
Real-Time Trigger and online Data Reduction

based on Machine Learning Methods

for Particle Detector Technology

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS (Dr.-Ing.)

von der KIT-Fakultät für
Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie (KIT)
genehmigte

DISSERTATION

von

Dipl.-Inform. Steffen Bähr

geb. in Kaptshagai

Tag der mündlichen Prüfung:
16.07.2020

Hauptreferent: Prof. Dr.-Ing. Dr. h. c. Jürgen Becker
Korreferent: Prof. Dr. Ivan Peric

Real-Time Trigger and online Data Reduction based on Machine Learning Methods for
Particle Detector Technology

1. Auflage: Juli 2021
©2021 Steffen Bähr

Thank you to all the people that spent slices of their time with me throughout my life
Nothing is more precious to me

i

Abstract

Modern particle accelerator experiments are producing immense amounts of data online
during their operation. Storing the entire amount of generated data is quickly exceeding
reasonable budgets for the data readout infrastructure. This problem is traditionally ad-
dressed by using a combination of trigger and data reduction mechanisms that are located
close to the respective detectors to facilitate a reduction of the data rates as early in the pro-
cess as possible. Meanwhile, traditional approaches to these systems are struggling with
achieving an efficient reduction for modern experiments such as Belle II. The reason for
this lies in the complex observed distributions of background, or unwanted, events. This
situation is enhanced by the unknown characteristics of both the accelerator and detector
before reaching high luminosity operation. A robust and flexible algorithmic alternative
is thus required to address this problem. This can be provided by using an approach
based on machine learning. Since such trigger and data reduction systems are operated
under tight constraints such as small latency budgets, a high number of required data
transmission connections and general real-time processing, Field Programmable Gate Ar-
ray (FPGA)s are used as a technological basis for the implementation. Within this thesis,
several approaches based on machine learning methods were developed for FPGAs to
fulfil the challenges present at the Belle II experiment. These systems are presented and
discussed throughout this thesis.

The primary application case addressed within this thesis represents the suppression of
particle tracks that originate from outside of the interaction point at which particles col-
lide. This suppression is performed by estimating a particle track’s three-dimensional pa-
rameters in real-time. The system that was developed for this task is the neural z-Vertex
trigger. It has to estimate the requested parameters within a hard latency budget of 5µs
that is allocated to the entire first level trigger system. This latency has to be achieved
while achieving a reasonable accuracy for estimating the parameters to avoid any loss
of important physics data. The algorithmic basis of this trigger system is a multi-layer
perceptron coupled with a detector-specific preprocessing that reduces the overall pro-
cessing complexity. For this, a flexible architecture was developed, which is realizing all
of the required functional aspects. The architecture is accompanied by a design flow that
provides a semi-automated generation of the firmware that facilitates quick updates of
the internal processing in case of changing conditions within the experiment. Validation
is promoted at several stages, which includes a slow control infrastructure that enables
online monitoring of the current status, while data quality monitoring is used to evaluate
the system’s performance during operation. All aspects are culminating in the generation
of two system setups that are used for the experiment’s operation. While the former is
allowing an early evaluation, without the presence of the complete data readout infras-
tructure, the later setup is used during physics operation and estimating the desired track
parameters. Especially the later system shows that all requirements are fulfilled for both
integration and quality of the estimation. This achievement is underlined by the presen-

iii

tation of data samples taken from the experiment’s early runs. These data samples show
the general correctness of the approach and the ability of the employed neural network
to estimate the z-Vertex. In conclusion, this work represents the first z-Vertex estimating
trigger system based on neural networks that is operational at a modern state-of-the-art
experiment.

Further optimizations of the trigger’s performance are achieved by addressing the sur-
rounding sub-systems within the first level trigger system. These optimizations are sup-
plementing the neural z-Vertex trigger but are on their own significantly improving the
general trigger performance. Two approaches are presented, which were transitioned to
operation on an FPGA within this thesis. These approaches are a revised track segment
finder for the experiment’s central drift chamber and a Hough-based 3D-Track estimator
using a weighting scheme based on Bayes’ theorem. The former is addressed by a state
machine-based revision of the original track segment finder. The revised system is capa-
ble of increasing the overall efficiency substantially, as is shown by data taken from the
experiment. It is already operational within the experiment, and qualitative statements
are made using collision data. The Hough-based estimator, on the other hand, is currently
in the prototyping stage of its development. The system’s feasibility for future application
is shown for this stage, with the final integration being planned after the installation of
anticipated upgraded FPGA platforms. For this, general integration strategies, together
with their individual trade-offs, are explored and discussed.

Finally, stepping away from trigger systems, the task of online data reduction is addressed
with a discussion about the development of an online cluster analysis. This system is ca-
pable of classifying observed particles by only using the data generated at the pixel de-
tector of Belle II. The classification is performed by an FPGA-based implementation of the
NeuroBayes algorithm, which thus far was only used on traditional computer systems.
The developed system is capable of achieving high efficiency for the classification of pixel
detector data while fulfilling the strict real-time requirements set for both throughput and
latency. Exploring the boundaries of the system’s reachable performance, it is further ex-
tended in into the PCIe-based high-throughput demonstrator, for which it is shown that
the bottleneck is due to the limitations of data transmission and not caused by the internal
processing architecture.

iv

Zusammenfassung

Moderne Teilchenbeschleuniger-Experimente generieren während zur Laufzeit immense
Datenmengen. Die gesamte erzeugte Datenmenge abzuspeichern, überschreitet hierbei
schnell das verfügbare Budget für die Infrastruktur zur Datenauslese. Dieses Problem
wird üblicherweise durch eine Kombination von Trigger- und Datenreduktionsmecha-
nismen adressiert. Beide Mechanismen werden dabei so nahe wie möglich an den Detek-
toren platziert um die gewünschte Reduktion der ausgehenden Datenraten so frühzeitig
wie möglich zu ermöglichen. In solchen Systeme traditionell genutzte Verfahren haben
währenddessen ihre Mühe damit eine effiziente Reduktion in modernen Experimenten
zu erzielen. Die Gründe dafür liegen zum Teil in den komplexen Verteilungen der auftre-
tenden Untergrund Ereignissen. Diese Situation wird bei der Entwicklung der Detek-
torauslese durch die vorab unbekannten Eigenschaften des Beschleunigers und Detektors
während des Betriebs unter hoher Luminosität verstärkt. Aus diesem Grund wird eine
robuste und flexible algorithmische Alternative benötigt, welche von Verfahren aus dem
maschinellen Lernen bereitgestellt werden kann. Da solche Trigger- und Datenreduktion-
Systeme unter erschwerten Bedingungen wie engem Latenz-Budget, einer großen Anzahl
zu nutzender Verbindungen zur Datenübertragung und allgemeinen Echtzeitanforderun-
gen betrieben werden müssen, werden oft FPGAs als technologische Basis für die Umset-
zung genutzt. Innerhalb dieser Arbeit wurden mehrere Ansätze auf Basis von FPGAs
entwickelt und umgesetzt, welche die vorherrschenden Problemstellungen für das Belle
II Experiment adressieren. Diese Ansätze werden über diese Arbeit hinweg vorgestellt
und diskutiert werden.

Der primäre Anwendungsfall, der in dieser Arbeit adressiert wird, ist die Unterdrückung
von Teilchenspuren, welche ihren Ursprung außerhalb des Kollisionspunkts desExperi-
mentes haben. Diese Unterdrückung wird anhand einer Schätzung der dreidimension-
alen Spurparameter zur Laufzeit anhand von Echtzeit-Datenverarbeitung durchgeführt.
Diese Aufgabe wird von dem neuronalen z-Vertex Trigger übernommen. Dieses System
muss die Schätzung der benötigten Spurparameter innerhalb des harten Latenzbudgets
von 5µs berechnen, welches für das gesamte Triggersystem der ersten Stufe angesetzt ist.
Diese Latenz muss eingehalten werden während eine ausreichend gute Genauigkeit für
die Schätzung der Parameter erzielt werden muss. Die algorithmische Basis für dieses
Triggersystem ist ein mehrschichtiges Perzeptron zusammen mit einer auf das Experi-
ment ausgelegten Vorverarbeitung welche die interne Komplexität des Perzeptrons ver-
ringert. Hierfür wurde eine flexible Architektur entwickelt, die alle benötigten funk-
tionalen Aspekte umsetzt. Die entwickelte Architektur wird von einem Entwurfsfluss be-
gleitet, welcher eine semi-automatisierte Generierung der Firmware erlaubt, um schnelle
Aktualisierungen der internen Verarbeitung, gemäß der sich ändernden Bedingungen
unter denen das Experiment stattfindet, zu erlauben. Die Validierung der Architektur
wird durch mehrere Mechanismen unterstützt. Diese bestehen aus der Unterstützung der
Slow Control, zum Online-Monitoring des aktuellen Zustands der Hardware, und des

v

Data Quality Monitorings, welches zur Evaluierung der Vorhersage-Fähigkeit des Trig-
gers zur Laufzeit genutzt wird. Alle betrachteten Aspekte werden schließlich kombiniert
um zwei Systeme aufzusetzen, welche während des Betriebs des Experimentes verwendet
wurden. Während eines der Systeme es erlaubt den Trigger in einem frühen Entwick-
lungszustand des Experimentes einzusetzen, ohne das Vorhandensein der kompletten
Infrastruktur der Datenauslese, kann das andere System zum Einsatz mit Teilchenkol-
lisionen verwendet werden. Anhand des Systems zum Einsatz während Kollisionen wird
gezeigt das alle an den Trigger gesetzten Anforderungen erfüllt werden. Dies wird durch
eine Evaluierung der Leistungsfähigkeit anhand von aus dem Experiment genommenen
Daten unterstützt. Die gezeigten Daten zeigen hierbei die allgemeine Korrektheit des
Triggeransatzes und dessen Fähigkeit ,unter Nutzung neuronaler Netze, den z-Vertex
einer Teilchenspur zu schätzen. Zusammenfassend repräsentiert diese Arbeit die Beschrei-
bung des ersten Triggersystems auf Basis von FPGAs welches den z-Vertex mit Hilfe neu-
ronaler Netze während des Betriebs des Experiments hinreichend genau schätzen kann.

Weitere Optimierungen der Vorhersagefähigkeit des Triggersystems werden, durch zusät-
zliche Ansätze zur Überarbeitung der weiteren Teil-Triggersysteme der ersten Stufe, einge-
führt. Diese werden dabei den zuvor vorgestellten z-Vertex Trigger unterstützen. Zwei
Ansätze werden dabei diskutiert, welche im Rahmen dieser Arbeit auf FPGAs umge-
setzt wurden. Die umgesetzten Ansätze sind zum einen ein überarbeiteter Spursegment-
Finder und eine 3D Spurparameter-Vorverarbeitung basierend auf der Hough Transfor-
mation in Kombination mit einer Gewichtung basierend auf dem Theorem von Bayes. Der
Spursegment-Finder basiert dabei auf einer Umstrukturierung der Architektur unter der
Nutzung von Zustandsautomaten. Dieses System ist in der Lage die Leistungsfähigkeit
der ersten Vorverarbeitungsstufe der Daten der Driftkammer zu erhöhen. Das System
wird anhand von Daten aus dem Experiment untersucht, wobei generell höhere Effizien-
zen zur Erkennung von Teilchenspuren erzielt werden. Die zusätzliche 3D Vorverar-
beitung ist währenddessen in einer prototypischen Entwicklungsphase. Dessen Eignung
zum zukünftigen Einsatz im Experiment wird innerhalb dieser Arbeit gezeigt und durch
einen Plan zur Integration in das Experiment unterstützt.

Der letzte Abschnitt dieser Arbeit adressiert die Online-Datenreduktion des Experiments
durch die Umsetzung einer Online-Clusteranalyse auf FPGAs. Dieses System ist in der
Lage beobachteten Teilchen in Untergrund Ereignisse oder gesuchte Pionen zu klassi-
fizieren, in dem nur Daten des Pixeldetektors verwendet werden. Dies wird erzielt in dem
der NeuroBayes Algorithmus auf FPGAs umgesetzt wird. Dieser Algorithmus wurde
bisher nur auf traditionellen Rechensystemen verwendet. Das hier entwickelte System ist
in der Lage eine hohe Effizienz bei der Klassifizierung zu erzielen, während alle Echtzei-
tanforderungen an den Durchsatz und die Latenz erfüllt werden. Die Leistungsfähigkeit
der entwickelten Architektur wird zusätzlich untersucht in dem ein PCIe-basierter Demon-
strator vorgestellt wird bei dem der Flaschenhals nicht bei der Architektur, sondern an der
verfügbaren Bandbreite ist.

vi

Preface

Diese Dissertation beschreibt den Ausflug eines Ingenieuren bzw. Informatikers in die
Welt der Teilchenphysik. Dementsprechend ist nicht die dahinter liegende Physik im Mit-
telpunkt sondern die Umsetzung von FPGA-basierten Systemen zum Einsatz innerhalb
der Datenauslese-Umgebung eines der größten solcher Experimente. Da solche Umge-
bungen in der Regel massive Ausmaße annehmen, verweise ich begleitend zu diesem
Werk auf die diverse Literatur der Kolloboration des Experiments. Während meines eige-
nen Studiums des Experiments, war ich durchweg beeindruckt von der Vielfältigkeit der
innerhalb von Belle II verfolgten Arbeiten. Für jemanden der die entsprechenden Perso-
nen tatsächlich trifft und mit ihnen darüber diskutieren kann, ist es natürlich noch ein-
facher sich in die Thematiken einzufinden, jedoch sind die verschiedenen Werke auch für
sich bereits mehr als lohnenswert. Ausserdem waren das mit die faszinierendsten Men-
schen die ich getroffen habe, es lohnt sich herauszufinden was sie zu sagen bzw. schreiben
haben.

Zusätzlich möchte ich mich noch einmal bei allen Personen bedanken, die mir ihre Zeit
geschenkt haben. Eltern, Bruder und Familie, die mir immer geholfen und untersützt
haben, meinen Quatsch auch schon am längsten mitmachen mussten, ich hoffe sie halten
noch mehrere weitere Jahre aus. All meine Freunde aus Mannheimer Schulzeiten An-
dreas, Dennis, Michael, Timo .. die auch meine ältesten Freunde sind, mir die Schulzeit
überhaupt erst erträglich gemacht haben, vor allem den Französisch-Unterricht, aber auch
später in der Zivi-Zeit und vieles mehr. Sie sind auch heute auch trotz aller Änderungen,
die ich als Mensch durchlaufen habe bereit ihre Zeit mit mir zu verbringen. Alle meine
Kollegen aus Belle II, vor allem die Kollegen aus München Christian, Sebastian, Felix
und Sara, die Kollegen aus Korea InSoo, Cheoulhun, JaeBak, KyungTae, SungHyung,
Youngjun und die des KEK Iwasaki-san, Yun-Tsung, Nakazawa-san, Koga-san, mit de-
nen ich eng zusammengearbeitet (und Belle II gefeiert) habe. Meine Arbeitskollegen der
Gruppen Becker, Sax, Müller-Glaser und Stork, es war ein großes Glück in einem Arbeit-
sumfeld mit vielen tollen Menschen arbeiten zu können. Vor allem Kai, Lidia, Florian, Au-
gusto, Arthur, Houssem, Oliver, Tim, Stephan, Stefan, Jan, Kevin, Steffi, Tobias, Lukas, Jo-
hannes, Jijing, Simon S. mit denen ich viele Sachen unternehmen konnte. Hannes, Simon,
Fabian, Harald und Michael mit denen ich viel unternommen habe wie Kino, Reisen,
Sportveranstaltungen, die mir aber immer zugehört und geholfen haben. All die super
Studenten die ich betreuen durfte in Abschlussarbeiten oder Vorlesungen. Vor allem Kai,
Adam, Julian bei denen die Betreuung am meisten Spaß gemacht hatte. Falco und Viet
aus der alten ARAMiS-Gruppe, die mir vor allem am Anfang das Leben am Institut ein-
facher und angenehmer gemacht haben, viel geholfen haben, immer da waren auch nur
für ein Gespräch, oder auch zu privaten Sachen bereit waren. Den Kollegen der Werkstatt
und der Sekretariate.

vii

Die wichtigsten Personen für meinen Erfolg zur Promotion, abseits von mir selbst, möchte
ich hier zusätzlich Danken. Oli für seine Betreuung von mir als er damals PostDoc war,
vor allem als ein jemand mit dem man über alles reden konnte. Er war auch einer der
Menschen die auf eine Art und Weise kritisch mit mir reden konnten, so dass ich an-
schliessend wusste was ich verbessern sollte. Timo, bereits für seine Betreuung meiner
Diplomarbeit, aber dann vor allem für die gemeinsame Zeit als Büro-Nachbarn. In den
letzten Jahren habe ich wohl mit keinem Menschen mehr Zeit verbracht als mit ihm, eine
bessere Person dafür gibt es aber auch nicht. Prof. Becker für die jahrelange Betreu-
ung, die gemeinsame Zeit durch die HSO-Vorlesung, aber auch generell für die gemein-
same Zeit z.B. bei verregneten Baseball-Spielen mit neugewonnen amerikanischen Kolle-
gen, die "SaufN’Spiel" erklärt haben wollten. Schließlich meine Freundin, die mir vor
allem gegen Ende sehr geholfen diese Schrift auch mal zu Ende zu schreiben. Ohne
ihre durchgängige Motivation, Geduld und Unterstützung würde ich heute noch daran
schreiben.

Karlsruhe, Juli 2021
Steffen Bähr

viii

Contents

1. Introduction 1
1.1. Motivation . 4
1.2. Contribution . 6
1.3. Outline . 7

2. Fundamentals 11
2.1. The Belle II Particle Accelerator Experiment 11

2.1.1. Overview of the Experiment . 12
2.1.2. Sub-Detectors for Track Finding . 14

2.2. Belle II Trigger System . 18
2.2.1. Trigger System for the Central Drift Chamber 19
2.2.2. Trigger Systems of Additional Sub-Detectors 24

2.3. Belle II Data Acquisition System . 28
2.3.1. Data Reduction for the Vertex Detector 30
2.3.2. Signal and Background Events . 32
2.3.3. Slow Control and Data Quality Monitoring 33

2.4. Field Programmable Gate Arrays . 36
2.4.1. Application Domains . 37
2.4.2. General Architecture . 38
2.4.3. Design Flow for FPGAs . 41
2.4.4. Design Space Exploration . 43
2.4.5. High-Level Synthesis . 44

2.5. Machine Learning and Classification . 46
2.5.1. Classification . 46
2.5.2. Approaches based on Supervised Learning 47

3. State of the Art 53
3.1. Related Trigger Systems based on Track Finding 53

3.1.1. Approaches based on Neural Networks 53
3.2. Alternative Track Trigger Approaches . 56
3.3. Hardware Acceleration for Machine Learning Algorithms 58

3.3.1. Realization of Neural Networks on FPGAs as Soft-IP 59
3.3.2. Realization of Machine Learning Accelerators as Hard-IP or ASIC . . 64

3.4. Summary . 66

4. General Requirements and Fundamental Design Templates 67
4.1. Requirements and Constraints . 67

4.1.1. Connectivity . 67
4.1.2. Monitoring . 68

ix

Contents

4.1.3. Accuracy . 69
4.1.4. Throughput and Latency . 69
4.1.5. Memory Demand . 70
4.1.6. Runtime Adaptivity . 70
4.1.7. Design Time Flexibility . 71
4.1.8. Summary . 71

4.2. Basic Architecture Template . 72
4.3. Basic Design Flow Template . 75
4.4. Design of Neural Networks for FPGAs . 77

4.4.1. Realization of Low-Latency and High-Throughput Neurons 77
4.4.2. Low-Overhead Realization of the Activation Function 82
4.4.3. Pipelining Options for Resource-Efficient Neuron Processing 84
4.4.4. Network Architectures based on Heterogeneous Resources for In-

crease of the Performance . 85
4.4.5. Summary . 87

5. The Neural z-Vertex Track Trigger 89
5.1. Background Suppression using a Neural z-Vertex Estimation 89

5.1.1. Estimation of Efficiency and Network Topology Studies 91
5.1.2. Functional Description of the neural z-Vertex Trigger 92
5.1.3. Requirements for Trigger Operation 94

5.2. Realization and Implementation of the neural z-Vertex Trigger 98
5.2.1. Integration into the Trigger System . 99
5.2.2. Selection of a Hosting Hardware Platform 101
5.2.3. Interfacing to the Trigger System . 105
5.2.4. Architecture of the Preprocessing . 112
5.2.5. Architecture of the Multi Layer Perceptron 125

5.3. Tools and Monitoring for the Neural z-Vertex trigger 130
5.3.1. Semi-Automated Generation of Firmware 130
5.3.2. Interfaces and Levels of Monitoring 131
5.3.3. Slow Control . 138
5.3.4. Data Quality Monitoring . 141

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger 143
5.4.1. Setups for Testing the NNT . 143
5.4.2. Configurations for Operation in Belle II 145
5.4.3. Local Setup for Testing and Demonstration 163
5.4.4. Investigation of Alternative Platforms and new Technologies 164

5.5. Summary . 166

6. The Hough-based 3D Track Estimation 169
6.1. Upgraded Estimation of 3D-Track Parameters 169

6.1.1. Functional Description and Processing of the Proposed Approach . . 169
6.2. System Requirements . 170
6.3. Realization of the S3D . 174

6.3.1. Integration into the Trigger System . 174
6.3.2. FPGA Architecture of the S3D . 176

x

Contents

6.3.3. Evaluation of the Complete System 192
6.3.4. Design Flow . 193

6.4. Configurations for Operation at Belle II . 195
6.5. Summary . 197

7. The Track Segment Finder based on State Machine 199
7.1. Analysis of the Initial Track Segment Finder 199

7.1.1. Integration into the Trigger System . 199
7.1.2. FPGA Architecture of the Original TSF 201
7.1.3. TSFm Module . 202

7.2. State Machine Approach . 203
7.2.1. Functional Description . 204
7.2.2. Suppression of Neighbouring Active Track Segments 205
7.2.3. Architecture of the TSFsm . 206
7.2.4. Realization of Left/Right Look Up Tables 207

7.3. Evaluation . 209
7.3.1. Characterization . 209
7.3.2. Methodology for Testing . 209
7.3.3. Validation . 210
7.3.4. Results from Tests within the CDCTRG 212

7.4. Summary . 213

8. The Online Cluster Analysis 215
8.1. Online Cluster Analysis for Rescuing Slow Hadrons 215

8.1.1. Experimental Context . 215
8.1.2. Functional Description of the OCA . 217
8.1.3. Requirements . 219

8.2. Realization of the OCA based on the NeuroBayes Algorithm 220
8.2.1. Integration into the DAQ of the PXD 220
8.2.2. Architecture of the OCA on FPGA . 222
8.2.3. Design Flow for the OCA . 226

8.3. NeuroBayes Demonstrator . 229
8.4. Summary . 231

9. Conclusion and Future Work 233
9.1. Conclusion . 233
9.2. Future Work . 235

A. Appendix 237
A.1. Neural z-Vertex Trigger . 237

A.1.1. Belle2Link Data Quality Management Interface 237
A.1.2. Description of the accepted Network Input 238
A.1.3. Results of NNT operation during experiment 8 238

A.2. OCA bit width analysis . 241
A.3. TSFsm . 242

A.3.1. Data format and Interface . 242

xi

Contents

A.3.2. Configuration of the TSF within the CDCTRG 242
A.3.3. Validation of the TSFsm . 244

Indexes 247
Figures . 247
Tables . 254
Abbreviations . 257

Bibliography 261

Own Publications 271

Supervised Student Research 277

xii

1. Introduction

Particle accelerator experiments are one of the cornerstones for humanity’s efforts to
advance its knowledge about the fundamental laws of physics that are underlying our
world. They provide the experimental setting for generating and observing physics pro-
cesses that are otherwise hidden from us and only assumed to be existing through the-
oretical models. The basis behind exploring new physics beyond our knowledge is to
recreate conditions under which never before seen particle decays are revealed. The goal
is to compare their observed behaviour with previously established theoretical models
that are describing the nature of particles. Advances typically require the creation and
observation of very rarely occurring particle decays. There is always knowledge to be
gained when observing these, irrespective of them matching or deviating from the the-
ory of established models as they are either validated or indticate the extistence physics
beyond our knowledge. The best-known discovery in recent years has been the observa-
tion of particles corresponding to the predicted behaviour of the Higgs boson [27]. This
discovery’s reach spread far beyond the community of particle physics as most of the
world’s population, with an interested in science and access to the respective informa-
tion, followed the progress of this discovery. While its experiment, is without a doubt, the
most well known around the world, other less known efforts led to similarly significant
advancements towards new physics. The most important examples within the context of
this thesis are the Belle and BarBar experiments from 2001. Both were able to record never
before seen particle decays, that paved the way for experimental proof of the Charge and
Parity (CP)-violation, which is one of the assumed major physics mechanisms that lead to
the asymmetry between matter and antimatter as it is present in our world [12, 4].

