
Improved Selective Background Monte
Carlo Simulation at Belle II with Graph

Attention Networks and Weighted
Events

Boyang Yu

Master′s Thesis
at the Faculty of Physics

Ludwig–Maximilians–Universität München
Chair of Elementary Particle Physics

Supervisors:

Prof. Dr. Thomas Kuhr

Dr. Nikolai Hartmann

Munich, September 14, 2021

Verbesserte selektive
Untergrund-Monte-Carlo-Simulation bei
Belle II mit Graph-Attention-Networks

und gewichteten Ereignissen
Boyang Yu

Masterarbeit
an der Fakulität für Physik

Ludwig–Maximilians–Universität München
Lehrstuhl für Experimentelle Flavorphysik

Betreuer:

Prof. Dr. Thomas Kuhr

Dr. Nikolai Hartmann

München, September 14, 2021

Abstract

When measuring rare processes such as B → K(∗)νν̄ or B → lνγ, a huge luminosity is
required, which means a large number of simulations are necessary to determine signal ef-
ficiencies and background contributions. However, this process demands high computation
costs while most of the simulated data, in particular in case of background, are discarded
by the event selection. Thus filters using neural networks are introduced after the Monte
Carlo event generation to speed up the following processes of detector simulation and re-
construction. Merely filtering out events will however inevitably introduce bias. Therefore
statistical methods are invested to deal with this side effect.

This thesis extends previous work by James Kahn and Yannick Bross by the usage of
advanced graph neural network architectures and the introduction of weighted events.

In this work, I first study optimizations of the performance of graph neural network
structures by implementing advanced architectures with attention mechanisms and validate
them on large datasets. Then I present different ways to avoid the bias with the help of
event weights in post-processing and finally compare the biases after each strategy by
checking weighted distributions of several observables relevant for physics analysis.

vi abstract

Contents

Abstract v

1 The BELLE II Experiment 1

1.1 SuperKEKB and BELLE II Detector . 1

1.2 Monte Carlo Simulation . 4

1.3 Tagging Method . 5

1.4 Full Event Interpretation . 6

1.5 Skimming . 7

2 Machine Learning 9

2.1 Machine Learning Basics . 9

2.1.1 Generalization . 11

2.1.2 Gradient Descent . 13

2.2 Neural Networks . 15

2.2.1 General Concept . 15

2.2.2 Graph Neural Networks . 17

2.2.3 Attention Mechanisms . 19

2.3 Decision Trees . 21

2.3.1 Gradient Boosting Decision Trees 22

2.3.2 Hyperparameters . 22

3 Statistical Tools 25

3.1 Sampling Method . 25

3.2 Reweighting Method . 27

3.3 Metrics . 29

3.3.1 Calibration Curve . 29

3.3.2 ROC Curve and AUC Value . 30

3.3.3 Chi-squared Test . 31

3.3.4 Cross Entropy . 32

3.3.5 Kullback-Leibler Divergence . 33

3.3.6 Kolmogorov-Smirnov Test . 33

viii Summary

4 Neural network architecture optimization 35
4.1 Pre-processing . 35

4.1.1 Dataset . 35
4.1.2 Graphs and Batches . 38
4.1.3 Clustering . 39

4.2 Neural Network Filter . 40
4.2.1 Architecture and Hyperparameters 41
4.2.2 Visualisation of Attention Weights 45
4.2.3 Tuning and Comparison . 46

5 Event weighting methods 53
5.1 Speedup Metrics . 53

5.1.1 Speedup for the Sampling Method 53
5.1.2 Speedup for the Reweighting Method 56
5.1.3 Robustness . 58

5.2 Post-processing . 59
5.2.1 Importance Sampling . 59
5.2.2 GBDT Reweighting . 60
5.2.3 Histogram Reweighting . 64

6 Summary 65
6.1 Results . 65
6.2 Outlook . 65

Acknowledgements 70

Erklrung 72

Chapter 1

The BELLE II Experiment

The standard model (SM) is so far the best-tested fundamental theory to describe nature.
However, there still remain many primary questions to be answered. To complement the
SM, many new physics (NP) scenarios have been proposed and experiments in high energy
physics (HEP) are designed for confirmations of new particles and new processes. The
experiments in HEP can be divided mainly by their focus into two categories: a) At the
energy frontier, such as the Large Hadron Collider (LHC), and b) At the intensity frontier,
such as the Belle II, which provides the context for this work.

1.1 SuperKEKB and BELLE II Detector

KEK[10] is the abbreviation for “the Japanese High-Energy Accelerator Research Organi-
sation”. It operated KEKB from 1998 to 2010, which is a 3 km circumference asymmetric
electron-positron collider with instantaneous luminosity of 2.11× 1034 cm−2s−1. KEKB is
known as a B factory because it operates at a center of mass energy equivalent to the Υ(4S)
resonance that predominantly decays into B-mesons. The corresponding Belle experiment
concentrated on the characteristics of BB̄ pairs and arrived at its highlight in 2008 when
Makoto Kobayashi and Toshihide Maskawa were awarded the Nobel prize in physics for
their theory to explain CP-violation which was confirmed by the Belle experiment. The
measured level of CP-violation is however not sufficient. Therefore scientists were looking
for a much deeper understanding of the related phenomena.

As an upgraded version of KEKB, SuperKEKB (Figure 1.1 left) has an increased in-
stantaneous luminosity by about a factor of 40 to 8× 1035 cm−2s−1. Traditionally a higher
luminosity was reached by increasing the beam currents. However, SuperKEKB was de-
signed based on ideas of Pantaleo Raimondi from the Italian SuperB project, to use a
large crossing-angle at the interaction point and squeezing to nanometer-scale to increase
luminosity (Figure 1.2). The integrated luminosity is expected to reach 50 ab−1 which is
50 times more data than Belle.

2 1. The BELLE II Experiment

Figure 1.1: SuperKEKB and Belle II

Figure 1.2: Schematic view of the nanobeam collision scheme [12]

1.1 SuperKEKB and BELLE II Detector 3

Belle II Detector [735 collaborators, 101 institutes,
23 nations]electrons (7 GeV)

positrons (4 GeV)

Vertex Detector
2 layers Si Pixels (DEPFET) +  
4 layers Si double sided strip DSSD

Belle II TDR, arXiv:1011.0352

EM Calorimeter
CsI(Tl), waveform sampling electronics

Central Drift Chamber
Smaller cell size, long lever arm

Particle Identification
Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (forward)

KL and muon detector
Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC  
(end-caps , inner 2 barrel layers)

Figure 1.3: 3D-Schematic view of Belle II dector [16]

Because of the higher rate of collisions by the SuperKEKB accelerator, the Belle de-
tector was upgraded to Belle II (Figure 1.1 right). The Belle II detector is comprised of
the following sub-detectors: Vertex detector (VXD), Central drift chamber (CDC), Par-
ticle identification (PID), Electromagnetic calorimeter (ECL), K-Long and muon detector
(KLM) (Figure 1.3).

Figure 1.4: Luminosity versus energy of col-
liders [13]

As mentioned before, the most promi-
nent feature of this project is its high lu-
minosity, especially when compared with
other experiments (Figure 1.4). However,
this also produces challenges for data pro-
cessing to tremendous dataset it generates,
which is also the motivation of this work.

4 1. The BELLE II Experiment

1.2 Monte Carlo Simulation

To analyse the experiment data, simulations are constructed in parallel, using Monte Carlo
(MC) experiments. Virtual signals are generated through MC and detector simulation
(Det. Sim.), then experience the same processing as real data to get physical characteris-
tics extracted. Finally these two results are compared in order to match physical quantities
to observations from the experiment (Figure 1.5). Simulated data passes through the fol-
lowing steps in a Belle II analysis:

Figure 1.5: Data flow within a Monte Carlo based experiment. [16]

These steps are:

• MC: In this step, hadron decays and the following quark hadronisations are simulated
using EvtGen package [30] and Pythia [35] separately. This simulates the collision
event of electron and positron as well as the subsequent decays to stable final state
particles (FSP) in vacuum.

• Det. Sim.: During detector simulation, the simulated decays from the MC stage
virtually interact with the Belle II detector with the help of the GEANT4 toolkit [11].
The output format of this step is identical to that of the real experiment output
(detector hits, track candidates, etc.), except for the information of MC simulations.

• Data: Real experiment outputs from Belle II detectors. Independent of the above
simulations.

• Reco: Reconstruct the detector information into particle candidates for easier further
analyses. Details in Chapter 1.3.

• Skim: Select suitable events to be used for further analyses. Requirments can be
much different for different uses. In this study this is specified as Full Event Inter-
pretation (FEI) for Hadronic B0 channel. Details will come in Chapter 1.4.

• Analyse/Fit: Further studies and comparisons between MC simulations and real
experiment data. Not relevant in this work.

1.3 Tagging Method 5

Due to the expensive computational cost for Det. Sim. and Reco steps as well as the
low retention rate (O(10−7 to 10−1)) for background during the Skim process, I follow the

work of James [25] to add a neural network (Figure 1.6, NN in red) as a filter directly after
Monte Carlo generation to pre-decide which particles will be kept to save computation in
the following data flow (see Chapter 4).

Figure 1.6: Simulation with smart background selection.

1.3 Tagging Method

To measure the branching fraction of rare processes such as B → K(∗)νν̄ or B → lνγ, the
corresponding signal must be identified amongst all e+e− collision events. In the study,
Monte Carlo simulations are used to tune the analysis for identifying and isolating the sig-
nal and rejecting the non-signal (background) events, requiring a large simulation sample.

During the reconstruction, signal events have to be selected with the help of the so
called tagging method (Figure 1.7):

Figure 1.7: Tagging Method.

1. Reconstruct generically decaying B mesons, Btag, using the Full Event Intergretation
(FEI) software (see Chapter 1.4).

2. Reconstruct signal-side B mesons, Bsig, from experiment data.

3. Pair two mesons each from one of the above to produce an Υ(4S) resonance.

4. Send the reconstructed Υ(4S) decays into Skimming process (see Chapter 1.5) to
filter out the background events while retaining as many signal events as possible.

6 1. The BELLE II Experiment

1.4 Full Event Interpretation

FEI is an exclusive tagging algorithm for the Belle II experiment which enables precise
measurement of otherwise inaccessible B meson decay-modes. With the help of machine
learning it can automatically identify plausible B meson decay chains based on the ex-
periment data from detector. FEI provides a greater efficiency to enable a larger effective
sample size in the measurement [26].

The hierarchical procedure of the FEI reconstruction is shown in Figure 1.8. The inputs
are reconstructed tracks and clusters. These informations are then translated as FSP and
combined to form intermediate particles and finally used to reconstruct B mesons. Using
a series of fast Boosted Decision Trees (fBDT, see Chapter 2.3), the FEI determines the
likelihood of each reconstructed candidate based on its properties as well as its parent
status. Therefore the output of the FEI is a list of reconstructed B mesons for each input
event, associated with their signal probabilities (sigProb) indicating the likelihood of their
correct reconstructions. For B0 decays, the object used in this study, the reconstruction
efficiency is 0.24%.

Figure 1.8: Schematic overview of the FEI. [27]

1.5 Skimming 7

1.5 Skimming

Due to the high luminosity of Belle II and the corresponding large data volume for analyses,
Skims are used to reduce the number of irrelevant samples by applying a simple selection
at event level. Skimming is applied for both MC simulated and real data. Information on
the reconstructed B candidates is calculated and added to the kept events.

This study uses the FEI skims for reconstruction of hadronic B0 (see Chapter 1.4)
where two sets of selection criteria are carried out before and after the FEI reconstruction:

Skim pre-cuts ([1]: fei precuts) at event-level are applied before running the FEI to re-
duce computation time:

• ncleaned tracks ≥ 3

• ncleaned ECL clusters ≥ 3

• Visible energy of event (CMS frame) > 4 GeV

• 2 GeV < Ecleaned tracks & clusters in ECL < 7 GeV

where cleaned tracks and clusters are defined as:

• Cleaned tracks : d0 < 0.5 cm, |z0| < 2 cm, and pT > 0.1 GeV

• Cleaned ECL clusters : 0.296706 < θ < 2.61799, and E > 0.1 GeV

After FEI there is a Tag side selection ([1]: feiHadronicB0):

• Mbc > 5.24 GeV

• |∆E| < 0.2 GeV

• signal probability > 0.001

where Mbc is the beam-constrained mass of the reconstructed Btag defined as Mbc =√
E2

beam − p2
Btag

, ∆E is the reconstructed energy difference ∆E = EBtag − Ebeam,

and signal probability is the correct reconstruction-probability output by the FEI. The
retention rate of the Hadronic B0 channel used in this study is about 5.86%.

