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Abstract

Current results from previous B-factory experiments such as BaBar and Belle for the B0 −→
Ksπ

0 mode indicate a 2σ deviation between the Standard Model and experimental data fo CP
parameters (ACP ) and SCP . As such, this is one of the leading places to look for New Physics
particles for example the Z ′ boson, leptoquarks, and diquarks. This is hoped to be resolved
by the current Belle-II experiment which will have a significantly higher integrated luminosity
than either Belle or BaBar by the time data collection is completed.

The aim of this work is to establish an analysis framework to study this decay mode using
Monte-Carlo generated data. This analysis framework will then be tested by the use of Monte-
Carlo toy fits and applied to the B0 −→ J/ΨKs control mode. Various forms of continuum
suppression are tested, and the expected results for various levels of integrated luminosity are
examined. An in-depth study of the DeltaT error distribution function will be completed in-
cluding a range of detector based results.
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experiment. The third chapter outlines the analysis framework previously studied by Martin
Sevior and Brian Chan and the developments by the author. The fourth chapter is an original
study of the distribution of DeltaT errors and how this applies to the analysis framework. The
fifth and final chapter consists of an original work detailing the methods behind validating the
model.
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Chapter 1

Literature Review

1.1 The Standard Model

1.1.1 The Standard Model of Particle Physics

During the 1960’s and 70’s, the Standard Model of Particle Physics was developed as a way
to classify the fundamental particles as well as describe their behaviours and interactions with
each other. It is widely believed to be one of the great successes in modern physics describing
three of the four fundamental forces in nature - Electromagnetism, the weak interaction, and
the strong interaction. It is able to describe these with very high precision and for the most
part provides exceptional agreement with experimental data. Currently, the Standard Model is
not able to explain the fourth fundamental force - gravity, however attempts have been made
by incorporating a spin-2 ’graviton’.

The Standard Model classifies particles as quarks, leptons or bosons depending on their
properties and how they interact. Quarks interact through all three of the forces however the
leptons can only interact through electroweak interactions (Electromagnetism or the weak in-
teraction). The bosons are the carriers of each fundamental force. The photon (γ) mediates
electromagnetism, the W± and Z bosons mediate the weak interaction and the eight coloured
gluons (g) mediated the strong interaction. If the hypothetical graviton was included it would
mediate gravitational forces. The famous Higgs boson is able to interact with particles and
provides a mechanism for obtaining mass. Leptons and quarks are known as fermions and
come in three generations differing only by mass. All fermions are spin-1/2 and each has its
own associated anti-particle.

Because of a principle called colour confinement, all matter made of quarks must exist in a
bound state usually consisting of two or three quarks. Mesons are the states with two quarks
and consist of a quark-antiquark pair (qq̄). Baryons are the states with three quarks, either all
regular particles (qqq) or all anti-particles (q̄q̄q̄). Bound states with more than three quarks
(e.g. tetraquarks) have been experimentally shown to exist however are very rare.
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Figure 1.1: The fundamental particles in the Standard Model. (Image: CERN)

1.1.2 The CKM Matrix and Quark Mixing

In the Standard Model it is possible for a quark to spontaneously change flavour through
interactions with the W± bosons. Because of the charge of the mediating boson, this must occur
only between down type quarks to up type quarks, or up type quarks to down type quarks∗.
These flavour changing currents arise from Yukawa interaction terms in the SM Lagrangian[8]:

−g√
2

(ūL, c̄L, t̄L)γµW+
µ VCKM

dLsL
bL

+ h.c. (1.1)

Here, the elements of the vectors describe the three different generations of quarks, γµ is the set
of Dirac matrices, and VCKM is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix[7,
18]. The non-diagonal elements of this matrix are responsible for the flavour changing process.
This matrix is given as follows:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (1.2)

These matrix elements are free parameters in the Standard Model and must be determined
experimentally. If the absolute value of one of these elements is very low, any interaction in-
volving this element will be suppressed. This is known as Cabibbo suppression and is notable
in |Vub| = (3.38± 0.36)× 10−3.[20]

In its most general form, this matrix can be written in terms of three mixing angles
(θ12, θ13, θ23) and one complex phase (δ) using the standard parametrisation†[27]:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.3)

∗Up type particles have charge 2/3 while down type particles have charge -1/3. The difference in charges
therefore matches that of the W bosons.

†The notation cij ≡ cos(θij) and sij ≡ sin(θij) is used.
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δ is a CP-violating phase and is the cause of CP Violation in quark mixing.[9]

It is worth noting that because there is no equivalent term in the SM Lagrangian for the Z
boson, thus quark mixing can only occur using charged currents. As a result, flavour-changing
neutral currents are not allowed in the Standard Model (at least to tree level diagrams).

1.1.3 Unitary Relations and the Unitary Triangle

Since flavour-changing processes must conserve probability (either it changes or it does not),
the CKM Matrix must be unitary. By definition this gives the relation:

V †CKMVCKM = VCKMV
†
CKM = I3 (1.4)

Where I3 represents the 3x3 identity matrix. This gives a set of nine equations relating products
of CKM matrix elements. The equation of interest is given below:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.5)

This is then divided by the term known to the highest accuracy (VcdV
∗
cb) and shown pictorially

using a triangle on the complex plane with vertices at (0, 0), (0, 1) and (ρ̄, η̄). Here, ρ̄ and η̄ are
parameters used in an alternate parametrisation of the CKM matrix known as the Wolfenstein
parametrisation[28]. This triangle is known as the Unitary Triangle[8].

Figure 1.2: The Unitary Triangle.

The angles here are given by:

φ1 = β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
(1.6)

φ2 = α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
(1.7)

φ3 = γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
(1.8)

The use of φi or Greek characters varies throughout the literature.
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1.2 CP Violation

1.2.1 Discrete Symmetries

There are three important discrete transformations in the Standard Model. These are given as
follows:

• C (charge) Transformation: Negation of the charge of a particle (e.g. e− −→ e+).

• P (parity) Transformation: Reversal of the spatial coordinates (e.g. ψ(t, ~x) −→ ψ(t,−~x)).

• T (time) Transformation: Reversal of the temporal coordinate (e.g. ψ(t, ~x) −→ ψ(−t, ~x)).

If a theory remains unchanged under any of these transformations it is symmetric under that
transformation. An example of this is that electromagnetism is symmetric under C transfor-
mations. If the theory is not symmetric, the symmetry is said to be violated.

The CPT theorem states that any Lorentz invariant Quantum Field Theory must be sym-
metric under the combination of all three of these transformations[26].

1.2.2 Discovery of CP Violation

Up until the late 1950’s it was believed that each symmetry (C, P and T ) was conserved under
all interactions. In 1957 C. S. Wu et al.[29] showed experimentally that the P symmetry was
violated in the weak interactions by looking at beta decay in 60Co. After this it was believed
that T and the combination CP were symmetries.

Cronin and Fitch’s famous experiment[10] put this theory to rest in 1964 when they discov-
ered that the K0

2 meson was found to decay into two pions in contradiction to the CP symmetric
theory which held that only three pion decays were possible. This meant the weak eigenstates
of the K0 meson could not have been the same as the CP eigenstates which directly implies
CP violation.

This phenomenon of CP violation in the Standard Model has been confirmed many times
since its discovery, notably in the Belle and BaBar experiments in the early 2000’s. It is a
major focus of the current Belle II experiment.

