the detector. This
is necessary for the function of the CDC as particles traveling through a magnetic field
have a curved trajectory dependent on their momentum. With a constant magnetic field
strength the radius of the trajectory then directly translates to the momentum. Outside
of the magnetic coil, the outermost sub-detector is the K0

L and muon detector (KLM). It
serves as an absorber to decelerate particles as well as the magnetic flux return yoke of the
magnet. As muons as well as K0

L are very long lived, the KLM consists of thick metal plates
alternating with active detector parts to provide > 3.9 hadronic interaction lengths λ0.

The Belle II experiment has been an upgrade to the previous Belle experiment and has
started taking data in April 2017. Belle II is expected to collect a dataset of 50 ab−1 which
is about 50 times larger than the dataset collected by the Belle experiment. This is mostly
because of the accelerator upgrade to the SuperKEKB collider which has an over 40 times
larger instantaneous luminosity compared to the KEKB collider which was operating during
the Belle experiment.

3.1.1 The TOP Detector

In the Belle II experiment, the TOP detector together with the ARICH detector is used for
particle identification purposes. This chapter is based on [32], where further information to
the TOP detector can be found.

The detector consists of 16 quartz bars centered around the collision point (see figure 3.4).
Every quartz bar is built out of two separate bars glued together. To contain the majority
of photons inside the bar, a mirror is positioned at the forward end of every bar. The
backwards end has a small expansion prism to maximize the photon detection surface. An
array of photomultipliers (PMTs) measures the photon hits on the backward surface of the

22 3 Experimental Setup

Figure 3.4: An overview of the TOP detector and the PMTs. 16 identical quartz modules,
are centered around the beamline and the collision point. Every module consists
of two quartz bars combined by a glue layer. On the forward end of the module
a reflective mirror is positioned. The backward end consists of an additional
prism and the PMts to maximize photon detection.

prism. 32 16-channel microchannel plate photomultiplier tubes (MCP-PMTs) can readout
the photon hits with 512 MCP-PMT pixels in total. Each quartz bar is 125 cm long, 45
cm wide and 2 cm high. The prism has an additional length of 10 cm and extends 3.5 cm
below the bar.

Particles crossing the TOP detector emit Cherenkov light when their speed is greater than
the phase velocity of the crossed medium. The angle and energy of the emitted photons
depends on the refractive index of the crossed medium and on the momentum of the charged
particle. The emission angle θ can be calculated by

cos θ =
1

βn
with β =

vp
c

(3.1)

where n is the refractive index and vp the speed of the charged particle. The emitted photons
propagate through the detector, while either being reflected or absorbed by the walls of the
quartz bar, if they collide with it. This propagation process is shown in figure 3.5. Each
reflection adds a measure of uncertainty to the photon track, which leads to a probability
distribution of detection values. Photons that reach the PMTs are then used for particle
identification.

This is done by measuring the x, y and t coordinate of the emitted photons. The spatial
coordinates x and y are the hit positions of the photons on the PMTs, while t is the
propagation time from emission to measurement. In figure 3.6 an example of hit positions
of photons in the TOP detector in the x-y plane can be seen. For each particle, about
15-30 photons are measured by the TOP detector, with additional photons from beam

3.2 The Belle II Analysis Framework 23

Figure 3.5: The propagation of photons inside a TOP module. A generated photon gets
propagated through the detector by the simulation software. At every collision
point the new direction is calculated until it either escapes the detector or is
detected by the PMT array.

Figure 3.6: Photon hit distribution for the PMTs in the x-y plane. The hits are generated
by several tracks and show the possible distribution of photon detection values.

background. The arrival time and hit position distributions for each event are compared
to analytical probability density functions through a likelihood analysis for each particle
hypothesis (e, µ, π, K, p).

The simulation of the TOP detector currently consumes the largest portion of the Belle II
simulation CPU time budget, as shown in figure 3.7. This is mostly because of the tracking
of photons through the detector. Each photon is propagated through the detector until a
wall collision, where it is either reflected or absorbed. In the case of reflection, this process
gets repeated until the photon reaches the PMTs. Replacing this simulation would lead to
large savings in the overall computing budget.

3.2 The Belle II Analysis Framework
As the Belle II experiment creates large amounts of data that need to be analyzed, recon-
structed or visualized, additionally to simulating new data, the Belle II collaboration uses
the Belle II Analysis Software Framework basf2 to provide tools of working with data.
The code is written in C++ and the framework dynamically loads a series of modules to
process events independently. The user can select, configure and chose the execution order
of these modules through a Python interface. The data is exchanged by the modules via the
DataStore, a globally shared storage. Typically, a user performs a task via a ”steering file“,

24 3 Experimental Setup

Figure 3.7: The simulation time of detector modules in Geant4. The simulation of the TOP
detector is currently the biggest bottleneck in regards to simulation time. This
plot is taken from [33].

which is a Python script defining and arranging the wanted modules and then starting the
event processing. In addition to the Belle II specific code, the core software also contains
externals, third-party code needed for the full analysis done by basf2. The externals
contain basic tools like GCC, Python 3 etc as well as specific software such as ROOT ([34])
and Geant4, which is explained in the following section. [35]

This framework ensures a fast processing of data, while providing a simple user interface
for easy and adaptable workflows.

3.3 Geant4
Geant4, which stands for GEometry ANd Tracking, is a toolkit for the simulation of the
interaction of particles with matter. It is used by many experiments in high energy physics,
astrophysics, medical physics and more. It is designed to handle complex geometries
dependent on the experiment and to enable an easy adaption for different applications.
It can correctly handle geometry, tracking, and detector response while also offering
options for run management, visualization and a user interface. The physics processes can
handle electromagnetic, hadronic and optical processes over a wide energy range. It is
implemented in the C++ language and was the first to use object-oriented programming.
The international Geant4 collaboration takes care of development, maintenance and user
support and continuously implements improvements to accommodate the needs of the users
and to utilize new technology. The Belle II experiment also utilizes Geant4 as an external
library to model the passage of particles through matter. [36]

4. Validation Framework

Validation mechanisms of generative models highly depend on the field in which the
generative model is used. As one of the most prominent applications of GANs and other
neural network algorithms for generative modeling is the creation of pictures, oftentimes
human recognition is used as a validation metric. The ability to recognize real people or
animals on pictures and to spot mistakes made by a generative model is highly developed
in humans and widely used as a decision mechanism.

For a quantitative measurement of the quality of generated samples, standard mathematical
metrics have been applied or new metrics have been developed. One widely used metric is
the KL divergence, which has been explained in section 2.3.1. For the generation of pictures,
a widespread metric is the Inception Score ([17]) or adaptive metrics, such as the Frechét
Inception Distance ([37]). Those metrics are based on the similarity of outputs of different
layers in the Inception network, which is one of the best performing image classification
networks.

For applications of generative modeling in physics or other natural sciences human recogni-
tion is not a good metric to be used. Humans are not able to evaluate statistical processes
or pick up slight differences in event variables or shower shapes for example. Furthermore,
most quantitative validation methods either only apply for the generation of pictures or
are computationally expensive to compute in higher dimensions and with large amounts of
data. Physical problems need to be broken down to easy to compare high level variables,
that still represent the underlying physical mechanism. This choice of high level variable
can be difficult. Therefore the need for a generalized method to validate trained generative
models arises with the widespread use of those models.

A validation framework should be able to confirm that the necessary underlying physics
are correctly reproduced by the model. This confirmation should be done in a way that
covers most of the phasespace of the physics problem modeled as well as being quickly
and computationally cheap calculated. The accuracy with which the standard simulation
software is modeling the physics process has to be determined and set as a training limit
for the generative model. Then validation techniques have to be defined and implemented
in an accessible way.

I apply this concept for the problem of simulating the Time-of-Propagation detector at the
Belle II experiment. As I show in section 3.1.1, the TOP detector is currently the bottleneck
of simulation in terms of overall simulation time. As the majority of this simulation time is

25

26 4 Validation Framework

Generate
K±, π±

Transport K±, π±

to TOP

Transport K±, π±

through TOP,
generating γs

Transport γ
through TOP,

escaping or to PMT

Generate γs
which will
be detected
or escape

Generate γ
detections

in TOP PMT

Figure 4.1: Flow chart of current and planned TOP simulation process. The black boxes
represent the current simulation process, done through Geant4 while the copper
boxes represent the planned neural network simulation. The focus of this work
is on the generation of detections in the TOP PMTs. A second neural network
would decide if a emitted photon is being detected by the PMTs.

used by the propagation of photons inside the detector, we want to replace this part with a
fast simulation mechanism.

In figure 4.1 the concept of the replacement of parts of the current simulation procedure is
shown. The current simulation done by Geant4 transports particles to the TOP detector.
When they enter the detector, Cherenkov photons are produced with direction and energy
according to the properties of the original particle. These photons then get transported
through the TOP bar. When a photon reflects at a wall of the quartz bar, two probabilistic
functions decide if it reflects or gets absorbed and the direction of the reflection. A
percentage of photons then get detected at the PMTs at one end of the quartz bar. These
detection values, which are given in x, y, and t, are used for the likelihood calculation. The
current goal of the fast simulation is to replace the propagation part of the simulation with
a neural network. This gives a clear goal of the network training, as it has to generate the
correct detection values given photon origin points and momentum.

4.1 Baseline of Current Simulation

The current simulation is done by Geant4 implemented into basf2. Geant4 is a highly
sophisticated simulation framework, which aims to simulate the interaction between particles
and detector components. As Geant4 has a very high agreement with data, we aim for a
neural network solution that agrees with the current simulation.

To figure out the baseline to reach for in a fast simulation training, the uncertainty of Geant4
has to be determined. This cannot be done analytically as two probabilistic processes are
part of the photon transportation mechanism. In Geant4 the surface of the quartz bars
has an applied roughness to correctly model the real detector. Therefore the reflection of a
photon hitting one of the walls does not purely depend on the incidence angle of the photon

4.1 Baseline of Current Simulation 27

but also on the exact angle of the surface in respect to a smooth surface. This angle cannot
be efficiently predicted and therefore not modeled by a function. The second probabilistic
process is the decision if a photon is reflected inside the detector, absorbed by the detector
wall or escapes the detector fully. This is a purely stochastic function with each possibility
having a certain probability depending on the angle and the energy of the photon.

These processes show that we cannot estimate a function that returns the uncertainty of
photon detection values dependent on their origin coordinates and momentum. A major
part of the following sections is finding a way to exactly determine these uncertainties,
which would firstly give a baseline for training a neural network simulation and secondly a
validation mechanism for a trained network.

4.1.1 Time Requirement

Training and validating a neural network solution for the TOP detector simulation requires
labelled data on which training is performed. While training could be done on only parts of
the phasespace, validation samples should cover the entire possible space to ensure correct
simulation in every case.