8 1. The BELLE II Experiment

Chapter 2

Machine Learning

The method of selective Monte Carlo simulation used in this work relies on Machine Learn-
ing. Therefore some basic ideas of Machine Learning (ML) are introduced in this chapter.
I will first explain the definition and show some general characteristics of ML. Then I go
into details to introduce two important branches of ML: Neural Networks and Decision
Trees, which are applied in this work.

2.1 Machine Learning Basics

As a sub-field of Artificial Intelligence (AI), ML provides machines the ability to learn
without explicitly being programmed (Figure 2.1). It is a form of applied statistics with
increased emphasis on the use of computers to statistically estimate complicated functions
and a decreased emphasis on proving confidence intervals around these functions [22].

Figure 2.1: Relations of Artificial Intelligence, Machine Learning and Deep Learning [6]

10 2. Machine Learning

A succinct definition of “Learning” is given by Mitchell [33]: “A computer program is
said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience
E.” as visualized in the Figure 2.2.

Figure 2.2: The Mitchell Paradigm [2]

ML shows an easier way to deal with problems that are too difficult to solve with fixed
programs designed by human beings, while Learning is the process to acquire the ability
to perform the task.

The way an ML system processes an example is usually understood as a Task, where
an example is a set of n features x ∈ Rn measured from an object to be processed by our
ML system. Most common tasks include Classification: f : Rn → {1, . . . , k}, with k
classes; Regression: f : Rn → R to find a function, etc..

Experience is a set of knowledge that an ML system has access to. According to
different experiences, scientists categorize ML algorithms into several areas (Table 2.1):

Algorithm Experiences
Supervised learning Data and Label

Unsupervised learning Data alone
Semi-supervised learning Data, partly with Label
Reinforcement learning Data and Rule

Table 2.1: Categories of Machine Learning algorithms according to their Experience

Performance defines a metric to evaluate the abilities of an ML algorithm. Very often
used are Accuracy, Error, Cross Entropy, and so on, comparing the predictions of ML

2.1 Machine Learning Basics 11

with the expected answers.

In this work two different systems of ML are used, one is Filter Prediction (See Chapter
4.2) with Neural Networks, the other is True-Positive Recognition with Decision Trees (See
Chapter 5.2.2): (Table 2.2)

Background Recognition True-Positive Recognition for
(Cutting-)Reweighting Method

Task Classify Target (Pass) events Classify True-Positive (TP) events
and Background (Fail) events and False-Negative (FN) events

Experience Data: Graphs of Events Data: Features of Pass-Events
(both Supervised) Label: Pass/Fail Label: TP/FN

Performance Sampling Method: Speedup Loss Binomial Deviance Loss
Reweighting Method: Cross-Entropy Loss

Tools (Graph) Neural Networks (Gradient Boosting) Decision Trees

Table 2.2: Machine Learning Systems used in this work

2.1.1 Generalization

To train an ML model, the model outputs changing with small updates of model parame-
ters is compared with the target result in terms of a certain metric. This metric is called
loss function and should be suited to the task at hand. This is what is minimized or
maximized during the training. After one comparison, the program should decide how to
update the matrices in order to get closer to the task and then give another try with some
new small changes. The update rule is called Optimizer. Within a wide range of optimiz-
ers, most are gradient based to be used in the training of NNs where efficient calculation of
the gradient is allowed by backpropagation. Each update is called a step and all the steps
to go over the dataset one time is called an epoch. The maximum number of epochs is
usually restricted to control the training time, while another way to monitor is the ampli-
tude of the last update. During the training process, it is very important to know when to
stop and how large one step, the learning rate, should be taken. With smaller learning
rate the training is more guaranteed to converge, but at a cost of training time (Figure 2.3).

The training process I introduced above is carried out just on a single training set,
which simply defines an optimization problem. However, to measure how well an ML
model generalizes, the performance of the trained model is evaluated on new inputs which
are previously unseen by the system and are independent of the training data. This defines

12 2. Machine Learning

Figure 2.3: Ideal Training Process [4]

the generalization error or test error.

A well-trained ML model should have both low training error and test error to be nei-
ther underfitted nor overfitted. One takes this into account when tuning the parameters
(such as the number of units, the number of layers, etc.) of an ML algorithm. When the
model is not even able to perform well on the training set, it is underfitted. Overfitting
occurs when the training error is satisfying, but test error is much larger. The tendency of
a model to overfit or underfit is reflected by the capacity of the model, which measures
the ability of a model to memorize the detailed properties of the training set (Figure 2.4).
A more complicated model, e.g. having larger weight matrices, tends to have higher ca-
pacity, indicating a better performance on training set but meanwhile a higher danger of
overfitting.

Another system to describe this consists of Bias and Variance. Bias is defined as the
difference between the expectation value of estimated results by the model and the true
value:

Bias(θ̂model) = E(θ̂model)− θtrue

Variance is simply the one we are familiar with:

Var(θ̂model)

For an estimator, bias and variance reflect two different sources of error. Bias shows
the expected deviation from the real function, while variance measures the deviation from

2.1 Machine Learning Basics 13

Figure 2.4: Underfitting and Overfitting: Dots are data and curves are trained models.
[22]

the expected simulated value that every single sampling data is likely to cause. One
measurement to consider both of these two criteria is the mean squared error (MSE):

MSE = E[(θ̂model − θ)2]

= Bias(θ̂model)
2 + Var(θ̂model)

Best estimators with both bias and variance satisfying should also have low MSE.
Now come back to the previous concepts of capacity, underfitting and overfitting. When
generalization error, or test error, is measured by the MSE, increasing capacity helps to
decrease bias at the cost of increasing variance. The optimal model with minimum test
error can be found in the middle of the U-shaped curve (Figure 2.5).

2.1.2 Gradient Descent

Gradient Descent is a common method to be used in the updating of ML models. The
idea is based on approximating the loss function with its first derivative: f(~x + ~ε) ≈
f(~x) + ~ε · ∇f(~x) with f the loss function and ~ε the step length, or the learning rate.
The loss function reaches its local minimum or local maximum at critical point ~xc
satisfying ∇f(~xc) = 0 or approximately f(~xc + ~ε)− f(~xc) ≈ 0 as shown in Figure 2.6.

With a descending gradient ∇f(~x) ≤ 0, the local minimum can be ensured with
∇f(~xmin) = 0 and f(~xmin) ≤ f(~xmin + ~ε).

In a learning process, the global minimum instead of a local minimum of the loss
function is what people expect to reach (Figure 2.7). So the learning rate should not be
too small to disable the update to “jump out of” a local minimum or to slow down the
convergence of the loss function too much (Figure 2.8, left).

14 2. Machine Learning

Figure 2.5: As capacity increases, bias (dotted) tends to decrease and variance (dashed)
tends to increase, yielding another U-shaped curve for generalization error (bold curve).
[22]

Figure 2.6: Types of critical points in one dimension. [22]

Figure 2.7: Local minimums and global minimum in one dimension. [22]

However, the learning rate should also not be too large to overshoot the minimum
(Figure 2.8, right). Therefore it is important to set a suitable learning rate to fit for the

2.2 Neural Networks 15

task.

Figure 2.8: Small and large learning rates in one dimension. [4]

2.2 Neural Networks

Neural Networks (NN), also called Artificial neural networks (ANN), are computing sys-
tems inspired by information processing and distributed communication nodes in biological
neural networks that constitute human and animal brains. Information or signals are pro-
ceeded by nodes, or artificial neurons, and transmitted through edges, or connections, to
other nodes which usually belong to the next layer.

As a part of deep learning, one neural network often consists of multiple layers, there-
fore “deep”, with different functions or purposes. With the help of non-linear activation
function in each node, the whole NN system is able to learn complicated tasks. Thus
it is widely used in many areas of physics such as high energy physics, medical physics,
condensed matter physics and so on [15].

2.2.1 General Concept

The most fundamental structure of an NN is the artificial neuron, or called Perceptron
(Figure 2.9).

The data from m inputs {x1, x2, ..., xm} are summed up with weights {w1, w2, ..., wm}
together with a bias b to form an intermediate value z =

∑m
i=1 x

i ·wi + b ≡ ~w · ~x+ b which

16 2. Machine Learning

Figure 2.9: An artificial neuron – Perceptron

will then get activated by f , the so called activation function, usually non-linear, to form
the final result of this neuron y = f(z).

A more complicated case is called Feed-Forward Networks (Figure 2.10) where there
are not only one set of weights ~w and bias b, but n (not necessarily equals to the number

of the input neurons m) sets stored in the matrix W ∈ Rn
m and vector ~b ∈ Rn.

Figure 2.10: Feed-Forward Networks

Now the functions turn out to be:

Rm → Rn

~x → ~z = W~x+~b

Rn → Rn

~z → ~y = f(~z)

2.2 Neural Networks 17

In order to learn complicated tasks, more intermediate layers are often added between
input and output. This is finally the most common used structure: Deep Neural Networks
(Figure 2.11). The layers in between build up hidden layers.

Figure 2.11: Deep Neural Networks with n units and l (hidden) layers

In this example, all the hidden layers have the same dimension. It is however not nec-
essary in practice. Therefore the weight matrices between each layers can have different
shapes decided by the size of its local input and output. Non-linear activation functions
can also be added in between.

Training an NN is in fact updating the weight matrices. By slightly changing the values
in the matrices, the new output is compared with the target result in terms of loss function
in order to decide the update of next step.

2.2.2 Graph Neural Networks

In order to meet the demand of representing data with graph structures, information
scientists invented the Graph Neural Networks (GNN) model [34]. In general the model
can be represented with a mapping τ(G, n) ∈ Rm with G the graph, n one of the nodes
building the graph and m the dimension of output vectors. According to the dependency
of function τ on node n, GNN can be divided into two categories:

Node-focused → n-dependent

Graph-focused → n-independent

18 2. Machine Learning

In this work, only graph-focused GNN is relevant, whose function can be simplified as
τ(G) ∈ Rm.

A graph G has the structure G = (N,E), where N stands for the set of nodes and E
stands for the set of edges. An edge (u, v) ∈ E connects two nodes u, v ∈ N. Here the nodes
u and v can be the same to build a self-loop; all the edges (u, v) and (v, u) in a graph can
be the same to form an undirected graph or somewhere distinguishable to form a directed
graph. In this work, directed graphs with self-loops are used as basic structure for the NN
filter. Each node or edge is attached with a label ln ∈ RlN for node n or l(n1,n2) ∈ RlE for
edge (n1, n2)

Take the following graph as an example (Figure 2.12):

Figure 2.12: Example of a graph

There are overall:

• 7 nodes : n1, n2, ... , n7

• 8 edges : (n2, n1), (n2, n3), ... , (n6, n7) simplified as (2, 1), (2, 3), ... , (6, 7)

• 7+8 labels : l1, l2, ... , l7, l(2,1), l(2,3), ... , l(6,7)

Note that in this context labels are also referred to as features in some other literature
and in the Python library [3] used in this work, so not to be confused with *labels* as
targets in supervised learning.

2.2 Neural Networks 19

With graphs well prepared, it is time to consider training processes. A supervised
learning framework specified for this work can be written as:

L = {(Gi,Fi, ti) | Gi = (Ni,Ei); Fi = FNi
∈ Rm;

ti ∈ {0, 1}, 1 < i < p}

where Gi = (Ni,Ei) is one of the p graphs with node Ni and edge Ei; Fi = FNi
is the

corresponding features with m dimensions but only attributing to the nodes; ti is the
target, or label in terms of training, for the i-th event. As shown in the example above
(Figure 2.12), graphs with separable parts {n1 − n5, n6 − n7} are allowed to form single
graph. In other words, all the graphs inside the learning set can be combined into a unique
disconnected graph G. Therefore the framework can be packed as:

L = {(G,F,T) | G = (N,E); F = {FNi
} ∈ Rm×p; t ∈ {0, 1}p}

This encapsulation will be referred to as batching during pre-processing (See Chapter 4.1).