New insights are typically gained in modern experiments by the colliding particles at ex-
tremely high energies to improve the chances of generating the targeted rare particles and
their decays. Improvments in the generation of collisions is achieved by further develop-
ment of the particle accelerator used together with the experiment. This development is
mainly focused around tuning of the energy and increasing its luminosity. Both are de-
signed depending on the scientific context of the experiment. The development of these
two characteristics over the last years is shown in figure 1.1 for various experiments [102].
Most importantly here is to note that the current world record in luminosity is held by the
KEK-B-factory (KEKB) accelerator, which is the predecessor of the accelerator that is used
by the Belle II experiment. The Large Hadron Collider (LHC) is meanwhile producing the
by far highest energies and are even planned to be surpassed by its upcoming upgrades.

1

1. Introduction

(a) (b)

Figure 1.1.: Developments of both energy (a) and luminosity (b) in particle accelerator
experiments over the last 50 years [102].

Detectors are installed around the interaction point at which particles are colliding to
allow the observation of the resulting new particle decays. These detectors are designed
to record information about the behaviour of the newly generated particles. Examples
of recorded information are the energy and path of the particles through the detector’s
space. These detectors are typically heterogeneous in their design, as they are specialised
to fulfil specific tasks, for example, high-resolution detection of the energy as close as
possible to the interaction point. The complete information about the observed event
is then reconstructed by combining the data of all the installed detectors. The accuracy
of the reconstruction is meanwhile highly sensitive to the specific characteristics of the
used detectors. Properties such as the distance of the detector to the interaction point,
the spacing between adjacent sensors, and the capability to accurately digitize deposited
energy of a particle are essential to achieve a high precision reconstruction. Witch each
new experiment more technologically advanced detectors are employed to offer better
recording and reconstruction. Typical approaches for improvement are the usage of more
detector layers around the interaction point, more and denser located sensors within each
of these layers, improvement of a sensor’s readout characteristics as well as placing the
detectors as close as possible to the interaction point. These developments is highly driven
by the increase in both energy and luminosity provided by the accelerator. Examples
of most recent developments that are about to shatter previously established high-end
characteristics in particle physics experiments are the Gigatracker [31], with its amount of
present channels, or upgrade of the ATLAS [34] experiment, with its extreme data rates.
However, these are detectors that are currently in development and years will pass before
operation will start.

With an ever-larger number and higher density of sensors integrated into the detectors,
modern experiments are possessing never before seen quantities of readout channels. As
the number of channels is typically scaling with the data rates that are read out from the
detector, this necessitates significant improvements of the infrastructure used for the data
readout. To support the data rates generated by so many channels, complex and expen-

2

sive data acquisition systems have to be developed. As most of these experiments are
operated with consecutive collisions, the data readout is mostly designed for pipelined
operation. In order to avoid any occurrence of dead time, in which the detector cannot
be read out due to congestion within the readout, recorded data has to be processed as
quickly as possible to keep up with its generation. While the before-mentioned experi-
ments are providing a glimpse into the future of the extreme anticipated data rates ahead,
they are already immense at current modern experiments. One such example is the Belle
II particle accelerator experiment at the High Energy Accelerator Research Organization
(KEK) in Japan, which aims at achieving a world record luminosity. It, for example, em-
ploys a novel Pixel Detector, the innermost detector in the experiment, which on its own is
generating data rates of up to 1 MByte/event, showing the extreme pressure that is going
to be put on its data readout systems.

While the ever-increasing amount of data generated at such experiments is enabling a
more precise analysis of the underlying physics processes, the generated data rates can
only be transferred from the detectors away to the data centres with great effort and cost
for the transmission infrastructure. Most modern experiments aim at reducing the gener-
ated amount of data before it is even being sent to these data centres to avoid excessive
cost. The most efficient solution is typically achieved by reducing the data rate to be
sent as early in the readout system as possible, thus avoiding the need of installing an
expensive high-capability transmission infrastructure. Modern experiments are aiming
at moving the systems tasked with this reduction as close as possible to the detector’s
sensors due to the extreme data rates that are expected.

Traditionally two separate approaches are employed for the overall data rate reduction.
One is the suppression of the total amount of data to be sent for each event to be stored.
The other approach is aiming at the reduction of the number of events that are to be
stored. By using combinations of these approaches, the total data rate to be stored can be
efficiently reduced. Suppression of events is traditionally the responsibility of the trigger
systems in such experiments. These systems are tasked with deciding whether data that
is read out from the detectors is to be sent along for further analysis or is to be discarded
to reduce the rate. Such trigger systems are typically designed in a multi-staged and
pipelined architecture, with each stage having different requirements in terms of latency,
resources, and throughput. The stages are organized in levels, with the system closest to
the detector typically being the level 1 trigger.

Both mechanisms are based on the fact that only a small fraction of the overall data is
actually essential for subsequent physics analyses. New physics is found through rarely
occurring events, while common processes are not having a high contribution towards
advancement. The general idea is subsequently to store only a predefined subset of the
observed events, those which are of importance to the experiment’s underlying physics
goals. A typical example of such data reduction is the usage of a track trigger. These trig-
gers are estimating the curvature of an observed particle track with the goal to determine
the type of particle that was observed. This estimation is then used for discrimination
between important and unwanted events. The problem of exceddingly high data rates
can then be solved by performing classification tasks during online operation.

The unique circumstances of an experiment’s operation typically enforce strict and tight
requirements on the implementation of such systems. Successive collisions require both

3

1. Introduction

low latency trigger decision making and matching of the detector’s data rates. Addition-
ally, even though not representing the entire detector’s data, the amount of data to be
received in order to be able to make trigger decisions is enormous with respect to com-
mon processing systems. These requirements are typically leading to the employment
of specialised hardware systems. While Application Specific Integrated Circuit (ASIC)s
can achieve the best results, these tasks are often carried out by FPGA platforms. These
can provide the desired high amounts of high-speed Input/Output (IO), deterministic
real-time processing and potential for adaption after their integration.

1.1. Motivation

(a) (b)

Figure 1.2.: Comparison of neural network-based processing with traditional approaches
over the last years in terms of their accuracy relative to the scale of data to
be processed [23]. While traditional approaches were representing the best
solution in the past (a), the current increase of available computing power
favoured the usage of neural networks as they are scaling better due to for
example their inherent degree of parallelism (b).

Keeping outgoing data rates in check has been a challenging task in the domain of high
energy physics experiments for a long time. Nowadays, it is rather another class of the
overall big data challenge our modern society is currently facing, as most of the services
used today rely on large scale collection and processing of data. The task is basically the
same for all domains, in which raw data itself is not usable. However, when processed
correctly, significant insight into the underlying processes can be gained. The current
trend for the processing approaches in the wake of these massive data collections is the us-
age of fast, efficient, and low maintenance approximation of the desired solutions instead
of their mathematically exact counterparts. This is where approaches based on machine
learning ascended in both industry and science to tackle big data processing challenges.
The development is graphically shown in figure 1.2, which illustrates the achieved accu-
racy of a processing solution depending on the scale of data to be processed [23]. While
traditional approaches were achieving better results in the past, nowadays, neural net-

4

1.1. Motivation

works are providing an overall better solution with regards to the amount of data to be
processed.

The principle of neural networks is to use an algorithm that configures or learns parame-
ters to solve any arbitrary processing problem. The processing operations to be performed
are not custom-generated by an algorithm engineer but are instead derived from the con-
figuration of very flexible operators called neurons. This configuration is performed in a
way that leads to the correct classification of a select number of test data sets. Even though
sometimes being excessive in their demand for processing power, these approaches are
capable of achieving very good results without investing too much effort in the research
of an exact algorithm. At the same time, these machine learning solutions often prove
to be behaving quite well even in the presence of data sets that were never seen before,.
They are thus often robust against unknown noise. Recent scientific developments in ma-
chine learning solutions solved its inherent problem of high resource demand. By com-
bining traditional processing solutions with the universal processing capabilities of these
algorithms, the required processing was significantly reduced, resulting in widespread
employment even on traditionally constrained platforms such as embedded systems.

The main motivation of this thesis is to apply approaches based on machine learning to
the data rate problems present in modern particle accelerator experiments, in particular
for the real-time trigger at level 1 and online data reduction. Although this general ap-
proach has been done before it was on a much smaller scale, for example, at higher-level
trigger systems with much more forgiving requirements. Meanwhile, when considering
the offline processing domain of an experiment, in which close to infinite processing re-
sources are present, these algorithms already proved to be a viable solution as they were
and are still used for classification and identification of particle decays. For example, the
Belle experiment made large-scale use of the NeuroBayes algorithm to analyse generated
data offline. Nowadays, ever more experiments are looking into using machine learning
for data analysis. Its feasibility is investigated as part of the TrackML challenge hosted by
the European Organization for Nuclear Research (CERN) [20] at which computing tasks
are openly announced to the public and supported by a prize money pool for the best so-
lutions. While those are representing popular offline solutions, employment at the online
processing stage of an experiment is rather uncommon. Despite their assumed suitability,
such approaches have not yet been used in any First Level (L1) trigger system thus far.

In the past, the high demand for computing power set an insurmountable hurdle for
large scale usage of machine learning solutions. The situation significantly improved with
the development of computationally less intensive alternatives. However, its ascend is
still driven by the increase in available amount of processing power. With the further
reduction of the technology node in present modern semiconductor technology and the
associated increase in integration densities, today’s hardware platforms are possessing
a massive computing capability that is at the same time cheaply available. Especially
machine learning algorithms are profiting from the increased pool of available computing
resources. Most of today’s high-end mobile devices already contain dedicated neural
network-based hardware accelerators, e.g., used for image optimization.

A realization of a neural network-based trigger system on FPGAs at L1, however, does
not yet exist thus far. Besides the necessary studies to be conducted in order to find a
suitable machine learning solution together with a topology and potential preprocessing,

5

1. Introduction

both the implementation and integration within such tight requirements are not easy to
realize. All processing has to be carried out in real-time and within a low latency budget.
At the same time, many high-speed IOs have to be supported in order to receive and
send the required data within the entire trigger system. Since the algorithms have to be
adaptable to the observed behaviour of the experiment, concepts have to be created to
update the employed algorithms in the field. In addition, such a trigger can only be used
with a complementary online monitoring approach that ensures correctness.

Traditionally, the biggest hurdle to be overcome when implementing for FPGAs is the
transition of the algorithm to the dedicated logic processing structures used in this tech-
nology. Both software and hardware development, which are based on very different
paradigms, face each other at this point. FPGAs are often still programmed with a ded-
icated Hardware Description Language (HDL), which implements the concepts of paral-
lelism in a fundamentally different way. The development for FPGAs thus requires in-
depth knowledge of the technology in order to find an optimized solution that can meet
the strict overall requirements dictated to L1 trigger systems.

1.2. Contribution

While algorithms from the class of machine learning, especially neural networks, are
nowadays a popular occurrence within the FPGA community in the domain of real-time
classification problems, they are only a rare sight for L1 trigger or online data reduction
systems used in modern particle detector experiments. This is mostly due to the strict
requirements to be fulfilled, mainly a fixed throughput coupled with a hard latency bud-
get. Herein lies is the core of this thesis’s contribution, as it represents the documentation
of the first and at the moment only neural network-based L1 trigger system that is inte-
grated, fully functional, and delivers tack estimations that are vital to the success of its
targeted physics experiment. The contributions do not stop here, as two optimizations
for the entire track trigger system are presented and discussed. They were primarily de-
veloped to further boost the trigger system based on neural networks. However, even
in stand-alone, they are representing a substantial upgrade over the initial design. The
usage of these kinds of algorithms in the context of particle accelerator experiments is fur-
ther explored with the prototypical development of a neural network-based online data
reduction system.

This thesis presents the design of the neural z-Vertex trigger for the Belle II experiment.
It contains an integration strategy that fulfils all interface requirements, allowing to cover
the entire space of the experiment’s drift chamber. A flexible FPGA-based architecture
is presented and discussed that is capable of achieving all of the resource, latency, and
throughput requirements. It is designed to be easily adaptable for usage with newly
trained neural networks in order to reflect the current operational status of the exper-
iment or to be scaled to different requirements. Hardware-based implementations for
both slow control and data quality monitoring are presented that contribute towards en-
suring correctness. These are the cornerstones of proving correct functional operation. At
last this system is capable of achieving not only all non-functional requirements, it can
recreate the software-based implementation of the neural trigger concept almost entirely,

6

1.3. Outline

not only in simulation but during runtime operation as supported by the data samples
that are presented within this thesis.

The upgrade of the L1 trigger system is meanwhile centred around the optimization of
the basic processing step of the system, the TSF. Data presented within this thesis shows
that the approaches developed here are increasing the readout efficiency significantly.
Further improvements of the entire trigger system are investigated by the development of
a prototypical Hough-based 3D track finding as a preprocessing approach on FPGAs that
is using a weighting scheme based on Bayes theorem. The transition towards integration
into the operation of the experiment is investigated. This investigation focuses on the
examination of the possible opportunities and consequences of integration into the trigger
system.

Lastly, this thesis presents the a FPGA-based realization of the NeuroBayes algorithm,
which was initially used for particle classification in server farms. It is used for the pro-
totypical implementation of an online data reduction system, which allows the identifica-
tion of defined types of particles by using the pixel detector of Belle II. The limits of the
implementation are investigated by the development of a high throughput demonstrator
that is independent of the restrictions set by the experiment’s integration requirements.

1.3. Outline

The contents of this thesis are presented according to the following structure. Chap-
ter 2 presents the fundamentals for understanding the described systems and approaches.
First, the Belle II experiment is presented in section 2.1. For this, general information
about the experiment and its goals are provided. This is followed by an overview of the
detector concepts developed for the experiment and accompanied by an introduction to
its respective sub-detectors. The focus is then shifted towards the experiment’s trigger
system in section 2.2. The core of the examination represents the trigger system that is
operating with the data from the Central Drift Chamber, which is the targeted detector
for the trigger approach developed within this thesis. After establishing the fundamen-
tals of the trigger system, the Data Aquisition (DAQ) of the experiment is presented in
section 2.3. It also covers the general approach to storing data within the experiment’s
infrastructure. This will focus on topics relevant to the development of the systems tar-
geted within this thesis. It features the employed general solutions for data reduction
methods that are developed for the Pixel Detector. Supporting mechanisms such as the
slow control and data quality monitoring will be presented, as these are mandatory for all
systems. This concludes the discussion of the topics about the Belle II experiment, as such
section 2.4 is representing an introduction to FPGAs. This will cover the general architec-
ture of modern FPGAs as well as the general design flow that is used for development for
such systems. Since machine learning and especially neural networks are forming the al-
gorithmic basis for the systems developed here, the basics of these methods are presented
in section 2.5.

Chapter 3 presents the state-of-the-art relevant to this thesis. It is divided into the two
areas of data reduction and trigger techniques in the environment of particle acceler-
ator experiments together with a brief discussion about the development of dedicated

7

1. Introduction

hardware-based accelerators for neural networks. It begins with the related track trigger
approaches of other experiments in section 3.1 that are either using machine learning or
solving similar problems compared to the systems developed in this thesis. In section 3.3
the focus is put on modern solutions for implementing and inferring neural network ar-
chitectures, covering both academic and commercial solutions.

Chapter 4 provides a more general view on the requirements present at the applications
that are this thesis’s focus. A discussion about the special requirements of data reduc-
tion and trigger systems within modern particle accelerator experiments and the impli-
cations of using machine learning methods is provided in section 4.1. Considering these
requirements, a general architecture template for developing such systems is provided in
section 4.2 together with applied design principles. This template is used throughout all
neural network-based developments in this thesis. As all approaches require a similar
development process, the design flow template used throughout this thesis is presented
in section 4.3. While each system is requiring some parts to be custom-designed for the
respective application, all are sharing the usage of neural networks. As such a general
investigation of the possibilities for realizing these on modern FPGAs is presented in
section 4.4. The fundamental strategies for realizing neural networks presented in this
section are used throughout the targeted applications discussed later on.

The main system developed in this thesis is the neural z-Vertex trigger of the Belle II exper-
iment. It will be presented and discussed throughout chapter 5. First, the experimental
motivation behind the system is presented in section 5.1. This includes a brief physics
point of view but will also focus on the algorithmic development and evaluation of its
performance. The section is concluded with an examination of the specific requirements
to be fulfilled by the system. After establishing the requirements, the focus is put on the
realization of the system throughout section 5.2. Its presentation is starting with an inves-
tigation of the possible integration strategies into the overall trigger system. This covers
the connection to all other sub-components and the realization of the communication pro-
tocols to be supported, including the approach to covering the entire space of the central
drift chamber. The presentation of the general integration strategy is then concluded by
the selection of a suitable FPGA platform that is fulfilling all requirements. The design
of the detector-specific preprocessing is subsequently presented in section 5.2.4 together
with figures of merit for each individual module that was developed. The section is con-
cluded by the investigation of configurations to be used for the Multi Layer Perceptron
that culminates in the system’s fulfilment of all requirements. After establishing the real-
ization of all functional elements, the focus is shifted to tools and mechanisms supporting
the operation of the system, which are presented in section 5.3. This includes the con-
crete design flow used to infer the architecture in the presence of new network weights.
Monitoring and validation mechanisms, together with their hardware-based implemen-
tation, are then presented in the subsequent sections. Section 5.4 is then focussing on
the operational systems used within the experiment, starting with setups that facilitate in
detail hardware testing. The culmination of all conceptual and design tasks is then pre-
sented within section 5.4.2. The two most important realizations of the neural z-Vertex
trigger are presented here. Especially the final system used during physics operation is
discussed in section 5.4.2.2. The achieved final characteristics of the system are presented
here. This covers all non-functional aspects such as latency, throughput, and resources,
but also a functional analysis of the system’s capability to estimate the desired z-Vertex.

8

1.3. Outline

Both analyses are presented with data and measurements derived from operation within
the experiment from the 2019 and 2020 runs. The chapter is then concluded with an out-
look into upgrade opportunities for the system in section 5.4.4.

The following two chapters are then presenting general upgrades to the trigger system
of the drift chamber that will improve overall performance. The beginning is chapter 6,
which describes the prototypical development of the Hough based 3D track finder, that is
planned as an upgrade. The chapter’s structure is similar to the previous chapter starting
with the functional description of the system presented together with its specific require-
ments in section 6.1. Following this, the prototypical realization is presented in section 6.3,
starting with integration aspects and description of all hardware modules that were de-
veloped. The accompanying design flow is presented in section 6.3.4. The chapter is
concluded by presenting strategies for the final integration in section 6.4.

An upgrade in smaller scope is the main topic of chapter 7. It features an upgrade of the
track segment finder that is used by all sub-components of the central drift chamber’s
trigger system. The chapter begins with a dissemination of the initial system responsible
for this task in section 7.1. A description of the upgraded approach chosen for the upgrade
as well as the implementation are featured throughout section 7.2. The topic is concluded
in section 7.3 with a presentation of the developed test setups as well as an evaluation of
both functional and non-functional characteristics, the former being based on data taken
from the experiment.

The last major topic of this thesis is the online data reduction approach based on the
NeuroBayes algorithm. It is featured throughout chapter 8. Section 8.1 introduces the
physics-based motivation for the usage of this system, together with an analysis of the
requirements to be met. The realization of the system is described in section 8.2, start-
ing with all aspects regarding the system’s integration. The developed architecture and
in-detail description of each module is part of section 8.2.2. The used design flows are
afterwards discussed in section 8.2.3. The scope of a data reduction system based on the
NeuroBayes is then extended beyond the provided application case of Belle II within sec-
tion 8.3. Here, a high-throughput demonstrator is presented that explores the possible
performances that can be achieved by the previously developed architecture.

Concluding the entire thesis, chapter 9 is discussing the general achievements and pro-
viding an outlook into future systems.

9

2. Fundamentals

2.1. The Belle II Particle Accelerator Experiment

Particle physics is one of the cornerstones of humanity’s understanding of our universe.
In its most general form, as an understanding of the composition of the world from the
smallest inseparable parts or atoms, it is part of the basic knowledge of every human being
of the educated world. While this area is familiar to most, it is only the most abstract
basic concept. History repeatedly showed that particles considered as inseparable are
again composed of other particles and phenomena that were not previously observed.
In modern physics, the original concept of the inseparable atom has been refined into the
standard model, which is used as the current reference. This model consists of a multitude
of different particles, which is called a particle zoo due of its diversity. For each particle,
it describes classical properties such as charge and mass, which also belong to the general
understanding of particle physics. However, it also contains more abstract properties such
as strangeness or charm, the effects of which require a deeper understanding. To validate
the model, the particles described in it are generated in an experiment and their properties
are measured. The preferred method for this is the operation of particle colliders in which
selected particles are accelerated under high energies and brought to collision to create
the desired new particle. For detection and measurement, a detector is built around the
interaction point. In modern particle physics, such a detector consists of several sub-
detectors with different properties that are tasked with measuring a specific properties of
the observed particles. The thematic core of this thesis is based on the particle detector in
operation at the Belle II experiment.

The standard model can be divided into three categories of particles: leptons, quarks, and
gluons. Part of the leptons are, for example, the electrons but also their counterpart, the
positrons, which have a positive instead of a negative charge. The two accelerated beams
that are brought to collision at Belle II consist of electrons and positrons respectively. Since
positrons have a rather rare occurrence in our observable environment, they are catego-
rized as antimatter. Meanwhile, particles that are common to us, like electrons, are part
of matter. Antimatter does not only consist of positrons, rather each particle of matter
always has a corresponding counterpart. They differ in at least one characteristic such
as charge but can differ in for example possessing an opposite spin as well. Here, too,
particle accelerators are used to generate the energies needed to create matter/antimatter
pairs. The question of why our observed universe is dominated by matter represents the
core of the scientific objective of the Belle II experiment.

In addition to electrons, the group of leptons consists of muons and tau particles. How-
ever, these are occurring only rarely, since they are not stable and quickly decay into other
particles. The different manifestations of the leptons are called flavour, a term often used

11

2. Fundamentals

in discussions around the physics of Belle II. So far little is known about tau particles and
their antimatter counterpart. One of the objectives of Belle II is to detect these particles.
Since their occurrence is so rare a high luminsoity coupled with a high-efficiency trigger
is mandatory to have a chance of actually recoring them with meaningful statistics.

Besides leptons, quarks are also of interest in the experiment. They make up the largest
part of the mass and by a combination of quarks with anti-quarks are forming most of
the known particles. Stable combinations are hereby called hadrons. These can, in turn,
be distinguished between baryons and mesons. Baryons are exclusively made up of com-
binations of three quarks with protons probably being the most well known members.
Mesons are more uncommon, they always consist of a matter-antimatter pair. A part of
the mesons are the B mesons, or sometimes called Beauty. These are also eponymous of
the Belle experiment since it aims to create B meson pairs from collisions.