1.2.3 Mechanism for CP Violation in the Standard Model

CP violation can be formulated in the Standard Model‡ by writing a general state as a super-
position of both flavours of the B0 meson[2]. Over time this state is allowed to decay into final
state particles.

|ψ(t)〉 = a(t)|B0〉+ b(t)|B̄0〉+ c1(t)|f1〉+ c2(t)|f2〉+ . . . (1.9)

In Eq. 1.9, cn(t) must be zero for all n. The time dependence of a(t) and b(t) is given by the
usual Schrödinger equation using a non-Hermitian§ Hamiltonian represented by a 2x2 matrix
which can be deconstructed into two Hermitian matrices:

Heff = M− i

2
G (1.10)

‡Specifically in the B0 sector here.
§Non-Hermitian because the particle must be allowed to decay.

7



These two matrices M and G are associated with on-shell and off-shell transitions not involving
the final states. The eigenstates of this Hamiltonian must have a definite mass and decay width.
They can be written as a linear combination of B0 flavours¶.

|BL〉 = p|B0〉+ q|B̄0〉 (1.11)

|BH〉 = p|B0〉 − q|B̄0〉 (1.12)

From these definitions, two important quantities are defined - the mass and width splittings:

∆m = mH −mL (1.13)

∆Γ = ΓH − ΓL (1.14)

Solving the Schrödinger equation using Eq. 1.10 gives the following relation between p and q.(
p

q

)2

=
M∗

12 − (i/2)G∗12

M12 − (i/2)G12

(1.15)

1.2.4 Types of CP Violation

There are three types of CP violation in the Standard Model[23]. Throughout this section it
will be notationally convenient to define the following decay amplitudes to any final state f :

Af = 〈f |H|B0〉 (1.16)

Āf = 〈f |H|B̄0〉 (1.17)

Af̄ = 〈f̄ |H|B0〉 (1.18)

Āf̄ = 〈f̄ |H|B̄0〉 (1.19)

Direct CP Violation

Direct CP violation occurs when a decay has a different decay rate than its CP conjugate. In
terms of decay amplitudes:

|Af | 6= |Āf̄ | (1.20)

This is parametrised by Acp defined as:

Acp =
Γ(B0 −→ f)− Γ(B̄0 −→ f̄)

Γ(B0 −→ f) + Γ(B̄0 −→ f̄)
(1.21)

This can occur when there are both two different weak phases, and two different strong phases
involved in the decay amplitudes.

Indirect CP Violation

Indirect CP Violation occurs when the mixing rates for each flavour eigenstate differs from each
other. This requires the condition

|q| 6= |p| (1.22)

This is usually small in B decays and is not significant here.

¶This can be generalized if CPT violation is allowed. For simplicity it will be assumed here
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Interference CP Violation

CP Violation through interference occurs when a final state is obtainable not only from a direct
decay, but also from a decay via a mixed state[6]. For the final state being Ksπ

0, it is from the
decay rates as follows:

B0 −→ Ksπ
0 (1.23)

B0 −→ B̄0 −→ Ksπ
0 (1.24)

This type of CP Violation is interesting because it results in a time dependence in the asymmetry
due to the mixing. The asymmetry is now parametrised as:

Acp(t) =
Γ(B0(t) −→ f)− Γ(B̄0(t) −→ f̄)

Γ(B0(t) −→ f) + Γ(B̄0(t) −→ f̄)
(1.25)

This can be further simplified so that it is in terms of three parameters, Acp, Scp and ∆m.

Acp(t) = Acp cos(∆mt) + Scp sin(∆mt) (1.26)

Acp =
1− |ξf |2

1 + |ξf |2
(1.27)

Scp =
2=(ξf )

1 + |ξf |2
(1.28)

This uses the parameter ξf defined as:

ξf =
q

p

Āf
Af

(1.29)

For the decay B0 −→ Ksπ
0, Eq. 1.28 reduces to an expression related to the angle φ1 in the

Unitary Triangle:
Scp = sin(2φ1) (1.30)

1.2.5 The Sakharov Conditions for Baryogenesis

One of the many reasons CP violation is important to study in regards to the current state
of physics is its applicability to the astrophysical phenomenon of baryogenesis; Why is the
universe dominated by matter and not antimatter? How this occurs is known as the Baryon
Asymmetry of the Universe (BAU).

In 1967, Andrei Sakharov gave a set of three conditions required for baryogenesis to oc-
cur[25]:

• Baryon number violation - An obvious necessity allowing the difference between matter
and antimatter to occur.

• C and CP violation - There must be some processes which favour decays to regular matter.

• Non-thermal Equilibrium Interactions - Required to decrease the rate of matter-antimatter
annihilation processes which reduce the asymmetry.

Defining the asymmetry as the number of baryons per photon NB/s, the total amount of
asymmetry allowed by the CKM mechanism was calculated by Huet and Sather to be[14]:∣∣∣nB

s

∣∣∣ < 6× 10−27 (1.31)
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This is much too small to account for the quoted asymmetry observed through astrophysical
observations: ∣∣∣nB

s

∣∣∣ ≈ 6× 10−11 (1.32)

A better understanding of CP Violation could lead to a solution to this problem, possibly
through the introduction of new physics.

1.3 The B −→ Kπ Puzzle

1.3.1 The B −→ Kπ System

The B −→ Kπ system refers to all possible decays from a B meson (possibly charged) to
all charge conserving variations of a K meson and a pion. This consists of four decays:
B+ −→ K+π0, B+ −→ K0π+, B0 −→ K+π− and B0 −→ K0π0. Each has an associated branching
ratio and Acp, and the B0 −→ K0π0 mode has an associated Scp.

To simplify notation, the decay amplitudes for each mode are written as:

A+− = A(B+ −→ π+K−), A+0 = A(B+ −→ π+K0)

A0+ = A(B+ −→ π0K+), A00 = A(B0 −→ π0K0) (1.33)

These amplitudes are related through a quadratic isospin relation[3]:
√

2A00 + A−+ =
√

2A0+ + A+0 (1.34)

There are six Feynman diagrams contributing to these decays representing colour favoured
and colour suppressed gluonic penguins (P ′tc and P ′uc), colour favoured and colour suppressed
electroweak penguins (P ′EW and P ′CEW ) and colour favoured and colour suppressed tree diagrams
(T ′ and C ′). The SU(3) flavour symmetry allows the following relations between electroweak
penguin amplitudes and tree amplitudes to good approximation:

P ′EW =
3c9

2c1

RT ′, P ′CEW =
3c9

2c1

RC ′ (1.35)

Where ci are known as Wilson coefficients and R is composed of CKM matrix elements.

1.3.2 The Puzzle for Direct CP Violation

Using Eq. 1.35 and calculations for gluonic penguins, it can be shown that to first order, only
P ′tc, T

′ and P ′EW should contribute. The decay amplitudes can then be written as[3]:

A+0 = −P ′tc (1.36)
√

2A0+ = −T ′eiγ + P ′tc − P ′EW (1.37)

A−+ = −T ′eiγ + P ′tc (1.38)
√

2A00 = −P ′tc − P ′EW (1.39)

The CP conjugated decay rates must also include a negation in the CP violating phase γ.
Because P ′EW has no weak phase, the Acp for A0+ and A−+ should be the same. Experimentally,
it is shown that this is far from reality. The difference in Acp (∆Acp = A0+−A−+) is given by:

(∆Acp)exp = (12.2± 2.2)% (1.40)

The puzzle for direct CP Violation in this system is that this is a 5.5σ difference from zero.
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1.3.3 Interference CP Violation in B −→ K0π0

Because the neutral KL has a large lifetime, it decays far from where it is produced and hence
is very hard to detect. For this reason it is more experimentally far easier to look at the
neutrally charged KS meson and for which it is easier to measure its associated Scp parameter.
R. Fleischer goes into detail for these modes in references [12] and [6]. A relation bounding Scp
is shown to exist[12]:

Scp = sin(φd − φ00)
√

1− A2
cp ≈ sin(φd − φ00) (1.41)

This uses the mixing phase φd and a hadronic parameter φ00 given by φ00 = arg Ā00A
∗
00. This is

related to the angle φ3. Given the small uncertainty in this angle, it is now possible to predict
this with good accuracy and provide a precision prediction for Scp. The approximation can be
made since Acp should be small.