In order to make use of GNN, it is necessary to define a method to update the network,
or to find the relation between G and T. One of the simplest graph neutral network models
is given by Graph Convolutional Networks (GCN) [28].

The mathematical expression of graph convolution ([3]: GraphConv) with self loop can
be written as:

h
(l+1)
i = σ(b(l) +

∑
j∈Ni

1

cji
h

(l)
j W

(l))

where Ni stands for all the neighbouring nodes of the node i, h
(l)
i is the value of node i in

the l-th step, W (l) is the corresponding weight matrix, cji is a normalisation factor and σ
is the activation function.

The whole network gets upgraded through convolutions at every single node with its
surroundings. The similarities of graph structure and convolution mechanism with tree
structure of particle decays encourage the investment of GNN in this work.

2.2.3 Attention Mechanisms

The updates in GCN are always symmetric over adjacent nodes but in practice, a more
flexible summation can be realised by Attention Mechanisms. Already before the suggestion
of Graph Attention Networks (GAT) [36], many NN algorithms benefited from this idea.
The attention mechanisms have three major properties ensuring the reasonableness of
choosing it for tasks like particle decays:

• The algorithm is fast through parallel computation of node neighbor pairs;

• It is robust to the degrees of different nodes by specifying weights to the neighbors;

20 2. Machine Learning

• The model is tolerant to the shapes of graphs and therefore is able to deal with
completely unseen structures

The Attention Mechanism is defined as a mapping ~a ∈ R2F ′ of two neighboring nodes
~hi,~hj ∈ RF on a real score in R (Figure 2.13 left). The coefficients αij are defined as:

αij = softmaxj(σ(~aT [W~hi‖W~hj]))

with a global weight matrix W : RF → RF ′ , F ′ the feature’s dimension of outputs, and an
activation function σ. The symbol ‖ is the concatenation operation.

This coefficient αij can be seen as the attention that has to be payed on the connection
between node i and j (or self-loop when i = j). Using all of these coefficients, the update
rule is defined as:

~hi
(l+1)

=
∑
j∈Ni

αijW
(l) ~hj

(l)

The design of GATs also allows multihead. Naively speaking it is a training of several
GCNs at the same time on the same graph. These GCNs are parallelized in different
Attention Heads (Figure 2.13 right).

Figure 2.13: Left: The Attention Mechanism for GAT; Right: Multihead Attention

Studying the evolution of Attention Mechanism will help to understand the propagation
of information during the training process. A visualization will be shown in Chapter 4.2.2.

2.3 Decision Trees 21

2.3 Decision Trees

As mentioned in Chapter 1.4 and Table 2.1, Decision Trees (DT) are the basic structure of
FEI skims and the Cutting-Reweighting Method which is a graphical supervised learning
method used for classification and regression. It can learn simple decision rules inferred
from the data features to create a tree-structured model that predicts the value of a target.

As shown in Figure 2.14, each node of the decision tree represents a specific area in
the input space, and each child of the node breaks that area into one subregion. Repeat-
ing divisions, the whole space is subdivided into non overlapping regions represented by
leaves. The training of a DT can be considered non-parametric if it is able to learn a tree
of arbitrary size.

Figure 2.14: An example of Decision Trees.
Top: Decision Tree; Bottom: Space Divi-
sion [22]

The diagrams on the right describe how
a decision tree works.

Top: Each node of the tree makes the
choice between 0 and 1 according to certain
criteria attached to this node and passes
the information it gets from its parent node
to the chosen child node on the left or on
the right. Internal nodes representing Input
space are drawn as circles, while leaf nodes
constructing Output space as squares.

Bottom: The entire 2-D space is di-
vided by the tree into 7 regions. The in-
ternal nodes of the tree (circles in both
diagrams) are drawn along the dividing
lines used to categorize the examples.
And leaf nodes are drawn in the cen-
ter of each region of examples they re-
ceive.

The result of the training is then a
piecewise-constant function, with one piece
per leaf. At least one training sample is
required to define each leaf. Therefore the
learning ability of a decision tree is strongly
restricted by the distribution of training ex-
amples.

22 2. Machine Learning

2.3.1 Gradient Boosting Decision Trees

There are usually several ways to optimize an ML model. Decision trees are most powerful
in ensembles, referred to as boosting. One of the most common methods to train boosted
decision trees is Gradient Boosting (GB) which depends on Gradient Descent.

Coming back to DTs, the basic building block of a Gradient Boosting Decision Tree
(GBDT) is a weak learner hm: a decision tree regressor with fixed size. The output can
be predicted by the sum of such weak learners:

ŷi = FM(xi) =
M∑
m=1

hm(xi)

with M the number of estimators and given input xi with label yi.
One extra estimator can be seen as a small update of the function:

Fm(x) = Fm−1(x) + hm(x)

and the update hm should minimize the summed loss Lm:

hm = arg minh Lm = arg minh

n∑
i=1

l(yi, Fm−1(xi) + h(xi))

the loss function l can be approximated as:

l(yi, Fm−1(xi) + hm(xi)) ≈ l(yi, Fm−1(xi)) + hm(xi)

[
∂l(yi, F (xi))

∂F (xi)

]
F=Fm−1

the criteria of hm can be then simplified as:

hm ≈ arg minh

n∑
i=1

h(xi)gi

with gi the gradient
[
∂l(yi,F (xi))
∂F (xi)

]
F=Fm−1

. Therefore the gradient descent amounts to fitting

the weak learner hm to match the negative gradient gi .

2.3.2 Hyperparameters

Apart from the learning rate I mentioned above, many other parameters are also playing
decisive roles and require careful tuning for an ideal performance of the model. These pa-
rameters that are to be decided before the training process are called Hyperparameters.
In this work, the function GradientBoostingClassifier from scikit-learn library [8] is tuned
and invested for GBDT. It has the following major hyperparameters:

• loss: The loss function to minimize in the training.

2.3 Decision Trees 23

• learning rate: Relative contribution of each weak learner

• n estimators: The number of weak learners.

• criterion: Chosen among friedman mse, mse and mae, this parameter instruct
the measurement of the quality of a split in each weak learner. It influences the
training of each regressor.

• min samples split: The minimum number of necessary samples to split an internal
node.

• min samples leaf : The minimum number of necessary samples to build a leaf node.

• max depth: The maximum depth of each weak learner.

Some of the parameters can have correlated effects: learning rate vs n estimators as
well as min samples split vs min samples leaf vs max depth. These relations should
be taken care of during the tuning.

24 2. Machine Learning

Chapter 3

Statistical Tools

Once Neural Network Filters are ready, one has to consider how to make use of them and
how to evaluate their performances. In this Chapter the two main directions of post-
processing: Sampling Methods and Reweighting Methods will be first introduced. Then
some statistical metrics used in tuning, training and evaluation are explained together in
one section.

The output of the NN Filter is designed as a real number p ∈ [0, 1] ⊂ R, indicating the
predicted probability of the corresponding event to pass the later applied FEI skims. To
make use of these probabilities, two parallel directions are tried out: Sampling, where all
the events have the chance to be selected by a stochastic process according to their scores
and Reweighting, where only the events with scores larger than certain threshold will
be kept. Chosen events of both methods will be attached with some weights for further
analysis. Both methods are aimed to avoid bias caused by false negatives in the filtering
process. In contrast to previous approaches that try to mitigate the bias during training
[14], with these methods the bias is corrected by the use of event weights.

3.1 Sampling Method

Sampling methods select members from the population to take part in a statistical study
or survey. The distribution may be biased if the samples aren’t randomly selected and
therefore will lower the reliability of the conclusions [5].

In the context of HEP simulations, people are often more curious about the distribu-
tions of observables instead of detailed information of individual events. With the help of
sampling methods, samples are selected randomly so that their characteristics will form
new distributions without the need that every single event is correctly chosen or aban-
doned. Further more, background events are expected to be rejected as many as possible
to save the calculations in the following steps.

26 3. Statistical Tools

There are many different sampling methods suitable for different tasks: Simple Ran-
dom Sampling, Rejection Sampling, Stratified Sampling, Importance Sampling,
Metropolis-Hastings and so on [31]. I only invested Importance Sampling in this
work in order to make use of the NN outputs as probability distribution function (PDF).
In the context of this paper, Sampling Methods merely refers to Importance Sam-
pling.

Suppose the following quantity is wanted:

θ =

∫
X
h(x)π(x)dx = Eπ[h(X)]

where X is the support of the random variable X, π(x) the PDF and h(x) the target
character to be checked. In a Simple Random Sampling, rare events from X -space
are equal-possibly selected regardless of their PDF and contribute only a little on the
final result θ. This will cause a waste of time and computation in practice. Marshall [32]
suggested that the focus should be set on the region(s) of “importance” in order to save
computational resources. This becomes particular essential for Monte Carlo computation
with high-dimensional models. A sample is generated with the following Importance
Sampling algorithm:

• Draw x(1), ..., x(m) from a trial distribution g(·).

• Calculate the importance weight

ω(j) = π(x(j))/g(x(j)), for j = 1, ...,m.

• Approximate θ by

θ̂ =
ω(1)h(x(1)) + · · ·+ ω(m)h(x(m))

ω(1) + · · ·+ ω(m)

In order to make the estimation error θ̂ − θ small, g(x) has to be as “close” in shape to
π(x)h(x) as possible. In this work the probability to select a certain event is given by the
NN output pNN(x). Consider the total number of events passing the skim
N =

∑
x pskim(x)pi(x) where pi(x) is the distribution of all the random observables that

the event generation process tries to approximate. Due to the requirement of detector sim-
ulation and reconstruction for every given x, the evaluation of pskim(x) is very expensive.
Therefore the probability pNN(x) is added in the sampling from pi(x)pNN(x) instead of

real processes through importance weight : ω(x) = pi(x)
pi(x)pNN (x)

= 1
pNN (x)

.

The following (Figure 3.1) shows the histograms and the corresponding deviation curve
of the observable Mbc, one of the features attached to each event with true label, using
the sampling method with which the bias on test data in this work can be avoided by
construction.

3.2 Reweighting Method 27

Figure 3.1: Histograms (left) and the deviation (right) of Mbc for Sampling Method

3.2 Reweighting Method

Another method of post-processing that corrects for the bias from false negative filter-
ing decisions is the Reweighting Method. In contrast to the Sampling Method,
Reweighting Methods can be used to correct a potential bias after a hard-cut filtering
decision without introducing randomness.

Reweighting is a general procedure, but in particle physics it is usually utilized to
modify output of MC simulation to reduce disagreement with real experiment data. This
process is also known as Calibration.

Take the following histograms as an example.

Figure 3.2: Histograms (left) and the deviation (right) of Mbc after selection

The left plot shows the histograms of the feature Mbc. The histogram for true events is
colored in blue - Origin, while the one for true-positive events after a hard-cut selection is
colored in orange - Selected. Both histograms are normalized and it is clear to recognize a
much higher peak as well as a lower plateau in the Selected one. The relative deviation of
the two histogram can also be seen from the figure on the right. This difference is known
as bias.

28 3. Statistical Tools

In order to fix this bias, the Reweighting Method is introduced. After the selection,
each kept event will be attached with a weight w to enhance or decrease its importance. I
tried out two methods to calculate the weight w: GBDT Reweighting and Histogram
Reweighting.

• In GBDT Reweighting, a GBDT classifier (See Chapter 2.3.1) is trained with
selected features of events from the training set to distinguish between True-Positive
(TP) events and False-Negative (FN) events:

True-Positive (TP) Label=true NN score ≥ Threshold
False-Negative (FN) Label=true NN score < Threshold

Table 3.1: Training of GBDT classifier

Then the events from the test set will be scored by the well trained classifier. The
inverse scores will be used as weights, with the classifier output probability w =

1
pclf

. The performance of this method is shown below. Compared to the Selected

one (Figure 3.2), the bias is almost eliminated and the fluctuations around 0 are
symmetric along the whole range of Mbc.