Particle decays takes place according to the defined laws of physics. One of the better
known is energy conservation. In particle physics, the initial mass, for example, two
colliding particles, cannot decay into products that have a higher overall mass. It has
been shown that laws of conservation are the result of prevailing symmetries.

For Belle II, the symmetries of charge conjugation and parity are the most important in
order to understand the goals of the experiment. Charge conjugation is the symmetry
that is easier to understand. It describes that the antimatter counterpart of matter has
the reversed charge while the other properties are preserved. While it is preserved ex-
perimentally for most of the occurring interactions, this is not the case for the weak in-
teraction. Parity meanwhile describes a spatial symmetry between related particles. To
exemplify this, two coordinate systems are defined for the observation of a particle decay,
one is defined with (x,y,z) and the other being a reflection with (-x,-y,-z). Parity is now
obtained when a decay appears the same in both systems with respect to the coordinate
system. The decay appears to be mirrored in the opposite system. Here it has been ob-
served that the symmetry of parity is violated for the weak interaction. The combination
of these two conditions is also called the violation of the CP symmetry. This violation is
the main motivation of the Belle II experiment and requires more detailed analyses based
on experimental data.

The Belle II experiment [7] with its two use cases OCA and NNT provides the context
for this thesis. This chapter presents the background information about the experiment.
The detector built for the experiment is described together with all its sub-detectors in
section 2.1.1. Subsequently, the most important detectors for the use cases discussed in
this thesis are presented in section 2.1.2. These detectors provide the input data for the
systems developed here and are used for the identification of particle tracks. The follow-
ing section 2.2 focuses on the trigger system of the experiment, especially the CDC. The
basics for understanding the online data reduction are presented in section 2.3.1 in which
the data reduction system for the VXD is presented.

2.1.1. Overview of the Experiment

Belle II is an experiment connected to the SuperKEKB particle accelerator, which is lo-
cated at Tsukuba, Japan. At this experiment, two separate particle beams of electrons and

12

2.1. The Belle II Particle Accelerator Experiment

positrons, e+e-, are accelerated and collided at its interaction point. Different energies are
used for both of the accelerated beams, thus it is an asymmetric accelerator. Positrons
are stored in the storage ring at an energy of 4GeV, while electrons are stored at 7GeV.
Compared to its predecessor Belle II it is intended to reach a peak luminosity of 8*1035,
which corresponds to a forty-fold increase of the peak luminosity of 2.1*1034 of the pre-
decessor Belle. Technologically this increase is achieved mainly by employing a so-called
"Nano-Beam", which reduces the cross-section significantly [19]. One of the goals of the
experiment is to measure the weak interaction and thus the violation of the CP-symmetry
more precisely. The amount of B mesons produced is increased due to higher luminosities,
in turn, resulting in better statistics leading more accurate results and highe occurance of
the desired rare particle decays.

Figure 2.1.: Layout of the SuperKEKB accelerator ring on the left; and a grahpical compo-
sition of the Belle II particle detector [15].

An essential part of the observation of collisions is an exact reconstruction of the subse-
quent decays. The experiment uses hereby three detectors for reconstruction of particle
tracks. These are the PXD, Silicon Vertex Detector (SVD) and CDC. The PXD and the SVD
are completely new developments for the Belle II experiment, while the CDC is mostly
reused from Belle. The PXD forms the innermost detector of the experiment and is placed
directly around the interaction point. It provides a much higher precision for spatial mea-
surement, but has a relatively long integration time due to the used sensor technology.
The SVD is enclosing the PXD. In contrast, it is a strip detector with less accuracy in spa-
tial resolution but a shorter readout time and higher coverage of its occupied space. These
two detectors together form the VXD. They are enclosed by the CDC. Its main task is to
estimate a passing particle track’s momentum and charge. These three detectors are used
to determine decay vertices and espescially find tracks with low momentum.

The tracking detectors are enclosed by particle identification detectors. The Time of Prop-
agation Detector (TOP) is located directly after the CDC at the barrel, while the Aerogel
Ring Imaging Cherenkov Detector (ARICH) is installed at the endcaps. These detectors

13

2. Fundamentals

are enclosed by the Energy and Cluster Detector (ECL), which is used for the detection of
photons and the identification of electrons. Finally, the Kaon and Muon Detector (KLM)
is used to identify K0

L and muons [13].

2.1.2. Sub-Detectors for Track Finding

The three tracking detectors of the experiment are of particular interest, as they essentiell
for the methods and systems presented within this thesis.

2.1.2.1. Pixel Detector

Figure 2.2.: 3D Rendering of the PXD. DEPFET matrices are shown in grey [5].

The primary purpose of the Pixel Detector (PXD) is to capture high-resolution data of
particle decays as close as possible to the interaction point in order to determine an exact
reconstruction of the origin of a particle track. The detector consists of two layers of
silicon sensors. Here, DEPFET technology [48] was selected for the sensors. The decisive
advantage is its ability to precisely record the charge left behind by particles. When a
particle passes through the sensor, a defined amount of electron-hole pairs is generated
and the particle is loosing momentum according to the Bethe-Bloch equation [79] also
shown in figure 2.3. The deposited charge can then be determined by using the current at
the drain connection of the sensor. This capability is important for the experiment since
the momentum of the particle can be determined from the measured charge.

The response of these sensors is of particular interest for the identification of an observed
particle based on pixel data. Depending on the charge that was read out and the resulting
momentum, it is possible to determine which kind of particle has passed through the
sensor. This property is used in chapter 8 to identify slow pions by only using PXD data.

The two layers of the PXD are arranged with a radius of 14mm and 22mm to the interaction
point. Each layer is then divided into so-called ladders, whereby the individual ladders
are arranged in an overlapping alignment to avoid uncovered space. This arrangement
is shown in figure 2.2. Sensors are arranged on two half modules for each ladder. Each
of these modules contains a sensor matrix consisting of 250*768 DEPFET pixel sensors.

14

2.1. The Belle II Particle Accelerator Experiment

Muon momentum

1

10

100

St
op

pi
ng

 p
ow

er
 [M

eV
 cm
2 /g

]

Li
nd

ha
rd

-
Sc

ha
rff

Bethe Radiative

Radiative
effects

reach 1%

μ+ on Cu

Without δ

Radiative
losses

βγ
0.001 0.01 0.1 1 10 100 1000 104 105 106

[MeV/c] [GeV/c]
1001010.1 100101 100101

[TeV/c]

Anderson-
Ziegler

Nuclear
losses

Minimum
ionization

Eμc

μ−

Figure 2.3.: Bethe-Bloch plot that shows the relationship between momentum and energy
loss [79].

In addition to this matrix, an Integrated Circuit (IC) is integrated into the module for the
control and readout. To reduce costs these ICs are integrated on the same die. The first
layer of the detector contains 8 ladders while the second layer contains 12 to cover its
higher radius. In total, the PXD has thus 7.68 million pixels. The properties of the ladders
are summarized in table 2.1.2.1.

Property PXD
Technology DEPFET
Layers 2
Radius 14/22mm
Pixelladder 250*768*2 pixels
Pixeltotal 7680000 pixels

Table 2.1.: Properties of the PXD.

The maximum data rate generated by the PXD is of particular interest for this thesis. It
is determined by the maximum number of active pixels at a given readout window. For
this the maximum occupancy in addition to the total number of present pixels is decisive.
The occupancy describes the ratio between all existing and all of the active pixels for an
event. The data rate can then be calculated by using these characteristics. Subsequently,
the required compression can be determined by comparing the worst case data rate with
the available data rate budget.

15

2. Fundamentals

Depfet
Pixel
Matrix

DCD

DHP
DHH

DHHC ONSEN

DHH

DHH

DHH

DHH

Figure 2.4.: System architecture of the readout system of the PXD.

The data readout chain of the PXD is shown in figure 2.4. The DEPFET matrix of a half
module is handled by three components [18]. A pixel matrix is controlled by a switcher
ICs. Sensor signals are meanwhile read out by the Drain Current Digitizer (DCD) which
also digitizes the values. Digitized values are afterwards processed by the Data Handling
Processor (DHP). The DHP has several tasks e.g. so-called pedestals, constant offsets
inherent to a pixel, are subtracted from the digitized value. Additionally, in order to
determine the deposited charge, a common mode, another constant offset, is subtracted.
Before data is finally sent to the next stage a suppression of zero charge values is carried
out. Here, the charge of individual pixels is only used when it is above a certain defined
threshold. The data is then forwarded to the Data Handling Hybrid (DHH). It handles
all the data of one ladder and is based on FPGAs. Its main tasks are the conversion of
the Low Voltage Differential Signalling (LVDS) data from the DHP to transmission on
optical fibres and load balancing. At the same time, clusters are formed based on the pixel
data. Data sent by five DHHs is concentrated at the Data Handling Controller (DHHC).
Concentration of data across all ladders as well as the final data reduction mechanisms
are hosted at the ONline SElector Node (ONSEN), which is another FPGA-based system.

2.1.2.2. Silicon Vertex Detector

The Silicon Vertex Detector (SVD) consists of the sensor layers directly following the PXD.
In contrast it is based on strip sensors, which can only capture one-dimensional informa-
tion. They resolve the spatial information of the decays with less accuracy compared to
the PXD, but since being further outside of the interaction point a larger space is covered
for particle detection. Due to its placement it is experiencing a lower occupancy and is
thus producing smaller data rates. The whole detector consists of four layers. Together
with the information from the PXD it is used to detect so-called Region of Interest (RoI)s

16

2.1. The Belle II Particle Accelerator Experiment

in order to perform the main data reduction for the VXD at the ONSEN. This mechanism
is further explained in section 2.3.1 and represents the complementary procedure to the
OCA discussed within this thesis.

2.1.2.3. Central Drift Chamber

The Central Drift Chamber (CDC) [108] of the Belle II experiment is located immediately
after the VXD. Its main tasks are to support the reconstruction of particles, identification
of particles by calculating the energy loss and most importantly to enable an efficient and
reliable track trigger system for the experiment’s readout. Part of this trigger system is
the NNT, which is the main contribution of this thesis. To understand how trigger signals
are generated by using data from the CDC, its structure is explained first.

Similar to the structure of the VXD, the CDC is also constructed according to a layered
model. Each layer consists of a number of wires stretched parallel to the z-Axis. Within
the CDC, all wires are surrounded by a gas mixture. This gas mixture consists of a low-Z
gas (50% of helium and ethane respectively). Interactions of the passing particles with
the gas mixture is producing charge carriers at the wires. These can be digitized and
read out, and are then used to detect particle passing through the detector. The wires are
grouped into layers. In total 56 layers are forming the entire detector. Successive layers are
arranged with an increasing distance to the interaction point. Additionally, the number
of wires varies across layers. Layers that are placed further away contain more wires to
cover the correspondingly larger space to be observed for the detection of particles.

SL0 SL1 SL2 SL4SL3 SL6 SL7 SL8SL5
axial
"A"

stereo
"U"

46mrad

stereo
"V"

-60mrad

stereo
"U"

67mrad

stereo
"V"

-71mrad

axial
"A"

axial
"A"

axial
"A"

axial
"A"

r

Figure 2.5.: Alignment and configurations of the Super Layers in the CDC [Poe18].

The layers are again grouped together into nine Super Layer (SL)s, that are enumerated
from zero to eight. SL0 is closest to the interaction point with a distance of 168mm, while
SL8 is the most outer one with a distance of at maximum 1111.4mm. All wires have prop-
erties that are defined by their SL. One such property is the orientation, for which they
are either aligned parallel to the z-axis, called axial, or they have a stereo orientation in
which they are aligned with an angle between 45.4 to 74.0 mrad depending on the SL.
This angle is introduced to enable a three-dimensional reconstruction of tracks and is a
key component of the approaches described in the sections 5 and 6. They can be idenfied
by an index, all SLs having an even index are of axial oerientation. The remaining SLs

17

2. Fundamentals

with an odd index all have stereo orientation. SLs with different orientation are arranged
alternatingly within the CDC. The entire arrangement is shown in figure 2.5. A detailed
listing of the properties of each SL can be found in table 2.2.

Super Layer Layers Wires Distance Angle
0 8 160 168.0 - 238.0 mm 0 mrad
1 6 160 257.0 – 348.0 mm 45.4 – 45.8 mrad
2 6 192 365.2 – 455.7 mm 0 mrad
3 6 224 476.9 – 566.9 mm -55.3 – -64.3 mrad
4 6 256 584.1 – 674.1 mm 0 mrad
5 6 288 695.3 – 785.3 mm 63.1 – 70.0 mrad
6 6 320 802.5 – 892.5 mm 0 mrad
7 6 352 913.7 – 1003.7 mm -68.5 – -74.0 mrad
8 6 384 1020.9 – 1111.4 mm 0 mrad

Table 2.2.: Properties of all Super Layers of the CDC.

The CDC is read out by the Frontend Electronics (FEE) [110, 39]. Each wire is then digi-
tized with a 10 bit Analog Digital Converter (ADC). The readout frequency of the FEE is
at 31.75 MHz. The resulting data rate is shown in formula 2.1.

Wirestotal · Bitwidth · RateReadout = 14336 · 10 bit · 31, 75 MHz = 4, 55 Tb/s (2.1)

Generated data is at first reduced at the Readout Electronics for the CDC (RECBE) plat-
form before being forwarded to the DAQ and trigger. Each RECBE is responsible for a
total of 48 wires. The digitized data from the wires is used to determine the time at which
a wire sensed activity within the CDC. For this a Time to Digital Converter (TDC) is used,
which is capable to determine the timing with a resolution of 980ps. The digitized and
processed values are in parallel buffered in a ring buffer for the readout of the detector
and sent to the CDCTRG. With the arrival of the trigger signal, data is sent to the next
stage of the DAQ. The ring buffer is hereby designed to buffer data for 8 µs. This is also
the main reason for the latency requirements at the L1 trigger, as the trigger signal has to
arrive before data has to be discarded in order to free up memory for newly arriving data.

2.2. Belle II Trigger System

The trigger system of the Belle II experiment is divided among the individual sub-detectors
into sub-triggers. Each sub-trigger delivers different information to the Global Decision
Logic (GDL) about an observed event. These are used to determine whether the buffered
detector data is to be read out [70]. The architecture of the entire system is shown in fig-
ure 2.6. Due to its importance to the approaches described in this thesis the CDCTRG will
be described in greater detail, while the other systems are only briefly outlined.

18

2.2. Belle II Trigger System

GRL

CDC
TRG

ECL
TRG

TOP
TRG

KLM
TRG

GDL

Figure 2.6.: Overview of the entire L1 trigger system used at Belle II.

2.2.1. Trigger System for the Central Drift Chamber

The Trigger system of the Central Drift Chamber (CDCTRG) is the most important sub-
trigger of Belle II. It has the longest processing pipeline and therefore requires the highest
overall latency to generate the necessary signals. For the entire processing from the fron-
tend to the GDL including all communication 5 mus is defined as the maximum allowed
latency. The NNT developed in this thesis is part of this trigger system. To understand
the background and resulting requirements, the CDCTRG is outlined in the following.

Overall the CDCTRG has a multi-level and pipelined processing architecture. Data of
individual SLs is continuously read out by the FEE. It is then transferred to the merger
units, which concentrate the data sent across all RECBE of one SL. The concentrated data
is then sent to the first stage of the trigger logic, the TSF. The TSF combines the individual
wires of the CDC into Track Segment (TS)s. Combination of TSs is performed for each
SL separately. Additionally, a TSF can be distinguished into processing axials or stereos
according to their orientation. Axial TSs are sent to the 2D track finder, which combines
them to estimate 2D track parameters. At the same time the Event Time Finder (ETF)
receives TS data to calculate the event time. The outputs from these two modules together
with the stereo TSs are then sent to the Conventional 3D-Track Finding (3DS) and the
NNT. Both of these have the responsibility to send an estimation of the z-Vertex to the
GDL. In the following, the tasks of the individual modules are explained in more detail.

2.2.1.1. Combination of CDC Data by Merger Units

The purpose of the merger units within the CDCTRG is to combine the TDC values of
several RECBE units and forward them. One merger unit is responsible for four RECBE
units, while the number of merger units allocated to a specific SL is depending on the
amount of present wires. The data from all merger units that are responsible for one SL
is then forwarded to one TSF board at a data rate of up to 6.25 Gb/s. The merger is

19

2. Fundamentals

implemented on an FPGA platform, in this case an Arria II GX FPGA [109]. The used
platform is custom built and specifically developed for the merger use case of Belle II.
As it in principle is still a general FPGA platform, it is also available to host for other
systems within the trigger system, an investigation of its viability was conducted as part
of Ref. [Poe18].

2.2.1.2. Functional Principle for Finding Track Segments

The main task of the Track Segment Finder (TSF) is to group together neighbouring active
wires of the CDC. This grouping is performed according to predefined rules. They are
defined with the idea of limiting the angle with which tracks are allowed to pass through
one SL. Grouping and sending the wire information for the entire CDC would meanwhile
gravely exceed the number of available IO channels on any of the available FPGAs with
the resulting latency likely exceeding the allocated budget. To mitigate these issues, the
grouping is performed separately for each SL on different FPGA platforms. Each TSF
instance is hereby only receiving the information from all of the merger units that are
connected to the respective SL. The wire information is then combined into these TSs.
The used groupings use predefined geometric shapes that enforce the limitation of the
opening angle. These geometric shapes describe which wires can be combined together.
The shape used for the grouping is meanwhile not uniform across all SLs. To take the
different properties of each SL into consideration, two different shapes are defined. Both
are shown in figure 2.7. Here, wires are not shown explicitly but rather as boxes that are
representing the space they are covering within the CDC. A pyramid-like shape is used
for SL0, while all others are using an hourglass shape1.

L R

L R

(a) (b)

Figure 2.7.: Shapes of TS for both the SL0, pyramid shape (a), and the remaining SLs 1-8,
hourglass shape (b).

Special wires are additionally defined within each TS. These wires are shown in figure 2.7
by boxes that are coloured in purple or yellow. Purple coloured boxes represent the so-

1While this approach is effective for "traditional" particles, the limitation in size of the shapes is preventing the
detection of more exotic events spanning multiple TSs. Simulations have shown that dark matter processes can
lead to such events. Current research for future trigger systems is looking into reimagining the TSF.

20

2.2. Belle II Trigger System

called primary priority wire. They are assigned a distinct number, which is used to iden-
tify a specific TS and its geometric location within a SL. At the same time, the timing
value for this wire is used for further processing steps. The other kind of special wires are
called secondary priority and are shown in yellow. Among other things, they are used
to determine information about the direction of a passing particle track. For this, the two
second priority wire cells are used. They are called left or right secondary priority wire.
The estimated direction of a passing through particle track is then being determined by a
pre-calculated Look Up Table. This is based on a design time analysis of a track’s passage
based on the simulation of events. Now for a TS to be considered active, wires in four out
of five different layers must have been activated within a predefined time window. This
means that every active TS will have at least one active wire that has either a primary or
secondary priority. Within the scope of this thesis, the TSF is assuming a major role, as all
trigger related work is either using its data directly or is even based around redesigning
its core logic.

2.2.1.3. Estimation of 2D Track Parameters based on the Hough Transform

(a) (b)

Figure 2.8.: Example for track finding that is using the Hough transform [Hoc18]. A geo-
metric view of the detector’s space is shown in (a) while the resulting hough
map is shown in (b). The best matching track candidate is found at the inter-
section point of all tracks in the hough map.

While the TSF is representing the basis for all track finding algorithms within the CDC-
TRG, the 2D-Track Finder (2DS) is the basis for all 3D estimation algorithms and provides
the basic track trigger signals for the experiment. It is thus of high importance for both
the overall trigger system and the systems developed within this thesis. The 2DS used
at Belle II is based on finding a track that is matching the observed CDC hits of an event
by a transformation from geometric coordinates into a Hough map representing its two-
dimensional parameters phi and r. This is shown graphically in figure 2.9. Here, several

21

2. Fundamentals

active TSs at different SLs are shown in the geometrical X-Y plane. The subsequent Hough
transform creates a Hough map that shows all track candidates that geometrically pass
through the active TSs. These tracks are represented as single points in the Hough map.
The point at which the most TSs are intersecting in the Hough map is assumed to be the
best matching track candidate.

0,05

0,04

0,03

0,02

0,01

0
0 1 2 3 4 5 6

R

Φ
1

5

Figure 2.9.: Plot of the Hough map generated by a simulated 2DS [Hoc18]. The two ex-
pected tracks are found and represented, dark green, by the two high count
intersection points.

For the experiment, this approach was simulated with several physics events. One ex-
ample is shown in figure 2.9, which shows the resulting Hough map derived from a sim-
ulated TSF and 2DS. Two tracks were simulated in this case and both can be found in
the shown map as is indicated by the dark green cells. These cells are representing the
maximum intersection of all possible track parameters. In this example, the found track
parameters are even matching TSs in all five axial SLs. In addition, there is typically not
only one single point in the Hough map that represents the maximum intersection, it is
rather a cluster of neighbouring track points. This situation motivates the second algo-
rithmic part of the 2DS in which a centre-of-gravity is calculated from the cluster. Instead
of only using one cell for estimating the track parameters, several equally important cells
are used to estimate the 2D track more accurately. An exemplary distribution of the 2DS
parameters that were estimated during operation is shown in figure 2.10. In this, track
finding was performed conditionally, that is a track had to match one TS in at least four
different SLs in order to be found.

22

2.2. Belle II Trigger System

Figure 2.10.: Example of the phi parameters that were estimated for detected 2D tracks
during Belle II operation.

2.2.1.4. Estimation of the Event Time

The task of the Event Time Finder is to estimate the point in time at which an event oc-
curred based on CDC data [78]. The event time is approximated by the earliest or the point
in time at which the first wire detected activity. However, active wires can also occur due
to background events or noise, which would create a wrong event time that is not corre-
sponding to the collision. The core logic of the ETF is to address this issue and is based
around distinguishing between wires that are active due to events and those that are ac-
tive due to background effects in order to find the correct event time. Algorithmically this
is solved by considering the number of wires that became active hits within a certain time
window. A sudden spike of active wires is hereby considered to be an indication for a
background rather than a proper event2.

2.2.1.5. Global Decision and Reconstruction Logic

The last stage of the L1 trigger system consists of the combination of Global Reconstruc-
tion Logic (GRL) and Global Decision Logic (GDL). Both have the overall task of combin-
ing all of the individual signals from the different sub-triggers in order to decide whether
the buffered detector data is to be read out or not. Hereby, arriving trigger signals are
either used to trigger the readout or to suppress it explicitly. Architecturally the GRL is
more of a preprocessing stage for the GDL that is locally collecting separate trigger sig-
nals. It provides complementing functionality, for example, it prevents repeated trigger

2After submission of the first version of the thesis, the ETF underwent a major redesign. That redesign made it
more effective, however the functional principles are thus not explained here.

23

2. Fundamentals

signals based on the same 2D track, which is sometimes sent multiple times with updated
TSs. Trigger signals are generating by fullfiling a certain set of conditions, for example an
estimation of a track that is sufficiently close to the interaction point3.

2.2.2. Trigger Systems of Additional Sub-Detectors

The trigger systems described thus far are the most important components in the context
of this thesis. They are either directly connected to the developed solutions within this
thesis or are generating the data that is required by their hosted algorithms. For the com-
pleteness of the consideration of the Belle II trigger system, an overview of the remaining
sub-triggers is given in the following.

ECL Trigger System

Cluster Energy

Count Timing Threshold BhaBha

ECL
TRG

Figure 2.11.: Physics trigger signals generated from the ECL.