Eq. 1.34 is also used to place limits on Acp using the observed asymmetries in the other
modes in the B −→ Kπ system. BaBar and Belle have made the following observations for the
B0 −→ Ksπ

0 mode. The results are around a 2σ discrepancy from the SM predictions.

Figure 1.3: Current data and expected values for Acp and Scp in the B0 −→ Ksπ
0 mode.
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1.3.4 Possible Resolutions

The possible resolutions to this puzzle may be found in contributions from a new physics
electroweak penguin with a different CP violating phase would significantly decrease the dis-
crepancy[15].

There are currently three main ways to do this, corresponding to adding three beyond Standard
Model particles - The leptoquark, the diquark, or the Z’ boson[11]. The diquark solution would
also solve another issue with the Standard Model by adding a mechanism for neutrinos to gain
mass.

The other possibility is that this is a statistical anomaly. More data for this mode is needed to
reduce the errors to show if this is the case or not.
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Chapter 2

The Belle II Experiment

2.1 Introduction to Belle II

2.1.1 The SuperKEKB Accelerator

The Belle II detector is designed to look at the decays of B mesons. In order to do this
it must be located at a “B-factory”. This B-factory is the SuperKEKB accelerator located
in Tsukuba, Japan. The SuperKEK accelerator is an electron-positron collider designed to
accelerate electrons up to an energy of 7 GeV in its High Energy Ring (HER) and 4 GeV
positrons in its Low Energy Ring (LER). These electrons and positrons are then collided at
an Interaction Point (IP). The energies are chosen in order to produce an Υ(4S) resonance
consisting of a b and a b̄ quark. This will then either decay into qq̄ or neutral and charged B-
mesons (Υ(4S) −→ B0B̄0 or Υ(4S) −→ B+B−) at approximately an equal rate. The asymmetry
between the energies of the electron and the positron is designed to give a boost in momentum to
the B mesons which enables the location of the B-meson decay point to infer the time of B-meson
decay and hence makes it possible to make time-dependent CP-violation measurements.[19]

2.1.2 Comparison to Belle

The Belle II detector is designed to be an upgrade to the original Belle detector which collected
data between 1999 to 2010 at the KEKB accelerator (the predecessor to SuperKEKB). The
more significant upgrades from the original include:

• Improved spatial resolution due to the implementation of a silicon pixel detector.

• A larger volume of silicon strip detectors results in a higher efficiency of reconstruction
for Ks to two charged pions.

• The implementation of new Particle Identification Devices (PID) in the barrel and endcap
regions.

• Better electronics in the electromagnetic calorimeter which significantly reduce back-
ground noise.

Along with these upgrades to the detector, the change to SuperKEKB from KEKB will result
in a 50 times increase in the integrated luminosity (from around 1ab−1 to around 50ab−1). This
will result in much lower statistical errors compared to the original Belle experiment. [1]
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2.2 The Belle II Detector

The Belle II detector consists of several sub-detectors, each serving different purposes and
having their own strengths and weaknesses. From closest to the IP to furthest, this includes the
Pixel Vertex Detector (PXD), the Silicon Vertex Detector (SVD), the Central Drift Chamber
(CDC), the Particle IDentification (PID) device, the Electromagnetic Calorimeter (ECL), and
the KL/Muon Detector (KLM).[1]

Figure 2.1: Side view of the Belle II detector (top) and the original Belle detector (bottom) showing
the location of each sub-detector.

Pixel Vertex Detector (PXD)

The Pixel Vertex Detector (PXD) is a new addition to the Belle II detector from the original,
and consists of two layers of very thin (50 micron) silicon sensors which utilize Depleted Field
Effect Transistor (DEPFET) technology. These layers are at a radius of 14mm and 22mm from
the interaction point. The PXD is required because the high levels of beam-related background
causes a high hit rate which strip detectors (such as the SVD) could not handle. This detector
allows for very precise vertexing of decays inside it.

Silicon Vertex Detector (SVD)

Similar to the PXD, the Silicon Vertex Detector (SVD) uses DEPFET technology, however the
SVD uses sensors in strips instead of pixels. This detector consists of four layers and is used for
vertexing at a radii of between 38mm and 140mm, and can extrapolate data obtained in the
PXD and the Central Drift Chamber. The SVD is also particularly useful in vertexing decay
channels involving D-mesons and τ -leptons
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Central Drift Chamber (CDC)

The Central Drift Chamber (CDC) is located between a radii of 160mm and 1130mm from
the IP. It is used for precisely measuring the tracks from charged particles along with their
momentum. It is filled with Helium Methane gas mixture and a complex wire structure in
order to perform a three-dimensional reconstruction and provide some particle identification
information via energy loss within the gas volume.

Particle IDentification (PID)

The Particle IDentification (PID) device is primarily designed to determine whether a particle
is a kaon or a pion. It consists of two devices located in the Barrel and EndCap regions of
the detector. The Time of Propagation (TOP) detector is employed in the Barrel region. It
consists of fused silica (quartz) to produce Cherenkov photons when a charged particle passes
through. The photons are captured via total internal reflection and are directed to micro
channel plate photon detectors which record the location and time of arrival of the photons.
This information is employed to determine the cherenkov radiation cone and hence the velocity
of the particle. This enables the determination of the pions or kaons. There is also a PID
located in the forward endcaps which use Aerogel Rich Imaging Cherenkov (ARICH) detectors.
Here, transparent Aerogel of refractive index near 1.05 is used to generate Cherenkov photons.
These are used to discriminate between muons, pions, and electrons below 1 GeV/c momentum.

Electromagnetic Calorimeter (ECL)

The Electromagnetic Calorimeter uses Cesium Iodide (Thallium) (CsI(Tl)) as a scintillating
material to create an ‘electromagnetic shower’. This occurs via electromagnetic interactions of
high energy photons and electrons or positions through pair production or bremsstrahlung. As
this occurs it initiates a shower of electrons and positions which generate scintillation light in
the CsI crystals which in turn is collected by photodiodes placed on the back of the crystals.
The net result is a pulse from the electronics which is proportional to the energy depositied by
ionising particles in the crystals. In the case of photons or electrons(positrons) this is close to
their entire energy. The ECL is used for a variety of purposes including detecting photons and
determining their energy, electron identification, and some KL detection.

KL & µ Detector (KLM)

The K-long and Muon Detector is the outermost detector and is used for detecting KL and µ
particles, both of which have a relatively long lifetime. It consists of alternating iron plates and
detector elements. These iron plates also form the magnetic flux return for the superconducting
solenoid. KL mesons also are able to interact hadronically with these iron plates and hence
leave a signal. This iron provides an extra 3.9 interaction lengths for the KL mesons over the
0.8 interaction lengths provided by the ECL. They also act as a material which causes muons to
lose energy through ionisation. This is required because muons are minimum ionising particles
which have a very low loss of energy through matter. Because of this, it is unlikely that other
types of particles (other than KL and muons) will be detected in the KLM beyond the first few
layers. The muons can be distinguished from the KL mesons since muons are charged and the
KL meson is neutral. This means muons will create tracks in other parts of the detector while
KL mesons will remain invisible until interacting with the iron.
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2.3 Event Variables

When reconstructing an event, the raw detector data can not be used directly. Instead, the raw
data is used to determine the kinematics of possible decay trees back to the original B-meson
(or qq̄) and identifies the most likely scenario. Information about the reconstructed B-meson
is then used along with information about the other reconstructed B-meson from the Υ(4S) to
form useful variables - ∆T , ∆E and Mbc.