Figure 3.3: Histograms (left) and the deviation (right) of Mbc after GBDT Reweighting

• In Histogram Reweighting, the first step is again the training of GBDT classifier
with the above mentioned data. However, the scores of test samples will be counted
into histograms. By comparing the score histogram of Positive (Labels=true) events
with the score histogram of True-Positive events, a mapping can be found for each
bin of the histograms:

wbin,i =
hP,i

hTP,i

Finally each event will be attached with a weight according to the bin where the
score of this event lies in:

w = wbin,argi (pclf∈bini)

3.3 Metrics 29

Figure 3.4: Histograms (left) and the deviation (right) ofMbc after Histogram Reweight-
ing

The performance of Histogram Reweighting is shown in the Figure 3.4. The re-
sult is satisfying with a relative low deviation, compared to the unreweighted one
(Figure 3.2).

To summarize, both the Histogram Reweighting (Figure 3.4) and the GBDT
Reweighting (Figure 3.3) show a good performance, but GBDT Reweighting requires
less calculation so I choose this for the final analysis. Both of the methods can be further
studied and upgraded, e.g. using quantile to decide for the bining in the Histogram
Reweighting for a more precise reweighting, and so on.

3.3 Metrics

Several metrics contribute in this project. The Calibration Curve is an important mea-
surement for the reweighting and is invested as a criterion in the tuning of GBDT classifier.
The ROC curve and AUC value illustrate how well a binary classifier performs and are
used in both tuning and comparison of neural network models. The Chi-squared Test
[20] compares two distributions quantitatively to show their similarity and appears in both
tuning of the classifier and evaluation of the final weighted distribution of features. The
Cross Entropy [17] serves as the loss function during the training and evaluation pro-
cesses. The Kullback-Leibler Divergence [29] and the Kolmogorov-Smirnov Test
[24] are also metrics to evaluate the similarity of two distributions and are used in the final
evaluation of bias.

3.3.1 Calibration Curve

A Calibration Curve shows how well the probabilistic prediction of a classifier is calibrated.
It is often used in the comparison of different classifiers or different configurations of the
same model, thus useful in the tuning of classifiers. The method is generally invested to
compare binary classifiers that leave probabilities of incoming events belonging to one of

30 3. Statistical Tools

the two categories (skl[8]: calibration curve).

As a 2-D plot, a calibration curve has an x axis representing the average predicted
probability in each bin from the probability space [0, 1] ⊂ R and an y axis being the frac-
tion of positives, i.e. the proportion of samples belonging to the class “1” in each bin.

The calibration curve for an ideal classifier is exactly a straight line connecting (0, 0)
and (1, 1), or follows the function y = x, meaning that for the samples whose predictions
are given as x, the ratio of these samples being positive is y with y = x. In practice, the
closer to the function y = x a curve lies , the better a classifier is calibrated.

Following is an example (Figure 3.5) of two tunings of the GBDT Classifier for
reweighting task (See Chapter 3.2). The orange line lies nearer to the central curve therefore
the corresponding method should be chosen for a better calibration.

Figure 3.5: Calibration Curves for comparing two methods

3.3.2 ROC Curve and AUC Value

ROC Curve [18] is the abbreviation of receiver operating characteristic curve. It helps to
evaluate the quality of a binary classification. The ROC curve is generated by plotting the
rate of true positive (TP) TP

TP+FN
= TP

P
against the rate of false positive FP

FP+TN
= FP

F
. With

the definition of TP, FP, FN, TN explained in the confusion matrix (Table 3.2).

Label
Prediction

Positive Negative

Pass True-Positive (TP) False-Negative (FN)
Fail False-Positive (FP) True-Negative (TN)

Table 3.2: Confusion Matrix

An illustration of ROC curve is shown in figure 3.6. A random classifier which is
unable to classify between categories shows a straight line connecting (0,0) and (1,1). A
ROC curve of any classifier should lie above this line, the further the better. In the ideal
case a perfect classifier will cover the whole triangular area decided by the three points

3.3 Metrics 31

(0,0), (0,1) and (1,1). To quantify the performance of a classifier with the help of its ROC
curve, the area under this curve, also known as AUC value, is measured and used as a
criterion. The AUC value ranges from 0.5 to 1. A better classifier also has a higher AUC
value.

Figure 3.6: The ROC space for a ”better” and ”worse” classifier.

3.3.3 Chi-squared Test

As a statistical hypothesis test, the chi-squared test [20], or χ2 test, is valid to check if
the statistic follows the chi-squared distribution under the null hypothesis. The chi-
squared distribution with k degrees of freedom is defined as the sum of k independent,
standard normal random variables {Zi}:

Q =
k∑
i=1

Z2
i ,

Zi ∼ G(µ, σ2)

⇒Q ∼ χ2
k

The distribution depends strongly on k and approximates to Gaussian distribution for large
k.

A widely used variant of chi-squared test is named after Pearson [21] which can be
applied to detect statistically significant differences between the distributions of two cate-
gorical datasets. The statistic is calculated as follows:

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
= N

n∑
i=1

(Oi/N − pi)2

pi

with Oi and Ei the number of observed and expected samples in each category or bin and
pi the ratio between Ei and N , n is the number of categories or bins and N is the total
number of the expected samples. This calculation is used in this work to compare the

32 3. Statistical Tools

Figure 3.7: Probability density function of Chi-square distribution

histogram of weighted features of chosen samples with the histogram of the features from
the events with True labels.

Another variant, the reduced chi-squared statistic is also invested which is suited for
the sampling method through consideration of the statistical uncertainty. It requires the
variance σ2

i instead of the target Ei in the denominator:

χ2 =
n∑
i=1

(Oi − Ei)2

σ2
i

The variance σ2
i is acquired by the histogram of features with squared weights.

3.3.4 Cross Entropy

The cross entropy [17] between two probability distributions based on the same set of
events shows the average number of bits needed in the identification of an event from the
set through a function generated from the observed dataset, instead of the expected dis-
tribution.

The cross entropy for discrete probability distributions p and q with the same support
X is:

H(p, q) = −
∑
x∈X

p(x) log q(x)

In this work, the binary cross entropy function provided by Pytorch [7] is used. For a
binary classification problem, the cross entropy is given by:

l(x, y) = − 1

N

N∑
i=1

(yi log xi + (1− yi) log (1− xi))

with N the number of samples, y the labels or expectations and x the predictions.

3.3 Metrics 33

3.3.5 Kullback-Leibler Divergence

The Kullback-Leibler divergence, DKL, also called relative entropy, measures the deviation
of one probability distribution from another one. The fomular is very similar to the entropy:

DKL(P‖Q) = −
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
The entropy function from SciPy [9] is used in this work, which has only a different prefactor
than the original definition:

S(p, q) =
N∑
i=1

pi log

(
pi
qi

)
With N the number of events, q the target or expected probability distribution and q the
calculated or predicted probability distribution.

3.3.6 Kolmogorov-Smirnov Test

Different from the metrics above, the Kolmogorov-Smirnov Test (KS test) [24] consid-
ers the cumulative distribution instead of the probability distribution. It can quantify a
distance between the empirical distribution of the sample and the cumulative distribution
of the reference distribution, or between the cumulated distributions of two sets of samples.

In order to compare two discrete one-dimensional probability distributions, the KS
statistic is:

Dn,m = supx|F1,n(x)− F2,m(x)|

where F1,n and F2,m are the two empirical cumulative distribution functions of the first
and second sample, sup is the supremum function and n, m are the sizes of the two samples.

To meet the demand of comparing weighted distributions, a varied version with the
help of statistical uncertainty is used in the work:

Dn,m = supx|F1,n(x)W1,n(x)− F2,m(x)W2,m(x)|;

Nreduced =
N1,effN2,eff

N1,eff +N2,eff

with the two cumulated weight distributions W1,n and W2,m of ordered weights w1 and w2,

N1,eff =
(
∑n

i=1 w1,i)
2∑n

i=1 w
2
1,i

and N2,eff =
(
∑m

i=1 w2,i)
2∑m

i=1 w
2
2,i

the effective sizes of the two sets of samples.

With the help of the general reduced sample size Nreduced, p-values can be found, which
is the probability of obtaining predicted results as least extreme as the results actually
observed, under the assumption of the null hypothesis (Figure 3.8). The p-value can be
calculated by using an asymptotic form of the distribution of the KS statistic [24]. The null
hypothesis in this case means that the two samples originate from the same distribution.

34 3. Statistical Tools

Figure 3.8: p-value is the area colored in green

Chapter 4

Neural network architecture
optimization

From this chapter I will start to introduce the experimental procedure in this study. Start-
ing with Pre-processing, operations including the manufacture of graphs from samples,
batching and one unsuccessful trying of clustering will come in the first part. Next follows
the main part: Neural Network Filter, where I explain the design, visualisation, tuning
and comparing periods of the neural network model used in this work.

4.1 Pre-processing

The purpose of this study is to improve selective background Monte Carlo simulation
with Graph Attention Networks and weighted events. Therefore datasets to be suitable for
both NN simulations and weighting methods, or post-processing, are required. The starting
point of this work is a dataset based on the FEI skim following the previous studies [25][14].
Several features - Generated Variables attached to each event are chosen to build graphs
contributing to the training and evaluation processes, while some other features - Physics
Observables are selected for post-processing. Considering the different graph structures
of different decay events, I also tried to cluster the graphs and treat them with separate
models. This attempt did not improve results but it showed on the other hand that the
capacity of the GAT structure is high enough to deal with different decays and the method
is therefore expected to generalize on other data sets from other skims.

4.1.1 Dataset

The FEI skims (See Chapter 1.4) was chosen in the previous works as the study object
mainly because of its high enough retention rate (about 5.86%) ensuring enough data for
classification tasks. The data is shared on the Belle II grid and the selected skim is study
independent, meaning that the achievement of these works can be directly used by others.
Further more, the availability of reconstructed B mesons in the FEI skim helps to detect

36 4. Neural network architecture optimization

bias by allowing a statistical comparison of true positives and false negatives.

The dataset is constructed from simulated Υ(4S) → B0B̄0 events where the skim se-
lection corresponds to the hadronic B0 FEI, containing roughly 7.5 × 105 events in total.
The samples that are able or unable to pass this skim are signed with True or False respec-
tively. The numbers of kept and discarded events are controlled to be equal and sum up to
about 1.5 × 106 events. During this study, 9 × 105 samples are randomly chosen to build
training set, 1 × 105 and 5 × 105 for validation set and test set, respectively. Train-
ing set and validation set are used in the learning process of neural network models as
well as GBDT classifiers, while the test set only appears in the final evaluation of different
performances including the ability of classification, speedup and features weighting.

The original information generated by Monte Carlo has a rooted tree structure with
each node representing a single particle and the mother particle index on each node the
connection between particles. The information of each particle is carried on each node as
shown in the example (Figure 4.1).

A number of generator-level features of each particle are selected for the building of
data sets. According to their usages they can be divided into Generated Variables and
Physics Observables.

The Generated Variables take part in the construction of the input for the graph
neural network structures, extracting the information to distinguish between background
and survived decays. These features will be collected over nodes from graphs to calcu-
late global features which will be decisive in the final classification. Following are the
Generated Variables:

• PDG ID: Officially called PDG particle numbering scheme published by the Particle
Data Group [23]. Each type of particle, including all known elementary particles
(electrons, W bosons, . . .), composite particles (mesons, baryons, . . .), atomic nuclei
and also hypothetical particles beyond the Standard Model, has a unique code (See
the second column of Figure 4.1). Particles and antiparticles are assigned as positive
and negative separately. The range of the original PDG ID is 1 to ± 1000020040,
which is too large for efficient one-hot coding. Therefore they are tokenized to match
integers from 1 to the number of different PDG IDs. The tokenized values will be
fed into each Node to represent the corresponding particle type.