Cherenkov photons created by crossing charged particles can originate from anywhere inside
the TOP detector, which gives us the coordinate intervals x ∈ [−22.5, 22.5], y ∈ [−1.0, 1.0]
and z ∈ [−125, 125]. The momentum direction is given by two angles, ϑ and ψ. The original
momentum vector is p = (0, 0, 1)T and is rotated by rotation around the x-axis given by ϑ
and a following rotation around the z-axis by ψ. The resulting vector is then given bypxpy

pz

 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

0
0
1

 . (4.1)

In the calculation inside basf2, a first rotation around the z-axis is defined by the angle φ.
Since the original vector is parallel to the z-axis, this rotation does not change the value of
the vector and can therefore always be set to 0. Both angles ϑ and ψ can be chosen inside
the interval [0, 360).

For a step size of 0.1 for the spatial coordinates and a step size of 1◦ for the angles, the
number of points in the phasespace reaches 2.916 · 1012. Smaller steps or variations in
energy lead to an even bigger phasespace.

As the absorption or escape probability per photon is proportional to the number of
reflections, photons with a high number of reflections are detected very rarely by the
PMTs. In figure 4.2 the average detection percentage dependent on the rotation angle ϑ
is shown. An angle of 180◦ returns a momentum vector of (0, 0,−1)T, resulting in the
emission of the photon towards the PMTs. In addition,figure 4.3 shows the dependence
of the average photon track length on the rotation angle ϑ. By comparing figure 4.2 and
figure 4.3, the detection probability increases if the track length decreases. Photons with
a shorter track length, which is given by ϑ ≥ 135◦, have a higher probability of reaching
the PMTs and therefore being counted as detected. This anticorrelation shows one of
the difficulties in mapping out the phasespace of the whole detector. To determine the
detection value distribution of photon origin points in the phasespace with a small detection

28 4 Validation Framework

0 25 50 75 100 125 150 175
0.00

0.05

0.10

0.15

0.20

Pe
rc

en
ta

ge
 o

f d
et

ec
te

d
ph

ot
on

s
Detection Percentage of Cherenkov Photons

Figure 4.2: Percentage of detected photons for Cherenkov photons dependent on momentum
direction. The percentage of detected photons is shown over the angle ϑ which
determines the direction of the photon. An angle of 180◦ translates to a
momentum direction pointed towards the PMTs, while an angle of 0◦ translates
to a momentum vector pointed towards the mirror. For this percentage 200
events with 500 photons were simulated and the number of detected photons
was analysed.

0 25 50 75 100 125 150 175
0

200

400

600

800

1000

1200

Ph
ot

on
 tr

ac
k

le
ng

th

Average Photon Track Length of Cherenkov Photons

Figure 4.3: Average photon track length for Cherenkov photons dependent on momentum
direction. The average track length in mm of 500 identical photons inside the
TOP detector with an errorbar of 1σ is shown over the angle ϑ which determines
the direction of the photon. An angle of 180◦ translates to a momentum direction
pointed towards the PMTs, while an angle of 0◦ translates to a momentum
vector pointed towards the mirror.

4.1 Baseline of Current Simulation 29

0 25 50 75 100 125 150 175
0

5

10

15

20

25

30
Si

m
ul

at
io

n
tim

e
in

 m
s

Average Simulation Time of Cherenkov Photons

Figure 4.4: Average simulation time for Cherenkov photons dependent on momentum
direction. The average simulation time of 500 identical photons with an errorbar
of 1σ is shown over the angle ϑ. An angle of 180◦ translates to a momentum
direction pointed towards the PMTs, while an angle of 0◦ translates to a
momentum vector pointed towards the mirror.

probability, a higher number of simulated photons is needed which is time consuming.
An additional problem is introduced due to momentum directions that lead to vanishing
detection probabilities. In figure 4.2 this is the effect seen in the interval ϑ ∈ [50◦, 130◦].
The momentum vector is angled towards a side wall of the TOP detector, requiring a high
number of reflections for the photon before reaching the PMTs. While these photons are
detected very seldom, a validation mechanism should still be able to compare the respective
detection value distribution. Simulating enough photons to determine a detection value
pattern for these origin phasespace points would further increase the overall simulation
time.

Furthermore, as seen in figure 4.4 the average simulation time over ϑ also correlates with
the track length. The simulation time is the time for the simulation of all detected photons
out of 500 identically generated photons, which has been set here as one event. The total
time requirement for simulating a set amount of detected photons therefore depends on
the track length as well as the detection probability. Because of this, creating a validation
dataset that covers the entire phasespace is not feasible in terms of simulation time. In the
following chapters, varying methods to reduce the size of the necessary simulation dataset
are evaluated.

4.1.2 Photon Detection Values

One possibility to determine the underlying uncertainty in Geant4 is to figure out the
similarity between photon detection values of origin points and momenta close to each
other in phasespace. Empirically determining a function that depends on the difference
between photon origin coordinates and momenta and returns an uncertainty measure would

30 4 Validation Framework

be a training baseline for a neural network. To find this function, detection value patterns
have to be compared with the help of an appropriate probability metric. To measure the
uncertainty of Geant4, the data can be generated with the OpticalGun module of basf2.
This module generates photons inside the TOP detector that are then propagated through
the detector. The user can define the origin coordinates and momentum of the photon as
well as its energy.

Two measures are important in this context: the distance in the spatial as well as in the
momentum phasespace and the number of photons per origin point needed to differentiate
between two different origins.

The first measure is to be determined by the analysis. As uncertainties also play a role in
the determination of incidence time of the charged particle and in the measurement of the
photons itself, positions very close to each other in phasespace will not vary much in respect
to their detection value pattern. If an appropriate metric cannot differentiate between two
photon origin points simulated by Geant4, then this should also be the case for the neural
network solution.

For the second measure we need to consider the range of the total photon origin phasespace.
As calculated in the previous chapter, the number of points in the phasespace exceeds
1012. To get an exact probability density function from a measurement, we would need to
simulate every point several times, preferably several hundred times. This is not feasible in
terms of calculation time and memory requirements. A metric that can already differentiate
detection values of photons originating from different positions and with different momentum
directions with a small sample of photons per point is therefore needed.

This uncertainty measurement is not only useful to determine a baseline for the neural
network training, but also serves as a probability metric test. A useful metric that is easy
to compute and can correctly differentiate small samples drawn from similar probability
distributions can be used in the validation of the fast simulation solution. If the metric
found is also differentiable, it can even serve as a training metric. The measurements that
need to be compared are in the shape of three-dimensional data points (xdet, ydet, tdet).
Oftentimes, easy-to-compute metrics are one-dimensional, ignoring correlations between
dimensions. To solve this problem, the high-dimensional KS metric explained in section 2.3.2
has been developed during this thesis. As this metric is nonparametric, fast computable
and applicable in high dimensions, it is applied as a main distance measure in this thesis.

In this thesis the photon uncertainty is evaluated as follows: first an origin point is
chosen as a comparison measurement. This origin point is fixed in the spatial coordinates
(xground, yground, zground) and in the two angles (ϑground, ψground). Then either the angles or
the spatial coordinates are varied in a given interval with a chosen step size. For every
point in this multi-dimensional grid, which has two dimensions for the angle coordinates
and three dimensions for the spatial coordinates, a set number of photons is simulated. To
have a higher sample of photon detection values, the variable PhotonFraction inside basf2
is set to 1.0. As a baseline for this test, at least 100 photons per point should be simulated
to be able to differentiate between different origin coordinates.

A subset with a specified number of detected photons per grid point is then selected for
comparison. For every point in the grid a two-sample test is then performed, where sample

4.1 Baseline of Current Simulation 31

one is the detected photons of the origin point while sample two is the detection values of
the chosen grid point. For this two-sample test two metrics were used. The first metric
is the Kullback-Leibler divergence, which is a widely used metric for high-dimensional
data. The second metric is the newly developed ddKS metric, that has been explained in
section 2.3.2.

As a first baseline, photons pointing directly towards the PMTs and in a deviation of 2◦ for
ϑ and ψ in both directions are simulated. The starting coordinates of those photons are
(x, y, z) = (1.0 cm, 0.0 cm, 0.0 cm) in the coordinate system of the TOP detector. The slight
deviation in x-direction from the center of the detector is necessary, so that photons with
a momentum of (px, py, pz) = (0, 0,−1.0), which point towards the PMTs, do not hit the
non-sensitive borders between pixels. The resulting distance grids can be seen in figure 4.5.
The left plots have been calculated with the ddKS distance, while the plots on the right side
have been evaluated with the KL divergence. The center point should contain the smallest
distance measurement, if the detection values of (ϑ, ψ) = (180◦, 0◦) are distinguishable from
every other origin point. The center line only contains the origin point, as a rotation around
the z-azis done through ψ has no effect if the momentum vector is parallel to the z-axis.
Points where no distance could be calculated because no photons reached the detector are
set to -1. The distance measurement done with the ddKS distance is noticeably less noisy
than that of the KL divergence. The good performance of the ddKS distance on datasets
with small sample sizes in comparison to the KL divergence has been shown in section 2.3.2
and can be seen here as well. In figure 4.6 only points with a distance within a set margin
of the ground distance in the center point are shown. The distances of the center point to
itself are

KSmin = 0.4 KLmin = −0.12 . (4.2)

The margin of error to the ddKS distance is set at 0.4, while for the KL divergence it is set
at 7. The figure shows, that while the ddKS test excludes nearly all points in the grid, the
KL divergence still retains some of the pattern seen in the earlier figure. Nevertheless, both
tests can differentiate the center from the surrounding grid points very well.

For further analysis, the distance measurement is compared to the average number of
reflections per grid point. The pattern seen very prominently in the KL divergence plots
coincides with the number of reflections shown in figure 4.7. For each degree one reflection
is added to the simulation, which then reproduces the detection value distribution of the
origin. In comparison, the ddKS distance can differentiate between samples with different
reflections, which supports its use in a validation technique.

For a further analysis of the influence of the average number of reflections on the probability
distance and to find a possible baseline for a simulation, phasespace points with a higher
number of reflections inside the detector were simulated. While different points showed
very different behaviours, one prominent pattern could be seen throughout the detector.
In figure 4.8 the point (x, y, z) = (17.88 cm, 0 cm, 46.95 cm) is chosen as the origin. To
increase the number of reflections and therefore the spread of the detected photons, the
angle interval was set as ϑ ∈ [10.7◦, 20.7◦] and ψ ∈ [281.6◦, 301.6◦]. Analagous to the
analysis of photons pointed directly towards the PMTs, a ground ”event“ is chosen. The
detection values of photons originating with euler angles of (ϑ, ψ) = (20.7◦, 291.6◦) are
compared to every point in the grid of both angles.