Time Difference (∆T )

In order to look at the time-dependent CP parameters, it is necessary to look at the difference
in decay time between both B-mesons. This will either be positive or negative depending on
whether the B0 or B̄0 decays first.

This can be determined because of the asymmetry in beam energies provides a momentum-
boost to the B-meson in the z-direction. The change in the vertexed z-position (zsig − ztag)
found from the vertex detector can therefore be converted into the difference in time between
the decay of the B-mesons:

∆z = βγc∆T (2.1)

e+e-

B0

B0
Δz

Figure 2.2: ∆z is used to determine ∆T .

Energy Difference ∆E

In the Centre-of-Mass (COM) frame of the Υ(4S), both B-mesons should have the same energy
(5.26 GeV) equal to half the energy of the Υ(4S) (called Ebeam). This is then compared to the
sum of the energies of each of the final state particles to give ∆E.

∆E = Ebeam −
∑
i

Ei (2.2)

Here, the sum is over all final state particles. This should peak around zero for all decays
involving a B-meson and events far from zero can be ignored.

Beam-Constrained Mass Mbc

The beam-constrained mass Mbc uses the momentum of the final state to compare to the Υ(4S)
Centre-of-Mass B-meson energy. It is defined as:

Mbc =

√√√√E2
beam −

(∑
i

~pi

)2

(2.3)

This quantity should peak around the mass of the B-meson, mB = 5.279 GeV.
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2.4 Event Classification

For each electron-positron collision, there are a wide range of decay channels possible. Of these
channels, there are only three which are of interest - one signal and two background channels.

• Signal - Any event where a B-meson decays into a K-short and a neutral pion. In this case,
the B-meson of interest is labelled Bsig and the other labelled Btag. The other B-meson
is used for flavor tagging.

• Continuum - Any event where the electron and positron decay into quark-antiquark pairs
(e+e− −→ qq̄). The only possible quarks which can be formed are u, d, c, and s, with c
being the most common. These quarks will create ‘hadronic showers’ and various mesons
will be formed.

• BB̄ background - Any event where a neutral B-meson is formed but does not result in a
signal event.

Of these, the continuum is expected to dominate.
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Chapter 3

Analysis Strategy

3.1 Analysis Software

All simulation, reconstruction, and analysis tasks done throughout this chapter were completed
using the Belle-II Analysis Framework (basf2)[21]. This framework is developed by the Belle-II
organisation and uses steering scripts made using python. release-05-01-13 is used through-
out. The ROOT[5] toolkit developed for C++ by CERN was also used for fitting curves to data
(using MINUIT [16]) and handling toy models. It was also used for continuum suppression when
using TMVA (see section 3.4.2). EvtGen [24] was used to generate the MC signal. The majority
of tasks were run on Spartan[22] (the University of Melbourne HPC) however the DESY grid
system[13] was also used extensively.

3.2 Vertexing

Vertexing is the process of determining the location of the decay of each particle in an event
and finding various kinematic quantities (such as the invariant mass, or momentum). For the
B0 −→ Ksπ

0 mode, the Ks will decay 67% of the time into a set of two charged pions (each of
opposite charge). This is primary decay channel which can be used for fitting since the charged
tracks of the pions can be used. The π0 almost always decays into two photons which makes
it almost useless for vertexing. The signal B-meson vertex is therefore found by extrapolating
the Ks back towards the IP. This is known as imposing an IP constraint.

There are two techniques available for vertexing - RAVE, and TreeFit. RAVE is currently dep-
recated and is known to give slightly inferior results to TreeFit. Unfortunately, for technical
reasons it is impossible using TreeFit to use only a subset of final state particles for vertexing.
This functionality is necessary when applying the same technique to a control mode so RAVE

must be used. There is currently work being done to make this feature available.

3.2.1 BTube

Because the beam spot in Belle-II is much smaller than the beam spot for Belle, it is possible
for low life-time mesons (such as B-mesons or D-mesons) to decay outside of it. The technique
used for finding the z positions for the tag-side B-meson must therefore be modified to account
for this. This is done by introducing the BTube constraint. This constraint looks at the signal-
side B-meson and uses energy-momentum conservation to form a ‘tube’ from the IP where
the tag-side B-meson vertex should be (Figure. 3.1). The tag-side B-meson is constrained to
this tube instead of to the IP. Using this method should significantly reduce errors in tag-side
vertexing which should result in a better resolution function (DeltaT distribution).
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B-sig

B-tag

KS

𝛑0

Figure 3.1: Mechanism of BTube: The signal-side B-meson is extrapolated back to the beam, and
instead of placing the B-meson there (shown with blue arrows), a tube is formed (shown
in green) tracing back to the actual IP.

3.3 Flavour Tagging

In order to obtain CP-violating parameters for this decay mode, it is necessary to determine
the flavour of the B-meson before it decays into the KS and π0. It is impossible to directly
determine the flavour of the signal-side B-meson because both the B0 and B̄0 decay into the
same final state. Because the B0 and B̄0 are produced as a quantum entangled state, find-
ing the flavour of the tag-side B-meson allows determination of the flavour of the signal side
B-meson. This can be done when the tag-side B-meson decays semileptonically - For exam-
ple B̄0 −→ D+(−→ K−π+π+)µ−ν. In this case the charge of the lepton and the kaon are used
to determine the flavour of the B-meson (Figure. 3.2). basf2 provides a mechanism for this
flavour-tagging which gives the expected flavour q, and a factor r, which is the probability of
this flavour being correct. These are then multiplied together to give a new variable qr.

This variable is required to model the signal DeltaT however it must first be converted into
the ‘mistag fraction’ (w). The mistag fraction, as the name suggests, is just the fraction of
events that are tagged incorrectly. This can be straightforwardly obtained from qr using Eq.
3.1.

w =
1

2
(1− |q.r|) (3.1)

In line with the Belle-II flavour tagging guidelines, this variable is broken up into seven bins
- the first of which has almost no information about the flavour and the last having a high
confidence in it. The bin edges are outlined in Table. 3.1.
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Figure 3.2: Example decay of B̄0 −→ D+(−→ K−π+π+)µ−ν. The charge of the lepton and kaon are
used to determine the flavour of the tag-side B-meson. The flavour of the signal-side
B-meson can then be inferred.
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Figure 3.3: The left image shows a histogram of the output of the flavour-tagging on the MC signal,
and the right image shows the true value of qr.

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 Edge 7 Edge 8

qr 0.0 0.1 0.25 0.5 0.625 0.75 0.875 1.0
w 0.5 0.45 0.375 0.25 0.1875 0.125 0.0624 0.0

Table 3.1: The eight bin edges describing the seven bins for both qr and w.

The difference in bin sizes is because at high values of qr (or low values of w), there are
many more events than in the low (high) valued bins. Another useful variable is the difference
in the mistag rates between B0 and B̄0 for the i’th bin. This is called ∆wi.

∆wi = wi(B
0)− wi(B̄0) (3.2)

This variable is also used to model DeltaT.

3.4 Continuum Suppression

To get fits to data to be as accurate as possible, there must be as many continuum events
removed while still maintaining enough signal to produce good results. This process is called
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continuum suppression. Continuum suppression is done using multivariate analysis techniques
trained on variables describing the geometry of an event.