• Mother array index: The array index of the mother particles used to build adja-
cency matrix representing the graph.

• Production Time: The time interval from the initial Υ(4S) generation to the
production of each particle in ns.

• Energy: The energy of each particle in GeV.

4.1 Pre-processing 37

Figure 4.1: Example of a Υ(4S) decay structure within an event, as represented by the Belle
II software. The first two columns represent the array index and particle information (PDG
code and human readable name) respectively. The indentation level of the second column
corresponds to the depth of the particle within the decay, with all particles originating
from the initial Υ(4S). The remaining columns represent the (non-exhaustive) array of
data for each particle, just as a visual demonstration of the data structure [25]

• Momentum: The three-dimensional momentum px, py, pz of each particle in GeV/c.

• Position: The three-dimensional coordinate x, y, z of each particle in m. Particles
with one of the coordinates larger than 10 m are discarded because they are generated
beyond the detector and provide no information.

The Physics Observables on the other hand are not used in the training of the
neural networks even though they are also attached to each event. These features are used
to evaluate the kept events after NNs in terms of several dimensions that are vital in the
further analysis. The selection of the following 14 physics observables depends on the
previous study [14] where those features showed the strongest bias among 29 features.

• Mbc: The beam-constrained mass of the reconstructed B meson (See Chapter 1.5).

38 4. Neural network architecture optimization

• ECMS
visible: The missing energy of the event in the center-of-mass system.

• R2: Ratio of the 2nd to the 0th order Fox Wolfram moments. [19]

• R4: Ratio of the 4th to the 0th order Fox Wolfram moments. [19]

• No. tracks: Number of tracks in the event.

• No. MC Particles: Number of generator-level particles in the event. This quantity
is not a physics observable, but still included in this list since it is not used to train
the NN filter but only used in the evaluation of bias and reweighting.

• ∆E: The reconstructed energy difference (See Chapter 1.5)

• Ephoton: The energy of all the photons in the event combined in the laboratory system.

• M2
miss: The missing mass of the event squared.

• ECMS
miss : The missing energy of the event in the center-of-mass system.

• sphericity: The event sphericity is defined as the linear combination of the two
smallest eigenvalues of the sphericity tensor: S = 3

2
(λ2 + λ3).

• thrust: The thrust reflects the shape of the events. In general it ranges from 0.5 to
1, with the lower limit corresponding to the spherically symmetric events and upper
limit indicating the two back-to-back jets.

• aplanarity: The event aplanarity is defined as 3
2

of the third sphericity eigenvalue.

• Pbackward Hemisphere: Total momentum of the particles flying in the direction opposite
to the thrust axis.

Again according to the performance shown in this project, the first 8 features above
are chosen to derive weights in the Reweighting method to minimize the bias, including
Mbc, ECMS

visible, R2, R4, No. tracks, No. MC Particles, ∆E and Ephoton.

4.1.2 Graphs and Batches

With the help of the mother array index carried by each particle, graphs are built
to represent decay events. In this work all the decays are expected to be generated by
Υ(4S) → B0B̄0 (Figure 4.2). Each node in the graph contains all the information of
the corresponding particle including its preprocessed generated variables and physics
observables. One decay event can be completely represented by one graph and is matched
with one boolean label telling whether this decay can pass the FEI skim (See Chapter 1.4).

After the construction of the graphs, all the events and their corresponding labels are
shuffeled and subpacked into batches to ensure a better randomness and efficiency in the
upcoming training, validation and test processes.

4.1 Pre-processing 39

Figure 4.2: An example of Υ(4S)→ B0B̄0 decay

4.1.3 Clustering

Even though all the decay events come from Υ(4S) → B0B̄0, the shapes of their decay
trees can be different from each other. The idea of this method is to cluster the events
with similar decay trees in order to train a different neural network corresponding to each
cluster parallelly. The scores of the test events are then determined by the neural network
that was trained for the corresponding category.

depth particle(s) nd d · nd
0 Υ(4S) 1 0
1 B0, B̄0 2 2
2 D∗−, ρ0, . . . , D∗0 9 18
3 D̄0, π−, . . . , γ 14 42
4 K+, K−, . . . , γ 10 40
5 γ, γ, . . . , π− 6 30

Table 4.1: Calculation of the shape vector for the graph from figure 4.2

The first step is to abstract the ”shape” out of a graph. Here I define a vector ~r ∈ ND+1

with ~r =
⊕D

d=0 d · nd where d is the depth, or the distance of a particle to the root of the
tree, D is the max depth and nd is the total number of particles at depth d. Take the graph
in figure 4.2 as an example, the calculation is shown in the table 4.1. The shape of this
graph is then represented by the vector ~r = (0, 2, 18, 42, 40, 30). The first two components
of each vector are discarded as they are always (0, 2). All the vectors are padded with
zeros into a space that is large enough for all the graphs, e.g. ~r

′
= (18, 42, 40, 30, 0, . . . , 0).

Next, the clusters are decided using the KMeans ([8]:cluster.KMeans) method on the
shape vectors. It aims to find k centroids in the shape vector space so that the sum of all
the distances from each shape vector to its nearest centroid is minimized. To assign clusters
it will tell, to which centroid a vector lies closest, in other words, to which cluster a vector

40 4. Neural network architecture optimization

belongs. After some tunings the number of clusters k is set to be 5. It is hard to visualize
the result of high dimensional clustering, so I print the average of the one dimensional
projection, or the mean r =< ~r

′
>∈ R, in each cluster for visualization (Figure 4.3 left).

And also show the number of events in each cluster from each dataset to ensure that there
is a sufficient number of training events for each category (Figure 4.3 right).

Figure 4.3: (Left) Average of 1-D projection of shape vectors in each cluster. (Right)
Number of samples in each cluster from each dataset.

Finally, the events in each cluster are treated separately to tune a unique neural network
filter. In this work only the number of layers used for GAT module (See Chapter 4.2) is
tuned in this step. According to their loss, the best number of layers are selected as:

Cluster Best number of layers
0 10
1 10
2 10
3 8
4 12

Table 4.2: Separate tuning for each cluster

This result shows that there is indeed a difference of the best neural network structure
regarding of different graph shapes. The difference is however very small when I check the
concrete loss of different configurations. The largest down side of this method is that the
performances of all the neural networks on their corresponding clusters are worse than the
performance of only one general neural network trained on the whole data set. Therefore
the clustering method is finally abandoned but it shows that the current neural network
structure is strong enough to deal with the decays that have different shapes.

4.2 Neural Network Filter

In this chapter I will first introduce the structures and hyperparameters of the neural
network filters used in this work. The filters are divided into several parts and then

4.2 Neural Network Filter 41

compared piece after piece. Starting from Graph Convolutional Network which is similar
to what was used in the previous study [14], the Graph Attention mechanism is then added
as improvement. Finally the training of node features and global features are generalized
in a customized module to further enlarge the capacity. Next, I will show the visualisation
of attention weights which can help to understand the learning process of the graph neural
network structure and the graph attention mechanism. Finally after some tuning processes,
the performances of different structures are compared by loss, accuracy and AUC values.
The best model with the best configuration is then decided and ready for further analysis.

4.2.1 Architecture and Hyperparameters

There are overall four networks being compared in this work. All of them are based on
graph neural networks (See Chapter 2.2.2). A general view of all the structures is shown
in the table 4.3.

Name Kernel Training of Node/Global Features Pooling

GCN(sep) GraphConv Separated Global Average Pooling

GAT(sep) GATConv Separated Global Average Pooling

GAT(gen) GATModule Generalized Global Average Pooling

GATGAP(gen) GATModule Generalized Global Attention Pooling

Table 4.3: Overview of all the GNN structures in this work.

Every neural network starts from an input structure. In this work, two slightly dif-
ferent settings are designed for separated and generalized cases (Figure 4.4). The part
before concatenation are the same, which corresponds to the preprocessing explained in
the section 4.1. After concatenation the Generated Variables of each node are used
as node features. In the separated training, these node features will be transformed by
three Dense layers, also called a Deep Neural Network structure with 3 hidden layers (See
Chapter 2.2.1), which are expected to extract the information of each particle. In the
generalized training, the initial node features take part in only the first run of the kernel.
The kernel will output a set of upgraded node features after each round, who will then take
part in the next run instead of the initial one. On the other hand, the graph represented
by the adjacency matrix provides the information on how to connect to each other for each
particle. Together with the node features attached to each particle, all the data that is
expected to be able to characterize the whole decay event is passed to the kernel.

The kernel should learn most of the information and be the most important part in each
neural network. This part is repeated several times, controlled by the hyperparameter: the
number of layers, in one network. For separated training, the kernels are simply compact
structures provided by the Deep Graph Library [3]. But for generalized training, it is
customized to be able to update node features and global features parallely in each run.

42 4. Neural network architecture optimization

Figure 4.4: Input structure for separated training (left) and generalized training (right).

Figure 4.5: GATModule

The kernels for GCN(sep) and GAT(sep) are introduced in Chapter 2.2.2 (Graph Con-
volutional Networks) and Chapter 2.2.3 (Graph Attention Networks). The customized one
for generalized methods bases on Graph Attention Networks as well. The main difference
of GATModule (Figure 4.5) to the first two kernels is the integration of the training of
node/global features, allowing a higher flexibility and capacity. After Graph Attention
(GATConv Layer in the picture), the node features on each node are updated. On the one
hand they are used as the new input node features in the next run of GATModule, on the
other hand they are sent into the pooling layer, who will collect the features from all the
nodes in the graph and form a set of global features that are graph structure independent,
meaning that for all kinds of graphs the shape of global features stays the same. However,
the rule to sum over all the nodes can be graph structure dependent, allowed by using
Global Attention Pooling instead of Global Average Pooling. Similar to Graph Attention,

4.2 Neural Network Filter 43

Global Attention Pooling is also able to learn the weight distribution itself and treats the
nodes inside a graph unequally. The fresh global features will be concatenated with the
old one, initialized as 0, from last run and mapped together by a Dense layer to form a set
of new global features as an update for the next run or as the final output after the last run.

Finally all the information is summarized to give a score p ∈ R (Figure 4.6). For
separated methods the data is still stored in each node after the kernel, therefore a Global
Average Pooling serves for the naive collection all over the graph and together with a Dense
layer to form a set of global features. One more averaging over heads is extra added for
GAT(sep) model to fit for the multi-attention-head structure given by GATConv. The
output of GATModule is already the well trained global features, so it needs no further
manufactures. In the last layer of each model, the global features is mapped to only one
value, known as the neural network output or the score.

Figure 4.6: Output structure for GCN(sep) (left), GAT(sep) (middle) and GAT(GAP)(gen)
(right).

The complete structures of models with separated training are shown in figure 4.7 and
of models with generalized method are in figure 4.8. Before comparing the performances
of different models, the best configuration of hyperparameters has to be decided, which is
known as the tuning process.

The hyperparameters for each model are in general the same, except for GCN(sep)
where the number of heads is invalid.

• The number of heads : Parameter for Graph Attention Network to decide the number
attention heads. Visualisations in section 4.2.2 will show that a large number of
heads is unnecessary.

• The number of layers/modules : The repeated time of the kernel in each model. For
separated trainings it is the number of graph convolutional/attention layers while for
generalized case it refers to the number of the whole GAT Module.

44 4. Neural network architecture optimization

Figure 4.7: Models with separated method: GCN(sep) (left) and GAT(sep) (right).

Figure 4.8: Models with generalized method: GAT(gen) with Global Average Pooling and
GATGAP(gen) with Global Attention Pooling.

4.2 Neural Network Filter 45

• The number of units : Parameter for graph convolutional/attention layers as the
output size. In each model it defines the size of global features.

• Batchsize: The number of events used in each step of update during the training. A
large batchsize will reduce the training time for one epoch but takes the risk of slow
convergence due to a low number of updates in each epoch.

In the tuning in section 4.2.3, I will study the influence of the number of heads and
the number of layers/modules on loss, accuracy and AUC values, as well as the trade off
between the number of units and batchsize considering AUC values, training times and
memory requirements.