32 4 Validation Framework

178.0 178.75 179.5 180.25 181.0 181.75

1.95

1.2

0.45

359.7

358.95

358.2

5 photons

0.0

0.2

0.4

0.6

0.8

1.0
KS

 d
ist

an
ce

178.0 178.75 179.5 180.25 181.0 181.75

1.95

1.2

0.45

359.7

358.95

358.2

5 photons

0

5

10

15

20

25

KL
 d

iv
er

ge
nc

e

178.0 178.75 179.5 180.25 181.0 181.75

1.95

1.2

0.45

359.7

358.95

358.2

10 photons

0.0

0.2

0.4

0.6

0.8

1.0

KS
 d

ist
an

ce

178.0 178.75 179.5 180.25 181.0 181.75

1.95

1.2

0.45

359.7

358.95

358.2

10 photons

0

5

10

15

20

KL
 d

iv
er

ge
nc

e

Figure 4.5: Photon detection value comparison. Photons originate at
(x, y, z) = (0.7 cm, 0 cm, 0 cm) with their momentum given by ϑ ∈ [178◦, 182◦]
and ψ ∈ [358◦, 2◦]. The comparison point is ϑ = 175◦ and ψ = 0◦. On the left
side the ddKS distance is used as a probability metric, on the right side the KL
divergence. The upper row uses 5 detected photons per grid point, the lower
row 10 photons.

4.1 Baseline of Current Simulation 33

178.0 178.75 179.5 180.25 181.0 181.75

1.95

1.2

0.45

359.7

358.95

358.2

5 photons

0.0

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8

KS
 d

ist
an

ce
178.0 178.75 179.5 180.25 181.0 181.75

1.95

1.2

0.45

359.7

358.95

358.2

5 photons

0

1

2

3

4

5

6

KL
 d

iv
er

ge
nc

e

Figure 4.6: The ddKS distance (left) and the KL divergence (right) of photon detection
values cut off at the distance of the center point plus a margin of variation.
Every visible point shows the angles with which detection value distributions
are created that are as similar to the detection value distribution in the center
as it is to itself. In both plots 5 photons per sample have been used, the to the
ground value added margin for the ddKS is set to 0.4, for the KL divergence to
7.

178.0 178.75 179.5 180.25 181.0 181.75
 in deg

1.95

1.2

0.45

359.7

358.95

358.2

 in
 d

eg

Number of Photon Reflections

0

5

10

15

20

25

30
35

Nu
m

be
r o

f r
ef

le
ct

io
ns

Figure 4.7: Number of photon reflections. The photons originate at
(x, y, z) = (0.7 cm, 0 cm, 0 cm) with their momentum given by ϑ ∈ [178◦, 2◦]
and ψ ∈ [358◦, 2◦]. The number of reflections of photons successfully reaching
the PMTs is counted and their mean is shown here. The number of reflections
can be linked to the probability distance between detection values.

34 4 Validation Framework

10.7 12.2 13.7 15.2 16.7 18.2 19.7 21.2 22.7 24.2 25.7 27.2 28.7 30.2

301.6
300.1
298.6
297.1
295.6
294.1
292.6
291.1
289.6
288.1
286.6
285.1
283.6
282.1

5 photons

0.2

0.4

0.6

0.8

1.0

KS
 d

ist
an

ce

10.7 12.2 13.7 15.2 16.7 18.2 19.7 21.2 22.7 24.2 25.7 27.2 28.7 30.2

301.6
300.1
298.6
297.1
295.6
294.1
292.6
291.1
289.6
288.1
286.6
285.1
283.6
282.1

100 photons

0.2

0.4

0.6

0.8

1.0

KS
 d

ist
an

ce

Figure 4.8: The ddKS distances of photon detection values. Photons starting at
(x, y, z) = (17.88 cm, 0 cm, 46.95 cm) with points in the angle interval of
ϑ = 20.7◦ ± 10◦ and ψ = 291.6◦ ± 10◦ are generated. The detection val-
ues of every point in the ϑ-ψ grid are compared to those of the origin marked
by the red x. For every momentum direction 500 photons were simulated, but
only a random subset was selected for comparison. In the top row 5 photons
were used, while the lower row shows 100 photons per sample.

The periodical pattern in figure 4.8 shows the difficulty in finding a base uncertainty for
the detector. While the noise of the distance measurements is reduced by using higher
numbers of photons per sample, the recurring lines of small distances are appearing in both
small and large sample sizes. These coincide exactly with the pattern in figure 4.10, which
displays the number of reflections before a photon is detected.

To evaluate if the chosen origin would be distinguishable from all other detection value
distributions, in figure 4.9 only the points with a smaller ddKS distance than the origin
to itself are displayed. While the number of phasespace points non-distinguishable from
the origin is reduced with a higher sample size, setting a minimum phasespace distance to
ensure distinguishability. This is additionally visualized in figure 4.11. The detection values
in x and y are shown for the origin and two additional phasespace points. While the left
and middle plot have a smaller phasespace distance, their average ddKS distance with a
sample size of 5 photons is ddKS = 0.8. In comparison, the average ddKS distance between
the left and right plot is ddKS = 0.41.

This has shown that the definition of an exact baseline for the detector is not possible due to
the unpredictability of stochastic processes introduced by the reflections inside the detector.
This analysis still is useful as a validation mechanism, which is explained in section 4.2.1.1.

4.1.3 Track Identification

As finding a minimum difference between photon origin values to be able to differentiate
between those given the detection values is firstly not feasible and secondly very probably
not generalizable, as shown in section 4.1.2, another training baseline needs to be defined.
The TOP detector is one of the two sub detectors used for particle identification in the
Belle II experiment, being able to identify particles given the photon detection values of
their tracks. In basf2 these detection values are then input to a likelihood function which

4.1 Baseline of Current Simulation 35

10.7 12.2 13.7 15.2 16.7 18.2 19.7 21.2 22.7 24.2 25.7 27.2 28.7 30.2

301.6
300.1
298.6
297.1
295.6
294.1
292.6
291.1
289.6
288.1
286.6
285.1
283.6
282.1

5 photons

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KS
 d

ist
an

ce
10.7 12.2 13.7 15.2 16.7 18.2 19.7 21.2 22.7 24.2 25.7 27.2 28.7 30.2

301.6
300.1
298.6
297.1
295.6
294.1
292.6
291.1
289.6
288.1
286.6
285.1
283.6
282.1

10 photons

0.1

0.2

0.3

0.4

0.5

KS
 d

ist
an

ce

Figure 4.9: The ddKS distance of photon detection values cut off at the distance of the
center point. Every visible point shows the angles with which detection value
distributions are created that are as similar to the detection value distribution
in the center as it is to itself. In the left plot, using 5 photons per sample, the
origin distance is ddKSorig = 0.42, while in the right plot with 10 photons per
sample the origin distance is ddKSorig = 0.31.

10.7 12.2 13.7 15.2 16.7 18.2 19.7 21.2 22.7 24.2 25.7 27.2 28.7 30.2

301.6
300.1
298.6
297.1
295.6
294.1
292.6
291.1
289.6
288.1
286.6
285.1
283.6
282.1

Number of Photon Reflections

100

200

300

400

500

Nu
m

be
r o

f r
ef

le
ct

io
ns

Figure 4.10: Number of photon reflections. Photons starting at
(x, y, z) = (17.88 cm, 0 cm, 46.95 cm) with points in the angle interval
of ϑ = 20.7◦ ± 10◦ and ψ = 291.6◦ ± 10◦ are generated. For every track
the number of reflections is stored and the mean of reflections per starting
direction is shown here.

36 4 Validation Framework

Figure 4.11: Photon detection values in x and y for three different starting directions. The
detection values of 500 photons are shown for three momentum directions.
While the angles of all three plots differ less than 1◦, the average ddKS distance
for samples with 5 photons between the lower and the top left distribution is
0.81. The average ddKS distance between the lower and the top right plot is
0.41.

4.1 Baseline of Current Simulation 37

Figure 4.12: Schematic view of the ParticleGun simulation. A particle created at the
collision point leaves towards the detector with an inclination angle ϑ and an
azimuthal angle ψ (not shown in figure). One module of the TOP detector is
shown with the relevant distances. Through these distances ϑmin and ϑmax

can be calculated to ensure that the particle will cross the TOP detector.

returns the likelihood of the track belonging to a particle type. The input values of the
likelihood function are the detection values (x, y, t) as well as the number of photons. One
of the most difficult tasks is to distinguish between kaons and pions. Other particles that
may cross the TOP detector and be identified with the likelihood function are protons,
muons and electrons.

The performance of the track identification is dependent on the energy of the incoming
particle as well as on the incident position. Evaluating the performance of the likelihood
function depending on the charged particle’s properties helps understanding the Geant4
simulation and the precision needed by a neural network.

As we developed the ddKS metric during the time of this thesis, most analyses are performed
with ddKS additionally to the already implemented methods in basf2. This is especially
helpful for the validation mechanisms explained in section 4.2, as an integration of an
external module into basf2 is difficult. To show that ddKS can be used as a validation
mechanism, we need a comparison between the performance of the ddKS metric and the
original likelihood analysis.

For this analysis pions and kaons crossing the TOP detector were simulated. Pions and
kaons were chosen, as distinguishing between those is the main task for the TOP detector.
These particles can be simulated with the ParticleGun module of basf2. This module
simulates the track of a given particle originating, if not specified otherwise, from the
collision point inside the Belle II detector. For this particle both the inclination angle ϑ
and the azimuthal angle ψ with respect to the beampipe can be set as well as the energy
of this particle. The current simulation done by Geant4 then simulates the interaction
between a crossing particle, in this case a kaon or pion with a specified entry position and
energy, with the matter of the TOP detector. This setup is shown in figure 4.12. The
azimuthal angle rotates the emission direction around the beampipe and is not depicted in
this figure. Through the interaction of the particle with the material of the TOP detector
the Cherenkov photons are created and then propagated through the detector.

38 4 Validation Framework

As the detector is designed for particle identification purposes, a neural network simulation
needs to hold up to current performance of the PID.

In figure 4.13 the comparison between the log likelihood function of the Cherenkov photons
and the ddKS test dependent on the inclination angle as well as the energy is shown. For
each comparison 1000 kaons/pions with a set absolute momentum and set inclination angle
were simulated. Energies that are reasonable to occur in data are contained in the energy
range of [0.4 GeV, 3.0 GeV]. While there is no restriction for the inclination angle given by
physics, the particle should cross the TOP detector to emit Cherenkov photons. This leads
to a minimum angle of ϑ = 34◦ and a maximum angle of ϑ = 123◦. As the TOP detector is
built symmetrically around the beampipe, the azimuthal angle has a smaller effect on this
analysis and is therefore set to 0◦ here.

The TOP likelihood module of basf2 returns a log-likelihood for different particle hypotheses,
such as kaons or pions. For each track the TOP likelihood for the particle hypothesis ”pion“
and the particle hypothesis ”kaon“ is returned. The difference between those likelihoods
then decides on the more likely hypothesis. The likelihood difference is calculated by

∆ logL = logLpion − logLkaon , (4.3)

where a positive difference confirms the pion hypothesis and a negative difference confirms
the kaon hypothesis.