Besides the CDC, the data collected by the ECL is of high importance to the L1 trigger sys-
tem. Complementary to the reconstruction of particle tracks, this detector is used to esti-
mate information about the energy of passing particles. As with the CDC, trigger signals
are generated based on information that is derived from this detector. The correspond-
ing sub-trigger consists of two main classes of generated trigger signals. The first class is
representing signals based on the energy, while the second class is based on searching for
and evaluating isolated clusters of active cells in the detector [21, 66]. Both complement
each other by capturing different kinds of important events. The triggers based on the
energy are used to detect high electromagnetic energy deposits. Trigger signals based on
clusters, on the other hand, focus on low-energy events with multiple hadrons. In addi-
tion, the detector is used to provide information about Bhabha events. An overview of
the signals that are calculated by the ECL trigger is shown in figure 2.11. As with most of

3During the writing of this thesis, the conditions for the developed NNT were defined, explored and tested. The
most basic is a cut on the estimated z-Vertex, but more advanced ones are currently explored. For example, a
combination of z-Vertex and impulse are used for the so called single track trigger signal.

24

2.2. Belle II Trigger System

the other trigger systems, the main difference to the previous ECL trigger system of Belle
is the capability to support operation with increased luminosity and event rate.

Programmable hardware such as FPGAs and flash-based ADCs are forming the basis for
realizing this system. The readout chain used for this is shown in figure 2.12. The core
elements here are clusters consisting of 4x4 crystals within the detector. These clusters
are then combined to form trigger cells, which represent the basis for trigger decisions.
In total 576 cells are formed from the 8736 available crystals. Energy and timing are then
determined for each cell by using a chi square fit, which is implemented in LUTs. As soon
as the amplitude of the observed energy is greater than a fixed value and the determined
timing is less than a predefined threshold of 88 ns, both energy and timing are passed
on for further processing. In total this calculation takes place within 125 ns. Meanwhile,
Kintex-7 FPGAs are used for implementation throughout the entire system [54], which
are integrated on a custom-manufactured carrier board.

ECL FE
(8736)

Collector
(52)

FAM
(52)

TMM
(52)

ETM
(52)

Trigger

DAQ
(52)

Shaper
DSPs
(576)

Figure 2.12.: Schematic of the ECL trigger system’s architecture [66].

Based on the determined energy and timing, the trigger decision is finally generated on
a UT3. The trigger reacts to the total energy or adjacent trigger cells that have reached a
pre-defined minimum size. To detect and suppress Bhabha radiation, a new 3D method
is used, mainly to correctly estimate low multiplicity events. The total latency of the ECL
is currently at about 4 µs, which is well within the requirements of the entire Level (L)1
trigger system. For later configurations of the GDL, the ECL signals were combined with
NNT signals to further decrease data rates.

KLM Trigger System

The KLM trigger system was already important during the operation of Belle for the cal-
ibration of the detector. For this purpose muon pairs were detected and processed [112].
This trigger system also provided measurements of the efficiency independent of other
sub-triggers. The overall system is hereby divided into two parts, representing their ge-
ometric location either at the endcap or the barrel of Belle II. As with all of the trigger
systems the used hardware platforms are based on FPGAs. In the first processing step,
hits within the detector are found and combined across different layers of the respective
detector. The parameters of the track are then determined with a chi square fit. Once
the found track parameters are close enough to the interaction point, a trigger signal is

25

2. Fundamentals

sent [71]. An illustration of the generated signals is shown in figure 2.13.

KLM
TRG

Muon Hit

Count Timing BhaBha

Figure 2.13.: Physics trigger signals generated from the KLM.

TOP Trigger System

Count Timing BhaBha

TOP
TRG

Hit

Figure 2.14.: Trigger signals generated by the TOP trigger.

The trigger system of the TOP detector [40] is used to identify particles at the barrel [85].
For this, it is equipped with the ability of recording activity from particles with a time
resolution within the nanosecond range. This ability is used to determine the most precise
event time across all of the detectors in order to suppress active sensors outside of the
time window of the actual event [72]. The recorded data of both the timing and position of
observed particles is read out in parallel via optical links from the 16 sectors of the detector
and processed at frontend trigger boards [86]. Data streams generated by these boards
are then merged at combiner units. In the final processing stage, the global Barrel Particle
Identification Detector (BPID), all information is merged to determine the trigger signals.
The event time is estimated by first sorting all hits and afterwards calculating their time

26

2.2. Belle II Trigger System

deviation relative to a specified reference pixel. Then the time estimation is generated by
processing the sorted calculated differences with a set of simulative generated Probability
Density Function (PDF). The PDF value is then used to select the best estimate for both
time and position. The processing chain is shown in figure 2.15.

75 MHz

Aurora Tx

Aurora Tx

Decoder

Decoder

Pipelined
Sorting

Trigger
Stream

Tx
Top

Detector

75 MHz 150 MHz 75 MHz

... ...

Figure 2.15.: System architecture of the TOP trigger system.

The High Level Trigger System

In contrast to the L1 trigger of the experiment, in which all processing is performed in
hardware, the High Level Trigger (HLT) is completely based on software realizations.
At this stage of processing, data that was previously selected by the L1 trigger is pro-
cessed and analysed further using a much higher amount of computing resources and
more available latency. Here the HLT is not only responsible for selecting suitable events
but also for forwarding the data [67] that matches a reconstructed event. Considering the
requirements of the L1 trigger, events are arriving at a rate of 30 kHz at the HLT. Here,
each event will have a memory footprint of about 100 kB after the first data reduction.
The aim of the HLT is to reduce the outgoing data rate to less than 1 GB/s. This requires
a reduction of about 20 to 33%.

The system is deployed into the so-called HLT farm, which is a distributed computing
system consisting of multiple processing units. Each unit is in turn divided into work
nodes at which the analyses of the experiment’s data are carried out. In total, 2000 pro-
cessor cores are used throughout the HLT farm. The software basis for the processing on
work nodes is provided by the Belle Analysis Software Framework 2, which is a unified
environment for processing events. It is also used at the offline processing for the analysis
of the data and validation of, for example, the trigger components. For efficient and fast
processing within the HLT farm, the framework was optimized for parallel execution.

For trigger systems the HLT is espescially interesting for offline comparisons. I can be
used as a reference to compare efficiencies and resolutions, since they are much more
accurate than their online counterparts. On the other hand they make life more difficult
for L1 trigger systems since they filter out even more data. That means that many of the
events processed by the NNT for example are filtered here and not available for additional
analysis. This can be ciurcumvented by requesting special runs with less effective HLT
filtering.

27

2. Fundamentals

2.3. Belle II Data Acquisition System

Copper

Copper

Copper
Merge

Merge

Readout
PC

Event
Builder

HLT Units

Detector E-Hut Control Room

Readout
PC

HLT Units
FE Digit

FE Digit
FEE Digit

FEE Digit

Merge

...

Figure 2.16.: System architecture of the Belle II DAQ.

The main task of the DAQ system developed for Belle II is to transfer the experiment’s
data from the FEE to offline storage. The system has hereby to support the different im-
plementations of each sub-detector’s readout-chain, which have their very own require-
ments due to their heterogeneous design. At the same time, the DAQ is controlled by the
L1 trigger, which decides over the data that is to be sent to offline storage. An overview
of the DAQ’s system architecture is shown in figure 2.16. Overall it can be divided into
three separate sections that are defined by their location relative to the detector. The first
section encompasses all of the readout and signal digitization electronics located directly
at the detector. Online data processing consisting of data merging, formatting and reduc-
tion is located at the Electronics Hut (E-Hut) section. The final processing is performed at
the HLT farm in which software-based events are selected. It is part of the control room
section. The interface between the detector section and the E-Hut is hereby established
via custom hardware, the COPPER boards. These are additionally tasked with locally
summarizing event data. This data is then sent to the Readout Personal Computer (PC)s,
which perform a more comprehensive data reduction before sending the data to the Event
Builder and the HLT.

28

2.3. Belle II Data Acquisition System

CDC FEE

SVD FEE

TOP

KLM

Belle2Link DAQ

Belle2TTC

Figure 2.17.: The architecture of the detector’s readout scheme that is based on the unified
interface Belle 2 Link.

The Belle 2 Link (B2L) [81, 106] represents the basic means of communication between
the FEE and E-Hut. In general, it defines a unified interface for the transportation of data
and the integration of trigger signals into the overall data flow. Its main challenges and re-
quirements are to provide support for all the different kinds of FEE that are used across all
of the several detectors and to establish reliable data transfer. To ensure reliable transfer,
the B2L is designed to provide soft error mitigation services [33]. Flexibility is meanwhile
achieved by a configurable design that allows the tailoring of communication to the re-
quirements of each type of FEE. In addition to that, it is designed to achieve high data
transmission rates to support the anticipated massive data rates. Communication from
the FEE is realized using RocketIO Gigabit Transceivers (GT)P [117] based optical data
transmission. In addition to the data links, the DAQ is responsible for the distribution of
the clocking and Slow Control signals to all sub-systems. This is especially necessary for
components of the CDC, BPID and EPID since those are not easily accessible as mainte-
nance cycles are far apart. For the data transfer to the E-Hut a First-In First-Out Memory
(FIFO)-based scheme is used within the COPPER modules, additionally, it is also coupled
to the timing system of the trigger system [80]. The role of the B2L as a unified communi-
cation infrastructure within the DAQ is illustrated in figure 2.17.

Detector PXD SVD CDC TOP ECL ARICH KLM
Channels 800.000 223.744 14.336 8.192 8.736 65.664 35.808

Event size [kB] 800 14,9 24 9,2 29,6 15,5 7,5
Data rate [MB/s] 2.604 447 720 276 888 465 225

Table 2.3.: Overview of the data readout properties of all sub-detectors in Belle II.

29

2. Fundamentals

The hardware architecture of communication based on B2L is shown in figure 2.18. It
consists of a transmitter and receiver pair, whereby both are requiring the corresponding
modules for controlling the GTP transceivers and FIFOs to bridge the interface to the
data processing. The trigger timing is meanwhile controlled via the Trigger and Timing
Control (TTC) module. Required Intellectual Property (IP) cores are developed within the
groups of the Belle II collaboration and provided as Very High Speed Integrated Circuit
Hardware Description Language (VHDL) source code. These cores form a library that
enables B2L communication for supported FPGAs such as the UT3.

B2L_Sender B2L_Receiver

TTC

GTP

Optical
Protocol &

Control CO
FIFO

Protocol &
ControlFEE

FIFO
GTP

Figure 2.18.: Architecture of the Belle 2 Link sender and receiver pairs. Coloured arrows
indicate data (black), timing (gold) or status (white) information.

COPPER platforms, used as part of the B2L, were developed at KEK [38] and were al-
ready used at the Belle experiment. Here, they were used to enable a transfer between
the frontend and the event builder. In Belle II, the detector readout is realized by using
additional extension boards called FINESSE boards. These boards are mainly sampling
and digitizing the detector signals, which are then stored in a buffer memory. As soon as
the trigger signal arrives, the data is sent to the FIFOs that connect the FINESSE boards
to the COPPER boards. Up to four FINESSE boards can be mounted simultaneously on
one COPPER board. Each COPPER board is additionally equipped with a CPU, which is
primarily used for data merging, reduction, and formatting. The individual data streams
generated across the entire DAQ, using the B2L, can be addressed via an identification tag
assigned to each COPPER and FINESSE board. With this addressing, each outgoing data
streams can be traced back to their source, which is necessary for the subsequent analysis.
This addressing scheme is also used to identify the B2L data streams generated by indi-
vidual trigger components. The trigger systems developed throughout this thesis use this
path to send status information for Data Quality Monitoring that is used for ensuring the
correct operation of the hardware. This aspect is described in more detail in section 5.3.4,
for example, for the NNT.

2.3.1. Data Reduction for the Vertex Detector

The PXD is strongly influenced by the increased luminosity as it is positioned the closest
of all detectors to the interaction point. The attached DAQ is designed to be capable to
transmit about 10% of the PXD’s data when assuming the maximum occupancy for its
sensors. Bridging the resulting gap between the incoming and outgoing data rates is the
task of the employed online data reduction mechanisms. From the physics point of view,

30

2.3. Belle II Data Acquisition System

a mechanism based on lossless compression is desired. During preliminary studies, no
algorithm was found that could achieve the required reduction without any loss of data.
The most promising and subsequently chosen approach is to limit the number of pixels
to be read out and stored. This is supported by the fraction of the expected occupation
that is caused by background events rather than collisions. Using simulated events, it was
shown that most of the active pixels are caused by such background [96] events. Thus,
preventing these pixels from being read out will enable a substantial reduction of the data
rate without losing the fraction of data that is actually relevant for the experiment.

Figure 2.19.: Graphical representation of the Region of Interest approach used for data
reduction at the PXD. At first, particle tracks are estimated solely by using
data from the SVD. These tracks are then extrapolated to the PXD. Regions
are formed around the intersection of the PXD and the extrapolated track as
shown by the red areas. Only the pixel data within these regions is kept for
subsequent processing [96].

The mechanism that is used for addressing this problem is based on correctly detecting
pixel clusters within the PXD that are belonging to physics events and suppressing the
remaining clusters. Rather than processing solely pixel data, the approach is relying on
the usage of the SVD. As this detector is located further outside of the interaction point,
it is less influenced by the increase of the luminosity compared to the PXD and thus gen-
erates lower data rates to be processed. At the same time, the sensors used within this
detector are supporting much faster readout compared to the rather slow readout of the
PXD’s DEPFET sensors.

The identification of pixel clusters that are to be reduced is performed by estimating a
particle’s trajectory using the SVD’s data. Algorithmically this is achieved by using a tack
finding approach based on the Hough transform that is tailored to the specifics of the
detector. The estimated track is then extrapolated into the PXD. Using this extrapolation,
a Region of Interest (RoI) is defined at each intersection between the estimated track and

31

2. Fundamentals

the layers of the PXD. This RoI represents are predefined area consisting of pixels around
the intersection point. Here, the assumption is that all active pixels within this area are
belonging to the track that was observed in the SVD. Since most of the particles that are
produced by background events are not possessing enough momentum to escape the first
few layers of the detector and they will not have the a minimum momentum in order
to reach of SVD layers. Due to this, this method is providing an effective mechanism to
distinguish background from signal within the PXD. The RoI approach itself is not unique
to Belle II but is a rather well-known data suppression technique. It is hereby custom-
tailored to the requirements of Belle II. From an integration perspective, the data reduction
based on RoIs is implemented on FPGAs in order to achieve the required latency. A
graphical representation of the mechanism is shown in figure 2.19.

While being an effective mechanism to achieve data reduction, it is introducing a major
drawback in requiring particles to reach a predefined number of layers in order to be
considered for the definition of RoIs. A complementing solution that can improve the
signal efficiency for particles not fulfiling this requirement is the focus of chapter 8 of
this thesis. As this approach is going to be integrated into the already established system
architecture, it is shown in figure 2.20.

DHHDHHDHH

SVD
Readout

ONSEN

DHH
PXD

Readout
DHHC

DATCON

HLTEVB

Figure 2.20.: Architecture of the RoI-based data reduction system for the VXD.

2.3.2. Signal and Background Events

In order to carry out an efficient suppression of background events, it is at first necessary
to investigate and understand which particles are actually responsible for their occur-
rence. A detailed analysis of the occurring types of background events and their effect
on the experiment was conducted in preliminary studies, for this thesis the studies per-
formed in Ref. [93] and Ref. [92] are the most relevant and the basis for this section.

The types of background can be partitioned into four classes, which are Touschek effect,
two-photon Quantum Electrodynamics (QED), Beam-gas Coulomb scattering and Radia-

32

2.3. Belle II Data Acquisition System

tive Bhabha. Background related to the Touschek effect describes particles generated due
to the interactions between separate particles that are accelerated and directed towards
collision together in a particle cloud as part of the same beam. The results of these inter-
actions are background particles with a momentum significantly different from the par-
ticles within the bunches and signal events. The occurrence of this effect is meanwhile
inversely proportional to the energy of the respective beam. For Belle II this effect is thus
more pronounced in the lower energy electron beam. The resulting events that are visible
within the detector, are anticipated to be mostly produced by particles leaving the bunch
and interacting with the beam pipe. The experiment is impacted by that in the form of an
increased amount of particle tracks that have an origin outside of the interaction point.
Track trigger mechanisms such as presented in chapter 5, are tasked with suppressing
this kind of background. Another major source of background events is represented by
the two-photon QED effect. This describes particles that are generated by the interaction
of an electron and a positron together with two photons. Opposite to the Touschek effect,
this background will have its geometrical origin around the interaction point, which will
make it difficult to identify and suppress by tracking alone. However, these particles are
predicted to reach only low energie, which can be used for separation from signal events
that have higher energies. While much effort is put into establishing a vacuum within
the beam pipe there are still some impurities left that can affect the experiment. Accel-
erated particles may interact with present residue resulting in new particles that can be
observed within the detector. Currently, there is no estimation of their contribution to
the experiment. Radiative Bhabha, meanwhile, describes an effect that is often present in
asymmetric electron-positron colliders such as Belle II. It manifests itself in the form of
newly produced electron-positron pairs or generates a photon that interacts with the de-
tector. However, only a few will reach even as far as the PXD, thus they are not expected
to be of major concern for operation.

2.3.3. Slow Control and Data Quality Monitoring

The control systems Slow Control (SC) and Data Quality Monitoring (DQM) are two of
the most important pillars of operation for the experiment. Both have the task of mon-
itoring and controlling the data readout and overall processing. The SC describes the
concept with which distributed control systems within the entire detector’s operation are
controlled and monitored. For each sub-system of the experiment, information about
their current state is recorded during operation. This is not only restricted to the detector
and its electronics but also performed for the accelerator itself. Here the information is
recorded in the range of seconds. Compared to the actual readout of the detector, this is
rather slow, which inspired the naming for these control systems.

Examples for monitored status variables of an experiment are temperatures of a detector’s
components, voltage supplies but also about the readout electronics [29] and observed
background of the accelerator. Especially the latter shows how the information from the
SC can be used across different parts of the experiment. The loaded configuration of the
trigger system, for example, the neural network loaded for the NNT from section 5 can be
based on the recorded background and behaviour of the accelerator. As a consequence,
the SC is also in some part responsible for loading suitable configurations of the sub-

33

2. Fundamentals

systems depending on the state of the experiment.

Slow Control at Belle II

The Slow Control (SC) is performed throughout the different heterogeneous components
of the experiment and must thus be easily adaptable. Although some of the basic con-
cepts behind the readout are uniform within Belle II, for example, the readout via B2L,
most decisions regarding the choice of hardware and software are typically left to the
sub-system’s developer. Since the control data is merged, for example, to make decisions
about the overall configuration of the experiment, it must be ensured that the communica-
tion between all systems is synchronized. This is one of the most important requirements
for the implementation of such systems.

One of the main functionalities to be provided by the SC in Belle II is to allow the deter-
mination of the current state of the experiment across all sub-systems. The experiment’s
state is hereby divided into two parts. That is the readiness for operation of the accelera-
tor and the data readout electronics. At first, the operational readiness of the accelerator
is determined and monitored. If it is ready for operation, for example, by reaching a de-
sired level of luminosity, the targeted configuration for the readout electronics is selected
and loaded on the basis of multiple present state variables. When both parts, accelera-
tors, and readout are ready, the experiment is started. The entire process, including all
state transitions, is called run control. A master control process is performed in parallel,
which is responsible for the configuration of the individual sub-systems, for example, the
sequence in which individual steps are carried out.

The systems described and developed as part of this thesis must also provide the appro-
priate interfaces and mechanisms for the monitored operation using SC. In the Belle II ex-
periment, different implementations of the SC are used across the different sub-systems.
The reason for this heterogeneity is the special treatment of the VXD. For this sub-detector,
The Experimental Physics and Industrial Control System (EPICS) [89, 87] was chosen. It
is an established solution used in many modern particle physics experiments throughout
the world. For the remaining detectors such as the CDC, a solution developed at KEK
called Network shared memory (NSM) [75] is used. This solution was already used in
the predecessor Belle [82] but was functionally extended for operation at Belle II. The ap-
proach used in the trigger system is of particular interest in the context of this thesis since
all developed systems within this thesis with a need for SC are part of it.

The SC approach used for the trigger consists of three components [51]. These are the
user module, the condition database, and the archiver. The task of the user module is to
provide a comfortable interface for the administration and supervision of the status. It has
to allow a person who is not an expert of a specific sub-system to control it without getting
too involved in the details. The used solution for the user module is hereby uniform for
all components of Belle II.

Both the archiver and database are of greater interest as well. The database is logging the
current status of all connected components during operation. An example for the NNT is
the currently loaded neural network. It is, however, not only logging the state of a compo-
nent, but also configuring it. In the context of the NNT, new weights of a neural network
can be loaded on command. The scheme used within the trigger system is based on an

34

2.3. Belle II Data Acquisition System

NSM process that is executed on a local computer with access to the readout electronics,
database, and the archiver. This process is then able to record all the relevant parameters,
communicate with the database and control the respective components. The structure of
this scheme is shown in figure 2.21. Hereby the structure is partitioned into two separate
networks, the local trigger network and the DAQ. Access to the hardware only takes place
within the local trigger network from a computer specified for this purpose.

Archiver

Conditions
Database

Trigger
Server

TRGECL
FPGA

Local TRGECL Network DAQ

Local TRGECL
VME CPU

Figure 2.21.: Architecture of the slow control used within the ECL trigger, that represents
the reference implementation for all sub-triggers.

The archiver has the task of recording data in real-time, especially results, from the exper-
iment. Like the condition database, it is located outside of the local network. It is hereby
interesting that the data exchange is not based on NSM, but on EPICS. In the approach
used within the trigger system, the archiver is not used directly with EPICS. Instead, the
same NSM process that is used for the database is used to read the required data from
the hardware. The data is then transferred to the trigger control server, at which it is con-
verted locally from NSM to EPICS. The converted data is afterwards sent to the server
hosting the archiver. Not only trigger data is stored here, but also data from accelerator
data such as the history of the recorded beam noise.

The distributed structure of the SC across all related readout crates is shown in figure 2.22
based on Ref. [55].. On the one hand, all of the creates hosting trigger hardware are shown
here, on the other, the respective responsible SC process is shown as well. The processes
are additionally distinguished by their type of implementation into EPICS and NSM. The
used hardware is based on the Versa Module Eurocard bus (VME)-based crates. These
crates are equipped with a V7865 Single Board Computer (SBC) [1], which acts as VME
master and host of trigger hardware. Each VME crate is equipped with a backplane that
is used to mount several trigger boards at once. The master CPU is then used to commu-
nicate and connect all boards. Meanwhile, the SC processes are executed for all hosted
trigger components in parallel on this master CPU. Individual trigger components are
distributed across several different crates, for example, the NNT is hosted on the crate
named vmetrg16 in the shown configuration. The Belle II Trigger Server (BTRGSRV) is
located at the interface of the global network. Processes executed on this computer are
collecting the data across all crates. For the interaction with the archiver, the collected
data is converted to EPICS while data for the database is kept natively in NSM.

35

2. Fundamentals

Figure 2.22.: Structural description of the slow control setup across all sub-triggers [55]. It
shows the present processes colour-coded by their type together with their
hosting computing platforms.

Data Quality Monitoring in Belle II

The task of the DQM of Belle II is to ensure correctness of operation by analysing samples
of events online [59]. This is typically done by generating histograms from recorded sam-
ple data. These histograms are then updated in ten-second intervals. The method used at
Belle II is mainly based on BASF2 [77]. Here, there are two options for the experiment’s
operation. The first option is to run DQM within the HLT farm. At this stage, PXD data
is not available, so only part of the total data of an event can be analysed. The second
option, the Express Reconstruction, is another computing farm that can perform online
monitoring with data from all detectors as well as the HLT. To use DQM, data must be
transferred from local hardware over the B2L. The DQM is important for the systems de-
veloped within this thesis, as it is the best method to check the comprehensive correctness
of the data processing hosted by the hardware.