4.2.2 Visualisation of Attention Weights

Before tuning, the training of graph attention layers is monitored in order to visualise the
distribution and evolution of attention weights. All the nodes and edges in the graph are
colored with different shades mapped to its weight. A darker color means a higher weight,
indicating that the corresponding edge or node is given high attention in that step. Figure
4.9 is an example of visualisation.

Figure 4.9: Visualisation of Attention Weights of one graph

The most important nodes in this step are ρ+ and ω according to their color in dark red.
Some important directed connections including self-loops can also be recognized. However,
it is hard to interpret further information from this single graph. Hence the statuses of
the same graph in different layers/modules and in different heads are listed together in
figure 4.10. In this example, the number of layers/modules is 4 and the number of heads is
8. Vertically, the differences among layers can be noticed, meaning that in different runs
the attention of the network is changing as well. But horizontally, the distributions of

46 4. Neural network architecture optimization

the graph attention from the same layer in different heads are almost the same, indicating
that the multi-head-attention is not making much difference. This conclusion helps me to
merely concentrate on small number of heads in the following tunings in order to save time
and computing resources.

I also tried to study the evolution of the attention over the layers, aiming to analogise the
dynamic of attention distributions to the propagation of information so that the design of
the neural network model can be further improved through deeper understanding. However
this idea is still at the stage of envisioning.

4.2.3 Tuning and Comparison

The total tuning process in search of the best model in this work consists of three branches:

• Kernel parameter tuning: Looking for the best combination of the number of
heads and the number of layers/modules.

• Capacity tuning: Learning the influence of balancing the number of units and
batchsize.

• Model comparing: Choosing the best model among the four by comparing their
performances.

In the first two tunings I assume GATGAP(gen) to be the best choice according to its
highest complexity, and carry out the searches only based on this model. Finally all the
models with the same configuration are compared, assuming that this configuration is the
best one for all the models according to their structural similarity. During all the tunings
and comparisons, cross entropy (See Chapter 3.3.4) is chosen as the loss function.

In the Kernel parameter tuning I first limit the number of heads to be no larger
than 4, considering the visualisation shown in the last section. The first scan of the number
of layers ranges from 2 to 8. The resulted loss and accuracy are shown in the figure 4.11.
For the case of 2 heads, more layers leads to better performance. But for 4 heads, 8 layers
starts to show an overfitting. Therefore the model should not be more complex than 4
heads and 8 layers. Then I check the evolution of their AUC values and find that both 4
heads 6 layers and 2 heads 8 layers are the best combinations (Figure 4.12). After some
repeated experiments I decide to use 4 heads 6 layers as the best configuration because it
is more stable than the other one.

4.2 Neural Network Filter 47

(a) Vertical: Layer 0-3, Horizontal: Head 0-3

(b) Vertical: Layer 0-3, Horizontal: Head 4-7

Figure 4.10: Visualisation of Attention Weights of one graph from all the 4 layers and 8
attention heads.

48 4. Neural network architecture optimization

Figure 4.11: Kernel parameter tuning in terms of loss and accuracy

Figure 4.12: Kernel parameter tuning in terms of AUC values

Next is the Capacity tuning where I first do a grid search with

• The number of units in 32, 64, 128, 256, 512

• Batchsize in 128, 256, 512, 1024.

I find that small number of units are usually working better than the ones larger than 256.
The area for the best combinations is shown in the figure 4.13 left. Then I further give less

4.2 Neural Network Filter 49

units a try. It turns out that 16 units works even better, but the training time is so long
compared to the improvement that makes it not worth choosing (Figure 4.14).

Figure 4.13: (left) AUC values for 32-128 units. (right) Training times.

Figure 4.14: AUC values (left) and training times (right) for 8/16 units.

To conclusion, I list all the best combinations in the table 4.15 lest. For the later
comparison of different models, I choose the combination of batchsize 128 and units 128,
which has the second highest AUC and also shows strong stability, as the best configuration.

Batchsize Number of Units AUC Training Time in s

128 16 0.9131 10940

512 32 0.9117 3568

128 128 0.9117 5205

1024 32 0.9115 1716

512 128 0.9115 2228

256 128 0.9105 2666

256 32 0.9105 4061

Number Number
of of

Units Parameters
16 34,911
32 120,527
64 459,951
128 1,808,495

Figure 4.15: (left) Best combinations for the best AUC values. (right) Network sizes.

50 4. Neural network architecture optimization

(a) Validation accuracy (upper left), Validation loss (upper right), Training loss (lower left) and
ROC curves (lower right) of all the models

Model AUC Value Training Time
GCN(sep) 0.9083 3619
GAT(sep) 0.9094 4047
GAT(gen) 0.9089 3471

GATGAP(gen) 0.9122 5059
(b) AUC Values and Training Times of all the models

Figure 4.16: Comparison of the models according to their accuracy, loss, AUC and training
time.

However, after taking the memory usage (Table 4.15 right) into consideration, I finally
decide to take 1024 as batchsize and 32 as the number of units in the post-processing.

In the end, the abilities of different models to accomplish the task of the classification
between background and signal events are compared through different criteria including
accuracy on validation set, loss on validation and training set, training time on training
set, ROC curve and AUC values on test set (Figure 4.16). Going through all the aspects it
can be concluded that the learning ability of the GATGAP(gen) model is the strongest and
therefore it performs always the best among the four models, except for the relative long
training time, which is however acceptable and will not influence the final employment on
test data set, once it gets well trained.

4.2 Neural Network Filter 51

The final configuration after all the tunings and comparisons is shown in the table 4.4.

Model GATGAP(gen)
The number of heads 4

The number of layers/modules 6
The number of units 32

Batchsize 1024

Table 4.4: Best configuration of the neural network filter.

52 4. Neural network architecture optimization

Chapter 5

Event weighting methods

This chapter is the second part of the practice in this work. I will first derive two metrics
used for sampling and reweighting method, which are the two major directions for the post-
processing to weight events, and further explain their robustness for the sake of future
generalization. Then comes the post-processing that shows the performances of one
sampling process and two reweighting processes.

5.1 Speedup Metrics

The design of Speedup functions originates in the previous study [14] aiming to quantify
the improvement of the speed to produce events with the help of neural network structures.
In this work, taking the randomness of MC processes into account, the baseline of speedup
metrics is chosen as Statistical Uncertainty, which describes the amplitude of variations
around expectations generated by batches of samples. For weighted events, the Effective
Sample Size is understood as the number of events that would yield the same statistical
uncertainty in case of unweighted events. Hence the speedup is generally defined by the
ratio between the time consumings of the whole work flow with and without NN filters for
producing the same effective sample size.

In this work, I compare two ways of bias mitigation: sampling and reweighting. The
origin of statistical uncertainties by both methods are not the same. Thus I am going to
explain their derivations in the following chapters separately.

5.1.1 Speedup for the Sampling Method

The uncertainty comes directly from the random selection of the sampling method (See
Chapter 3.1), where all the events take their NN scores p as probabilities to be kept. For
each event an uncertainty w = 1

p
, the inverse probability, is introduced and equals the

weight for sampling method,

wi =
1

pi
(5.1)

54 5. Event weighting methods

For samples that pass the skim, taking the probabilities to appear into account, the total
statistical uncertainty takes the form

Stotal =

√ ∑
{i|ti=Pass}

w2
i pi =

√ ∑
{i|ti=Pass}

1

pi
(5.2)

with t the target or label for each event.

The relative statistical uncertainty is obtained by dividing by the total weighted un-
certainty

∑
{i|ti=Pass}wipi,

S =
Stotal∑

{i|ti=Pass}wipi
=

√∑
{i|ti=Pass}w

2
i pi∑

{i|ti=Pass}wipi
=

1

NPass

√ ∑
{i|ti=Pass}

wi (5.3)

with the number of pass events NPass.

The effective sample size is the inverse of the squared relative statistical uncertainty

Neff =
1

S2
=

(
∑
{i|ti=Pass}wipi)

2∑
{i|ti=Pass}w

2
i pi

=
N2

Pass∑
{i|ti=Pass}wi

(5.4)

On the other hand, the sample size can be represented directly with NN scores. The
number of events that can pass the NN filter is given by

Nfilter =
∑
i

pi (5.5)

Since the metric is evaluated on a sample consisting of equal amounts of events that pass
and fail the skim selection, the retention rate r (See Chapter 1.4) has to be taken into
account in the equation 5.4 and 5.5

N
′

eff = rNeff (5.6)

Nfilter = rNTrue−Positive + (1− r)NFalse−Positive (5.7)

= r
∑

{i|ti=Pass}

pi + (1− r)
∑

{i|ti=Fail}

pi (5.8)

The effective sample size for the case without NN filter should be enlarged by a factor
1
r

in order to compensate the retention rate. So the final effective sample size, to be
understood as the number of events that are needed if there is no NN filter to achieve the
same statistical uncertainty the same as if there is an NN filter should be

Nno−filter =
1

r
N
′

eff =
1

r
rNeff = Neff (5.9)

5.1 Speedup Metrics 55

Combining the equation 5.5 with filter and 5.9 without filter, the effective speedup is
calculated as the ratio

Speedupeff =
Nno−filter

Nfilter

(5.10)

indicating the extra effort that has to be paid in the work flow without the neural network
filter compared to advanced case. The larger the speedup, the better the filter works.

The deviation above does not take additional time consumption for the NN inference
into account and neglects the time for Monte carlo generation. A rough estimation of the
execution times is taken from the previous study [14] and shown in the table 5.1.

Stage Time (ms/event)
Monte Carlo generation tgen 0.08
Neural network inference tNN 0.63

Simulation and Reconstruction tSR 97.04

Table 5.1: Rough estimation of the execution time in ms for a single event during each
stage of the simulation.

The processing time of sampling is so short that can be ignored. However, the execu-
tion time for neural network inference can be quite different depending on how the neural
network is built and what device is used. The time for MC generation as well as Simulation
and Reconstruction can also vary due to a different choice of data set. I will therefore study
how robust the speedup metrics are and show the result in section 5.1.3.

The calculation of speedup taking the execution times into account is similar to the
derivation above. For this it has to be clarified which samples end up in which computation
step. A summary is shown in Figure 5.1 left.

tgen tNN tSR

TP X X X
FP X X X
FN X X
TN X X

Label
Prediction

Positive Negative

Pass True-Positive (TP) False-Negative (FN)

Fail False-Positive (FP) True-Negative (TN)

Figure 5.1: (Left) Execution times for different type of samples. (Right) Confusion/Error
Matrix

Both TP and FP events have positive results by the filter and will be sent to the
skimming, thus they experience tSR. The difference between these two categories is their
proportions: r and 1 − r accordingly. For FN and TN events it is impossible to get
through the filter, thus no tSR. Their numbers are counted by the rejections probabilities

56 5. Event weighting methods

1− p instead of the score p comparing to the equation 5.5. Gathering all the information
together, the time consumption with neural network is given by

tfilter =(NTP +NFP) · (tgen + tNN + tSR)

+ (NFN +NTN) · (tgen + tNN)

=(r
∑

{i|ti=Pass}

pi + (1− r)
∑

{i|ti=Fail}

pi) · (tgen + tNN + tSR)

+ (r
∑

{i|ti=Pass}

(1− pi) + (1− r)
∑

{i|ti=Fail}

(1− pi)) · (tgen + tNN)

(5.11)

The time without neural network contains only Monte Carlo generation and Simulation
and Reconstruction, with the effective sample size from equation 5.9. That is

tno−filter = Nno−filter · (tgen + tSR)

=
N2

Pass∑
{i|ti=Pass}wi

· (tgen + tSR)
(5.12)

In the end, combining 5.11 and 5.12, the speedup for sampling method is expressed as

SpeedupSampling =
tno−filter

tfilter

(5.13)

The speedup with sampling method can reach up to 2 in this work, meaning that the
processing efficiency of the new work flow is two times better than the original one. For
details see chapter 5.2.1.