In addition the ddKS distance for each track is also calculated. The photons of one track
were compared to photons generated by 1000 tracks of a pion/kaon with the same momentum
and inclination angle. The ddKS distance difference should then be able to distinguish the
probability distribution of pion generated photons and kaon generated photons. The ddKS
difference is then given by

∆KS = KSkaon −KSpion , (4.4)

where analogous to the log likelihood a positive difference confirms the pion hypothesis,
while a negative difference confirms the kaon hypothesis. This was done for 1000 kaons and
pions. Fig. 4.13 shows the result for two momenta, p∈ [0.4, 3.0] GeV, and inclination angle
ϑ ∈ [35◦, 115◦] in 5◦ steps. The black line marks y = 0. For every inclination angle the
mean and the standard deviation of 1000 particles is shown. Blue points mark true pions
while red points mark true kaons. The left side is done with the ddKS test, while the right
side shows the log likelihood.

For small energies, the ddKS test actually outperforms the log likelihood analysis. For a
momentum of 0.4 GeV, while the pions always have a higher log likelihood difference than
the kaons, the absolute value of the kaons is in many cases above zero. This would mean a
false particle identification. For higher energies, this also happens for some angles with the
ddKS analysis. As the ddKS test does not factor in the number of photons, which is part
of the likelihood function, this may improve its power in this case.

What can be derived from this analysis is the use of the ddKS test in particle identification.
It correctly identifies the particles in most cases and especially in low energy regions.

A neural network simulation would need to reproduce these track identification features.
As this has shown, the ddKS test can be applied for particle identification and can thus be
used as a validation measure for particle identification.

4.1 Baseline of Current Simulation 39

40 50 60 70 80 90 100 110
0.4

0.2

0.0

0.2

0.4

KS
ka

on
 -

KS
pi

on

KS, E = 0.4

pions
kaons

40 50 60 70 80 90 100 110

100

0

100

200

300

400

500

Lo
gL

pi
on

 -
Lo

gL
ka

on

Log likelihood, E = 0.4

pions
kaons

40 50 60 70 80 90 100 110

0.04

0.02

0.00

0.02

0.04

KS
ka

on
 -

KS
pi

on

KS, E = 3.0

pions
kaons

40 50 60 70 80 90 100 110

30

20

10

0

10

20

30

40

Lo
gL

pi
on

 -
Lo

gL
ka

on

Log likelihood, E = 3.0

pions
kaons

Figure 4.13: Comparison of ddKS test to likelihood analysis depending on the inclination
angle and the momentum. Pions and kaons are created and the Cherenkov
photons detected by the TOP PMTs are stored. Through these photons the
hypothesis of the particle crossing the detector being a pion or a kaon is tested
with the likelihood module in basf2 (right) as well as the ddKS test (left).
Values above zero mean that the particle is more likely a pion while values
below 0 suggest the kaon hypothesis. Blue points are generated pions, red
points are generated kaons. The particles generated for the upper row have a
momentum of 0.4 GeV, while the lower row contains the analysis of particles
at 3.0 GeV.

40 4 Validation Framework

0.5 1.0 1.5 2.0 2.5 3.0
Particle Momentum in GeV

0.1

0.0

0.1

0.2

0.3

KS
ka

on
 -

KS
pi

on

pions
kaons

0.5 1.0 1.5 2.0 2.5 3.0
Particle Momentum in GeV

50

0

50

100

150

200

Lo
gL

pi
on

 -
Lo

gL
ka

on

pions
kaons

Figure 4.14: Comparison of ddKS test to likelihood analysis depending on the incoming
particle’s momentum. Values above zero can be interpreted as a confirmation
of the pion hypothesis while values below zero suggest the kaon hypothesis.
Blue points are true pions, red points are true kaons.

4.2 Design

The validation mechanisms explained in the previous section should be implemented in a
way that is easy to apply to a trained network. I created a validation framework, tailored
for a fast simulation solution of the TOP detector but with the possibility of generalization.
While the goal was to set a limit on maximum deviation of the performance of the neural
network solution for it to be a good replica of the Geant4 simulation, my work has shown
that this is not possible. Nonetheless, the found patterns in both the photon detection
value analysis and the track identification can be used to test a simulation replacement.

The validation procedure is split into two parts, depending on whether the performance on
simulating the detection values of given photon position and momentum is judged or if the
particle identification feature is used. The overall procedure can be seen in figure 4.15. The
framework can either simulate new data given the model or work with already given data,
depending on the use case. For an easy comparison, a method to simulate data through
basf2 is also available.

4.2.1 Validation Mechanisms

The identifying features determined in the previous section have to be translated to validation
mechanisms in order to be build a validation framework. As sections 4.1.2 and 4.1.3 have
shown, a general training goal for the whole detector could not be found. While this
makes the task of validating the training of a neural network solution more difficult than in
standard neural network applications, there are still validation mechanisms that can be
defined and used in a framework. I separate these into low-level and high-level validation
features. Low-level validation mechanisms are comparisons on photon level, which can only
be done by sampling random points of the photon phasespace. To feature the detector as
a whole, the particle identification performance is implemented as a high-level validation
feature.

4.2 Design 41

Generate
NN photons

Generate
G4 photons

Compare
detection values

Create
distance pattern

Compare
Patterns

Phasespace
grid

Phasespace
point

Extract
Cherenkov

photons

Generate
G4 tracks

Simulate
Cherenkov

photons

PID with KS
depending
on angle

PID with KS
depending on

energy

Compare
Patterns

Low-Level High-Level

Figure 4.15: The structure of the validation framework. The general workflow is separated
into low-level and high-level comparison. Depending on the wanted comparison,
the simulation workflow varies as well. Steps marked in green are simulation
steps of Geant4, while steps marked in blue have to be simulated by the neural
network.

42 4 Validation Framework

4.2.1.1 Low-level Validation

The low-level validation is based on the findings in section 4.1.2. As stated in this section,
the determination of a general baseline for the current Geant4 simulation is not possible. For
the neural network training it is therefore impossible to set a hard limit on the phasespace
distance of the origin of photons that have to be distinguishable. Nonetheless evaluating the
performance of a neural network simulation on detection value distributions is an important
control mechanism to check small differences in the output of the neural network compared
to Geant4.

For this two validation mechanisms are implemented into the framework. The first technique
is a simple comparison of detection values. The framework is given two samples on which a
two-sample test is applied using either the ddKS distance or the KL divergence. It returns
the distance between the Geant4 and the neural network generated sample.

The second technique is the comparison of patterns. A range of photon starting values
is given additionally to a origin tensor. These are then evaluated following the method
explained in section 4.1.2. The framework creates dataframes that contain every evaluated
point with the corresponding probability distance. Both the ddKS distance and the KL
divergence can be chosen here as well. The patterns generated by both Geant4 and the
neural network can then again be compared through a statistical test to have a higher-level
validation possibility.

4.2.1.2 High-level Validation

Using high-level validation features removes the necessity of actively covering the whole
phasespace for validating the performance of the neural network solution. The inherent
randomness of the position and emission direction of Cherenkov photons created by charged
particles crossing the TOP detector ensures a covering of at least the important parts of
the detector phasespace. If points in the phasespace are not covered by those Cherenkov
photons they also do not need to be simulated as they play no role in the actual physical
process.

While we reduce the dimensionality problem of the phasespace, the creation of correct
Cherenkov photons is more difficult than solely propagating them through the detector. In
basf2 this is done through an interface to Geant4 which correctly simulates the interaction
between particles and matter. As our neural network simulation only propagates photons
given their position and momentum through the detector to the PMTs, these origin values
need to be determined in a different way. As creating a separate interface to Geant4 would
be outside of the scope of this thesis, a simpler method for validating track features is
chosen. For high level features, first the track and the corresponding photons have to be
simulated by the ParticleGun module. The photon origin and detection values created
by basf2 are then stored. For the neural network, these generated photon origin values
are then used as input variables. While this reduces the variation given by the emission of
actual Cherenkov photons, as their emission time and emission direction is not completely
determined, it is the easiest way to ensure a useful comparison.

After generating Cherenkov photons both for Geant4 and the neural network solution,
particle identification is applied on the tracks. As the likelihood analysis in basf2 is not

4.3 Generalization Possibilities 43

Figure 4.16: Features of the analytic likelihood calculation dependent on incident angle.
Each event is binned by its incident position using a binning of 1 cm in both x
and z direction. Then the pion and kaon likelihood is averaged and plotted
respectively. This analysis was done in Belle II by [38].

accessible, the ddKS distance is used. As shown in section 4.1.3, ddKS is also applicable on
particle identification. The framework then returns the ddKS distance difference between
the kaon and pion hypothesis, which translates to the particle identification function. In
future other particle hypotheses could also be included. Either the particle identification
itself or the dependence on inclination angle and particle momentum can then be compared
between both simulation types.

4.3 Generalization Possibilities

While the detection features analysed in this thesis are able to judge the performance
of a neural network solution, for further applications a better generalization is preferred.
Generalization can be seen as two separate aspects; the first aspect is the generalization
for the simulation of the TOP detector, using features that can alone rate the success of a
replacement simulation; whereas the second aspect is the generalization to other detector
types.

In figure 4.16 features of the analytic likelihood dependent on the incident position of
kaons and pions can be seen. Reproducing these features with a neural network simulation
should guarantee a correct simulation, as this covers the phasespace of the detector and
additionally tests the particle identification feature. The difficulty of introducing this as a
validation feature is the implementation into basf2. As both the generation of Cherenkov
photons through the interaction of particles with matter and the likelihood analysis is done
in the workflow inside basf2, an integration with a neural network simulation is a complex
task and could be done in further research.

44 4 Validation Framework

The generalization to other detector types is a more advanced task. Fast simulations for
different Cherenkov detectors such as the DeepRICH network [7] for the GlueX Cherenkov
detector [39] and Cherenkov detectors at LHCb [5] and for high granularity calorimeters [6]
have already been tested in high energy physics. The validation procedures are in all
cases customized to the detector type and difficult to expand to other detectors. The
per-cell-hit-energy used in the validation of a high granularity calorimeter does not apply
in a Cherenkov detector or in other types of non-calorimetric detectors. Vice versa, the
validation techniques developed in this thesis would be difficult or impossible to generalize
to a hadron or electron calorimeter.

One generalization possibility is the use of the ddKS distance in most types of detector
simulations. The data used in high energy physics is often high-dimensional and a fast com-
putation is necessary for the application in neural network simulations. As the performance
of the ddKS is in many cases better than most test statistics, especially in high-dimensions,
its use in the validation of fast simulation can be beneficial.