The main distinguishing feature between signal and continuum events is that signal events
produce a much more spherical shape when the B-mesons decay into its daughter particles.
Continuum events usually produce ‘jet-like’ shapes where the daughter particles are grouped
together much more tightly (Figure. 3.12).

e- e+

B tag

B sig
K s

 𝜋0

e- e+

Figure 3.4: Comparison between the shape of the signal events (left) and the continuum events
(right).

3.4.1 Training Variables

The set of training variables is given here. There are many that have also been excluded due
to having a high correlation with other variables.

• cosTBz

• thrustOm

• KSFW_[mm2, et]

• KSFW_hso[00, 04, 10, 14, 20, 22, 24]

• KSFW_hoo[0, 1, 2, 3, 4]

• CleoCone_[4, 5, 6, 7, 8, 9]

• cosMisMom

• cmsCosTheta

Thrust Variables

The thrust T is obtained by summing the projection of the momentum of all the daughter
particles from either Bsig or Btag and normalizing it to the sum of all the daughter particle’s
momentum (Eq. 3.3).

T =

∑
i |n̂ · ~pi|∑
i |~pi|

(3.3)

This value is then maximized by finding the vector n̂ that gives the highest T . The vector n̂ is
called the thrust axis.
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The thrustOm variable is the thrust obtained using the daughter particles from the tag B-
meson. Another variable (called thrustBm) describes the thrust for the signal B-meson however
it is highly correlated with other variables.

cosTBz is the cosine of the angle between the thrust axis for Btag and the forward direc-
tion of the beampipe. There is similarly another correlated variable cosTBTO which describes
the same thing for Bsig.

Kakuno-Super-Fox-Wolfram Moments

The Kakuno-Super-Fox-Wolfram (KSFW) moments were designed by Belle to discriminate
between the shapes of signal and continuum events. There are three main types of KSFW
moments - signal, tag, and missing momentum moments.[4]

The signal moments are given by:

Hso
xl =

∑
i

∑
jx

|~pjx|Pl(cos θi,jx) (3.4)

In this equation, i and j sum over the signal-side and tag-side tracks respectively. x describes
the charge of the tag-side particle (0 for charged, 1 for neutral, and 2 for missing). For odd l
these terms vanish. Pl(cos(θ)) are the Legendre polynomials.

For the tag-side KSFW moments, l is split into both even and odd moments.
The even l terms are given by:

Hoo
l =

∑
i

∑
j

|~pi| |~pj|Pl(cos(θij)) (3.5)

And the odd l terms are given by:

Hoo
l =

∑
i

∑
j

QiQj |~pi| |~pj|Pl(cos(θij)) (3.6)

The last type of KSFW moment is the missing momentum moments. This is simply the
difference between the expected mass and the reconstructed mass.

M2
miss =

(
EΥ(4S) −

Nt∑
n=1

En

)2

−
Nt∑
n=1

|pn|2 (3.7)

Nt is the total number of daughter particles.
The last variable is the transverse energy. This is given by:

Et =
Nt∑
n=1

(|p|t)n (3.8)

Cleo Cones

Cleo cones use the jet-like shape of the continuum events and the spherical shape of the signal
events to form nine discriminating variables. It does this by forming cones around the B-mesons
thrust axis at intervals of 10

◦
. It then transforms these cones and looks at the momentum flow.
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Figure 3.5: Some of the variables used for training in continuum suppression.

3.4.2 Method of Continuum Suppression

Continuum Suppression is achieved using a Multi-Variate Analysis (MVA). This consists of
looking at all of the training variables for each event and training an algorithm to decide whether
another arbitrary event is signal (or BB background) or continuum. When this algorithm is
applied to independent events it creates another variable based on how confident it is. To train
this algorithm, a dataset was divided in half, with one half being used for training and the
other used for testing.

Figure of Merits

When the new continuum suppression variable is created, a cut must be applied to remove
as much continuum as possible while maintaining a good amount of signal. This is done by
maximising the ‘Figure of Merit’ (FOM). Doing this provides a good payoff between signal
removed and continuum kept. The FOM is given by Eq. 3.9.

FOM =
S√
S +B

(3.9)

TMVA & FastBDT (FBDT)

In this analysis, there were two toolkits used for training and applying continuum suppression
- The Toolkit for Multivariate Analysis (TMVA) and FastBDT (FBDT) [17]. Both of these
use a Boosted Decision Tree (BDT) method. This consists of training a set of decisions - each
with certain weights, and layering more weighted decisions for each outcome. The outcome
of this boosted decision tree is the probability of the event being signal or continuum. Both
TMVA and FBDT were compared against each other, and for FBDT, two different sets of
hyper-parameters were also tested (see below). The technique that maximized the FOM is the
one that was used.
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Figure 3.6: Output of the continuum suppression on the train and test data from FBDT.

The two sets of hyper-parameters tested were the default set, and an optimized set found
by David Porter (Undergraduate Research Project, University Melbourne via Private Commu-
nication). This looks at the difference between the values of nTrees, nLevels, and nCuts. The
values used are given in table 3.3.

Parameter Set nTrees nCuts nLevels

Default 100 8 3
Optimized 400 8 6

Table 3.2: The two sets of hyper-parameters used for training with FBDT.

For each training method, the FOM was found using the expected number of events in
100fb−1 of MC data - 117 signal events and 94,198 continuum events (see section 5.1). The result
is that the use of FBDT using the optimized set of hyper-parameters results in a significantly
higher FOM than the other two.

Method Max. FOM MVA Cut Signal Events Continuum Events

TMVA 2.58 0.14 36 163
FBDT (default) 2.86 0.92 49 245

FBDT(optimized) 3.54 0.93 61 236

Table 3.3: Results for continuum suppression using different methods. Note that the MVA cut for
TMVA is much lower than the other two due to this method producing an output between
negative one and positive one, whereas FBDT produces an output between zero and one.
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Logarithmic Transform

In order to use the continuum suppression output as a fitting variable, it is convenient to define
a transformed variable to create a Gaussian shape. This transform uses the maximum value of
the MVA output (M), the intended cut value (R), and output of the continuum suppression
(y). The logarithmic transform (y′) is defined by Eq. 3.10.

y′ = log

(
y −R
M − y

)
(3.10)

Both the original and transformed continuum suppression variables for the MC signal are shown
below (after the cut).
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Figure 3.7: MVA output and the logarithmic transform.

3.5 Fitting

To fit to the yields, Acp, and Scp of a set of data containing signal, continuum, and BB
background events, a set of Probability Density Functions (PDF’s) is required for each of the
four variables (DeltaE, Mbc, logSupp, DeltaT) for each type of event. For the signal case,
fitting to each of these in the different bins of qr was tested against using the same PDF for
every bin. The initial value of Scp used in the signal DeltaT PDF was also optimized.

3.5.1 DeltaT Probability Density Function

The most complicated PDF used was for the signal DeltaT. This PDF consists of a physical
model convoluted with the sum of two Gaussians representing the spread in DeltaT from its
errors. The physical model accounts for the different CP violation parameters and the mistag
values. Because this contains information about the mistag information, it is fit simultaneously
to each bin of qr resulting in seven different PDF’s using the same parameters (unless testing
using different ones) except for the mistag data. This results in the low bins of qr showing
significantly less effects of CP violation compared to the higher bins.