5.1.2 Speedup for the Reweighting Method

With the reweighting method, only events whose scores are larger than the threshold
are selected and given a weight which equals the inverse of the conditional probability
qi ≡ p(TP|P, i) with P representing Positive prediction, P=TP+FN. The weight for every
sample can be then written as

wi =


0, for pi < threshold

1

qi
, for pi ≥ threshold

(5.14)

Because there is no more random selection, the probability of each event to appear is
no longer the neural network score, but boolean 0 or 1:

bi =

{
0, for pi < threshold

1, for pi ≥ threshold
(5.15)

5.1 Speedup Metrics 57

The following derivations are similar to the sampling speedup. From the equation 5.3,
the relative statistical uncertainty is

S =

√∑
{i|ti=Pass}w

2
i bi∑

{i|ti=Pass}wibi
=

√∑
{i|ti=Pass,pi≥threshold}w

2
i∑

{i|ti=Pass,pi≥threshold}wi
=

√∑
{i|TP}w

2
i∑

{i|TP}wi
(5.16)

The effective sample size is

Neff =
1

S2
=

(
∑
{i|TP}wi)

2∑
{i|TP}w

2
i

(5.17)

The number of each type of the events can be counted directly through the criteria for
labels and scores:

NTP =
∑

{i|ti=Pass,pi≥threshold}

·r ≡ rΩTP (5.18)

NFP =
∑

{i|ti=Fail,pi≥threshold}

·(1− r) ≡ (1− r)ΩFP (5.19)

NFN =
∑

{i|ti=Pass,pi<threshold}

·r ≡ rΩFN (5.20)

NTN =
∑

{i|ti=Fail,pi<threshold}

·(1− r) ≡ (1− r)ΩTN (5.21)

Ignoring again the processing time of reweighting, following the equation 5.11, the whole
execute time with neural network filter is

tfilter =(NTP +NFP) · (tgen + tNN + tSR)

+ (NFN +NTN) · (tgen + tNN)

=(rΩTP + (1− r)ΩFP) · (tgen + tNN + tSR)

+ (rΩFN + (1− r)ΩTN) · (tgen + tNN)

(5.22)

and the time without filter is

tno−filter = Neff · (tgen + tSR) =
(
∑
{i|TP}wi)

2∑
{i|TP}w

2
i

· (tgen + tSR) (5.23)

The ratio of the above two equations gives the speedup for the reweighting method
with different values but the same form as for the sampling method in equation 5.13

SpeedupReweighting =
tno−filter

tfilter

(5.24)

The reweighting speedup above is suited to both GBDT reweighting and Histogram
reweighting. The only difference between these two reweighting methods is the way to de-
termine the weight, or the conditional probability qi. The speedup for reweighting methods
can reach 5 to 6.

58 5. Event weighting methods

5.1.3 Robustness

Robustness reflects the ability of a system to cope with perturbations without changing
its initial configurations [37]. In the language of this chapter, it refers to the ability of the
speedup metrics to be tolerant to different computing powers or the complexities of the
NN architectures and to different data sets from other skims or other constructions.

In this section, I quantitatively test the evolution of speedup with the change of three
parameters tgen, tNN and tSR, particularly, the change of the ratio between tNN and tgen to
study device dependency and of the ratio between tSR and tgen to study data set depen-
dency. Due to the same dependency on the three times of both sampling and reweighting
speedup, I only choose the one for the sampling method without loss of generality.

First I train the network (See Chapter 4.2) to get a reference value of speedup with the
initial configuration as shown in Table 5.1. Then to simulate device dependency, which
will only make a difference in the time for neural network execution, I linearly change the
ratio tNN

tgen
, which is 7.785 initially, from 0 to 100, with tgen staying unchanged. The result

is shown in the figure 5.2 left. The speedup develops linearly with the ratio from 0.47 to
0.62, indicating a change of less than 30% if execution time is 12 times longer, and less
than 2% if the computation is 8 times faster. This allows a running of the code on CPU
instead of GPU or further optimizations of the NN model or the use of some even more
complex structures, etc..

Figure 5.2: (Left) Filter efficiency dependency of speedup for sampling method. (Right)
Data set dependency of speedup for sampling method.

Next I test the influence of changing data set which will provide different time of
Simulation and Reconstruction as well as MC generation. This time the ratio tSR

tgen
, which

is 1213 initially, is linearly changed. As shown in the figure 5.2 right, the speedup grows
exponentially for small ratios. However for 100, which is already 1/12 of the initial value,
the speedup only reaches 0.62. For large ratio, which is tested up to 10 times of the initial
value but cutted off for a better view, the speedup even converges to some value larger
than 0.46.

To summary, the speedup metrics are robust against a change of the three parameters

5.2 Post-processing 59

by a factor of at least 10.

5.2 Post-processing

After the neural network filter, each event will get a score, originally indicating the prob-
ability of this event to pass the following skims. The trivial way to make use of these
values is to select the events whose score are larger than a certain number, known as the
threshold, for further work flow. However, this selection will reject some samples that
have been able to pass the skims, known as the false negative events, and cause the de-
viations, known as the bias, in the following analysis. The goal of this part of the work
is to find out and minimize the influences of the bias with the help of some statistical tools.

The first step is to position the bias. Following the previous studies, 14 physics observ-
ables attached to each event are selected (see section 4.1.1). All these variables do not take
part into the training of the neural network and are only used in the post-processing. In
the experiment, the histogram of each variable of all the Pass labeled events is compared
with that of all the True-Pass events, whose scores are required to be larger than the
threshold. In the figure 5.3 as an example, I show the deviations of 8 variables before any
post-processing, which will also be used as trainers in the reweighting method (see section
5.2.2). In this example, the threshold is set as 0.85. All the histograms on the left are
normalized, with the True distributions colored in blue and the True-Positive distributions
colored in orange. The relative deviations between each pair of histograms are shown on
the right. These deviations are expected to be eliminated during the operations in the
following sections.

5.2.1 Importance Sampling

The first idea to deal with the bias is the sampling method. As introduced in section 3.1,
the events are randomly selected according to their scores and a threshold is no longer
needed. On the other hand, the sampling is based on the statistical uncertainty instead of
the accuracy, therefore the loss function during the training of the neural network filter is
also chosen to be the speedup metric (see section 5.1.1) instead of the cross entropy. By
maximizing the speedup function, the network is expected to give the best sampling weight
to each event. No further tuning is needed in this method but the performance is satisfying
(Figure 5.4 upper right, Mbc as an example). The deviations can be hardly recognized by
eyes for all the variables. However, even though the neural network is trained with speedup
as loss function in this case, the final speedup can only reach to 2, meaning that half of
the production time can be saved for each event, without any bias originated.

60 5. Event weighting methods

Figure 5.3: Variables to be used as trainers.

5.2.2 GBDT Reweighting

In search of a higher speedup, the reweighting method is studied, with the speedup metric
alternated as well. The neural network is again trained with cross entropy to predict the
probability of an event to pass. For the determination of the weights, or the inverse condi-
tional probability of True-Positive, two methods, as introduced in section 3.2, are invested.

The first one is GBDT Reweighting, where a classifier depending on Gradient Boosting
Decision Trees determines the weights directly. The training set is therefore built as a
combination of True-Positive and False-Negative events with label 1 and 0 separately.

Similar to the tuning process for the neural network filter, the GBDT classifier has also
to be well configured according to the task. To begin with, three physics observables : Mbc,
ECMS

visible and R2 are selected as trainers because of their strong bias among all the variables.
With the help of these trainers, following grid-scans are finished:

5.2 Post-processing 61

Figure 5.4: Reproduced Mbc with original selection (upper left), sampling (upper right),
GBDT reweighting (lower left) and Histogram reweighting (lower right).

• Scan 1:

Number of estimators in 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750

Learning rate in 0.15, 0.1, 0.05, 0.01, 0.005, 0.001

With the help of the Calibration Curves (see Chapter 3.3.1) and the Kolmogorov-
Smirnov Test (see Chapter 3.3.6), two best combinations are found in table 5.2:

Number of estimators 750 1500
Learning rate 0.1 0.15

Table 5.2: Best combinations after scan 1.

• Scan 2:

Maximum depth in 3, 5, 7, 9, 11, 13, 15

Minimum samples split in 100, 300, 500, 700

Two best combinations after scan 1 as in table 5.2

There remains only one best setting this time:

Number of estimators = 750, Learning rate = 0.1

Maximum depth = 3, Minimum samples = 100

• Scan 3: Subsample in 0.5, 0.6, 0.7, 0.8, 0.9, 1. The best choice turns out to be 0.5.

62 5. Event weighting methods

Number of estimators 750
Learning rate 0.1

Maximum depth 3
Minimum samples 100

Subsample 0.5

Table 5.3: Best configuration for the GBDT classifier.

Another important parameter to be decided is the threshold with which the positive
events are selected against negative. To look for the best threshold, I scan over the range
(0,1) and choose the threshold that corresponds the maximum of speedup (Figure 5.5 as
an example). For GBDT reweightings the best threshold is usually around 0.85 and the
maximum speedup is around 5.5.

Figure 5.5: An example of speedup against threshold.

After the tunings above, the best configuration is found as shown in table 5.3 with
the threshold equaling 0.85. With these settings, I train the classifier once again, but this
time with all the variables used as trainers. Then I output the feature importance of each
variable, showing the contribution of each character to the classification task (Figure 5.6).
With the help of the feature importance function [8] as well as the histogram deviations,
I finally choose the 8 features: Mbc, ECMS

visible, R2, R4, No. tracks, No. MC Particles,
∆E and Ephoton as trainers.

With all the tuning processes ready, the performance of the final GBDT classifier is
shown in the figure 5.4 (lower left). I also show the comparison of the reweighted histograms
with the original ones for 6 of the training variables (Figure 5.7 left), who has the largest
bias among the 8, except for Mbc which is already shown, and all the 6 other variables that
are not included in the group of trainers.

It is impossible to recognize which method works better merely through the comparison
of the histograms from figure 5.4 and figure 5.7. Thus the statistic tools introduced in

5.2 Post-processing 63

Figure 5.6: Feature importance of all the variables.

Figure 5.7: Performances of GBDT and Histogram Reweightings on trainers (left) and
non-trainers (right).

Chapter 3.3 are studied and invested in the comparison among the methods as well as
among the variables under each method. An example of KL Divergence and KS Test of all
the variables for each method is shown in the figure 5.8. If only consider the reproduced
variables under the GBDT reweighting, it can be concluded that all the variables used
in the training are well reweighted, with relative low z-scores and KL divergences. The
non-trainer variables have in general higher deviations of up to 8σ.

64 5. Event weighting methods

Figure 5.8: KL Divergence and KS Test.

5.2.3 Histogram Reweighting

The histogram reweighting in this work also bases on the GBDT classifiers with the same
training targets: True-Positive and False-Negative events. Therefore it is not necessary to
tune the classifier used in the GBDT reweighting once again. The best threshold of the
histogram reweighting also lies around 0.85 but the speedup can reach up to 6.5 which is
almost 20% higher than the GBDT reweighting and 2.2 times higher than the sampling
method. However, the histogram reweighting also suffers a higher bias compared to the
former two methods. The ability of the reweighting is already shown in the figures 5.4, 5.7
and 5.8.

As a conclusion, the sampling method has the strongest ability of bias mitigation but
the lowest speedup, in contrast the histogram reweighting has the highest speedup but the
worst quality of reproduction. A trade off between the speedup and the bias minimizing
is shown in the table 5.4.

Method Best Speedup Bias (KS Test)
Sampling 2.0 ∼ 0

GBDT Reweighting 5.5 ∼ 8σ
Histogram Reweighting 6.5 ∼ 15σ

Table 5.4: Conclusion of the different weighting methods.

Chapter 6

Summary

6.1 Results

In this work, I follow the achievement of James [25] and Yannick [14]. First I improve
the performance of the graph neural network filter by using the attention mechanism and
integrating the training of the node features and the global features into the convolu-
tion module. Then in order to avoid the bias generated by the discard of False-Negative
events, several methods including importance sampling, GBDT reweighting and Histogram
reweighting based on statistical uncertainty are introduced so that the selected events, ei-
ther randomly or through a threshold, will have higher weights for compensation.