5. Generative Modeling of Reduced
Datasets

To replace the current simulation done through Geant4 by a fast simulation, an appropriate
network architecture has to be chosen and trained on the full dataset of the TOP detector.
As this is a huge task that probably requires a very deep and optimized network design,
this is outside of the scope of this thesis. Additionally, introducing an active learning
process that would optimize the generation of photons in the phasespace region where
the network’s loss is the highest, would also be necessary for an effective training. In this
thesis the generative modeling is only applied to simplified versions of the TOP detector.
This is useful for testing different network designs as well as testing validation techniques
on smaller use cases. This chapter first presents the general experiment design, the used
network architectures and the datasets. After this introduction the training and validation
results of the respective network architectures to the corresponding datasets are shown and
interpreted.

5.1 Experiment Design

In this chapter two datasets are used. The first one is a very simplified cone model, which
models the cherenkov light propagation. This dataset is used as a proof of principle for
different network designs, showing the behaviour of those designs with stochastic input. The
second one is a dataset consisting of a reduced phasespace of the TOP detector, containing
only photon trajectories with a set number of reflections inside the detector. Both datasets
are modeled with a generative adversarial network approach as well as with a conditional
variational autoencoder design. In all cases the hyperparameter optimization was done with
the optuna framework [40].

5.1.1 GAN design

The GAN used in this chapter is a Wasserstein GAN introduced in section 2.2.2.1. The
generator is a network consisting of three dense layers and the ReLu activation function.
The number of nodes per layer n is set as a hyperparameter. The output activation function
is the tangens hyperbolicus. The same architecture applies to the critic. The activation
function inbetween layers for the critic is the LeakyReLu function and, as needed for a
WGAN, the last layer does not use a non-linear activation function. For both networks, the
optimizer and the respective learning rate is defined in the hyperparameter optimization

45

46 5 Generative Modeling of Reduced Datasets

Figure 5.1: Overview of the CVAE structure used in this work. The encoder and decoder
are identical, consisting of n fully connected layers with each z nodes. The
input data consisting of both the conditions and the noise input is encoded into
a d-dimensional latent space, which is then decoded to the output data. The
parameters n, z and d are treated as hyperparameters and therefore set through
a hyperparameter optimization depending on the application.

Additionally, the number of training iterations for the critic per training of the generator is
also set as a hyperparameters.

5.1.2 CVAE Design

The CVAE used in this process follows the general architecture shown in section 2.2.2.2. It
consists of an encoder, which encodes the input variables to a latent d-dimensional space,
followed by a decoder, which then decodes this latent space into output variables. In this
case both encoder and decoder are built out of n layers of fully connected layers with z
neurons in each layer. An overview of the CVAE structure is shown in figure 5.1. The
dimensionality of the latent space d, the number of layers n, and the number of neurons per
layer z are hyperparameters and optimized with optuna. Additionally, the hyperparameter
optimization contains the choice between the Adam optimizer [41] and the SGD optimizer
with momentum [42] including the learning rate for the chosen optimizer.

For the actual training procedure, different loss functions have been tested. While the
network still has to deal with probabilistic distributions, the Mean Squared Error (MSE) is
applicable here as a comparison function between single points.

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2
(5.1)

For further testing, two other loss functions were used. The first one is the ddKS function
developed during this thesis (see section 2.3.2). As the ddKS metric is not differentiable, it
is slightly adapted to be used as an objective function during network training. Instead of
counting the membership numbers inside the orthants, a tangens hyperbolicus is used as a
smoothing function. Additionally, the maximum difference between membership matrices is
also softened through an exponential function. This leads to a differentiable loss function.

5.1 Experiment Design 47

A second loss function designed to deal with probability distributions is an unbiased Sinkhorn
divergence implemented in the geomloss package [43]. The Sinkhorn divergence interpolates
between the Wasserstein distance and the kernel distance dependent on a “blur” parameter.
This parameter defines the level of detail that the loss function should take into account,
thus preventing overfitting on exact sample location.

Sε(α, β) = OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β) (5.2)

5.1.3 Cone Model

To evaluate network designs and choose the most promising option, a simple cone model
is tested. This cone model is modelled after the Cherenkov cone produced by a particle
entering the TOP detector explained in section 3.1.1. If a network design performs well
on this model, which mimics some of the physics processes in the overall TOP detector
simulation as well, it may be useful in the TOP simulation. Additionally, the performance of
generative models on stochastic processes can also be tested if such processes are introduced
into this model.

For this cone model, firstly Cherenkov light created by a particle with a fixed momentum
and therefore with a fixed cone opening angle is simulated. At different positions the xe,
ye and ze coordinate in relation to the emission point is simulated as well as the time te
needed for the emitted photon to reach that position. The vector y = (xe, ye, te) contains
the target coordinates for the generative model training. In figure 5.2 the simulated cone
can be seen.

For conditional generative models, an input differentiating between modes of the generated
space is needed. In the full TOP simulation, this input would consist of the position and the
momentum of the simulated photon, while the output would be the detection values. Here
we use a simplified version of this simulation, which additionally introduces a stochastic
mechanism. The main input variable is the ze variable, which determines the end position of
the photon. For the stochastic influence, in each dimension xe, ye and te random numbers
in the interval [0, 1] are produced. Both the points on the cone as well as the random
numbers are sorted in each dimension. Every tuple (xe,ye,te) has therefore a corresponding
tuple of three random numbers (xr,yr,tr) which is somewhat proportional. The relation
between both tuples cannot be defined by a function but is not completely random either.
This leads to a stochastic uncertainty in the training of a generative model. In figure 5.3
the mapping of xe to xr can be seen. As the distribution of xe is not uniform, the mapping
to the stochastic variable is not linear. Additionally, a stochastically based input depending
on the polar angle of the cone position is added to the conditional input variables. An
array of random angles φ in the interval [0, 2π] is produced and then sorted according to
the sorting of arctanxe/ye. This returns a stochastically varied polar angle. Instead of the
direct angle, sinφ and cosφ are used as input variables. The complete input vector to train
a conditional neural network is therefore x = (ze, xr, yr, tr, sinφ, cosφ).

For the training procedure the input vector x is given as the conditional input to either
the CVAE or GAN. The network is then additionally given random noise, which should be
mapped to the correct output vector y according to the conditional input. To ensure the

48 5 Generative Modeling of Reduced Datasets

xe
0.0 0.2 0.4 0.6 0.8 1.0y

e

0.0
0.2

0.4
0.6

0.8
1.0

te

0.0
0.2
0.4

0.6

0.8

1.0

Figure 5.2: The cone distribution of y = (xe, ye, te). At a given point ze the width of the
cone is calculated. The coordinates (xe, ye) define a random point on the surface
of the cone, while te is the time needed for a photon to reach this point. The
network is supposed to model this distribution.

5.1 Experiment Design 49

0.0 0.2 0.4 0.6 0.8 1.0
xe

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

Fr
eq

ue
nc

y

Distribution of values of xe

0.0 0.2 0.4 0.6 0.8 1.0
xr

0.0

0.2

0.4

0.6

0.8

1.0

x e

Mapping between xe and xr

Spread Mapping
Direct Mapping

Figure 5.3: Distribution and mapping of the x position of the emitted photon to the random
variable used for training. On the left side the distribution of xe can be seen.
For a given time te the radius of the cone is fixed, while the exact position (xe,
ye) on the cone is variable. An even distribution between xe and ye is more
likely than one coordinate being maximized. Instead of a straight mapping, on
the right side the mapping between xe and xr can be seen. If 200000 xe values
are generated at once, the mapping is shown as the red line. As a stochastic
variation is wanted, generating 200 xe values 1000 times generates the mapping
shown in blue.

stochastic variance shown in figure 5.3, for every training iteration only a small training set
is produced, each containing 200 points. During training the loss function is continuously
evaluated on each training set. After every hundredth iteration, a larger validation sample
containing 10000 points is produced and evaluated with both the loss function and the
ddKS metric. This ensures an exact evaluation of the performance of the network, as the
stochastic variances are reduced in this validation sample.

5.1.4 Reduced Number of Reflections

To use the validation techniques explained in earlier chapters, I trained generative models on
reduced TOP datasets. As every reflection of a photon inside the detector is done through
a stochastic process, the measure of uncertainty increases with the number of reflections.
To simplify the training, I generated data containing only photon trajectories with a set
number of reflections. A possibility for future network designs could be a chain of two
networks, one to categorize the photon starting point into the number of reflections and
the second one trained on generating detection values dependent on the given number of
reflections.

This dataset is generated through a slightly varied basf2. Through this variation basf2
returns the full path of the photon propagated through the TOP detector. Additionally,
the detection values of the generated photons are stored as well. The detection values
are matched to the last stored track position, as the tracks may also include non-detected
photons. Only tracks made by detected photons are kept for further use. The number of
reflections is then calculated by counting the number of changes in the momentum of the
photon and can be filtered by the number of reflections wanted.

50 5 Generative Modeling of Reduced Datasets

For generating photon trajectories that contain only one reflection, starting positions of
photons are randomly sampled in the intervals

x ∈ [−20, 20] cm, y ∈ [−1, 1] cm, z ∈ [−120, 120] cm, ϑ ∈ [90◦, 275◦], ψ ∈ [0◦, 360◦] .
(5.3)

Both tracks and detection values are generated for 106 photons and are then filtered for
tracks that are reflected once or have no reflections inside the detector at all. The dataset
then consists of Nγ = 3700, where 1722 photons are not reflected and 1978 photons are
reflected once.

In figure 5.4 the variable distribution before and after filtering for the numbers of reflections
can be seen. On the left side the distributions of x, y, z is shown. The distribution of x
and y did not change significantly, while the distribution for the reduced dataset in z has a
skew towards the negative numbers. This is due to the positioning of the PMTs, which are
at z = −135 cm. Starting positions closer to the PMTs are less likely to be reflected inside
the detector.

For the momentum distribution, both datasets vary more prominently. A photon momentum
vector pointing towards the PMTs would be (px, py, pz) = (0, 0,−1). The favoring of this
vector is very visible on the left side of figure 5.4. While the distribution for both px and
py on the unfiltered dataset is nearly uniform, the distributions on the filtered dataset are
centered at 0. For pz, while the unfiltered distribution is also a skewed right distribution,
this trend is amplified in the filtered distribution. All photons that are reflected 0 or 1 time
have a pz momentum of nearly -1.

This change in distribution and therefore the uncertainty in photon detection values will
reduce the difficulty for a neural network training while also reducing its ability to generalize.
A network trained on this dataset is expected to perform well on all points belonging to
this dataset, while performing bad on the general dataset of the TOP detector.

5.2 Generative Adversarial Network

5.2.1 Cone Model

Even with the improvement of Wasserstein GANs in comparison to Vanilla GANs, the
training process of a GAN is difficult. With wrong hyperparameters oftentimes GANs
collapes during training or do not improve at all. This can be seen here. The hyperparameters
have been optimized with optuna and can be seen in table 5.1.