The physical PDF is as follows:

fi(∆T, q) =
e−|∆T |/τ

4τ
([1− q∆wi + qµi(1− 2wi)] + [q(1− 2wi) + µi(1− q∆wi)]× (3.11)

[Scp sin(∆m∆T ) + Acp cos(∆m∆T )])
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Here, wi and ∆wi are the mistag data introduced in Section 3.3, µi is the number of events
in each bin, q is the charge, and ∆m is described by Eq. 1.14. τ is the known lifetime of the
neutral B-meson (1.52 ps).

The full PDF is given by the convolution of this with the sum of two Gaussians labelled
R:

F (∆T, q) = fi(∆T, q)⊗R (3.12)

It was found (Section 5.4.1) that the optimal value of Scp to initially fit to was zero. Neither
Scp nor Acp are floated while doing the initial fits.
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Figure 3.8: Fits to DeltaT on MC signal data with an Scp of zero shown on linear (left) and log
(right) scales.

3.5.2 All Fits

Table 3.4 outlines the shapes used for fitting each variable for each event type.

Event Type Mbc DeltaE logSupp DeltaT

Signal 2 Gaussians Crystal Ball 3 Gaussians Physical PDF

Gaussian 2 Gaussians

BB Background Argus Chebychev 2 Gaussians Physical PDF (unbinned)

Gaussian Gaussian 1 Gaussians

Continuum Argus Chebychev 3 Gaussians Physical PDF (unbinned)

Gaussian 1 Gaussians

Table 3.4: The composition of the fits for each variable for each event type.

The physical PDF’s for the BB background and continuum DeltaT are much simpler than
for the signal and do not account for flavour tagging, Scp, or Acp. Both types of continuum
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were fit to 100fb−1 of data after skimming and continuum suppression.

The results of the fits are shown below:
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Figure 3.9: Fits to the signal PDF’s except DeltaT.
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Figure 3.10: Fits to the continuum PDF’s.
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BB Background
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Figure 3.11: Fits to the BB background PDF’s.
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3.5.3 Signal DeltaT Fits with Flavour Tagging

As stated in Section 3.5.1, there is a set of PDF’s for the signal DeltaT - One for each bin of
qr. Since the bins of qr tell how good the information about flavour tagging is, the low bins
would be almost randomly assigned a flavour and the high bins would be assigned a flavour
with very good confidence. This results in each PDF for the signal DeltaT showing different
levels of CP violation.

This can be seen by plotting DeltaT with cuts on the assigned flavour.
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Figure 3.12: PDF’s for each bin of DeltaT normalised to the number of events in each. it is apparent
that the PDF’s for low bins are almost identical for both flavours however the high bins
show a large seperation between the two. These plots were generated using MC signal
data with a value of Scp of 0.6.
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Chapter 4

Studies in DeltaT and DeltaT Errors

4.1 The DeltaT Error distribution

To optimize the results for DeltaT and hence lower the errors in the time dependent CP param-
eters (Scp), it is important to understand how the distribution of DeltaT Errors (DeltaTErr)
is formed. It is also essential in order to verify that a chosen control mode is acceptable.

The main features of the distribution are the peaks at around 0.5, 1, 1.2, 4.5 and 10. The
main goal of this chapter is to identify the cause of each relevant peak and to find an appro-
priate cut.
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Figure 4.1: Distributions for Delta T Errors cut at 2.5 (left), 10 (centre), and 25 (right). There are
five clear peaks below DeltaT errors of around 20.

The neutral B-meson only has a lifetime of around 1.52 ps. This means that all entries
with errors above around four contain almost no information about DeltaT. This means that a
cut can be established somewhere between two and four, removing the last two peaks entirely.
Unfortunately, this also means cutting almost 40% of events. This cut in events will result in
lower statistics for the yield and Acp so the errors for these values will be higher compared to
a time independent analysis.
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4.2 The Ks vertex location

4.2.1 The PXD

The first theory relating to the cause of the first peak is whether the Ks decays inside the
PXD or not. This is relevant because the outer layer of the PXD is 22mm from the IP and the
average distance it takes for the Ks meson to decay is very similar. This means that it should
be a common occurrence for the Ks vertex to decay both inside or outside this layer. Because
the Ks meson is not charged, it will not produce any tracks until it decays into a π+ and a π−.
If the Ks decays outside the PXD, the PXD will not provide any vertexing information.

This theory was tested by taking cuts on the radius of the Ks to either be inside or out-
side the PXD. It was found that this cut was very effective at isolating the first peak and so
this was determined to be the cause.
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Figure 4.2: Distributions for DeltaT errors after cutting the Ks vertex to be inside (left) and outside
(right) of the PXD. The peak at around 0.5 is entirely removed when the Ks vertex is
outside and the peak at around 1.0 is similarly removed when the Ks decays within the
PXD.

The effect can also be confirmed by looking at the location of the Ks vertex while taking
cuts cuts on DeltaT errors (Figure. 4.4). This shows that the majority of events with a DeltaT
error less than 2.5 have a Ks vertex within the PXD. There are still some events visible that
decay outside the PXD visible due to the tail end of the second peak, however this number is
very small compared to the number of events within the PXD.
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Radial Distribution of Ks Vertex (DeltaTErr < 0.7) 
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Figure 4.3: The distribution of the Ks vertex X-Y location overlayed on the layout of the Belle-II
detector (end-on). While the vast majority of events occur within the PXD (labelled
1), due to the high number of events there are still many events outside the PXD but
before the SVD (labelled 2). All events with DeltaT errors above 0.7 were cut to try
and isolate the first peak.

4.2.2 Number of SVD Hits

As can be seen in Figure. 4.1, the distributions from the first three peaks and the fourth peak
have very little overlap. This means that finding the cause of the last two peaks, and cutting
a variable based on that should entirely remove the fourth and fifth peaks. This is equivalent
to finding a value for DeltaT errors and cutting all events above that.

The variable found to be the cause of these peaks is the number of hits in the SVD. In or-
der for the SVD to be able to reconstruct good tracks for the Ks vertex, there must be at least
two hits for each charged pion in the silicon detector. This is because it is impossible to form
a straight line from only one point. In order for there to be two hits in the SVD, the Ks must
decay before the fifth layer of the VXD (both the PXD and the SVD). This is shown in Figure.
4.4.
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Figure 4.4: Example of how a decay might look on the X-Y plane (end-on) inside the VXD (each
layer numbered 1-6). The gray tracks represent the tag-side B-meson decay, and the
black represents the signal-side. The dashed lines show the invisible π0 and Ks tracks.
The solid black lines are the tracks from the visible charged pions. The hits on the VXD
are shown with a red ‘x’, with the left image showing two hits per pion and the right
showing only one hit per pion.
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The difference between no cut, and taking a cut on the Ks vertex being within the fifth
layer of the VXD is shown in Figure. 4.5. While there is still a very small peak at around 4, the
majority of events with DeltaT errors above around 2.5 are cut. This means that taking the
cut on the Ks vertex location to be before the fifth VXD layer is almost equivalent to cutting
all events with DeltaT errors above 2.5. The fifth peak in the DeltaT error distribution must
therefore be due to vertexing using the CDC.

htemp
Entries 46524

Mean 2.182

Std Dev 2.637

0 2 4 6 8 10
DeltaTErr

0

500

1000

1500

2000

2500

3000

3500

4000

htemp
Entries 46524

Mean 2.182

Std Dev 2.637

DeltaTErr {DeltaTErr < 10}

Figure 4.5: Distribution of DeltaT errors with no cut (blue), compared to with a cut on the Ks

vertex location (red).

Again, this can be further illustrated by looking at the distribution of the Ks vertex while
placing a cut on DeltaT errors at 2.5 (Figure 4.6).