2.4. Field Programmable Gate Arrays

The target technology used for all concepts within this thesis are Static Random Memory
Access (SRAM)-based FPGAs. These are often used for the implementation of trigger and
DAQ systems in modern particle detector experiments. Their capability to configure func-
tionality even after manufacturing is the most important characteristic as these systems
can be adjusted flexibly even after integration into the detector’s readout chain. Trigger
and DAQ hardware are usually difficult to change during operation, especially regarding
their connection to the detector. At the same time, the real behaviour of the accelerator is
not known during the development of the planned data processing systems. First studies

36

2.4. Field Programmable Gate Arrays

are hereby relying on simulations, however the methods developed on this basis have to
be adapted to the observed behaviour during operation with collisions. Here, the pro-
grammability of the FPGAs can be exploited. Furthermore, FPGAs are providing a large
number of IOs, which are necessary due to the large amount of data to be transferred. The
functional basis of FPGA processing will be discussed in the following.

Logic operations on FPGAs are performed by flexible and generic basic processing ele-
ments. These elements mainly are programmed to store the desired function.There are
multiple technological and architectural implementations for these elements. Possible
technologies that are available on the market are SRAM, Multiplexer, Flash, and Antifuse.
Since one of the goals of this thesis is to achieve low latency, the internal structure must
be known in order to understand and optimize the internal delays.

The most commonly used FPGAs are based on LUTs with SRAM. They are also the cho-
sen target technology throughout this thesis. Compared to the other technologies, they
are offering the largest amount of logic resources for implementation, on the one hand,
and the shortest signal propagation delays on the other. Since this kind of FPGA is repre-
senting the biggest and most important market for the manufacturers, they are typically
also the ones to be refreshed with the newest available semiconductor technologies as
soon as possible. For example, the latest product family from the market leader Xilinx,
the Ultrascale+ FPGA, is realized with 16 nm FinFET [136] [132] transistors. Both signal
delays and resources are highly important to the trigger designs discussed within this
thesis, as their respective applications require low-latency processing and fixed through-
put at the same time. A smaller technology node is significantly impacting the outlook
for a successful realization. At the same time, the systems to be developed are also quite
resource-hungry, especially in terms of their demand for connectivity. Higher amounts
of resources are beneficial to hosting larger and more powerful neural networks. The ad-
vantages provided by base elements alternative to SRAM that are available for FPGAs are
meanwhile not providing significant advantages for the considered use cases. Character-
istics such as high resistance to radiation or persistence of configuration after restarts, are
desired features but only of secondary priority. The systems designed here are generally
located outside of the areas near the detector that experiences a high dose of radiation. At
the same time, the complete electronics are reset in case sub-systems are restarted.

2.4.1. Application Domains

FPGAs generally have a broad application range since they are providing a highly flexi-
ble platform that can implement any logic function. At first, their main use case was to
serve as a system to bridge communication between two separated systems with hetero-
geneous and incompatible interfaces. Their application then shifted into domains with
demand for adjustment of its functionality even after their integration into the applica-
tion environment. Coupled with them providing a large array of powerful IO resources,
this is the main reason why they are such a popular choice in modern particle accelerator
experiments. Nowadays their use is much broader and pronounced in domains that were
traditionally relying on general purpose processing. Due to their high efficiency regard-
ing the trade-off between power and performance they are a popular choice in large scale
data centres such as Amazon Web Services. At the same time, FPGAs are found in many

37

2. Fundamentals

embedded domains, such as avionics, or are even used as high-quality ADC for premium
headphones.

2.4.2. General Architecture

The processing core within FPGAs are Configurable Logic Block (CLB)s. These are the
common structure used to implement an arbitrary boolean function for a fixed number of
binary inputs. For the realization of more complex functions, several CLBs are configured
and combined by routing signals together. For this purpose, flexible connection struc-
tures, the switching matrices, are present on an FPGA. To allow data transfers to external
components, a large number of IO blocks are included, these provide drivers and support
different standards. These blocks are of particular interest for trigger components as they
have diverse communication requirements depending on the respective interface.

X-Ref Target - Figure 3

A6:A1

D

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI2

O5

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

ug364_03_040209

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

WEN

CK

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

DI

A6:A1

O6
O5

B6:1

BX

A6:A1
W6:W1

W6:W1

W6:W1

W6:W1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

DI2

DI2

DI2

CI

BI

AI

Figure 2.23.: Architecture of SliceM logic resources used at Virtex-6 FPGAs [125].

In purely functional terms, an FPGA is capable of implementing any possible logical func-
tion through its CLBs. The actual feasibility, however, depends on the available resources
and timing requirements. Since CLBs are realized with very fine granularity on an FPGA,

38

2.4. Field Programmable Gate Arrays

few bits per block, more complex functions have to be distributed across several CLBs
and combined using the routing resources. Distributing logic functionality across several
blocks meanwhile introduces additional signal propagation delays. At the same time, the
number of routing resources is limited. In case that internal channels are completely oc-
cupied, alternative routing paths must be found. These paths can increase the longest
runtime thus decreasing the clock frequency. In addition, some operations cannot be im-
plemented immediately and efficiently in LUTs. An example for this are multiplications
with variable bit widths, as they are predominately occurring within the processing of
general artificial neurons. Since multiplications are required by many applications, mod-
ern FPGA architectures have been extended to include additional multiplication process-
ing elements that achieve better characteristics.

Configurable Logic Blocks

CLBs used in Xilinx FPGAs have their own internal architecture, which is in turn consist-
ing of additional smaller processing units. They consist of so-called Slices [125]. There
are two possible types present in a CLB, SliceL and SliceM, with the biggest difference
being that SliceM can be used as distributed Random Memory Access (RAM) or as shift
registers in addition to serving as fine grain logic units. Meanwhile, SliceL does not sup-
port any write functionality for the LUTs and is used as constant logic. The difference is
especially important when analysing the implementation results. Since the SliceM type is
providing additional functionality its architecture is shown in figure 2.23 as a representa-
tive for both types. Within this architecture, the first stage is consisting of the LUTs, in this
case four LUTs are part of one Slice. The LUTs are followed by a carry chain stage, which
allows for efficient transport of intermediate results towards directly adjacent Slices. This
is performed without the need for using the external routing resources, in turn reducing
the latency. This stage is followed up by the storage stage, which consists of multiple flip
flops for optinal data buffering.

&

=1

&

x1 & x2 & x3

FPGA-Design
<<Truth Table>>

Config
Memory

MUX

SRAM_LUT

X1

X2

X3

X1 X2 X3

<<Mapping>> <<Mapping>>

Figure 2.24.: Mapping of a logic function into LUTs of FPGAs.

A logic function is implemented at the LUT stage. Here, the LUTs internally consist of a
configuration memory that contains the results of the function and a multiplexer that se-
lects the configured value according to the input value. The contents of the configuration
memory are determined at design time. The realization of a boolean function in a LUT is
exemplary shown in figure 2.24. The content of the configuration memory can be hereby

39

2. Fundamentals

at the designer’s choice, it only has to comply with the limitations of the fixed input and
output ports.

In order to implement larger logic functions, individual Slices are interconnected via ded-
icated routing resources. Since the interaction of the Slices within an application is not
known, these resources are implemented to be highly configurable and flexible even after
manufacturing. The architectural unit that provides this feature is the switching matrix.
In a switching matrix, a number of inputs can be connected to multiple outputs at in-
tersection points. This is implemented by predefined configuration memories within the
intersection points. For a four-terminal intersection, every possible connection path is
controlled by transistors. Whether a transistor is passing a signal through is encoded in a
connected memory cell.

Specialised Processing Resources

The resources described thus far are already sufficient to flexibly realize all possible logic
functions. However, modern FPGAs benefit from the presence of dedicated processing
resources that can perform certain tasks more efficiently. The commonly used Block Ran-
dom Accessible Memory (BRAM) and Digital Signal Processor (DSP) elements are hereby
of particular interest, which will be further discussed in the following.

BRAMs are dedicated memory blocks on an FPGA. As an example, Virtex-6 FPGAs are
providing a dedicated BRAM module for storing 36 Kb of data together with two parallel
ports for read and write access [126]. They are a much more efficient realization for large
memory storage compared to the alternative implementation in CLBs. The main draw-
back, however, is their lower capability for parallel access within the memory. Only two
memory locations can be queried in parallel at any given clock cycle. A second important
drawback is their static placement on the FPGA as this is making routing of signals more
difficult. This trade-off will be considered throughout the realizations presented within
this thesis since the algorithms that are considered here strongly rely on parallel access
for retrieving constants. The importance of BRAMs for FPGA applications can also be
demonstrated by the number of resources provided in modern architectures. Table 2.4
shows the development across several technology generations taken from the product ta-
bles [127, 130, 128, 133] of Xilinx. Especially today’s big data applications are driving the
increased focused on the integration of such memory as they require large amounts of
quickly accessible storage.

Multiplications are meanwhile one of the most common operations in digital signal pro-
cessing and neural network applications. Although LUTs can realize these very efficiently
in terms of resources and latency when at least one input is a constant of fewer than 10 bits,
this implementation does not scale well otherwise. In order to allow optimization for vari-
able input bit widths, modern FPGAs are equipped with additional units to provide effi-
cient multiplications. In modern Xilinx FPGAs, these units are called DSP slices, whereby
they can also be used for divisions or Single Input Multiple Data (SIMD) operations. The
processing core of this DSP is a multiplier with fixed maximum bit widths for the input
ports. For example, a Virtex-6 FPGA is using two input ports that support 25 and 18 bits
respectively. To achieve high clock frequencies, DSPs are additionally equipped multiple
register stages to facilitate pipelining and cascading of operations. Here, cascading takes
advantage of the fact that DSP slices are placed on an FPGA in columns that allow them

40

2.4. Field Programmable Gate Arrays

to be directly adjacent to each other. Instead of communicating with each other via the
common method of using external switching matrices, a special cascading infrastructure
is used. This allows multiple DSPs to be connected in series to perform their processing
with a high clock frequency, which is especially efficient for Multiply and Accumulate
(MAC) operations. Due to this, these units are of particular interest in the implementa-
tion of neural networks. An investigation for this is carried out as part of section 4.4.1.

IO Resources

Another highly beneficial feature of FPGAs is the broad and diverse availability of pro-
vided IO resources. For this purpose, modern FPGAs are, for example, equipped with a
large number of fast serial GTs. The most important ones used in this thesis are GTX [123],
GTH [122] and GTY [129] which differ in their maximum data rates.

Resource XC6VHX565T XC7VX1140T XCVU190 VU13P
Slices 566,784 1,139,200 1,074,240 1,728,000
DSPs 864 3,360 1,800 12,288
BRAM 32.832 Mb 67.680 Mb 132.9 Mb 454.5 Mb
GTX 48 - - -
GTH 24 96 60 -
GTY - - 60 128

Table 2.4.: Development of resource availability in FPGAs across the latest generations.

Clocking Resources

FPGAs are additionally equipped with adjustable clocking resources. They enable the
usage of multiple different clock domains across the chip. This is important to generate
a targeted frequency for data processing but is also vital to operating IO resources. At
those interfaces, a corresponding synchronization must take place. For the generation,
distribution and adaptation of the clock an FPGA is equipped with PLL modules, drivers
and dedicated routing resources.

2.4.3. Design Flow for FPGAs

Realizations of firmware for FPGAs can be described in high-level languages such as C,
C++, Python, Matlab and more by using High-Level Synthesis (HLS) tools that are trans-
lating a description into a synthesizable format.

41

2. Fundamentals

RTL-Design

FPGA
High Level
Synthesis

Technology
Mapping

Place &
Route

Bitsteam
Generation

FPGA Designflow

Figure 2.25.: Typical design flow for the development of FPGA designs.

The more traditional way is to describe the realization in an HDL such as VHDL, Verilog
or System Verilog. These languages were specifically developed to describe digital cir-
cuits. At first, they were used to model and simulate already realized circuits for easier
verification, but were over the years picked up by Electronic Design Automation (EDA)
tool vendors to automatically translate abstract descriptions into logic-level descriptions
of the circuits to be realized. In contrast to the high-level languages, an HDL-based de-
scription is typically performed at the Register Transfer Level (RTL), although more ab-
stract descriptions are also supported by tools nowadays. However, in order to reduce the
degrees of freedom for the tools and thus to optimize the design manually, RTL is often
still representing the best choice.

A description of functionality is typically first checked for correctness. For this, a simula-
tion tool like Modelsim [73] or Xilinx ISIM [124] can be used. With these tools, circuits are
examined time-efficiently and in detail before they are implemented. In addition, most
simulation tools are offering interfaces for coupling hardware-focused simulation with
applications written in C++ or Matlab. With this option, it is possible to use an already
available software reference implementation for validation. This is of particular interest
in the context of physics experiments since reference implementations of algorithms are
typically implemented on a software-level before transitioning to hardware.

The FPGA’s functionality is then brought to the device in the form of so-called bitstreams.
These bitstreams are packing together the contents for the entire configuration memory
within the LUTs, switching matrices and remaining resources. To generate this, first a
synthesis is performed. Here the described logic on RTL is converted into a functionally
equivalent description on the level of basic logic gates. Using these gates, it is already
possible to roughly estimate vital characteristics such as signal propagation times, energy
consumption and more. With the help of these characteristics, an FPGA designer can
already estimate the feasibility of his design.

42

2.4. Field Programmable Gate Arrays

The synthesis is followed up by the technology mapping step. In this step, the logic de-
scription of the circuit consisting of the respective gates will be mapped onto the basic el-
ements provided by the target technology of the device. In devices by Xilinx, for example,
those elements are predefined primitives and macro-cells. These are in turn representa-
tions of the previously introduced processing elements on an FPGA such as DSP slices,
individual logic Slices or BRAMs. In this phase, the feasibility of the implementation is
also examined on a rule-based basis. An example of this is a check for combinatorial loops,
for example within a DSP at which a selected operation mode might require the usage of
certain dedicated registers. The success of this check can also depend on the selected opti-
mization strategy. Retiming, for example, can result in registers being rearranged in such
a way that these constraints are violated.

The physical design is then performed by using the representation of the circuit as basic
elements generated from the technology mapping. The core of this step is the placement
and routing within the structures available on the chip. The selected elements are placed
or mapped onto concrete elements located on the FPGA and connected to the switching
matrices. The last step of the conversion is then the generation of the bitstream with which
the FPGA can be configured.

The complete design flow for the implementation for FPGAs is additionally shown in
figure 2.25. The steps that are typically associated with high-level synthesis are shown in
blue while those associated with low-level synthesis are shown in pink.

2.4.4. Design Space Exploration

An RTL description can be physically realized on an FPGA in many different ways, for ex-
ample, with different placements of modules or routing paths on the device. Depending
on these, different timing and resource characteristics are achieved for a design. Mean-
while, the FPGA designs developed within this thesis have to fulfil real-time requirements
in terms of latency and throughput. These can often only be met by exploring many dif-
ferent designs. An overview of the optimization options provided by the used EDA tools
is given in the following.

Design space exploration can already be carried out at the synthesis stage, for example, by
including more details of the physical design. Additionally, different tools are available,
especially synthesis tools by Synopsys [107] among others can be used as an alternative to
the tools of the FPGA vendor. For the developments of this thesis, the tools by Synopsys
were consistently able to create netlists that required fewer resources and simplified the
timing closure process.

For the placement and routing as well as the technology mapping, tool manufacturers are
providing the most implementation choices to be explorred. For example, Xilinx is offer-
ing a set of strategies that are divided into three groups optimizing either timing, power
or routing congestion. Power is less important for the considered trigger systems, though
they are gaining in importance for future applications. The other two strategies are very
important and have been explored throughout, as they severely impact the feasibility.

One of the possible reasons for not reaching the desired frequency goal are regions on the
FPGA in which a high fraction of the available pins and channels are locally occupied by

43

2. Fundamentals

the transportation of a multitude of signals. With proper selection of suitable strategies
in addition to floorplanning, the tools can be directed towards avoiding these problems
at both the placement and routing stage. The placement strategy hereby tries to find a
compromise between timing, wire length and channel utilization. The router then tries to
route networks through the less frequently used channels as much as possible, even if they
result in worse delay for single paths. Design problems caused by congestion hereby often
do not benefit from introducing additional register levels. This rather makes the problem
even worse by introducing additional signals to be routed. Instead, optimizations of the
resource utilization can lead to a significant improvement in timing by mitigating the
congestion problems introducing fewer signals to be routed.

The options that proved to be the most influential for the developments within this the-
sis are listed in table 2.5. However, FPGA designers do not have to select these options
themselves during development. Xilinx already provides an assisting tool for this, the
SmartXplorer [104]. This tool selects suitable strategies for one of the three optimization
goals independently and starts implementation runs for all. Based on the results achieved
by the initial runs, the tools are then independently selecting the best options and vary
the cost tables to create better implementation results.

Name Description Effect
Packing Degree of combining logic

into one CLB
Less resources, worse timing

LUT Combining Usage of dual-port options
for merging of functionality

Less resources

Logic Opt Resynthesis and restructur-
ing

Better timing

Register Duplication Duplication of equivalent
registers

Better timing

Retiming Movement of registers
across logic

Better timing

Cost tables Predefined cost table guid-
ing the tools

Better resources and timing

Timing-Driven Placement is performed at
an early stage

Better timing

Table 2.5.: Most influential tool options for optimizing the physical implementation.

2.4.5. High-Level Synthesis

The majority of development for FPGAs is currently still performed at the RTL. The ap-
proach to abstract from this and use higher abstraction levels is a long-time research topic
and is supported by High-Level Synthesis (HLS). The advantage of this is that the tasks
of scheduling, binding, and allocation are all performed automated by tools. This au-
tomation is increasing productivity by freeing up time for the developer. Most FPGA

44

2.4. Field Programmable Gate Arrays

manufacturers are currently providing appropriate tools to support this approach. Since
this thesis is strongly based on the usage of FPGAs by Xilinx, more emphasis is put on
their tools, in particular, Vivado HLS.

Vivado HLS is mainly based on the usage of an algorithmic description using a subset
of C++ instead of, for example, VHDL. From this description, the tool generates an RTL
architecture. Opposite to modern design guidelines, hardware modules created this way
are not intended for further development or manual analysis, they are rather to be used
as black boxes. Internal structures are described without regard to human developers and
are thus difficult to understand or modify. As manual analysis is almost impossible, these
modules are typically validated by using HW/SW Co-simulation. Here, both the high-
level C++ and the generated RTL description are simulated together and the results are
compared for correctness. As the high-level description is basically standard software,
any kind of test infrastructure can be used and interfaced with the hardware implementa-
tion, allowing the usage of mature concepts such as unit tests. With regard to this thesis’s
main application, physics experiments, it is possible to interface frameworks developed
for detector simulation with hardware modules, thus bridging the domains of physics
analysis and hardware implementation.

Test
Bench C, C++,

SystemC
Constraints/
Directives

C Simulation C Synthesis

Vivado HLS

RTL
Adapter

VHDL

Verilog

System C

RTL Simulation Packaged IP

Vivado Sys Gen XPS

Figure 2.26.: Design flow for FPGA implementation using the Vivado HLS tools [Hoc18].

HLS does not have to be used exclusively for the generation of RTL modules, but can
also be used to describe the configuration and parameters of a predefined architecture in
the form of high-level description languages. The separate modules of the architecture
are meanwhile already provided within a library of parametrizable IP cores and merely
configured by the HLS tools. In the following, the design flow of the Vivado HLS is
described. For this, the graphical representation of the flow is presented in figure 2.26.
The basis of the design flow is formed by the high-level description accompanied by a test

45

2. Fundamentals

bench for validation and constraints coupled with directives. The later ones are similar
to constraints in traditional hardware design, however, they also include more abstract
metrics such as a frequency target and implementation strategy to be used. An important
strategy is hereby the array partitioning, which directs the tools to implement access to
memory structures in parallel instead of sequential access to BRAMs. Using the high-
level description coupled with the constraints, C-based synthesis is performed, generating
RTL modules in a predefined HDL. These can then be packaged to be used in the overall
architecture and used for HW/SW Co-Simulation.

2.5. Machine Learning and Classification

This chapter is introducing the fundamentals of machine learning and classification, which
form the functional basis of the algorithms throughout the presented systems. The task of
all developed systems is the classification of event data into their relevancy for the exper-
iment. As such, generally used metrics are discussed, which are used later on to evaluate
the performance.

2.5.1. Classification

As the methods used within this thesis focus on the classification of data, the basic princi-
ples of classification are introduced in this section. The problem of statistical classification
can be seen as testing a defined hypothesis. The test is centred around a data set match-
ing one hypothesis against the same data set matching another hypothesis. Subsequently
assigning the data set to one of the hypotheses can be graphically interpreted as introduc-
ing a separating cut into the data space. Without the precise knowledge of how to assign
data to the correct hypothesis, this will always introduce a probability for misclassifica-
tion. Two terms are then typically associated that are false positive and false negative.
False positive represents data that is being assigned to a hypothesis H0 which in reality,
belongs to an alternative hypothesis H1. On the other hand, false negatives represent data
that is in reality matching the hypothesis H0 but was wrongly classified to be assigned to
H1 due to the dividing cut.

E f f iciencyA =
Correct Classi f icationsA

SampleA
(2.2)

PurityA =
Correct Classi f icationsA

Correct Classi f icationsA + Wrong Classi f icationsA
(2.3)

From these considerations, two metrics for measuring performance can be defined. These
are efficiency and purity, both can be calculated by using equation 2.2 and 2.3, for a given
arbitrary data set A. Efficiency is the ratio of correctly classified data and data belonging
to the class for the provided sample, irrespective of the falsely classified data. On the other
hand purity is the ratio between the correctly classified data and all data assigned to this
class. Both metrics have a relationship to each other that becomes apparent when creating

46

2.5. Machine Learning and Classification

a purity-efficiency graph. Here an efficiency of 100% and a purity of 100% represent the
optimal result for the respective metrics. A typical structure as a result of classification is
shown in figure 2.27, in which efficiency is increasing at the cost of purity and vice versa.

Efficiency

Pu
ri
ty

0

1

1

Figure 2.27.: General plot showing the relationship between purity and efficiency.

2.5.2. Approaches based on Supervised Learning

Methods from machine learning can be divided into the two classes of supervised and
unsupervised learning. The difference lies within the a priori knowledge to which class a
data sample is actually belonging to, which is present in the case for supervised learning.
The machine learning algorithm is then learning the classification by determining the
errors between the generated and real results by using the provided sample data and
adjusting the internal topology in order to minimize this error. In unsupervised learning,
the correct assignment is meanwhile not known in advance. The possible classes are then
learned by the algorithm itself. The machine learning methods used in this thesis are all
based on supervised learning. They are either trained by using simulated physics events
and their interaction with the respective particle detector or by using real data recorded
from the sensors during operation from either collisions or cosmic rays.

2.5.2.1. Artificial Neural Networks

Artificial neural networks are a processing architecture derived from biology, with the
goal to emulate the behaviour of nervous systems. Although the basic building blocks
called artificial neurons are in their basic form rather simple in their internal process-
ing structure, they can be used to approximate arbitrary functions when using a suitable
topology.

47

2. Fundamentals

Figure 2.28.: Structure of a single artificial neuron within a MLP.