The training has been tested extensively. In figure 5.7 the loss for both the generator and
the discriminator during 25000 iterations can be seen. The discriminator was trained for
three iterations during one training iteration of the generator. The loss of the generator
is low, leading to the expectation of realistic generated data. The ddKS distance during
training did not improve. In figure 5.6 the variable distribution for x, y and t can be seen.
The agreement between true and predicted distributions did not improve during training,
which is also reflected in the predicted cone in figure 5.5.

As the discriminator was outperformed by the generator, a second trial with five iterations
of discriminator training during one iteration of generator training was done. This should

5.2 Generative Adversarial Network 51

20 15 10 5 0 5 10 15 20
x in cm

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fr
eq

ue
nc

y

Variable Distribution
all
reduced

0.75 0.50 0.25 0.00 0.25 0.50 0.75
px

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

Variable Distribution
all
reduced

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
y in cm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc

y

Variable Distribution
all
reduced

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
py

0

5

10

15

20

Fr
eq

ue
nc

y

Variable Distribution
all
reduced

100 50 0 50 100
z in cm

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Fr
eq

ue
nc

y

Variable Distribution
all
reduced

1.0 0.8 0.6 0.4 0.2 0.0
pz

0

2

4

6

8

10

12

Fr
eq

ue
nc

y

Variable Distribution
all
reduced

Figure 5.4: Variable distribution before and after filtering the number of reflections. On
the left side the variables x, y and z are shown, while the right side shows the
momentum distribution px, py, and pz. All histograms are normed.

52 5 Generative Modeling of Reduced Datasets

Table 5.1: Hyperparameters for the Wasserstein GAN trained on the cone model.

Hyperparameter Value
Number of nodes 1000
Learning Rate G 0.00072
Optimizer G SGD

Learning Rate D 0.0009
Optimizer D SGD
Iterations D 3/5

Figure 5.5: Predicted distribution of the cone model during training for the Wasserstein
GAN. On the left side the predicted distribution before training is shown, while
the right plot shows the predicted cone after 25000 iterations. The discriminator
was trained for three iterations during one iteration of the generator.

improve the performance of the discriminator, forcing the generator to also improve on the
data generation. In figure 5.10 the loss function of both the generator and discriminator
during 25000 iterations is shown. The discriminator’s loss function is less than that of the
generator, which is expected at first. Over training an improvement of the performance of
the generator should be visible. This is not the case here. The generator does not generate
realistic images, which is supported by the high ddKS distance on the validation set during
training. In figure 5.9 and figure 5.8 both the variable distributions and the predicted
cone data before and after training is shown. In both cases there is no improvement after
training.

Possible improvements could be made with a further fine-tuning of the hyperparameters,
with the use of training techniques mentioned in section 2.2.2.1 or with a change of the
network architecture. This has not been done during this thesis, but could be done in
the future. As the performance of the CVAE had surpassed that of the WGAN on these
dataset, the focus was set on this network architecture.

5.2 Generative Adversarial Network 53

Figure 5.6: True and predicted distribution of the respective variables of the cone model
during training for the Wasserstein GAN. Plots on the left show the distribution
of the x coordinate, the middle column shows the distribution of the y coordinate
and the right column shows the distribution of the t coordinate. The upper
plots are before training, while the lower plots are the training results after
25000 iterations. The discriminator was trained for three iterations during one
iteration of the generator.

54 5 Generative Modeling of Reduced Datasets

Figure 5.7: The discriminator D and generator G loss of the Wasserstein GAN during 25000
iterations. The discriminator is not able to differentiate real from predicted
data. The discriminator was trained for three iterations during one iteration of
the generator. The ddKS distance between the true and predicted cone shows
that the agreement is very small.

Figure 5.8: Predicted distribution of the cone model during training for the Wasserstein
GAN. On the left side the predicted distribution before training is shown, while
the right plot shows the predicted cone after 25000 iterations. The discriminator
was trained for five iterations during one iteration of the generator.

5.2 Generative Adversarial Network 55

Figure 5.9: True and predicted distribution of the respective variables of the cone model
during training for the Wasserstein GAN. Plots on the left show the distribution
of the x coordinate, the middle column shows the distribution of the y coordinate
and the right column shows the distribution of the t coordinate. The upper
plots are before training, while the lower plots are the training results after
25000 iterations. The discriminator was trained for five iterations during one
iteration of the generator.

56 5 Generative Modeling of Reduced Datasets

Figure 5.10: The discriminator D and generator G loss of the Wasserstein GAN during
25000 iterations. The discriminator continues to improve while the generator
is not able to fool the discriminator. The ddKS distance between the true and
predicted cone shows that the agreement is very small. The discriminator was
trained for five iterations during one iteration of the generator.

5.3 Conditional Variational Autoencoder

5.3.1 Cone Model

For the CVAE trained on the cone model, the used hyperparameters optimized through
the optuna optimization framework are shown in table 5.2, table 5.3, and table 5.4 for the
networks trained with the Sinkhorn, MSE and soft ddKS loss respectively. Each network is
trained until the convergence of the ddKS validation loss. The network training process
is shown here through the training and validation loss in figure 5.16, figure 5.13, and
figure 5.19. In each figure the training and validation ddKS distance is also plotted. While
the loss converges quickly in all cases, the ddKS distance reduces slower, showing that the
networks continue to improve.

To visualize the actual improvement, for each network the distribution of the output
variables xe, ye, te is compared to the true distribution for each variable before training and
after 3000 training iterations. For the networks trained with the Sinkhorn and the MSE
loss function, this can be seen in figure 5.15, figure 5.12 and in figure 5.18. What can be
seen here is that the networks correctly reproduce the variable distribution given by the
cone mapping. This is also shown by the plotting of the predicted cones in figure 5.14 and
figure 5.11. After 3000 iterations the training correctly reproduces the cone distribution.

In the case of the CVAE trained with the soft ddKS loss function, while the loss function
does converge, the predicted distributions differ greatly from the true distributions. This
is shown in the distributions of the output variables in figure 5.18. No variation of the
output variables can be seen. Additionally, this is also seen in the predicted cone shown in
figure 5.17. In this figure we see that the distribution has collapsed onto one point centered

5.3 Conditional Variational Autoencoder 57

Table 5.2: Hyperparameters for the CVAE trained on the cone model. The loss used is the
Sinkhorn loss.

Hyperparameter Value
Latent dimension 5

Number of hidden layers 4
Number of nodes per layer 27

Optimizer Adam
Learning Rate 0.0057

Table 5.3: Hyperparameters for the CVAE trained on the cone model. The loss used is the
MSE loss.

Hyperparameter Value
Latent dimension 5

Number of hidden layers 8
Number of nodes per layer 28

Optimizer Adam
Learning Rate 0.0032

in the middle of cone. Training with the soft ddKS loss always resulted in similar mode
collapses. This may be explained through the high power of the ddKS test. As the ddKS
test is able to distinguish distributions using small samples and detecting small differences
in distributions in comparison to other probability metrics, it is not very useful as a loss
function. Changing the distribution of the predicted cone function slightly towards the
true distribution may not change the ddKS distance. This makes the update process of the
optimizer difficult and leads to a mode collapse of the training process. Further fine-tuning
of the hyperparameters and very careful observation of the training process might alleviate
this problem, but as the network performs well with different loss functions, this has not
been done extensively during this thesis.

5.3.2 Reduced Number of Reflections

As the WGAN already had difficulties on learning the cone model, only the CVAE was
trained on the reduced photon dataset. In table 5.5 the optimized hyperparameters are
shown. The used loss function here was the MSE loss, training on the Sinkhorn loss did

Table 5.4: Hyperparameters for the CVAE trained on the cone model. The loss used is the
soft ddKS loss.

Hyperparameter Value
Latent dimension 18

Number of hidden layers 12
Number of nodes per layer 92

Optimizer Adam
Learning Rate 0.0065

58 5 Generative Modeling of Reduced Datasets

x0.0 0.2 0.4 0.6 0.8 1.0y

0.0
0.2

0.4
0.6

0.8
1.0

t

0.0
0.2
0.4
0.6
0.8
1.0

Predicted Cone Distribution

x0.0 0.2 0.4 0.6 0.8 1.0y

0.0
0.2

0.4
0.6

0.8
1.0

t

0.0
0.2
0.4
0.6
0.8
1.0

Predicted Cone Distribution

Figure 5.11: Predicted distribution of the cone model during training. The loss function
used on this training is the MSE loss. On the left side the predicted distribution
before training is shown, while the right plot shows the predicted cone after
3000 iterations.

not return different results. In figure 5.20 the training and validation loss is shown. Both
converged robustly during training and were not prone to overfitting as the performance on
the validation set also returned good results. For further validation, the ddKS distance was
evaluated on the validation dataset during training (see figure 5.21). Additionally, the ddKS
distance distribution for 2000 generated samples is also shown, showing a good agreement
between true and predicted data with an average ddKS distance of

ddKS = 0.13 . (5.4)

For visual results the true and predicted photon detection values for 400 photons in the x-y
plane are shown in figure 5.22, the true and predicted time distribution in figure 5.23. The
visual agreement is good, further showing the performance of the CVAE. The concentration
of the detection points in the x-y plane in the upper part of the PMTs is given through the
reduction on zero or one reflection. As the photons enter the prism with a small reflection
angle, the lower PMTs are not reached by those photons.

To evaluate the performance of this model on the general dataset, 400 photons with an
arbitrary number of reflections are generated and their starting coordinates given to the
trained model. In figure 5.24 and figure 5.25 the true and predicted distribution in the
x-y plane and time respectively is shown. As visual evaluation shows that the agreement
between both distributions is vanishingly small, no further distance measurements have
been done.

Nevertheless, the performance of the CVAE surpasses the performance of the GAN and
is therefore a reliable candidate to be trained on the full dataset. As a reduction of the
number of reflections simplified the task, a possible next step could be separating the full
simulation into two parts. A first network could be trained on the prediction of the number

5.3 Conditional Variational Autoencoder 59

0.0 0.2 0.4 0.6 0.8 1.0
x

0

100

200

300

400

500 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
y

0

100

200

300

400

500 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
t

0

10

20

30

40

50

60

70

80 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
x

0

20

40

60

80

100

120

140

160
true
pred

0.0 0.2 0.4 0.6 0.8 1.0
y

0

20

40

60

80

100

120

140
true
pred

0.0 0.2 0.4 0.6 0.8 1.0
t

0

10

20

30

40

50

60

70
true
pred

Figure 5.12: True and predicted distribution of the respective variables of the cone model
during training. The loss function used on this training is the MSE loss. Plots
on the left show the distribution of the x coordinate, the middle column shows
the distribution of the y coordinate and the right column shows the distribution
of the t coordinate. The upper plots are before training, while the lower plots
are the training results after 3000 iterations.