Radial Distribution of Ks Vertex (DeltaTErr < 2.5) 
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Figure 4.6: Distribution of Ks vertex X-Y positions with a cut on DeltaT errors at 2.5. Almost all
events are within the fifth layer of the VXD.

Figure 4.6 shows the distribution stops around 1cm before the fifth layer of the VXD. This
could be because the Ks’s that decay close to it could potentially decay into two charged pions
which then go through the same SVD strip. This would result in less information from the
SVD and hence a higher error in vertexing. This could also be the cause of the small third
peak seen in the DeltaT distribution although this has not been tested.
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4.3 DeltaT Residues

When using Monte-Carlo generated signal data, it is important to make sure there are no cor-
relations between variables and their corresponding MC truth value, as this would result in a
bias in the shape of its distribution. In this section, the correlation between DeltaT and its
MC truth values is addressed.

To look at the correlations, the DeltaT residue is defined (δ∆T ). This is equal to the dif-
ference between DeltaT and its true value:

δ∆T = ∆T −∆TMC (4.1)

To check for correlations, the distribution of this variable is plotted taking cuts between different
values of DeltaT. Ideally, each distribution would be identical.
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Figure 4.7: Distribution of the DeltaT Residue taking cuts of different values of DeltaT.

As can be seen from Figure. 4.7, the distributions of this variable are not the same when
different cuts of DeltaT is taken.

It turns out that the difference in distribution shapes is not actually an issue, since the MC
DeltaT is formed from the true DeltaT distribution. This forms a PDF without the convolution
with the two Gaussians. The convolution with these Gaussians spreads the distribution out
slightly pushing the negative values to be more negative and the positive values to be more
positive. This accounts for the difference in shapes. What is not expected is the difference in
the number of events in each side region (the blue and green areas). The number of events in
the blue region is 7828 and the number of events in the green area is 4389. The explanation
for this is currently unknown.
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Chapter 5

Validation

Now that the model has been created, it must be tested. To do this, a data set will be created
that simulates what should be found in the real data. This involves finding the number of
each type of event that should be expected and adding it all into a single data set. Since there
are many more signal events generated than could be found in the real data (at this point), a
random selection of these can be added to the mix. For the background however, only 100fb−1

was used. This means that a random sample can not have enough statistical variance to be
useful. The solution to this is to use the PDF models for them to create new events with correct
distributions. It is important that not only are the PDF’s are correct, but also the the fraction
of events in each bin of qr is maintained. Doing this will guarantee a statistically good sample
of background.

The goal is to fit to the signal and background yields, and ultimately the values of Acp and
Scp. These can be specified when the signal is generated. Describe here is how data sets of
both 62.8fb−1 and 1ab−1 are simulated.

A control mode will then be used with the same analysis strategy in order to confirm it works
properly before unblinding the signal mode.

5.1 Expected Number of Events

5.1.1 Signal

The number of signal events expected is given by the reconstruction efficiency (ε) multiplied
by the branching ratio and the number of B0B̄0 events. This includes cuts of Mbc > 0.52
and |DeltaE| < 0.2. The number of B0B̄0 events is equal to the cross-section of B0B̄0 events
times the integrated luminosity. Belle-II expects that this cross-section is equal to 1.1nb. The
expected number of signal events is then given by Eq. 5.1.

Nsig = ε×Br(B0 −→ Ksπ
0)× 1.1nb× L (5.1)

The efficiency can be obtained by looking at how many of the events generated survived
after all the cuts and reconstruction. Here, 100,000 events were generated and 24,062 survived.
This gives ε = 0.24. The branching ratio is half that of B0 −→ K0π0 equal to 4.45 × 10−6

resulting in the expected number of signal events to be 1175 events per ab−1 before continuum
suppression (see Section. 3.4.2).

Nsig(1ab−1) = 0.24× 4.45× 10−6 × 1.1× 109 = 1175 (5.2)
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5.1.2 Background

100fb−1 of data was used for both the continuum and BB background. From this data set, 94,198
continuum events and 498 BB background events survived. After continuum suppression this
is down to 236 continuum events and 23 BB background events. This is scaled up to 1ab−1 to
be 2360 continuum and 230 BB background events per ab−1. The expected number of events
for each relevant data size is shown in table 5.1.

Signal Continuum BB Background

5ab−1 3050 11800 1150

1ab−1 610 2360 230

100fb−1 61 236 23

62.8fb−1 38 148 14

Table 5.1: Numbers of events in various data sizes.

5.2 Toy Single Fits

In order to verify the analysis technique, a dataset has been generated using the signal events
and sampled background events. This was then fit to the yields, Scp, and Acp. This section
shows the results from a single fit to these values for both 1ab−1 and 62.8fb−1. The input values
of Scp and Acp are 0.6, and 0.0 respectively. There values were chosen since they are close to
the known values.

1ab−1 Results
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Figure 5.1: Fits to a synthesized data set expected from 1ab−1 of integrated luminosity.
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62.8fb−1 Results
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Figure 5.2: Fits to a synthesized data set expected from 62.8fb−1 of integrated luminosity.

Figures. 5.1 and 5.2 show both the fits to the yield (left) and the flavour integrated DeltaT
fit (right). On the left, the signal is blue, the continuum is red, and the BB background is
green. On the right, the B0’s are blue and the B̄0’s are red. The continuum is green and the
BB background is cyan.

5.3 MC Toy Results

Because a single fit is not necessarily indicative of how good the model is, these single toys
are repeated 400 times and the results for all the yields, Acp, and Scp are kept along with
their respective errors. These are then displayed in a histogram and fit to a Gaussian. The
mean of these Gaussians are then used to compare the success of different models - Ideally,
each of these means will match the input data. The pull is also shown which shows how well
the model compares to the input, with the mean of the pull showing on average how many
standard deviations away the acquired mean is from the expected. A perfect model would have
a pull with mean of zero, and a standard deviation of one.

As with the single fits, the input values are an Acp and Scp of 0.0 and 0.6 respectively, and
yields as outlined in table 5.1.
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5.3.1 1ab−1 Toy MC Results
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Figure 5.3: Toy MC fits of 1ab−1 of integrated luminosity. The left shows the value, error, and pull
of Acp (top) and Scp (bottom), and the right shows the yield and pull of the signal yield.

5.3.2 62.8fb−1 Toy MC Results
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Figure 5.4: Toy MC fits of 62.8fb−1 of integrated luminosity.

Based on these results, it is likely that 62.8fb−1 of integrated luminosity will be insufficient
to make proper measurements of Scp. The results for the yield and Acp will also be very
limited. It is currently estimated that approximately 100fb−1 will be required for Acp and
yield results and probably more for Scp. The results are shown in table. 5.2.
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Yield Yield Error Acp Acp Error Scp Scp Error

1ab−1 572 31 0.07 0.1 0.55 0.17

62.8fb−1 38 8 0.11 0.409 0.78 0.583

Table 5.2: Results for Toy MC fits.

5.4 Linearity Fits

To check for a bias in the model, an MC toy model is done for a variety of values for the yield,
Acp, and Scp. A plot of obtained values against expected values is then plotted and a line of
best fit is taken. In a perfect model this will form a straight line with a gradient of one. This
would mean the obtained values perfectly match what is expected. The result of this linearity
fit is shown in Figure. 5.6
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Figure 5.5: Linearity fits for the means of the Yield, Scp, and Acp.

This shows that there is a small bias. These linearity fits used 5ab−1 of integrated luminosity
for each trial and 2000 fits were used for each data point. This bias can be accounted for by
introducing a correction factor however this introduces systematic errors so the bias will need
to be further studied. This bias was not present when TMVA was used (see section 5.4.1) for
continuum suppression however FBDT is still preferred as it is more efficient (section 3.4.2).