6.2 Outlook

According to the study of the clustering method in the preprocessing and the robustness
of the speedup metrics, the achievements in this work are expected to be generalized on
other data sets for different skims or even from other projects.

In the future, the extensions of this work can be expected in the following directions:

• The graph neural network structure with attention mechanism can be further tuned.
But according to the robustness of the speedup metrics, the improvement has to be
large enough to make a difference.

• The sampling method can be improved by a better choice of the loss function in
the training of the neural network, or some changing in the speedup function for
the sampling method, in order to reach a higher speedup without scarifying the
performance.

• Other classifiers can be used in the reweighting methods to balance speedup and bias.

• More studies are required about the histogram reweighting. Possible directions in-
clude new methods as classifiers, finer binnings or inhomogeneous binnings to build

66 6. Summary

histograms to minimize the influence of the fluctuations generated by low number of
events in some of the areas, more advanced way to map the True-Positive histogram
with the True histogram, etc..

• The statistical metrics can be further studied in order to better evaluate the perfor-
mances of the weightings.

Bibliography

[1] Belle 2 software documentation–sphinx, 2021. https://software.belle2.org/

development/sphinx/index.html.

[2] A concise explanation of learning algorithms with the mitchell
paradigm, 2021. https://www.kdnuggets.com/2018/10/

mitchell-paradigm-concise-explanation-learning-algorithms.html.

[3] Deep graph library tutorials and documentation, 2021. https://docs.dgl.ai/.

[4] Ibm cloud education - neural networks, 2021. https://www.ibm.com/cloud/learn/

neural-networks.

[5] Khan academy - sampling methods review, 2021. https://www.khanacademy.org/

math/statistics-probability/designing-studies/sampling-methods-stats/

a/sampling-methods-review.

[6] Mit: Introduction to deep learning, 2021. http://introtodeeplearning.com/

slides/6S191_MIT_DeepLearning_L1.pdf.

[7] Pytorch documentation, 2021. pytorch.org/docs.

[8] Scikit-learn library, 2021. scikit-learn.org.

[9] Scipy documentation, 2021. docs.scipy.org/doc/scipy/.

[10] Superkekb and belle ii, 2021. https://www.belle2.org/project/super_kekb_and_
belle_ii.

[11] S. Agostinelli et al. Geant4a simulation toolkit. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, 506(3):250–303, 2003. https://www.sciencedirect.com/science/
article/pii/S0168900203013688.

[12] Kazunori Akai, Kazuro Furukawa, and Haruyo Koiso. Superkekb collider. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 907:188–199, 2018. Advances in Instrumentation
and Experimental Methods (Special Issue in Honour of Kai Siegbahn), https://www.
sciencedirect.com/science/article/pii/S0168900218309616.

https://software.belle2.org/development/sphinx/index.html
https://software.belle2.org/development/sphinx/index.html
https://www.kdnuggets.com/2018/10/mitchell-paradigm-concise-explanation-learning-algorithms.html
https://www.kdnuggets.com/2018/10/mitchell-paradigm-concise-explanation-learning-algorithms.html
https://docs.dgl.ai/
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://www.khanacademy.org/math/statistics-probability/designing-studies/sampling-methods-stats/a/sampling-methods-review
https://www.khanacademy.org/math/statistics-probability/designing-studies/sampling-methods-stats/a/sampling-methods-review
https://www.khanacademy.org/math/statistics-probability/designing-studies/sampling-methods-stats/a/sampling-methods-review
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
pytorch.org/docs
scikit-learn.org
docs.scipy.org/doc/scipy/
https://www.belle2.org/project/super_kekb_and_belle_ii
https://www.belle2.org/project/super_kekb_and_belle_ii
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900218309616
https://www.sciencedirect.com/science/article/pii/S0168900218309616

68 BIBLIOGRAPHY

[13] Caterina Biscari. Accelerators r&d. Proceedings of Science, pages 202009–019, 2009.
https://doi.org/10.15161/oar.it/1448873081.77.

[14] Jannick Bross. Bias Mitigation in Selective Background Monte Carlo Simulation at
Belle II. Master’s thesis, Ludwig-Maximilians-Universität München, 10 2020.

[15] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, et al. Machine learning and the
physical sciences. Rev. Mod. Phys., 91:045002, Dec 2019. https://link.aps.org/

doi/10.1103/RevModPhys.91.045002.

[16] The Belle II collaboration. Belle ii technical design report, 2010. https://arxiv.

org/abs/1011.0352.

[17] Thomas M Cover and Joy A Thomas. Elements of information theory second edition
solutions to problems. Internet Access, 2006. https://onlinelibrary.wiley.com/

doi/book/10.1002/047174882X.

[18] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–
874, 2006. ROC Analysis in Pattern Recognition.

[19] Geoffrey C. Fox and Stephen Wolfram. Observables for the analysis of event shapes
in e+e− annihilation and other processes. Phys. Rev. Lett., 41:1581–1585, Dec 1978.

[20] Karl Pearson F.R.S. X. on the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 50(302):157–175, 1900. https://doi.
org/10.1080/14786440009463897.

[21] Karl Pearson F.R.S. X. on the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 50(302):157–175, 1900. https://doi.
org/10.1080/14786440009463897.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[23] Particle Data Group. Review of particle physics. Phys. Rev. D, 98:030001, Aug 2018.
https://link.aps.org/doi/10.1103/PhysRevD.98.030001.

[24] J. L. Hodges. The significance probability of the smirnov two-
sample test. Arkiv för Matematik, 3:469–486, 1958. https://

projecteuclid.org/journals/arkiv-for-matematik/volume-3/issue-5/

The-significance-probability-of-the-smirnov-two-sample-test/10.1007/

BF02589501.full.

https://doi.org/10.15161/oar.it/1448873081.77
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://arxiv.org/abs/1011.0352
https://arxiv.org/abs/1011.0352
https://onlinelibrary.wiley.com/doi/book/10.1002/047174882X
https://onlinelibrary.wiley.com/doi/book/10.1002/047174882X
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
http://www.deeplearningbook.org
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://projecteuclid.org/journals/arkiv-for-matematik/volume-3/issue-5/The-significance-probability-of-the-smirnov-two-sample-test/10.1007/BF02589501.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-3/issue-5/The-significance-probability-of-the-smirnov-two-sample-test/10.1007/BF02589501.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-3/issue-5/The-significance-probability-of-the-smirnov-two-sample-test/10.1007/BF02589501.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-3/issue-5/The-significance-probability-of-the-smirnov-two-sample-test/10.1007/BF02589501.full

BIBLIOGRAPHY 69

[25] James Meier Samuel Kahn. Hadronic tag sensitivity study of B → K(*)v?v and
selective background Monte Carlo Simulation at Belle II. PhD thesis, April 2019.
http://nbn-resolving.de/urn:nbn:de:bvb:19-240131.

[26] T. Keck et al. The full event interpretation. Computing and Software for Big Science,
3(1), Feb 2019. http://dx.doi.org/10.1007/s41781-019-0021-8.

[27] Thomas Keck. The Full Event Interpretation for Belle II. Master’s thesis, KIT, Karl-
sruhe, 11 2014. Presented on 11 11 2014, https://inspirehep.net/literature/

1514166.

[28] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks, 2017. https://arxiv.org/abs/1609.02907.

[29] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79 – 86, 1951. https://doi.org/10.1214/aoms/

1177729694.

[30] David J. Lange. The evtgen particle decay simulation package. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 462(1):152–155, 2001. BEAUTY2000, Proceedings of the
7th Int. Conf. on B-Physics at Hadron Machines, https://www.sciencedirect.com/
science/article/pii/S0168900201000894.

[31] Jun Liu. Monte Carlo Strategies in Scientic Computing. 02 2009. https://www.

springer.com/gp/book/9780387763699.

[32] Martin N Marshall. Sampling for qualitative research. Family practice, 13(6):522–526,
1996. https://doi.org/10.1093/fampra/13.6.522.

[33] Tom M Mitchell et al. Machine learning. McGraw-hill New York, 1997. http:

//www.cs.cmu.edu/~tom/mlbook.html.

[34] Franco Scarselli et al. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009. https://ieeexplore.ieee.org/document/4700287.

[35] Torbjrn Sjstrand et al. An introduction to pythia 8.2. Computer Physics Communi-
cations, 191:159177, Jun 2015. http://dx.doi.org/10.1016/j.cpc.2015.01.024.

[36] Petar Velikovi, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li, and
Yoshua Bengio. Graph attention networks, 2018. https://arxiv.org/abs/1710.

10903.

[37] Andreas Wieland and Carl Marcus Wallenburg. Dealing with supply chain risks: Link-
ing risk management practices and strategies to performance. International journal
of physical distribution & logistics management, 2012. https://www.depositonce.

tu-berlin.de/bitstream/11303/7030/1/wieland_wallenburg.pdf.

http://nbn-resolving.de/urn:nbn:de:bvb:19-240131
http://dx.doi.org/10.1007/s41781-019-0021-8
https://inspirehep.net/literature/1514166
https://inspirehep.net/literature/1514166
https://arxiv.org/abs/1609.02907
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://www.sciencedirect.com/science/article/pii/S0168900201000894
https://www.sciencedirect.com/science/article/pii/S0168900201000894
https://www.springer.com/gp/book/9780387763699
https://www.springer.com/gp/book/9780387763699
https://doi.org/10.1093/fampra/13.6.522
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
https://ieeexplore.ieee.org/document/4700287
http://dx.doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://www.depositonce.tu-berlin.de/bitstream/11303/7030/1/wieland_wallenburg.pdf
https://www.depositonce.tu-berlin.de/bitstream/11303/7030/1/wieland_wallenburg.pdf

70

Acknowledgements

First I want to thank my supervisor, Professor Thomas Kuhr who gave me the chance to
take part in this project, provided me many opportunities to show and discuss our achieve-
ments in the meetings and also gave me lots of support during my writing and presentations.

I am really grateful for the guiding, encouraging and supplying from Dr. Nikolai Hart-
mann. Without his ideas and teachings it is impossible for me to carry out this work. I
learned a lot from him not only in the field of physics, programming and data processing,
but also the experiences in the using of Linux and working on remote servers. I also thank
to his carefully correction of my thesis and his great patience on my poor English writing
skills. He makes me feel so warm especially during this hard time of Corona situations.

Further I would like to thank all the members in the AG-kuhr group who gave me the
chance to know about their advanced physical researches in group meetings and confer-
ences. Their introductions enriched my horizon and their efforts encouraged me to keep
on moving.

Finally I want to thank my family for giving me emotional as well as financial support
and encouragements.

72

Erklärung/Declaration

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst

zu haben und keine anderen als die in der Arbeit angegebenen

Quellen und Hilfsmittel benutzt zu haben.

I hereby declare that this thesis is my own work, and that I ha-

ve not used any sources and aids other than those stated in the

thesis.

München, 21.09.2021

Boyang Yu

	Abstract
	The BELLE II Experiment
	SuperKEKB and BELLE II Detector
	Monte Carlo Simulation
	Tagging Method
	Full Event Interpretation
	Skimming

	Machine Learning
	Machine Learning Basics
	Generalization
	Gradient Descent

	Neural Networks
	General Concept
	Graph Neural Networks
	Attention Mechanisms

	Decision Trees
	Gradient Boosting Decision Trees
	Hyperparameters

	Statistical Tools
	Sampling Method
	Reweighting Method
	Metrics
	Calibration Curve
	ROC Curve and AUC Value
	Chi-squared Test
	Cross Entropy
	Kullback-Leibler Divergence
	Kolmogorov-Smirnov Test

	Neural network architecture optimization
	Pre-processing
	Dataset
	Graphs and Batches
	Clustering

	Neural Network Filter
	Architecture and Hyperparameters
	Visualisation of Attention Weights
	Tuning and Comparison

	Event weighting methods
	Speedup Metrics
	Speedup for the Sampling Method
	Speedup for the Reweighting Method
	Robustness

	Post-processing
	Importance Sampling
	GBDT Reweighting
	Histogram Reweighting

	Summary
	Results
	Outlook

	Acknowledgements
	ErklÃ¤rung