60 5 Generative Modeling of Reduced Datasets

0 500 1000 1500 2000 2500 3000
Step

0

5

10

15

20

25

30

35

M
SE

Lo
ss

 lo
ss

Loss Function
Train
Val

0 500 1000 1500 2000 2500 3000
Step

0.2

0.4

0.6

0.8

1.0

dd
KS

ddKS Distance
Train
Val

Figure 5.13: The MSE loss and the ddKS distance between the true and predicted cone
model after 3000 iterations. On the left side the behaviour of the MSE loss
function during training and validation can be seen, while the right side shows
the ddKS distance. The training loss and ddKS distance is calculated after
every iteration, whereas the validation loss and ddKS distance is calculated
after every 100th iteration.

x0.0 0.2 0.4 0.6 0.8 1.0y

0.0
0.2

0.4
0.6

0.8
1.0

t

0.0
0.2
0.4
0.6
0.8
1.0

Predicted Cone Distribution

x0.0 0.2 0.4 0.6 0.8 1.0y

0.0
0.2

0.4
0.6

0.8
1.0

t

0.0
0.2
0.4
0.6
0.8
1.0

Predicted Cone Distribution

Figure 5.14: Predicted distribution of the cone model during training. The loss function
used on this training is the Sinkhorn loss. On the left side the predicted
distribution before training is shown, while the right plot shows the predicted
cone after 3000 iterations.

5.3 Conditional Variational Autoencoder 61

0.0 0.2 0.4 0.6 0.8 1.0
x

0

25

50

75

100

125

150

175

200 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
y

0

20

40

60

80

100

120

140 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

120

140 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
x

0

25

50

75

100

125

150

175

200 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
y

0

25

50

75

100

125

150

175

200 true
pred

0.00 0.25 0.50 0.75 1.00
t

0

10

20

30

40

50

60

70
true
pred

Figure 5.15: True and predicted distribution of the respective variables of the cone model
during training. The loss function used on this training is the Sinkhorn loss.
Plots on the left show the distribution of the x coordinate, the middle column
shows the distribution of the y coordinate and the right column shows the
distribution of the t coordinate. The upper plots are the distributions before
training, while the lower plots are the training results after 3000 iterations.

62 5 Generative Modeling of Reduced Datasets

0 500 1000 1500 2000 2500 3000
Step

0

5

10

15

20

25

sin
kh

or
n

lo
ss

Loss Function
Train
Val

0 500 1000 1500 2000 2500 3000
Step

0.2

0.4

0.6

0.8

1.0

dd
KS

ddKS Distance
Train
Val

Figure 5.16: The Sinkhorn loss and the ddKS distance between the true and predicted
cone model during 3000 iterations. On the left side the behaviour of the
Sinkhorn loss function during training and validation can be seen, while the
right side shows the ddKS distance. The training loss and ddKS distance is
calculated after every iteration, whereas the validation loss and ddKS distance
is calculated after every 100th iteration.

x0.0 0.2 0.4 0.6 0.8 1.0y

0.0
0.2

0.4
0.6

0.8
1.0

t

0.0
0.2
0.4
0.6
0.8
1.0

Predicted Cone Distribution

x0.0 0.2 0.4 0.6 0.8 1.0y

0.0
0.2

0.4
0.6

0.8
1.0

t

0.0
0.2
0.4
0.6
0.8
1.0

Predicted Cone Distribution

Figure 5.17: Predicted distribution of the cone model during training. The loss function
used on this training is the soft ddKS loss. On the left side the predicted
distribution before training is shown, while the right plot shows the predicted
cone after 3000 iterations.

5.3 Conditional Variational Autoencoder 63

0.0 0.2 0.4 0.6 0.8 1.0
x

0

200

400

600

800

1000 true
pred

0.00 0.25 0.50 0.75 1.00
y

0

200

400

600

800

1000 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
t

0

200

400

600

800

1000 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
x

0

200

400

600

800

1000 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
y

0

200

400

600

800

1000 true
pred

0.0 0.2 0.4 0.6 0.8 1.0
t

0

200

400

600

800

1000 true
pred

Figure 5.18: True and predicted distribution of the respective variables of the cone model
during training. The loss function used on this training is the soft ddKS loss.
Plots on the left show the distribution of the x coordinate, the middle column
shows the distribution of the y coordinate and the right column shows the
distribution of the t coordinate. The upper plots are the distributions before
training, while the lower plots are the training results after 3000 iterations.

64 5 Generative Modeling of Reduced Datasets

0 500 1000 1500 2000 2500 3000
Step

0

5

10

15

20

25

30

dd
KS

 lo
ss

Loss Function
Train
Val

0 500 1000 1500 2000 2500 3000
Step

0.6

0.7

0.8

0.9

1.0

dd
KS

ddKS Distance

Train
Val

Figure 5.19: The soft ddKS loss and the ddKS distance between the true and predicted
cone model during 3000 iterations. On the left side the behaviour of the
soft ddKS loss function during training and validation can be seen, while the
right side shows the ddKS distance. The training loss and ddKS distance is
calculated after every iteration, whereas the validation loss and ddKS distance
is calculated after every 100th iteration.

Table 5.5: Hyperparameters for the CVAE trained on the reduced photon dataset. The loss
used is the MSE loss.

Hyperparameter Value
Latent dimension 10

Number of hidden layers 10
Number of nodes per layer 42

Optimizer Adam
Learning Rate 0.0075

of reflections depending on the photon starting coordinates. The output of this first network
could then be an additional conditional input to a second network that would generate
the detection values depending on the starting coordinates and the predicted number of
reflections. This would separate the full phasespace into parts depending on the reflections
and therefore possibly reducing the stochastic uncertainty.

5.3 Conditional Variational Autoencoder 65

Figure 5.20: Training loss and validation loss of the CVAE trained on single reflections.
The plot on the left shows the training loss during 7000 iterations, whereas the
plot on the right shows the validation loss evaluated after every epoch. The
loss used is the MSELoss.

Figure 5.21: The ddKS distance evaluated on a validation set during and after training for
the CVAE trained on single reflections. On the left side the ddKS distance is
continuously calculated after every epoch for a independent validation dataset,
on the right side the ddKS distance distribution on the validation dataset after
training is shown. For both sides 100 points per sample were used.

66 5 Generative Modeling of Reduced Datasets

Figure 5.22: True and predicted photon detection values for 400 photons in the x− y-plane
belonging to the filtered dataset. The left side shows the true detection values
of photons that were only reflected 0 or 1 time, while the right side shows the
predicted values.

Figure 5.23: True and predicted photon detection times for 400 photons belonging to
the filtered dataset. The distribution of predicted (orange) and true (blue)
detection times is shown.

5.3 Conditional Variational Autoencoder 67

Figure 5.24: True and predicted photon detection values for 400 photons in the x− y-plane
belonging to the unfiltered dataset. The left side shows the true detection
values of random photons, while the right side shows the predicted values.

Figure 5.25: True and predicted photon detection times for 400 photons belonging to the
unfiltered dataset. The distribution of predicted (orange) and true (blue)
detection times

6. Conclusion

In this thesis the concept of replacing the simulation of the Time of Propagation detector
at the Belle II experiment as well as validating the results of a fast simulation approach
was explored. As neural network simulations gain higher publicity in high energy physics,
robust and reliable validation mechanisms are needed.

For a comparison of probability distributions, which is necessary in the validation of the
detector, during this thesis a high-dimensional Kolmogorov-Smirnov metric was developed
(section 2.3.1).

In chapter 4 the inherent uncertainty of the current simulation by Geant4 was investigated.
As simulating photons covering all possible phasespace points is not feasible, alternative
validation techniques need to be found. While the premise was to find a lower limit of
accordance between photon detection values generated by photons emitted with different
directions or from different positions, the stochastic influence of reflections inside the
detector does not allow to find this limit. Nevertheless, a correlation between the number
of reflections and the probability distances between detection value distributions could
be found. This correlation creates distinctive patterns of distances at certain points. A
probability distance between those patterns created by Geant4 and a neural network solution
can then be used as a validation mechanism.

For a high-level validation mechanism, the behaviour of particle identification depending
on the energy and the inclination angle was investigated. Tracks generating Cherenkov
photons are less likely to favor parts of the phasespace and can therefore be used as general
validation data. As the particle identification in basf2 is done with a likelihood analysis,
which is difficult to extract and combine with a neural network simulation, the performance
of the ddKS metric for particle identification was studied. While at high energies the
likelihood analysis performs slightly better, the ddKS test is still able to perform the
particle identification. This result enables particle identification to be included in the
validation mechanisms.

The simulation and validation of both photons and tracks is assembled into a framework.
This leads to an easy evaluation of the performance of a neural network solution in
comparison to Geant4. For further steps the development of a basf2 module to integrate a
fast simulation would be beneficial to improve the validation workflow.

Additionally, different networks have been trained both on a cone model as well as on
a reduced photon dataset (chapter 5). For the cone model, a conditional variational

69

70 6 Conclusion

autoencoder and generative adversarial network was trained on generating correct data.
The CVAE was able to robustly replicate the cone and is a promising network type for the
full dataset. In comparison, a GAN trained on the cone model had difficulties to converge
and could not replicate the cone model correctly. Following this result, a CVAE was also
trained on a dataset containing photons with zero or one reflection inside the detector. On
this reduced dataset the CVAE performed good, having an average KS distance of 0.13
on the validation set. Testing this trained model on the full dataset did not return usable
results.

Several approaches to continue could be taken. One possible pathway could be breaking up
the full simulation into two steps, where the number of reflections gets decided by a first
network followed by a second network that is conditional on the output of the first. This
could reduce the problem size and return better results. Alternatively, a CVAE could be
trained and evaluated extensively on the full dataset, as the network architecture shows
good behaviour on the photon data.

Bibliography

[1] B. Povh, K. Rith, C. Scholz, F. Zersche, and W. Rodejohann, Particles and nuclei: An
Introduction to the physical concepts. Graduate Texts in Physics. Springer, 1995.

[2] CDF, F. Abe et al., “Observation of top quark production in p̄p collisions,” Phys. Rev.
Lett. 74 (1995) 2626–2631, arXiv:hep-ex/9503002.

[3] CMS, S. Chatrchyan et al., “Observation of a New Boson with Mass Near 125 GeV in
pp Collisions at

√
s = 7 and 8 TeV,” JHEP 06 (2013) 081, arXiv:1303.4571

[hep-ex].

[4] B. Wang, “Searches for New Physics at the Belle II Experiment,” in Meeting of the
APS Division of Particles and Fields. 11, 2015. arXiv:1511.00373 [hep-ex].

[5] LHCb, A. Maevskiy, D. Derkach, N. Kazeev, A. Ustyuzhanin, M. Artemev, and
L. Anderlini, “Fast Data-Driven Simulation of Cherenkov Detectors Using Generative
Adversarial Networks,” J. Phys. Conf. Ser. 1525 no. 1, (2020) 012097,
arXiv:1905.11825 [physics.ins-det].