5.4.1 The Initial Value of Scp

When initially fitting to DeltaT, an initial value of Scp must be chosen. This value remains
unchanged up until doing the toy fits. Because of this, the initial value can have an impact on
the bias in Scp. This section also looks at effect of fitting each signal variable (Mbc, DeltaE,
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logSupp, DeltaT) using the same parameters or different parameters for each bin of qr. The
model used in this section uses an older model which used eight bins of qr instead of seven.
It also uses TMVA for continuum suppression. This should not affect the results however the
bias here was found to be much less.
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Figure 5.6: Linearity using the same parameters for each bin of signal PDF (left) and different
parameters for each bin of signal PDF (right). The top row was initially fit to an Scp of
negative one, the middle row used zero, and the bottom row used positive one.

These results show that initially fitting to a Scp value of zero is the best choice. While the
bias was slightly lower when different parameters for each bin were used (0.6% compared to
1.5% for an initial Scp of zero), the difference is not enough to justify the increased systematic
errors due to the number of parameters needed to fit multiple bins of qr. Therefore the same
parameters for each bin are used.

5.5 Control Modes

In order to validate the analysis technique on real data without unblinding the B0 −→ Ksπ
0

mode, the analysis is first used on another mode with similar properties but is already un-
blinded. This is called a control mode. The control modes deemed appropriate for this study
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were the B0 −→ J/ΨKs mode and the B+ −→ Ksπ
+ mode. Since both of these modes can be

vertexed using the J/Ψ (which decays via the J/Ψ −→ e+e− and J/Ψ −→ µ+µ− channels around
5% of the time each) and the π+, it is important that the vertexing is done only using the Ks

to imitate the B0 −→ Ksπ
0 mode as closely as possible. This is the reason RAVE is used for

vertexing and not TreeFit (section 3.2).

The difference can be seen by looking at the DeltaT error distributions (Figure. 5.7). When
only the Ks is used for vertexing, the DeltaT error distribution has significantly more events
at higher values. It also shows the peaking structure displayed in section 4.1.
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Figure 5.7: DeltaT error distribtions for B0 −→ J/ΨKs (left) and B0 −→ Ksπ
+ (right). The top plots

show the distributions when only the Ks is used for vertexing, and the bottom plots
show the distributions when all particles are used.

Since both of these modes were viable, the B0 −→ J/ΨKs mode was ultimately chosen
because it has a much lower expected number of background events. Here, the J/Ψ −→ e+e−

channel was used however the J/Ψ −→ µ+µ− will be incorporated in future to increase the
number of signal events. A cut on the reconstructed invariant mass of the J/Ψ was used to
drastically reduce the number of background events. The cut was dM < 0.11.

5.5.1 Control Mode Fits

As with the B0 −→ Ksπ
0 mode, the distribution of the variables must be fit. These are fit with

the same shapes as was done in section 3.5 however the parameters are not expected to be the
same. The fits for this mode are shown in Figure. 5.8.

The main difference between these fits and the fits for B0 −→ Ksπ
0 is the long tail in the

negative side for the DeltaE distribution. The cause of this is due to how the J/Ψ decays. Since
the JΨ decays into e+ and e− in this case, the electrons lose energy due to bremsstrahlung
radiation. This means that when the energy of the signal-side B-meson is reconstructed, it will
be slightly lower than expected.
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Figure 5.8: Fits to the signal for the control mode.

5.5.2 Control Mode Toy MC Results

The number of expected signal events is calculated using the same method as was done in
section 5.1. The result is that for an integrated luminosity of 62.8fb−1, 800 signal events are
expected. Due to issues with DESY’s grid computing system, the number of background events
could not be fully calculated however it is estimated to be around 1200. There are no BB back-
ground events expected for this mode.

All the PDF’s used here are preliminary due to delays in DESY’s grid computing system.
The preliminary PDF’s are likely the cause of the overestimation of the yield which in turn is
the cause of the higher value of Scp than expected. As before, the expected values are an Acp
and Scp of 0.0 and 0.6 respectively.
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Figure 5.9: Fits to a synthesized data set expected from 62.8fb−1 of integrated luminosity for the
control mode.

There were two values of Scp that were tested for the full MC toy which used values of Scp
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of 0.0 and 0.6. 400 fits were used for each of these values. The results show that there is still a
significant bias on Scp. This should be fixed when the PDF’s are finalized.
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Figure 5.10: Toy MC fits of 62.8fb−1 of integrated luminosity for the control mode using an Scp
value of zero.
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Figure 5.11: Toy MC fits of 62.8fb−1 of integrated luminosity for the control mode using an Scp
value of 0.6.

When the control mode PDF’s are finalised, a proper linearity fit will need to be done. The
results are outlined in table 5.3.

Yield Yield Error Acp Acp Error Scp Scp Error

Scp: 0.0 874 31 0.138 0.107 0.034 0.19

Scp: 0.6 855 33 -0.016 0.113 0.755 0.149

Table 5.3: Results for Toy MC fits.
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5.6 B-Meson Lifetime Fits

Another form of validation is to fit for the lifetime of the B-meson. This is done so that the
analysis can be tested without unblinding the flavour-tagging data. Throughout this section
only MC data is used. Real data for the control mode should be ready as soon as resources
become available on the grid computing system.

The lifetime fits are achieved by fixing all parameters except for the yields and the B-lifetime.
This was done using samples both with and without background. Doing this confirms that the
fit works on MC signal data alone.
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Figure 5.12: Lifetime fits for the B-meson using no background (left) and with background (right).

The results of this fit are shown in table. 5.4.

With Background: (1.571± 0.08)ps

Without Background: (1.354± 0.08)ps

Table 5.4: Results for the lifetime fits using the control mode. This uses 62.8fb−1 of integrated
luminosity.

The expected value for the lifetime is 1.52ps. As with the other results in this section,
the underestimation of the lifetime when the background is introduced is probably due to the
overestimation of the yield.
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Conclusion and Future Work

Throughout this work, a working analysis framework has been established for the B0 −→ Ksπ
0

decay channel. This has been done using RAVE for vertexing, and a signal DeltaT PDF using
seven bins of qr. The use of the BTube constraint for the tag-side vertexing has been imple-
mented. This framework currently shows around a 9% bias in the value of Scp and Acp, and a
yield which is consistently around one standard deviation from the expected value. The usage
of TMVA and two sets of hyper-parameters for FBDT have been compared, and an optimized
version of FBDT was found to be the best form of continuum suppression. A detailed analy-
sis of the DeltaT error distribution has been studied and an optimal cut on DeltaT errors at
2.5ps has been found. A preliminary analysis of the B0 −→ J/ΨKs control mode has been im-
plemented including toy models and a framework for B-meson lifetime fits has been established.

Future work of this analysis will need to include finding the cause of the bias in Scp, Acp,
and the yield, and finalization of the control mode PDF’s. A full linearity fit will then need to
be completed for the control mode and the J/Ψ −→ µ+µ− decay channel will be included. This
can all happen when resources become available on the grid computing system. After this is
completed, the B-lifetime fits can be completed on real data for the control mode and if there
are no issues, Acp and Scp can be determined. If the real data control mode is successful, the
B0 −→ Ksπ

0 mode will then be looked at. The main limiting factor right now is the current
integrated luminosity which is only good enough to give a very rough value of Scp. When more
data is obtained a very high precision value of the branching fraction, Acp, and Scp can be
obtained.
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