Of particular interest are artificial neural networks in connection with machine learning.
Their internal configuration and thus function is hereby determined by a training process
based on provided data samples. This training will adjust internal parameters in such a
way that a processing problem can be solved without the knowledge of an exact solution
algorithm. The basis for successful training is a sufficient amount of relevant training
data.

yj = f (sumN
i=0wij · xi) (2.4)

Artificial neurons can be algorithmically described according to equation 2.4. The output
of its function is noted as yj for a given neuron j. Its weights wij are determined from the
training and represent the importance as well as the impact of either the input data or con-
nected neurons within the network. These weights are multiplied with input values xi of
the neuron, at the end all results from multiplication are summed up. This sum is then fed
to the activation function f . Figure 2.28 shows the relationship of equation 2.4 graphically.

Activation Function

Typical neural networks in biology transition between excited and non-excited states. In
artificial networks, this is modelled by an activation function. It is typically chosen to
be monotonously increasing. The choice of function to be used is a design parameter
selected before training of the network, as the training process is highly dependent on
this decision. In artificial neural networks, jump functions, piecewise linear or non-linear
functions, such as the sigmoid and Hyperbolic Tangent (TANH) functions, are often used
as activation functions. The advantage of the sigmoid and TANH functions is their differ-
entiability, which allows training of the nets with backpropagation algorithms.

Backpropagation

48

2.5. Machine Learning and Classification

One of the most popular approaches to training and thus configuring an artificial neural
network are backpropagation algorithms. These are supervised learning methods that are
based on the usage of an error function that is predefined, which describes the deviation
of a selected neural network’s output from the expected desired output. It is then used
to determine the influence of the individual weights making use of the differentiability
of the activation function. Simple gradient methods such as gradient descent can then
minimize the error function. In the context of this thesis, the iRPROP algorithm was used
to train the neural network of the NNT that is presented throughout chapter 5 [92]. Com-
pared to conventional backpropagation algorithms, the iRPROP algorithm provides the
same cost minima with a shorter runtime.

Multi-Layer Perceptron

The basic form of artificial neural networks is represented by MLPs, which consist of a
series of interconnected layers of artificial neurons. A network that does not include any
feedback to a previous layer, is then called feed-forward MLP. These have the advantage
that both the latency and output of the network are deterministic. It was additionally
shown that such a network can be used as a universal approximation for any bounded,
continuous function when it is appropriately trained and configured.

zk = f
(

sumM
j=0wjk · f (sumN

i=0wij · xi)
)

(2.5)

2.5.2.2. Deep Neural Networks

The previously presented MLP represented the classic variant of a neural network. Today,
however, most of modern neural network based algorithms can be assigned to the class of
Deep Neural Networks (DNN). These variants are distinguishing themselves by the fact
that they often consist of a many successive layers, sometimes dedicated to fulfilling a
dedicated task with their parameters determined by a learning method. Two of the most
famous members of this class are Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) [65]. Both are briefly discussed in the following.

Convolutional Neural Networks

CNNs are probably today’s most widely used derivative of machine learning-based meth-
ods. They are most famous for being used in the recognition of objects within images,
which matches the strengths of these networks. They are particularly well suited in the
processing of data, which can be represented as multidimensional data arrays and that are
in need of finding local patterns. An example case to be classified are images recorded by
surveillance cameras with the goal to identify persons. Additionally, this represents one
of the use cases in which machine learning is combined with deployment on FPGAs as
these systems are often integrated close to a recording camera in order to allow real-time
classification.

In contrast to classical approaches, CNNs are specifically designed to have several pro-
cessing layers. The general architecture is similar to that of MLPs, but often heterogeneous

49

2. Fundamentals

Vision

Deep CNN

Language

Generating RNN

A group of people

shopping at an outdoor

market.

There are many

vegetables at the

fruit stand.

Figure 2.29.: Representation of the data flow in an image recognition use case that is a
typical application case for CNNs [65].

processing topologies are used across all of the Hidden Layer (HL). Typically the first lay-
ers directly after the input reception are designed to use fewer connections between the
neurons, while later layers are moving towards being fully connected. Using layers of
fully connected neurons is retaining the original properties of MLPs that are intended to
be universal approximators of functions. In addition to the difference in connectivity, dif-
ferent algorithms are often used across successive layers. The core processing techniques
of CNN’s are hereby convolutional and pooling layers.

The name convolutional is representing the typical arithmetic operations within a layer.
A defined part of the original data, for example, a 3x3 pixel-section of an image is pro-
cessed by using a filter bank. The calculation mathematically corresponds to a convolu-
tion, which gave the name. The filters used can differ from layer to layer. Meanwhile, the
result of a convolution is passed to a non-linear function, similar to the activation function
of an MLP. In deep networks with many layers, the Rectifier Function (ReLU) function is
typically used for the activation. The advantage of this function is that it typically allows
faster learning and is more efficient to implement. Especially in very deep networks, it is
enjoying high popularity with its advantages in avoiding the vanishing gradient problem.
On a higher abstraction level, the principal task of a convolutional layer is to detect pre-
defined features or patterns within a subset of the original data. For layers that are deeper
within a CNN, the result of the pattern matching is used as the input to the successive
layers.

Pooling layers are used to combine features that were found while processing a layer. A
typical algorithm used in pooling layers is the determination of the maximum within a
list of features found by previous layers. Going back to the application case of image pro-
cessing, pooling layers with the maximum approach can be used to make the algorithm
more robust against different positioning of the desired features within the image.

Deeper layers of a CNN are often switching to another topology. In these, typically more
convolutional layers are executed successively without any pooling layers in-between.
The connectivity is additionally increased in these sequences across the respective layers.
These kinds of topologies led to the tipping point for the success of modern CNNs as they
severely increased object recognition efficiency which made them the algorithm of choice

50

2.5. Machine Learning and Classification

for these types of applications. Topologies following this template assume enormous pro-
portions with over 20 layers and millions of weights. In comparison, the networks used
within this thesis have much simpler topologies following the traditional approach to
neural networks with a maximum of weights at around 2000 to 4000.

Recurrent Neural Networks

Another modern and popular style of algorithms based on Machine Learning are Re-
current Neural Networks (RNN). While CNNs are especially well suited for processing of
image-based data, RNNs are designed to be particularly suitable for sequential input data
streams in which successively arriving data is interdependent. The singular special fea-
ture of such networks, which makes them very suitable for such applications, is the ability
to store an internal state that is reflecting previous processing steps. These states contain
not only information derived from the current input, but also the previous ones. Neurons
are hereby represented by so-called hidden units together with their current state at a cer-
tain point in time. The reason to keep the artificial neuron representation is to use and
adapt learning algorithms such as classical backpropagation for these kinds of networks.

The processing principle of such a neuron is shown graphically in figure 2.30. Each neuron
contains a triple of weights (U, W, V) that is applied on the input x, the state of the neuron
s, and the output v. The input x is hereby a vector over time t. At any point in time, a
neuron calculates its output not only depending on the input but also on the state from
the last time step t-1.

xtxt−1 xt+1x

Unfold

V
W W

W W W

V V V

U U U U

s

o

st−1

ot−1 ot

st st+1

ot+1

Figure 2.30.: Illustration of the processing principle for neurons within a RNN [65].

In the past, it was rather difficult to train such networks efficiently. As a result, they were
not widely used for a long time. Current iterations changed this however and RNNs are
representing one of the most popular algorithms to process texts effectively, for example,
in machine translation. An interesting approach to DNNs is to use a combination of both
CNN and RNN in order to profit from the advantages of both approaches. One such
example is the processing of video feeds. Approaches were developed that use CNNs to
automatically label single frames within the feed, while a RNN is used to generate the
text to be inserted for the labels.

51

2. Fundamentals

2.5.2.3. NeuroBayes Algorithm

The NeuroBayes algorithm is a modified neural network currently provided and main-
tained by Blue Yonder and the JDA Software Group [28, 44]. Its original target appli-
cations were in the field of high energy physics as it was used to provide an optimized
reconstruction of energies for the DELPHI experiment [6]. After its initial success, its
employment was extended towards further experiments such as Belle. Nowadays the
algorithm is used as a commercial product for data analysis. Usage of the algorithm is
provided through the NeuroBayes framework, which maintains several variations of the
algorithm, for example, an MLP or the so-called zero-iteration algorithm, which is a sim-
plified implementation of a general neural network. The most important differences to
conventional algorithms based on neural networks are the inclusion of a sophisticated
preprocessing which allows for high-efficiency operation and large-scale pruning of the
network. In addition to this, it is based on the usage of the theorem of Bayes for improv-
ing the algorithm’s efficiency. In the original design, the theorem was used to exclude
behaviour that appeared to not be based on physics due to imprecisions that are present
within the detector used for data taking. The zero-iteration algorithm proved to be the
most suitable solution for the OCA that was developed as part of this thesis and is pre-
sented in chapter 8.

52

3. State of the Art

This thesis’s presentation of the state-of-the-art is primarily focusing on similar trigger
approaches used in other modern particle physics experiments. Less focus is put on the
investigation of the design of architectures for machine learning approaches, especially
neural networks, on FPGAs. Especially here, there is a plethora of solutions available
due to the current trends towards using machine learning. Besides the currently available
approaches, an outlook into future operation of neural triggers is provided by discussing
potential future platforms that might host such approaches.

3.1. Related Trigger Systems based on Track Finding

3.1.1. Approaches based on Neural Networks

The neural L2 Trigger used at the Hera Experiment

The advantages of a track trigger based on neural networks for the particle detector read-
out garnered much interest during the development of DESY’s HERA particle acceler-
ator experiment. It was then designed and constructed to include a neural trigger sys-
tem [56, 25]. Similar to Belle II, it was expected that full luminosity would result in back-
ground formations for which conventional methods would not be able to achieve the
required efficiency at track finding. Physics analyses showed that an estimation of the
coordinates with the help of neural networks would be able to achieve the required re-
duction rates. These networks were then implemented on dedicated hardware as part of
the L2 trigger system. Similar to the NNT discussed within this thesis, this trigger system
had to be placed close to the detector readout. Close location to the sensors was vital for
this system to stay within the maximum total latency. The architecture of the used overall
trigger system of the experiment is shown in figure 3.1.

The most relevant differences between the system developed back then and the one re-
quested for Belle II are the requirements set by the detector’s readout and trigger system.
At the HERA experiment, a latency budget of 20 µs was allocated for the neural network
trigger system. In comparison, at Belle II CDCTRG only a quarter of that time is available
for the entire trigger, not just one sub-system, as it needs to generate trigger signals within
5 µs. The NNT presented here, represents only a part of this system, which has about 300
ns available for its latency budget for data processing. In addition, the L2 trigger was not
pipelined, thus was not dead time free, while the NNT must fulfill both.

53

3. State of the Art

H1
Detector

Pipelined
Logic

Neural
Networks

Software
Processor

Farm

Offline
Physics
Analysis

L2L1 L3 L4 L5

Online Offline

2.3 µs 20 µs 800 µs 100 ms

Figure 3.1.: System architecture of the trigger system used at the HERA experiment.

The hardware basis of this neural trigger was a dedicated ASIC called Connected Network
of Adapted Processors (CNAPS), which was developed by Adaptive Solution [8][9]. This
chip implemented a general feed forward network, which operated internally with fixed-
point arithmetic supporting a 8 bit representation for the input and 16 bit for the weights.

Investigation of Neural Trigger Systems on FPGAs

First investigations for the usage of a low-latency neural trigger based on FPGAs were
conducted well before Belle II [114]. The main application case discussed within this
work is quite similar to the tasks investigated within this thesis as it was primarily de-
veloped for particle classification. Subsequently, data sets representing both signal and
background events were generated at first, afterwards they were used to train and de-
termine the topology of an MLP. This topology was then implemented on an FPGA. The
individual operations were entirely implemented in the Slices of the FPGA, while the acti-
vation function was implemented in BRAM. In order to perform the operations efficiently
on the FPGA, both inputs and weights were converted into integers with restricted bit
widths. Finally, the resulting resolution was investigated, whereby a good separation of
signal and background was achieved. This work already showed the potential of MLPs to
be used as the algorithmic foundation for the usage in trigger systems as it efficiently sep-
arated classes of particles and could be implemented on an FPGA. The latency achieved
in this work was at 200 ns, which was assumed to be a reasonable maximum latency to
be feasible for experimental operation. This can be confirmed looking ahead to the NNT
as it has a maximum latency budget in the range of 300 to 400 ns for data processing.

However, this work rather represents a principal investigation of the usability of neural
networks in the scope of these types of applications. It is not based on any data sets or
use cases motivated by physics. As such, it does not consider any detector specific com-
ponents such as detector specific processing and integration into the readout chain. At
the same time, the verification was limited to simulated data and simulation of the FPGA
architecture without consideration of any real data. These are the key points in which

54

3.1. Related Trigger Systems based on Track Finding

that work is different from this work, as it represents a real system that is already at this
moment operational within the experiment.

High-Level Synthesis for Trigger Systems based on Machine Learning Methods

The most interesting work within the state-of-the-art so far is the framework High-Level
Synthesis for Machine Learning (HLS4ML) [26]. This framework represents the work con-
ducted by multiple research groups together with CERN towards using machine learning
for trigger applications as the framework aims to instantiate neural network architectures
for FPGAs. The core applications that are considered for evaluation are hereby trigger
systems on the basis of jets for usage at the Compact Muon Solenoid (CMS) experiment.
This work is, therefore, the most comparable to the one presented here.

Figure 3.2.: Design flow of the HLS4ML Framework for inference of neural networks on
FPGAs [26].

The core idea of this framework can best be described by examining its design flow, as
shown in figure 3.2. The starting point is the creation of a neural network by using state-
of-the-art tools available for machine learning methods such as Tensorflow, PyTorch and
Keras [2]. After creating a suitable model, it is compressed in order to reduce the number
of operations as much as possible, which will result in resource-efficient and fast imple-
mentation for FPGAs. The compressed model is then converted for instantiation sup-
ported by the HLS tools of Xilinx. In addition, implementation targets are defined in
terms of the throughput and latency to be achieved. The desired topology is then imple-
mented with the help of the HLS tools, taking these key figures into account.

The design flow is demonstrated and evaluated by using physics use cases derived from
data from the CMS experiment. Different pipelining possibilities and bit widths are eval-
uated within this use case. Meanwhile, the implementation of neurons is based on the
usage of DSPs in order to achieve high operating frequencies. The evaluation concludes
with the definition of a suitable topology and architecture configuration that is capable of

55

3. State of the Art

achieving the defined goals. Especially of interest is the compression of the model as it
achieves a significant optimization of the architecture.

The framework developed within HLS4ML offers a mature software infrastructure for
inferring machine learning models as it is supporting most of the state-of-the-art tools
from this area. This advantage is coupled with highly effective compression methods for
the generated models. With these two key features, it sets itself apart from the systems
developed and presented within this thesis. Rather than developing a general software
framework based on the state-of-the-art, the solutions presented within this thesis are tai-
lored for the use cases of Belle II. As such, it is built around supporting the tools that were
used for inferring the neural networks during early and late studies of Belle II. However,
especially the compression of HLS4ML is interesting for the use at the NNT. An analysis
of compression with alternative methods was carried out for the NNT [Reu18] but did
not provide a sufficiently significant improvement in order to be used. The reason for
this is the targeted application case. Since several networks are implemented and oper-
ated in parallel on the FPGA, compression has to be performed across all networks in
order to have significant optimization of the FPGA architecture. Another distinguishing
feature of this work is that it represents a rather theoretical study of the presented con-
cepts. The FPGA implementation examined here is not in use, nor has it been integrated.
Furthermore, it is limited to the inference of a neural network without any consideration
preprocessing.

3.2. Alternative Track Trigger Approaches

Conventional 3D Tracker for the CDC

Parallel to the NNT for the CDC, a conventional 3D estimation [115] is under develop-
ment. It will be operated in parallel to the NNT, which is showing the importance of
an operational estimation of the z-Vertex as two systems are tasked with this responsibil-
ity. The idea here is two have two systems having complementary strenghts for differ-
ent classes of tracks. This approach is mainly developed by researchers from the Korea
University. Algorithmically it is based on geometric transformations and uses linear re-
gression to determine the 3D track parameters. The name conventional stems from the
method being used to estimate track parameters in previous experiments. Just like the
NNT, its main task is to send an estimation of track parameters to the GDL. The goal
is meanwhile the same however it is projected to be more effective for certain types of
tracks. Preliminary simulations of this trigger showed that reasonable estimations of the
z-Vertex could be achieved with a fitted sigma of 1.35 cm for the resolution of the esti-
mated z-Vertex, currently the resolution is worse than that in operation but progress is
being made steadily.

The algorithm was implemented on the basis of the UT3. The first implementation was
achieving an estimation of the track parameters within 264 ns using this platform. Thus,
the implementation of the 3DS will generate its trigger signals within the latency budget
of the CDCTRG. With regard to the throughput, it is capable of processing up to 4 tracks
in parallel and has no limitation in the amount of supported stereo TSs. In contrast, the
NNT developed in this thesis can only support a limited number of stereo TSs at any

56

3.2. Alternative Track Trigger Approaches

time. Additionally, it can process a lower number of tracks in parallel, both did not affect
its performance thus far, however.

At this point, it might seem that the NNT has only disadvantages compared to the 3DS,
mostly due to its lower throughput. The advantages, however, are present in the quality
of its estimations of the z-Vertex, together with its current readiness for being used dur-
ing operation with collisions. As the NNT is built around using ML methods, it can be
adjusted to the situation currently present at the experiment. In contrast, the 3DS is based
on less flexible algorithms, which might impact estimations, possibly deteriorating the
precision, when the experiment’s behaviour is changing. At this stage of development,
it is the NNT presented within this work that achieves the best results, with the results
being presented and discussed in section 5.4.2.2.

Hough-based Track Trigger for the CMS Upgrade

1
2

3

4

5

6

0

20

40

60

80

100

120

0 20 40 60 80 100 120

x [cm]

y
[c

m
]

Spur

1

2

3

4

5

6

3
16

π

7
32

π

1
4

π

9
32

π

5
16

π

-
1
3

-
1
6

0
1
6

1
3

Spur

φ T
[ra

d
]

q
pT

[e
GeV

]

Figure 3.3.: Illustration of the transformation of particle tracks into a related representa-
tion in the r-phi plane [97].

One of the main detectors at the LHC of CERN is the CMS. This detector is used to in-
vestigate a wide field of physics, for example, Higgs, super-symmetry, and dark matter.
During operation, between 20 to 40 collisions are occurring simultaneously at a frequency
of 40 MHz. The L1 trigger reduces the resulting data rate within a latency budget of 3-4
µs, while data is reduced with a factor of 400. Currently, an upgrade of the detector is
under development in order to be ready for the upgrade of its accelerator the High Lu-
minosity LHC, which is planned to begin operation in the year 2026. The trigger system
will be revised to handle the increased luminosity and data rates. It will centre around a
novel tracking detector, that is based on silicon strip sensors, similar to the SVD of Belle II
but with much larger dimensions. This detector currently represents the largest detector
of its kind. Of course these developments already led to revised algorithmic approaches

57

3. State of the Art

to track triggering. One particularly interesting solution that was proposed, is the use of
Hough-based track reconstruction. For this, FPGAs were selected as the target technology
in order to meet the requirements for data transmission and latency.

In the proposed procedure, the detector’s data is transformed into a r-phi plane represen-
tation according to the detector’s geometry [97]. Possible track candidates are represented
as straight lines in this plane. A track is then regarded as a possible candidate in case a
sufficient number of straight lines are intersecting. This procedure is shown in figure 3.3.
The track parameters found this way are then optimized again by using a Kalman filter.

The proposed solution was prototypically implemented on MP7 boards. These are cus-
tom processing systems based on FPGAs of the Virtex-7 series. The suitability of the pro-
totype was then shown within a demonstrator setup. Overall, a high efficiency of 94.4%
is achieved for track finding. The measured latencies of the demonstrator contained all
key parameters, including the transmission latencies. The setup is then able to generate
an estimation within 3.7 µs, which is around the targeted maximum latency [43].

Especially the implementation of the Hough transform for FPGAs is of interest for this
thesis, as an FPGA-based estimation of three-dimensional track parameters based on a
similar approach is the basis for the system presented in chapter 6. Even though they are
both based on the Hough transform, both systems are quite different as the variant pre-
sented in this thesis is optimized for the particular geometry of the CDC. Algorithmically
the approach used in this thesis is based around a weighting scheme for track parameters
that is using the theorem of Bayes. In addition, the finding of a suitable track candidate is
performed in a three-dimensional Hough space.

3.3. Hardware Acceleration for Machine Learning Algorithms

Figure 3.4.: Portfolio of possible technologies for the realization of algorithms based on
machine learning. They differ in their trade-off between flexibility and effi-
ciency.

The rediscovery of neural networks in industry and science has opened up many new ar-
eas of application. One of the remaining problems for such approaches is the discrepancy
between the required and available computing power. Even today, the demand for com-
puting power is still much higher than its availability. In the past, the performance was
mostly optimized towards high achievable throughput and accuracy, but with application
cases arising from the embedded domain, also energy, space, and latency are in demand.
While the throughput was mostly addressed by using Graphics Processing Unit (GPU)s,
they are not designed to address the requirements inherent to embedded systems. In or-
der to close the gap, research on the implementation of efficient and dedicated neural

58

3.3. Hardware Acceleration for Machine Learning Algorithms

hardware accelerators was intensified. An overview of the classification of neural com-
puting platforms is provided in figure 3.4. This overview is showing multiple possible
computing platforms that are categorized in terms of the two dimensions flexibility and
efficiency. These dimensions are complementary to each other as a flexible solutions that
are supporting multiple applications are not optimized to achieve the highest possible
efficiency for one single application.

The highest flexibility is achieved by classical CPUs. Due to their programmability, algo-
rithms can be quickly implemented. As they are built to provide reasonable performance
across a wide range of applications, especially control flow heavy applications, they are
equipped with several mechanisms optimizing such tasks. This makes them a less effi-
cient solution for data flow dominant applications such as neural networks. Improvement
can be achieved by using GPUs. These were initially specialized in performing graphics
applications. Their architecture is optimized for highly data flow-oriented processing, as
a result GPUs are built to provide a high degree of parallel processing. This, in turn, leads
to improvements in the performance for other application domains, as they are particu-
larly popular for the calculation of highly parallel applications, for example, in scientific
computing, but also in the domain of machine learning. Today GPUs are the dominant
computing platform for fast training of neural networks, but also for inference in data
centres. While they are capable of achieving high throughput, they are not particularly
well optimized for power, low-latency, and deterministic processing. Considering the
highest-grade classes of GPUs in terms of achievable performance, a fixed determinis-
tic latency typically cannot be guaranteed. Not only are they based on communication
infrastructures that are not deterministic in terms of transmission times, but even the cal-
culations themselves are not deterministic on GPUs. In these, operations are controlled by
hardware-based schedulers that have the goal of maximizing parallelization. It has been
shown that determinism can be forced upon these schedulers by using synchronization
features like semaphores, however, this led to much worse performance. Besides using
GPUs, high efficiency in terms of throughput and energy can be achieved with the usage
of dedicated processing units. A distinction can be made here between three categories.
A neural accelerator can, for example, be implemented as Soft-IP. Here, the hardware ac-
celerator is provided as a netlist that can be implemented for example on an FPGA. This
module is often somewhat flexible as its mapping to the target platform can be influenced.
However, it typically does not achieve the highest efficiency due to the flexibility of the
selected target. An accelerator implemented as Hard-IP fares better here. In this case, it
is implemented on the chip during production as a Co-Processor and cannot be changed
afterwards. It is capable of achieving the highest possible efficiency, as it is basically an
ASIC. However, it offers the lowest flexibility as it cannot be modified in any way after
production.

3.3.1. Realization of Neural Networks on FPGAs as Soft-IP

This section presents a selection of Soft-IP based implementations of neural networks on
FPGAs. They are divided into approaches from academia and industry. Both are in-
teresting because implementations from industry are usually representing more mature
integration solutions into the FPGA toolflows, on the other hand, the approaches from

59

3. State of the Art

research are meanwhile mostly available as open-source and can, therefore, be adapted to
custom needs. The presented implementations include different algorithmic implemen-
tations, but they are all part of the neural networks.