[6] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, and
K. Krüger, “Getting High: High Fidelity Simulation of High Granularity Calorimeters
with High Speed,” Comput. Softw. Big Sci. 5 no. 1, (2021) 13, arXiv:2005.05334
[physics.ins-det].

[7] C. Fanelli and J. Pomponi, “DeepRICH: Learning Deeply Cherenkov Detectors,” Mach.
Learn. Sci. Tech. 1 (11, 2019) 015010, arXiv:1911.11717 [physics.data-an].

[8] E. Mueller, “Applications of Quantum Mechanics,” Nov, 2018.
http://quantum.lassp.cornell.edu/lecture/elementary_particle_physics.

[9] M. Minsky and S. Papert, Perceptrons; an Introduction to Computational Geometry.
MIT Press, 1969. https://books.google.de/books?id=Ow1OAQAAIAAJ.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[11] F. Bre, J. Gimenez, and V. Fachinotti, “Prediction of wind pressure coefficients on
building surfaces using Artificial Neural Networks,” Energy and Buildings 158 (11,
2017) .

[12] L. Bottou, “Online Algorithms and Stochastic Approximations,” in Online Learning
and Neural Networks, D. Saad, ed. Cambridge University Press, Cambridge, UK, 1998.
http://leon.bottou.org/papers/bottou-98x. revised, oct 2012.

71

http://dx.doi.org/10.1007/3-540-36684-9
http://dx.doi.org/10.1007/3-540-36684-9
http://dx.doi.org/10.1103/PhysRevLett.74.2626
http://dx.doi.org/10.1103/PhysRevLett.74.2626
http://arxiv.org/abs/hep-ex/9503002
http://dx.doi.org/10.1007/JHEP06(2013)081
http://arxiv.org/abs/1303.4571
http://arxiv.org/abs/1303.4571
http://arxiv.org/abs/1511.00373
http://dx.doi.org/10.1088/1742-6596/1525/1/012097
http://arxiv.org/abs/1905.11825
http://dx.doi.org/10.1007/s41781-021-00056-0
http://arxiv.org/abs/2005.05334
http://arxiv.org/abs/2005.05334
http://dx.doi.org/10.1088/2632-2153/ab845a
http://dx.doi.org/10.1088/2632-2153/ab845a
http://arxiv.org/abs/1911.11717
http://quantum.lassp.cornell.edu/lecture/elementary_particle_physics
https://books.google.de/books?id=Ow1OAQAAIAAJ
http://www.deeplearningbook.org
http://dx.doi.org/10.1016/j.enbuild.2017.11.045
http://dx.doi.org/10.1016/j.enbuild.2017.11.045
http://leon.bottou.org/papers/bottou-98x

72 Bibliography

[13] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and Time
Series, p. 255–258. MIT Press, Cambridge, MA, USA, 1998.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention Is All You Need,” 2017.

[15] C. Doersch, “Tutorial on Variational Autoencoders,” 2021.

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Networks,” 2014.

[17] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved Techniques for Training GANs,” CoRR abs/1606.03498 (2016) ,
arXiv:1606.03498. http://arxiv.org/abs/1606.03498.

[18] M. Arjovsky and L. Bottou, “Towards Principled Methods for Training Generative
Adversarial Networks,” 2017.

[19] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” 2017.

[20] L. Devroye, “Chapter 4 Nonuniform Random Variate Generation,” in Simulation, S. G.
Henderson and B. L. Nelson, eds., vol. 13 of Handbooks in Operations Research and
Management Science, pp. 83–121. Elsevier, 2006.
https://www.sciencedirect.com/science/article/pii/S0927050706130042.

[21] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of
Mathematical Statistics 22 no. 1, (1951) 79 – 86.
https://doi.org/10.1214/aoms/1177729694.

[22] G. Cowan, “Statistical data analysis,” 1998.
http://www.gbv.de/dms/goettingen/241026571.pdfhttps:
//ebookcentral.proquest.com/lib/kxp/detail.action?docID=49634796;http:
//lib.myilibrary.com/?id=81976.

[23] A. Hagen, S. Jackson, J. Kahn, J. Strube, I. Haide, K. Pazdernik, and C. Hainje,
“Accelerated Computation of a High Dimensional Kolmogorov-Smirnov Distance,”
2021.

[24] A. Clim, R. D. Zota, and G. TinicĂ, “The Kullback-Leibler Divergence Used in
Machine Learning Algorithms for Health Care Applications and Hypertension
Prediction: A Literature Review,” Procedia Computer Science 141 (2018) 448–453.
https://www.sciencedirect.com/science/article/pii/S1877050918317939. The
9th International Conference on Emerging Ubiquitous Systems and Pervasive
Networks (EUSPN-2018) / The 8th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare (ICTH-2018) /
Affiliated Workshops.

[25] A. Kolmogorov, “Sulla determinazione empirica di una lgge di distribuzione,” Inst. Ital.
Attuari, Giorn. 4 (1933) 83–91.

[26] N. Smirnov, “Table for Estimating the Goodness of Fit of Empirical Distributions,”
The Annals of Mathematical Statistics 19 no. 2, (Jun, 1948) 279–281.
http://projecteuclid.org/euclid.aoms/1177730256.

http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
http://dx.doi.org/https://doi.org/10.1016/S0927-0507(06)13004-2
https://www.sciencedirect.com/science/article/pii/S0927050706130042
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
http://www.gbv.de/dms/goettingen/241026571.pdfhttps://ebookcentral.proquest.com/lib/kxp/detail.action?docID=49634796 ; http://lib.myilibrary.com/?id=81976
http://www.gbv.de/dms/goettingen/241026571.pdfhttps://ebookcentral.proquest.com/lib/kxp/detail.action?docID=49634796 ; http://lib.myilibrary.com/?id=81976
http://www.gbv.de/dms/goettingen/241026571.pdfhttps://ebookcentral.proquest.com/lib/kxp/detail.action?docID=49634796 ; http://lib.myilibrary.com/?id=81976
http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.10.144
https://www.sciencedirect.com/science/article/pii/S1877050918317939
http://dx.doi.org/10.1214/aoms/1177730256
http://projecteuclid.org/euclid.aoms/1177730256

Bibliography 73

[27] G. Fasano and A. Franceschini, “A multidimensional version of the
Kolmogorov–Smirnov test,” Monthly Notices of the Royal Astronomical Society 225
no. 1, (Mar, 1987) 155–170. https:
//academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/225.1.155.

[28] A. Hagen, J. Strube, I. Haide, J. Kahn, S. Jackson, and C. Hainje, “A Proposed High
Dimensional Kolmogorov-Smirnov Distance,” in Third Workshop on Machine Learning
and the Physical Sciences. 2020. https://ml4physicalsciences.github.io/2020/
files/NeurIPS_ML4PS_2020_75_poster.pdf.

[29] Belle-II, T. Abe et al., “Belle II Technical Design Report,” arXiv:1011.0352
[physics.ins-det].

[30] SuperKEKB, K. Akai, K. Furukawa, and H. Koiso, “SuperKEKB Collider,” Nucl.
Instrum. Meth. A 907 (2018) 188–199, arXiv:1809.01958 [physics.acc-ph].

[31] D. Sanders, Aug, 2019. http://www.phy.olemiss.edu/HEP/belle2/index.html.

[32] Belle-II Barrel Particle Identification Group, J. Fast, “The Belle II imaging
Time-of-Propagation (iTOP) detector,” Nucl. Instrum. Meth. A 876 (2017) 145–148.

[33] D. Y. Kim et al., “The simulation library of the Belle II software,”.

[34] R. Brun et al., “root-project/root: v6.18/02,” Aug., 2019.
https://doi.org/10.5281/zenodo.3895860.

[35] T. Kuhr, C. Pulvermacher, M. Ritter, T. Hauth, and N. Braun, “The Belle II Core
Software,”.

[36] GEANT4, S. Agostinelli et al., “GEANT4–a simulation toolkit,” Nucl. Instrum.
Meth. A 506 (2003) 250–303.

[37] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium,” 2018.

[38] C. Hainje and J. Strube, “Studies of Likelihood distributions of simulated single
particles in the TOP detector,”.

[39] J. Stevens et al., “The GlueX DIRC Project,” JINST 11 no. 07, (2016) C07010,
arXiv:1606.05645 [physics.ins-det].

[40] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation
Hyperparameter Optimization Framework,” in Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 2019.

[41] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 2017.

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature 323 no. 6088, (Oct., 1986) 533–536.

[43] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouve, and G. Peyré,
“Interpolating between Optimal Transport and MMD using Sinkhorn Divergences,” in
The 22nd International Conference on Artificial Intelligence and Statistics,
pp. 2681–2690. 2019.

http://dx.doi.org/10.1093/mnras/225.1.155
http://dx.doi.org/10.1093/mnras/225.1.155
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/225.1.155
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/225.1.155
https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_75_poster.pdf
https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_75_poster.pdf
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1011.0352
http://dx.doi.org/10.1016/j.nima.2018.08.017
http://dx.doi.org/10.1016/j.nima.2018.08.017
http://arxiv.org/abs/1809.01958
http://www.phy.olemiss.edu/HEP/belle2/index.html
http://dx.doi.org/10.1016/j.nima.2017.02.045
https://doi.org/10.5281/zenodo.3895860
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1748-0221/11/07/C07010
http://arxiv.org/abs/1606.05645
http://dx.doi.org/10.1038/323533a0

	Contents
	1 Introduction
	2 Theoretical Background
	2.1 The Standard Model
	2.2 Machine Learning and Generative Models
	2.2.1 Artificial Neural Networks
	2.2.2 Generative Modeling

	2.3 Probability Metrics and Two-Sample Tests
	2.3.1 Kullback-Leibler Divergence
	2.3.2 D-Dimensional Kolmogorov-Smirnov Metric

	3 Experimental Setup
	3.1 The Belle II experiment
	3.1.1 The TOP Detector

	3.2 The Belle II Analysis Framework
	3.3 Geant4

	4 Validation Framework
	4.1 Baseline of Current Simulation
	4.1.1 Time Requirement
	4.1.2 Photon Detection Values
	4.1.3 Track Identification

	4.2 Design
	4.2.1 Validation Mechanisms

	4.3 Generalization Possibilities

	5 Generative Modeling of Reduced Datasets
	5.1 Experiment Design
	5.1.1 GAN design
	5.1.2 CVAE Design
	5.1.3 Cone Model
	5.1.4 Reduced Number of Reflections

	5.2 Generative Adversarial Network
	5.2.1 Cone Model

	5.3 Conditional Variational Autoencoder
	5.3.1 Cone Model
	5.3.2 Reduced Number of Reflections

	6 Conclusion