3.3.1.1. Academic Approaches

Frameworks for Inference of Neural Networks on FPGAs

Frameworks to assist in the implementation of neural networks on FPGAs are one of the
most popular topics in today’s research. Most of them focus on providing a flexible in-
terface to support a broad range of applications. As most of the commercial applications
are centred around DNNs, much effort is put into facilitating their acceleration. Most of
the frameworks follow the same basic principles, such as providing a library of optimized
Soft-IPs integrated into the overall tool environment. These are then often used by an ar-
chitectural description at a high abstraction level. These frameworks are then focussing
on the optimization of throughput and latency. In Ref. [137], a throughput-focused frame-
work is presented that can be used for several different algorithms from the class of CNNs.
As it is driven by achieving high throughput, it is particularly interesting in the context of
future applications for data reduction for a detector’s readout, as is investigated in chap-
ter 8. The solution used within this thesis is based on a proprietary algorithm. While it
is achieving sufficiently high performance and fulfils the requirements, an open-source
solution is going to be required for long-term operation.

Mapping of Neurons onto DSP-based Macro-Cells

One of the core ideas that is discussed in section 4.4 is the usage of DSP blocks that are
available on an FPGA to implement the MAC operations of a neuron. In order to be as
efficient as possible, the mapping of these operations must incorporate the detailed ar-
chitectural properties of a DSP. Such an approach is the main focus of Ref. [42], in which
the distinguishing feature is that it goes beyond the standard approaches of RTL design
by investigating an optimized mapping on the physical level of abstraction. The solu-
tion found in this work is optimized for the structures on the level of single primitives
available on an FPGA. This is also the distinguishing aspect compared to this thesis, in
which focus is put on RTL design. Placement and routing are accordingly not performed
by the vendor’s tools, they were rather done with the help of the open-source place and
route tools VPR [17]. With this approach, it was possible to create FPGA designs that can
be operated with very high clock frequencies of up to 300 MHz. However, as they are
designed at the physical level, the developed structures are dedicated to the used FPGA
architecture.

The interesting part here is the optimization on the physical level, which can also be car-
ried out for the systems developed in the scope of this thesis. All final setups developed in
this thesis are able to achieve the minimum set requirements as shown in sections 5.4.2.2,
while using a combination of tools from Xilinx and Synopsys. However, especially re-
garding the throughput, only the minimum is achieved thus far, and further optimiza-
tions using physical design could lead to a boost in performance. These optimizations
are strongly constrained to the target architecture of the FPGA. This makes it less flex-

60

3.3. Hardware Acceleration for Machine Learning Algorithms

ible, however in the trigger context, the choice of platform is already very limited. In
addition, a platform must be defined early in the development process. This requirement
means that the trigger system will be committed to one platform, and these kinds of op-
timizations are an option worth consideration. The systems discussed within this thesis
were primarily developed with the goal to be operational at the early stages of the exper-
iment. Thus, the focus was put on the fulfilment of the minimum requirements. During
the course of the experiment, however, maintenance phases will be performed that can
be used for the loading of optimized firmware. Here the concepts presented in Ref. [42]
could be adapted.

Binary Neural Networks for FPGAs

One of the key components in the implementation of neural networks is the selected bi-
nary representation for the inputs, weights, and activation function. In classical software-
based approaches, floating-point representation with high precision, was typically chosen
in order to achieve the best possible classification efficiencies. However, these represen-
tations are more complex to process on FPGAs and require additional memory resources.
To avoid this situation, data types can be restricted to computationally less intensive rep-
resentations such as fixed-point. This is much more efficient in terms of resources and la-
tency, especially with regard to hardware implementations. One extreme of this approach
is the usage of Binary Neural Networks (BNN). In these only binary weights, activation
functions and inputs are allowed. With this representation, the memory footprint, the
number of accesses, and arithmetic operations can be both reduced and simplified. One
of the basic principles within these networks is to reduce the complexity of neurons by
avoiding any multiplications. Instead, only logical operators such as XNOR and bit shifts
are used. While this is reducing the computational complexity, it typically comes with the
cost of reduced accuracy of the algorithm. However, the advantages are significant, and
for most applications, reasonable accuracy can still be achieved, thus justifying the usage
of such networks [22]. The implications of a hardware-based implementation on FPGAs,
CPUs, GPUs, and ASICs have been studied in many papers such as Ref. [88]. On FPGAs,
especially, the power demand can be reduced, which is vital for embedded applications.
This is mainly due to the reduction of memory usage as accesses to reload weights are
significantly reduced due to the smaller footprint. Such networks were investigated for
usage at the NNT as part of the master thesis Ref. [Zha18]. However they were achieving
low precision in the initial tests with a reduced resolution of about 10 cm compared to
the later achieved 5-4 cm. Due to this, the approach was not further intvestigated.

Framework for Fast, Scalable Binarized Neural Network Inference

The Framework for Fast Scalable Binarized Neural Network Inference (FINN) is a mix-
ture of academic and industrial research. Its goal is to provide a framework for FPGA
users that combines state-of-the-art ML tools with the creation of an efficient architecture.
The original variant is hereby designed to use an optimized library of IP cores for BNN
and was investigated for adoption on a Zynq FPGA. In the proposed design flow, a de-
fined topology with its parameters and a throughput target are transformed by the FINN
synthesizer into C++ code, which can be interpreted and synthesized by the Vivado HLS
tools. This code mainly describes the architecture parameters to be used for processing
module that are provided in a library and parameterized accordingly. The overall devel-

61

3. State of the Art

oped design flow is shown in figure 3.5. This framework is nowadays often used as a
template for design flows that generate neural network architectures for FPGAs. While
it is not considered as the framework to be used for the NNT and the OCA, as they are
pre-dating FINN, the ideas are incorporated in the design flow for the S3D, which uses
HLS tools.

����������	
�
����
�����
�

�
����������������
�����
������
������

�������������

���

������
��������
�� ���
	��

���!���

"�#����$%&
�����

��
���
��
���
�

����!�
���������'(

Figure 3.5.: Design flow generating a neural network hardware accelerator based on
FINN [111].

Residual Binarized Neural Network

An extension of the idea of a BNN are residual BNNs. The fundamental difference to the
original form is that values within the network are no longer just binary. They are instead
partially discretized into predefined stages. The idea behind this is to achieve better al-
gorithmic precision while maintaining the basic principles of simplified processing based
on pure logic operations in favour of arithmetic operations on the FPGA. As with most
approaches, semi-automatic design flows were investigated and available for creating an
architecture using this principle. An example of this is Residual Binarized Neural Net-
work (ReBNet) [32], which, similar to FINN, is designed to implement a defined BNN
topology based on a library of optimized parametrizable IP cores. These types of net-
works were investigated for the NNT, however they did not satisfy the accuracy goal as
reported in Ref. [Zha18].

3.3.1.2. Approaches from Industry and FPGA-Vendors

The DeePhi Platform

The solutions developed by the company DeePhi are especially interesting since they are
already successfully in use in the field of object and person recognition [113]. Their solu-
tions are based on a framework that supports the implementation of a selected topology

62

3.3. Hardware Acceleration for Machine Learning Algorithms

on an FPGA [35]. For this, a Soft-IP architecture is provided, which is then optimized
either for CNN or RNN [36] processing. Different topologies are mapped onto the pro-
vided architectures by using an in-house compiler. This compiler converts a high-level
description of the algorithm into the corresponding instructions. The implementations
are generally among the most efficient on the market of FPGA-based acceleration. De-
pending on the selected network and application, they are capable of achieving similar
performance as achieved by modern GPUs. They can also be used on smaller ZYNQ
platforms, which is especially important for embedded applications or future physics ex-
periments of smaller scale. In the case of object recognition, the developed solution was
integrated into camera systems to classify the traffic observed at crossroads.

One of the key technologies is the efficient compression of ML models [37]. It significantly
reduces the required memory size and topology, which leads to reduced processing de-
mand. A provided ML model is compressed across three successive steps. First, connec-
tions within the network are reduced by removing less significant ones from the network.
Weights are then optimized by reducing the bit width and reusing weights across neurons
as much as possible. Finally, the weights are Huffman-encoded to achieve further com-
pression. For popular ML applications such as VGG-16 [103] and AlexNet [60], both from
the field of image processing, the size of the model was reduced by around 98%. This
compression is particularly important because the architecture of the implementation is
designed statically, and less FPGA-specific optimization of the weights is performed. This
later optimization strategy is the primary technique used for the NNT, but could be im-
proved using such compression techniques.

Xilinx IP Cores

The market-leading vendor for FPGAs Xilinx is pushing forward the development of
neural accelerators. One example is the Xilinx Deep Neural Network Processor (xDNN)
which is specialized in optimizing DNNs [131]. The architecture is designed to be highly
adaptable for the entire range of machine learning applications. For this purpose, all of
the typically required resources are provided and programmable. This library will be
interesting for future investigations DNNs at trigger systems, as the current solution is
using traditional MLPs. As these implementations are provided by Xilinx, they can be
expected to be highly efficient.

Machine Learning IP Cores for Intel FPGAs

Being one of the two major manufacturers of FPGAs, Intel has also turned its attention
to the application field of machine learning. Targeting the most popular algorithms from
CNN and RNN, highly optimized IP core libraries for hardware acceleration, have been
developed [14] for their high-end FPGAs. To enable its usage, a broad ecosystem called
Deep Learning Accelerator (DLA) [3] is provided. It abstracts from the typical hardware
languages and enables the support of domain-specific approaches such as Caffe [46] or
Tensorflow [2]. This software framework generates an appropriate scheduling for the
used architecture and specific application. The processing within the architecture is then
controlled by using a Very Long Instruction Word (VLIW) operation.

63

3. State of the Art

The core of this approach is an architecture for neural network acceleration on the FPGA.
It consists of a network of systolic computing units, which perform the typical operations
in such networks. These units are flexibly designed to support the processing with dif-
ferent bit widths and can thus be configured to the needs of the application. To support
different post-processing functions, dedicated functional blocks are placed right after the
systolic array. The viability of the developed architecture and flexibility of the software
infrastructure were evaluated with the popular use cases for CNN and RNN, for which
promising results were achieved.

DLA is a promising solution for easy adoption of machine learning approaches when
using Intel FPGAs. One of the possible future platforms for the NNT is based on such
FPGAs. Thus it is a solution considered for future application. Usage of this platform was
investigated within the scope of this thesis, however already foretelling its conclusion,
Intel FPGAs were not chosen for hosting upgraded trigger logic. This, however, might
change in future redesigns of the trigger systems, which is only a matter of time.

3.3.2. Realization of Machine Learning Accelerators as Hard-IP or ASIC

In addition to the implementation of dedicated accelerators for inference in ML applica-
tions as Soft-IP, the industry is increasingly moving towards the direction of Hard-IP on a
SoC for these tasks.

Adaptive Compute Acceleration Platform

The Adaptive Compute Acceleration Platform (ACAP) developed by Xilinx [135] is a very
interesting development within the industry, especially with regard to future applications
of neural networks in particle accelerator experiments. This platform consists of a hetero-
geneous architecture that aims at combining all of the separate advantages provided by
CPUs, FPGAs, and dedicated neural network accelerators as ASICs. Three basic elements
of data processing are hereby integrated on one platform. These are scalar units, vector
units, and programmable logic. Here, scalar computing units are designed for use in ap-
plications with control flow and software-level programmability, while the vector units
are designed for strongly data flow-dominated applications such as found in machine
learning.

The first implementation of this concept can be found in the Versal platform. Here, the
scalar units are implemented by several ARM Cortex processors. In contrast to conven-
tional FPGAs, the programmable logic is mainly designed to serve as glue logic between
the scalar and vector units. A supporting software framework facilitates the usability of
this platform. This framework is generating the programming representation for the re-
spective resources. The presence of both programmable logic and highly optimized vector
units makes the platform quite suitable for hosting trigger algorithms based on neural net-
works. The vector units can be used for the neural network, most likely achieving much
higher performance than the currently used DSPs coupled with Slices. Meanwhile, the
programmable logic can be used to handle the communication tasks of components and
realization of the preprocessing algorithms that are traditionally specific to the geometry
of the particle detector. In addition, the available processors can be used to handle service

64

3.3. Hardware Acceleration for Machine Learning Algorithms

tasks such as configuration management, SC, and DQM. These are typically control flow
heavy and only inefficiently implemented in programmable logic. This is supported by
the current developments at the KEK. These efforts are focused on providing implemen-
tations of the current service portfolio such as B2L for ZYNQ platforms. These tasks are
hereby hosted on the ARM processors that are integrated on the ZYNQ. It is quite proba-
ble that these implementations can be ported onto the ACAP without too much effort.

Scalar Engines

Arm
Dual-core
Cortex-R5

Adaptable Engines Intelligent Engines

AI Engines

Network-on-Chip

Arm
Dual-core

Cortex-A72

Custom Memory
Hierarchy

PCIe
CCIX

DDR
LPDDR

HBM

MIPI

LVDS

3.3V GPIO

112Gb/s

58Gb/s

32Gb/s

Nx 100G
Ethernet

600G
Cores

Direct
RF

DSP Engines

Figure 3.6.: System architecture of the ACAP. Programmability, flexible custom process-
ing and efficient support of ML applications are combined by using heteroge-
neous resources [135].

DWAVE Computing Platform

While the ACAP is targeting to cover a wide range of applications, other hardware manu-
facturers are focusing on directly accelerating data flow-oriented applications, as is the
case for neural networks without any additional processing. An interesting platform
hereby is the DWAVE Computing Platform [84]. It is aiming at accelerating both the in-
ference and training of neural networks as efficiently as possible. Its key selling point is at
providing performance on the level of computing centres without their space occupation
and power consumption. The core idea of the platform is to move away from traditional
computing at the data centre towards a solution that can be placed locally at the work-
place. This system is providing low power consumption and is thus without the need
for high-end cooling. The most interesting part of these developments is represented by
their future edge computing portfolio that aims at the embedded domain. Depending on
the available communication resources and carrier platforms, these might be interesting
dedicated platforms for machine learning-based trigger systems.

65

3. State of the Art

3.4. Summary

Neural networks for a trigger system in particle accelerator experiments have already
been used or investigated in previous experiments. Thus far, they were not used at L1, as
they were instead deployed at later stages that have larger latency budgets and are typi-
cally not integrated into a system-wide pipelined processing architecture. Investigations
on their suitability for L1 trigger operation have been carried out to prove effectiveness
with suitable frameworks that try to close the gap between algorithm and FPGAs. How-
ever, these frameworks are not in use and typically have simplified assumptions such as
not considering the integration aspect, and thus, the concrete data flow. The systems pre-
sented within this thesis are, on the contrary fully integrated and thus the first operational
systems that truly show the advantage of employing such algorithms.

Neural networks are not the only option for track triggers and online data reduction. Al-
ready within Belle II they are supplemented by alternative approaches with the same task,
that is the 3D track finding and RoI based data reduction. These proved to either achieve
worse prediction results when facing background events that were not anticipated or are
less capable when tasked with taking care of special cases such as identification of spe-
cific particles with low momentum. As there are many approaches, the investigation fo-
cused on solutions with a similar experimental background, which is represented by HL-
CMS. Here a specialized variant of the Hough transform coupled with a Kalman-Filter
has shown to achieve results that are satisfying the strict requirements present for such
systems. It shows that significant improvement can be achieved by coupling dedicated
traditional algorithms with novel approaches. However, the shown approach is custom-
tailored to this specific experiment, which also has a much longer time schedule until the
experimental operation is expected to commence compared to Belle II. Within this the-
sis, the realization of a derivation of the Hough transform coupled with the theorem of
Bayes, is presented. The focus is put on the hardware-based design and realization. Due
to the present time schedules, the decision was made to use and refine the already present
and implemented methods, for example the 2D track finder, instead of adapting effective
approaches from similar experiment.

The usage of machine learning at the trigger system is rather novel in itself, as there was
no operational system prior to the one presented in this thesis. These methods are cur-
rently a focal point of both industry and research. As such, the volume of the state-of-the-
art is immense outside of particle physics. The dissemination of this can be partitioned
into frameworks for architecture generation, hardware-level optimization approaches,
and an investigation of available complete ecosystems of accelerators and frameworks.
Most of these are focused on the usage of modern ML approaches based on DNN as well
as modern high-end computing platforms. The systems to be developed here have to be
designed for a time period of over ten years, in which they have to be compatible with
the tools and hardware used at the early stages of the experiment. The best solution was
to use more simplified MLPs not relying on high-performance FPGAs, to be operational
at an early stage. An intriguing future idea is to investigate the suitability of hardware
platforms aiming at providing dedicated acceleration of ML algorithms while inheriting
the flexibility of FPGAs, as is the case with the ACAP.

66

4. General Requirements and Fundamental Design
Templates

The aim of this thesis is to develop FPGA-based processing systems for use cases from
particle accelerator experiments, which require real-time processing of algorithms from
the field of machine learning. Accelerator physics hereby provides special applications
with strict requirements. This chapter is at first discussing the requirements present at
such systems. Both design and implementation are strongly influenced by these require-
ments. By investigating the requirements, the systems discussed here are additionally
distinguished from other applications in the realm of hardware acceleration for machine
learning. Subsequently, a general architecture and implementation strategies for neural
networks-focused designs that are used throughout this thesis are introduced and dis-
cussed.

4.1. Requirements and Constraints

Pure offline analysis of particle decays based on machine learning methods are focusing
on achieving the best possible results for mostly two metrics. The aim is to achieve the
highest possible efficiency and suppression. For a real-time implementation of such meth-
ods on FPGAs, however, further constraints have to be considered. These must also be
considered early while establishing a neural network’s topology to ensure that the ob-
tained results are representative. In this section, a selection of metrics is presented to
evaluate the performance of a machine learning method implemented on an FPGA. The
discussion of these metrics is focused on the primary application cases of data reduction
and trigger systems.

4.1.1. Connectivity

The data flow of modern trigger systems consists of deep processing pipelines across mul-
tiple stages of readout electronics. In these pipelines, the data from the detectors is read
out by a distributed system. Afterwards, they are at first combined into a unified data
stream across the boundaries of the distributed electronics and converted into a represen-
tation that can be used by subsequent processing stages, for example, tracking.

The FEE of modern detectors has numerous parallel channels through which data is trans-
ported. The number of channels is hereby proportional to the required bandwidth. For
FPGAs in this environment, this is also proportional to the number of required IO ports
and determines the minimum speed grade to be used. Usually, the number of ports re-

67

4. General Requirements and Fundamental Design Templates

quired to establish communication is too large for one single hardware platform to re-
ceive all the data in its entirety. Preprocessing stages are typically used in trigger systems
for combining data and applying coarse data reduction, such as the TSF, for example,
which groups wires and limits the accepted angles of tracks passing through the CDC.
In addition to the basic data transfer, trigger components typically have to support ser-
vice interfaces that transmit status information, receive a common synchronous clock and
more.

Three major tasks have to be solved for an FPGA-based realization. Firstly, a platform
must be found that provides a sufficient number of IOs to receive and send the neces-
sary data. At KEK, for example, custom-made FPGA boards are usually developed for
this purpose, as most of the commercially available platforms are not equipped with the
required set of interfaces.

The next task to be solved is that data is sent through multiple technologically heteroge-
neous channels. These are typically generating their data streams in parallel to each other
and, as a result, are having different latencies. As a result, a trigger component must be
able to compensate for the difference in latencies to synchronize the internal data process-
ing. This synchronization requires additional data buffering concepts, that can be specific
to the behaviour of the respective detector, for example, the CDC is based on drift times,
which are not transparent to the receiving system.

The last task to be addressed relates to the geometric view of designing for FPGAs. The
received data must be merged together for common processing since it the channels are
usually connected to different ports of the FPGA. These ports are geometrically located
at different positions on the FPGA itself. As a result, care must be taken to ensure that
the signals of the individual data streams can be routed together for processing as effi-
ciently as possible in order to avoid low operating clock frequencies due to high signal
propagation times.

4.1.2. Monitoring

Both trigger and data reduction components must be checked for correctness during op-
eration. If a component does not function correctly, either unnecessary data is contin-
uously written out, which worsens the experiment by reaching the bandwidth limit, or
even worse wrong estimations are produced, which will result in the loss of valuable
physics data. Both situations cannot be tolerated during operation. A control mechanism
must be set up that can check whether the trigger decision was correct as soon as possible
after it was generated. If the generated estimations are deviating too far from the expected
values, the system should be switched off for the current run to avoid problems and the
run coordinator should be notified to be aware of possibly problematic data.

As a result, an interface and concept for online monitoring of the system must be estab-
lished. This concept must explore the possibilities of monitoring internal processing for
in-detail investigation of the correctness within a defined latency, typically in the range
of seconds. For this purpose, an additional communication interface must be established,
which forwards the required data. Here the DAQ of the experiment can be used. Since it
is used by several components simultaneously, most of its bandwidth is already used up

68

4.1. Requirements and Constraints

so that the maximum data rate for online monitoring is typically very limited. This must
be taken into account in the design when selecting which data is to be sent. Additionally,
a concept for extraction and validation of the data outside of the trigger system has to be
established.

4.1.3. Accuracy

One of the main application domains for machine learning methods is the classification
of data and thus the extraction of meaningful conclusions. The ability of a method to
perform these tasks correctly is measured in either the efficiency or suppression that is
achieved. In an offline analysis, data types for floating-point arithmetic will usually use
unrestricted bit widths or be specified for the used computer architecture. Since these
analyses are often performed on computing clusters or server machines, they are typically
too impractical to be used at embedded devices. For example, the bit widths required for
floating-point operation can traditionally only be realized with considerable overhead on
an FPGA-based system. Thus a high bit width used for the signals usually leads to an
increased demand for hardware resources together with an increase for the latency of the
calculation.

When a found network topology is to be mapped onto FPGAs, these aspects have to be
considered, and parameters like weights of the neurons or the activation function have
to be mapped to a suitable representation. Usually, this mapping leads to deviations of
the results generated on the FPGA compared to an ideal realization on an offline system.
This deviation can be measured in terms of the accuracy of the prediction as the difference
of the classification decision for both variants. Even more important is the influence on
the efficiency and suppression rate, which has to be determined together with a physics
analysis.

4.1.4. Throughput and Latency

In the application cases considered here for online data reduction or trigger systems, the
throughput of the classifications performed per second, and the latency are of great im-
portance. If both characteristics are tightly constrained for the selected application, care-
ful balancing is required. In most cases, latency and throughput are on opposite sides of
optimization goals targeted by implementation methods. High throughput is achieved
in hardware by applying a high degree of pipelining. Adding additional registers to the
data processing meanwhile increases the latency of the entire processing due to the added
setup and hold times as well as the clock skew. In the realizations, a compromise must be
found here for both goals. The throughput in such applications is typically determined by
the detector readout and its data rates. At Belle II all online processing modules have to
fulfil hard constraints. The same holds true for the latency, however trigger applications
typically have harsher latency requirements due to their task of deciding on data before
back-pressure is becoming an issue.

69

4. General Requirements and Fundamental Design Templates

4.1.5. Memory Demand

In a prediction model based on neural networks, storage elements for all of the used
weights are necessary. For example, for a neuron within the hidden layer, a separate
weight must be stored for each input value together with an optional bias weight. As-
suming a 16 Bit fixed-point representation for each weight and 27 input values, this will
amount to 27*16+16 Bits = 448 Bits that have to be stored for one single neuron. In ad-
dition to weight sets for every single neural network, multiple networks could be used
in alternation, which will increase the total demand for storage on the FPGA. The total
amount of weights to be stored can easily exceed the limits of the targeted platform. If
one considers the relatively small amount of on-chip memory available on FPGAs, the
limit is easily reached. FPGA platforms typically provide external memory for large scale
storage. However, these typically inhibit high access latencies due to the increased trans-
mission distance. This is particularly problematic in the applications at particle detector
experiment, as they have to fulfil tight low-latency requirements.

To use neural networks on FPGAs, a sufficient number of memory resources have to be
present, preferably on-Chip memory, to keep the latency low. Design tools for imple-
mentation on FPGAs, however, provide some relief since they employ optimization tech-
niques to reduce the overall memory footprint. While this is working quite well for single
networks, it is more difficult to achieve a high reduction when using more weights, that
share the same computation resources.

Regarding the usage as a trigger system, the most important criteria are the number of
specialised networks that can be used in parallel at runtime. Events arriving at the trigger
hardware can be classified in different groups according to multiple criteria, for example,
the geometrical space of the detector in which they are occurring. Another example is
the presence of signals in the detector due to operational anomalies. In such a case, it
might be possible that a particle cannot be tracked continuously across all of the detector’s
layers as one layer might not produce usable data. One approach to achieve good results,
even for these cases, is to use neural networks that were specifically trained for those
cases. Limited on-Chip memory hereby limits the number of feasible specialised neural
networks.

4.1.6. Runtime Adaptivity

The selection of training data determines the classification capability of a neural net-
work. It can be trained to classify data for all possible inputs. Such a training makes the
network quite general, however it deteriorates the performance significantly for special
cases. However, it is possible to train networks with a pre-selected set of data represent-
ing special cases that are occurring during detector operation. The resulting networks
are then particularly well suited to classify exactly these types of cases. As a result, in-
stead of a general network, many specialized networks can be used to increase overall
classification by a system. This is often the case for the experiments considered here.

For an online classification on an FPGA, this means that several networks have to be
stored simultaneously. At runtime, the received detector data is at first processed to de-
termine which network is the most suitable for processing and thus to be loaded. As a

70

4.1. Requirements and Constraints

result, the entire architecture must be designed in a way that it can support this network
selection and reloading of weights at runtime. Pipelining must be considered here to
match all of the internal signal delays. This adaptivity of the network configuration also
reduces the capabilities for optimizations, for example, pruning at the hardware level in
which network connections are removed. Additionally, while it is possible for a single
network to reduce the bit width of single weights, this cannot be done easily anymore in
the case that several different weights are to be potentially loaded into the registers.

4.1.7. Design Time Flexibility

The basic processing architecture developed within this thesis must be flexibly adaptable
to the changing behaviour of the experiment. In the considered application cases, the
exact behaviour of the experiment is not known beforehand, and operation parameters
have to be adjusted over time to reflect the current status. For example, the luminosity
of the experiment is not achieved immediately but rather increased over time, which will
impact the observed data patterns. A previously trained neural network must then be re-
trained and configured for the prevailing operating conditions. This has to happen quite
often and especially over a long period of time, as Belle II will be operated beyond 2021. To
address this, the reconfiguration must be preferably performed without too much effort.

Flexibility must also be ensured for transferring the architecture to an alternative updated
FPGA platform bound to be used in future operation. Due to the long runtime of the
experiment, there will be hardware updates over time to keep up with the technological
state-of-the-art. Here, also flexibility in the processing is advantageous, for example, by
providing parametrizable pipeline stages or a configurable degree of parallelism within
the individual processing stages. At the same time a flexible architecture coupled with
flexible algorithms, can be used to fine tune the parameters to achieve the desired func-
tionality and performance. For example, the neural network or preprocessing could be
downscaled to upscale or introduce other modules required to keep up the experiment’s
development.

Considering online data processing systems within a particle detector experiment, it is
also important to note that these will be updated over time. New components will be
developed or updated over the entire duration of operation. Here a system, as is the case
for the trigger system, that is in the middle of the data processing chain is depending on
many potentially changing interfaces, components, and services. To be up to date with
recent changes, it must be flexible to be adapted quickly and easily. For this purpose,
semi-automated tools are particularly important in order to reduce the implementation
effort.

4.1.8. Summary

Trigger systems have, in general, hard real-time requirements for both the latency and
throughput. Looking especially at the L1 trigger system, the latency budget is very re-
stricted and allows only the usage of simplified algorithms to be executed. The complex-
ity of the algorithm to be used meanwhile depends on the used FPGA, as its resource

71

4. General Requirements and Fundamental Design Templates

budget is defining the reachable level of parallelism and clock frequency. Early versions
of systems have to be planned and prototyped long before the first collisions. As a result,
the hardware used at the beginning of operation is typically already outdated. However
future iterations and upgrades allow an increase in functionality as well as an opportunity
for consolidation.

Since trigger systems are combining data from multiple sources, they have to provide
high-speed data transmission. From a design point of view, these data sources have to
be synchronized for further processing. On a physical level, the high utilization of IO
resources influences the place and route phase of the architecture. As resources are spread
out and have to be combined at one synchronized location on the FPGA, care has to be
taken to achieve timing closure.

Non-essential features of such systems improve its usability and ensure the correctness,
such as flexible design and monitoring services. While an operational system can be
achieved without these services, it will be impractical without them since validation will
be close impossible, which is required for such a powerful system in the experiment.

4.2. Basic Architecture Template

General Architecture

Data
Source

Input
Handling

Input
Handling

DQM_Module SC_Module

Neural
Network

Neural
Network

Output

Detector
Specific

Processing

Detector
Specific

Network
Memory

... ...
Data

Source

Data
Source

Detector
Specific

Processing

Figure 4.1.: Overlying architecture template for neural network-based trigger and data
reduction systems. The control flow is indicated by white arrows.

Before delving deeper into each respective system that is presented within this thesis, a
more abstract and general view on the realization of neural network-based trigger and
data reduction systems is provided within this section. The basis for an architecture tem-
plate to be used across all applications. The template used throughout this thesis is shown
in figure 4.1. Here, data processing can be functionally divided into three stages, which
are executed sequentially in a pipelined way. Pipelining is hereby essential for achieving

72

4.2. Basic Architecture Template

the required update frequency for both data reception and transmission since the overall
processing latency is much higher than one transmission clock cycle. The responsibility
of the first stage is the correct reception of input data, which is typically received from
several distributed and heterogeneous processing systems. These systems typically have
their own protocols, which need to be supported and can already include behaviour that
is reflecting the functional principles of the connected detector. This requires additional
processing that takes the detector into account, as well as mechanisms for compensation
of the different latencies. Incoming data includes control flow information, which for
example starts the internal processing or selects a network.

Received data is then passed to a preprocessing stage, which is, in this case, predomi-
nantly consisting of detector specific algorithms. Modern machine learning algorithms
such as CNNs can partially avoid usage of preprocessing by compensating it with addi-
tional processing layers within the network. However, all the applications that are con-
sidered in this thesis are significantly profiting from the usage of a separate preprocessing
stage, which typically allowed to keep the size of the network small enough to avoid
exceeding the available resources of the used FPGAs. The preprocessing stage hereby
receives its data from several possibly independent sources and transforms it into a rep-
resentation that is optimized for usage by the neural network. Algorithms that are used at
this stage are meanwhile strongly dependent on the detector’s geometry and are mostly
custom-tailored for this specific use case. This means that the possibility of using an al-
ready available IP core library is rather limited. In principle, different preprocessing al-
gorithms can be performed in parallel. In most cases, separate input data streams for
the later neural networks are generated. Before being used by the neural networks, the
separately generated preprocessing data streams have to be synchronized. The results of
the preprocessing are typically unveiling a more detailed view of the currently processed
events. In many cases, received data is not perfect, especially during operation with colli-
sions. Interference within the electronic environment of the detector might result in situ-
ations of high noise, which limits the capability of a detector to detect a particle correctly.
A neural network that was trained with ideal operational conditions in mind might not
be suited for operation in less than ideal conditions that are present in reality. One typical
approach to deal with these situations is to provide special neural networks, which were
trained under these conditions. In this case, several weight sets have to be stored and
dynamically loaded during operation. The architecture is providing a network memory
for this, together with a decision logic that selects the appropriate weights depending on
the preprocessing’s results.

After the preprocessing stage, the neural network algorithms are performed. Several in-
stances can potentially be processed in parallel, with regard to the Belle II use case, these
instances can estimate several possible track candidates that are delivered by the 2DS.
The algorithms used here are independent of the actual experiment and its detector. Thus
they can be implemented as reusable standard components being part of an IP core li-
brary, which is then only configured to the individual requirements. The last stage of the
architecture is the postprocessing of the output that was generated by the neural network.
Three examples of possible postprocessing algorithms are briefly outlined. First, a cut can
be applied to the output that maps a large range of values onto a binary value, that is, for
example, used to indicate the presence of a track that is possessing predefined character-
istics. In parallel, a voting mechanism can be used, which calculates its decision based on

73

4. General Requirements and Fundamental Design Templates

a combination of all the results generated by the networks. Another example is a map-
ping of the neural network output onto a probability, for example, the probability of an
observed particle being the one that is searched for. Even though the processing stages
are the most important part of such a system, it has to be extended by monitoring and
validation structures. These are represented as separate DQM, and SC modules, which
basically capture certain internal processing data and send it over the defined interfaces
to data sinks responsible for online monitoring or validation.

While several design principles were applied for the development of the systems de-
scribed here, two of them are mentioned separately due to their importance. These are
designed for enabling retiming and for design time adaptability.

Design for Retiming

Most of the tasks to be performed throughout all of the processing stages within the ar-
chitecture are data flow-oriented. At the same time, achieving high throughput coupled
with low-latency processing, is targeted. While general optimization of logic and pipelin-
ing are already significantly contributing to achieving these goals, additional performance
can be gained by facilitating the usage of retiming-enabling design throughout the entire
architecture. Retiming itself is based on the realignment of internal register stages across
the described logic operations [68]. The goal of this realignment is to balance out the maxi-
mum data path length between pairs of registers across all processing paths. Even though
being a state-of-the-art technique for a long time in the digital design community, it can
only be applied by design tools when the described architectures are fulfilling predefined
conditions. All components developed within this thesis are hereby designed to comply
with the design guidelines of the tool and FPGA vendors. For example, the FPGAs by
Xilinx cannot perform retiming in case that registers with asynchronous resets are used.

Flexibility and Adaptability at Design Time

Scalability of the architecture is necessary for long-term use in an experiment. An ini-
tially found configuration is often only efficient for the currently present behaviour of the
experiment possibly behaving badly during later stages of the experiment at which, for
example, an increased luminosity is present. This is especially true when using neural
networks as the algorithmic basis as they can be retrained to reflect the changing condi-
tions. Due to this, all developed HDL modules are designed to be as flexible as possible.
Such a design will allow the modules to be continuously adaptable. All constants that can
change across iterations are decoupled from the functional implementation inside inter-
changeable packages. In case of an update, only these packages have to be changed, while
the core architecture is preserved. In addition, parameters such as bit widths are defined,
degree of parallelism and allocated resources as configurable parameters, as generics in
VHDL, for all the modules to be easily adjusted.

74

4.3. Basic Design Flow Template

4.3. Basic Design Flow Template

Flexibility requirements set upon machine learning-based trigger and data reduction sys-
tems require a semi-automated design flow in order to be efficiently fulfilled. Since the
systems developed in this thesis are partially depending on the usage of custom algo-
rithms and even different programming languages, design flows specific to the respec-
tive use cases were developed. However, all of them have general similarities that can
be solved together by defining a design flow template that serves as a reference. The
developed template is hereby illustrated in figure 4.2. In this illustration, individual de-
sign steps are shown in separate boxes. The entire design flow can be divided into two
domains of design. These domains are the development of the algorithms and the FPGA-
based design. The general design flow is further described in the following.

Detector Specific
Algorithms

Algorithm

Experiment
Simulation

1

2

Implementation

HW/SW
CoSim

FPGA

HW-Model Analysis

IP-Core
Library

3

4

5

Physics
Analysis

Network
Training

Configure/
Optimize

Network
Architecture

Figure 4.2.: Design flow template that serves as a reference for all derivatives used across
all of the developed machine learning based systems of this thesis.

The basis for the development of suitable algorithms in the domain of a particle detector
experiment is a simulation framework that models its behaviour. With the help of this
framework, it is possible to investigate the capabilities and parameters of an algorithm
well in advance without the detector being available for operation. Particle collisions are
simulated for this, together with recreated noise and modeling of the expected interaction
between the materials, which are used within the individual detectors, and the expected
created particles. The simulation will not recreate real operation accurately from the be-

75

4. General Requirements and Fundamental Design Templates

ginning, however, the assumption is that real operation can be recreated by adjustment of
parameters to achieve a high accuracy. Under this assumption, the evaluations carried out
at the simulation stage are representative of the later experiment. With regard to the use
of neural networks, two steps are carried out at the stage of algorithm design. The first
step is the definition of the input data to be used by the network. This includes the inves-
tigation of suitable representations that can be derived from the targeted detector’s data.
The algorithmic description for generating the input values using the detector’s data is
corresponding to the preprocessing performed at the system. At the same time, this def-
inition is performed together with the definition of the neural network’s parameters, for
example, its internal topology.

The simulation of the experiment and its detectors is meanwhile providing insight into
the effectiveness of an algorithm that is under development. To move closer towards
the proof of functional correctness, the data readout system of the detector has to be taken
into account, for example, the CDCTRG. Representative behaviour of this system requires
the inclusion of all its essential sub-systems. Within Belle II, this kind of simulation is
performed by Trigger Simulation (TSIM), which represents a software-based simulation
that includes all sub-triggers and can be coupled with the experiment’s simulation. As a
result, the real data flow of the detector readout can be taken into account to add more
detail to the development of the algorithm. For example, the behaviour of the FEE, which
reads out the detectors according to a defined scheme, is emulated.

Before the hardware-based development starts, it is helpful to investigate key parameters
for the implementation on FPGAs beforehand on the basis of the established simulation.
These are, for example, bit widths to be used internally and their impact on the over-
all performance of the algorithm. This can also be investigated later on, on the basis of
hardware-level simulation using an HDL, however, this is very time-consuming as it is
on lower levels of abstraction. The approach taken here is to implement a model of the
FPGA’s internal processing to be used for fast exploration of the key parameters. These
models are then validated against the HDL implementation using HW/SW Co-simulation
in order to ensure accurate recreation.

The transition towards the FPGA development is realized by a split approach for the pro-
cessing modules of the machine learning algorithm and the preprocessing. Preprocessing
algorithms are in general detector-specific and must be custom-designed. Thus they can-
not be reused across different applications. Machine learning-based algorithms, on the
other hand, are general but have to be configured for the respective use case. They are
hereby organized in a library of optimized IP cores. The goal of using this library is to
facilitate reuse are across the boundaries of applications. They are designed to be highly
flexible and parametrizable in order to be adaptable to changing circumstances. In ad-
dition, a validated Software (SW) model is provided for each IP core in order to allow a
quick evaluation of the algorithms with high-level details about the hardware implemen-
tation. For each IP core, an estimation of its characteristics, such as achievable frequency
and estimated resources are generated beforehand. These estimates are based on syn-
thesis results for a particular configuration that can be scaled according to the requested
parameters. Alternatively to these scaled estimations, HLS tools can be used to generate
a potentially more accurate estimation. However, they require longer processing times to

76

4.4. Design of Neural Networks for FPGAs

generate the estimation. The advantage is here to have an early and quick estimation of
the characteristics at the stage of algorithm exploration.

4.4. Design of Neural Networks for FPGAs

The two main systems developed within this thesis are using algorithms based on neural
networks. The basic processing principle is hereby based on MLPs, for both approaches.
As they are shared, a fundamental investigation of the implementation of MLPs on an
FPGA is carried out in this part of the thesis. The results found here are reused in the
corresponding chapters 5 and 8 that feature the concrete systems.

4.4.1. Realization of Low-Latency and High-Throughput Neurons

The algorithmic core of an MLP is the artificial neuron that consists of a set of MAC op-
erations. A block diagram of such an operation is shown in figure 4.3, together with the
possible design parameters for the implementation. The number of operations to be per-
formed by each neuron corresponds to the number of input values that it has to process.
Typically, a neuron is including an optional bias. However, this is not requiring additional
multiplications since it is not a weighted input variable. It is then more efficient to just
treat it as an additional constant to be added at the end. At this stage, there are already
many degrees of freedom for the design targeted for FPGAs. The optimal implementation
choice depends on the characteristics of the network, such as the bit widths used for all
values or the need to load different weights. Especially the reduction of memory accesses
for new weights is one of most popular optimization goals, however this is not considered
here since all weights are loaded within one clock cycle when using on-chip memory.

Accumulator

Multiply

Weight Input

Clear

Design
Parameters

Latency
Bitwidths
Cascading

Accumulator

MultAccum

Figure 4.3.: Architecture of a module performing MAC operations as they are present in
an artificial neuron.

77

4. General Requirements and Fundamental Design Templates

On modern FPGAs there is the option to implement artificial neurons either based on
Slices or DSPs. DSPs are a particularly efficient choice in case that multiple different
weight sets are to be loaded during runtime. These units are equipped with an opti-
mized Hard-IP implementation of a general multiplier that is supporting a predefined
range of bit widths. In addition to that multiplier, each DSP is already equipped with an
accumulator that can be used to sum up the weighted inputs. As a result, the entire MAC
operation can be implemented within a DSP unit. The optimized integrated multiplier
allows DSPs to achieve the highest throughput and lowest latencies for general opera-
tion. Further supporting the usage of DSPs is the fact that multiplications with variable
weights can only be realized rather inefficiently when using Slices.

However, for the cases in which weights are constant and not to be reloaded during run-
time, a realization based on Slices can represent the preferable implementation choice.
Instead of providing resources for general multiplications, they can be implemented for
a specified constant. This dedicated implementation is leading to an even more efficient
solution than general multiplication based on DSP usage. In addition to this, the imple-
mentation based on Slices can be routed easier and allows for better logic optimization
due to their large-scale availability and finer granularity.

An implementation of neurons is also strongly dependent on the selected bit widths. A
DSP slice provides a fixed bit widths for both of its input ports. On a Virtex-6, these are
limited to 18 and 21 bits. As soon as the supported bit widths are exceeded, additional
DSPs are required for processing. In addition to the increase in DSP slices, additional
resources are required for the interconnection between the additional slices. This inter-
connection is, in turn, increasing the overall latency due to the added signal delays for
combining the partial results of the multiplications.

A general disadvantage of an implementation using DSPs is their limited availability on
an FPGA when compared to the more widely available Slices. In addition to this, they are
less commonly distributed across the entire FPGA and mostly arranged in fixed columns
on the floorplan. While this type of architecture is facilitating cascaded operation, the
columns may be far away from their data sources. As a result, routing of the signals
might infer high signal propagation delays that are increasing the initial latency. Another
source for problematic implementation using DSPs is occurring in case numerous inputs
are to be processed by the same unit. This is the case for neuron processing when the same
DSP processes several inputs. Routing congestion can occur here, when they are obtained
from many multiple sources and optimization of the multiplexing network needs to be
performed.

The arrangement in columns, however, has one important advantage to be considered.
That is the option for cascaded processing in which data is passed across several neigh-
bouring DSPs using a direct connection. This stands opposite of the traditional commu-
nication path using the general routing resources. Due to this optimization, cascaded
processing is capable of achieving the highest frequencies, even reaching up to one GHz,
which is highly advantageous for high-throughput operation.

78

4.4. Design of Neural Networks for FPGAs

Realization of MAC Operations for High-Throughput Processing

Design
Parameters

Latency
Bit width
Activation

MultAccumBuffer

NeuronProcessorCascade

Buffer MultAccum

Buffer Activation

MultAccum

MultAccum

Figure 4.4.: Architecture of an implementation of MAC operations that is optimized for
high-throughput operation.

When using cascaded operation, the communication is performed by using the two ded-
icated ports PCIN and PCOUT that represent a direct connection between DSPs located
adjacent to each other on the FPGA. With regard to the processing of a neuron, a weighted
input can then be sent to the neighbouring DSP so that it can add the value to its locally
calculated weighted input. The PCIN input port is hereby directly connected to the ac-
cumulator of the neighbouring DSP, which is providing the lowest signal propagation
delays for data exchange. Overall processing can then be implemented in a pipelined
way with a total latency of two clock cycles. In this case, the multiplication is carried out
in the first clock cycle. The subsequent addition is then performed in the second clock
cycle. At this point, however, a data dependency arises that limits the minimum latency.
When using cascaded operation, every DSP, besides the first one in the cascaded chain,
must wait for its predecessor to finish processing of its partial sum. Overall, the highest
possible throughput and the best resource utilization are achieved using this communi-
cation path, while the latency is increasing with the number of inputs to be processed.
The internal structure of this implementation is shown in figure 4.4. It is indicating the
process of partial sums being passed across several MAC units with buffering elements
being used for compensation of the present data dependencies.

Realization of MAC Operations for Low-Latency Processing

In case a system is required to be optimized for primarily low-latency operation, an as
soon as possible scheduling is generally yielding the best solution irrespective of resource
demand. Here, all operations are performed in parallel as soon as their respective data
dependencies are resolved. With regard to the processing of artificial neurons, all mul-
tiplications are being processed in parallel. The weighted inputs are then summed up
afterwards in a separate accumulation unit. This unit is then typically implemented as
an adder tree to keep latency as small as possible. In the best case, one DSP slice can

79

4. General Requirements and Fundamental Design Templates

perform one such multiplication within one clock cycle. The accumulation step’s latency
depends on the number of weighted inputs to be summed up, coupled with their chosen
bit widths. Typically, when using a tree structure, at least 32 inputs can be accumulated
within one clock cycle while using a clock frequency of 127 MHz. In total, that means that
the lowest achievable latency for the entire MAC operation is at two clock cycles.

NeuronProcessor Design
Parameters

Parallel Execution
Activation Function

Neurons
Bit widths

MAC Cascading

MultAccum

MultAccum

Adder
Distribute

&
Buffer

Activation

Figure 4.5.: Architecture of a MAC realization for low-latency operation.

Using this approach, however, it is not possible to exploit the advantages of cascaded
operation, thus resulting in lower overall clock frequencies. At the same time, there is a
higher resource demand due to the required adder tree, which can otherwise be imple-
mented within the accumulators of the DSPs. In addition, the latency of the tree realiza-
tion depends on the number of inputs. With high parallelism, the number of adder stages
required increases as well, further reducing the maximum clock frequency. In order to
maintain a defined frequency target, additional register stages and clock cycles may have
to be allocated.

Multiplexing of MAC Operations for Increase in Resource-Efficiency

A good compromise between latency, resources, and routability can be achieved by em-
ploying time-multiplexing for the execution of MAC operations of a neuron when using a
constrained set of DSPs. Instead of allocating exactly one DSP for each input of a neuron,
a DSP can be designed and scheduled to process a subset of all inputs across several clock
cycles.

Using time-multiplexing will increase the latency for processing an entire neural network
compared to full spatial parallelism but offers the opportunity to reduce the number of
required resources significantly. In addition to this, it influences the subsequent routing
to be performed by reducing the number of signals to be transported in parallel. Mean-
while, it is reducing the subsequent adder trees by reducing the number of partial sums
to be processed. At the same time, this approach can make use of the DSP’s internal accu-
mulator by summing up weighted inputs across multiple clock cycles without using the
dedicated adder resources. The following adder tree then has to add only the partial sums

80

4.4. Design of Neural Networks for FPGAs

instead of all weighted inputs, which further reduces resource demand. However, by lim-
iting parallel processing, the overall latency is increased. Additionally, this approach also
requires additional registers for storing input values and weights across multiple clock
cycles together with multiplexers to switch inputs. Furthermore, a controller for directing
the multiplexers across clock cycles is necessary.

In addition to time-multiplexing of MAC operations by reusing the same processing re-
sources, neurons themselves can also be time-multiplexed. In this case, neurons of the
same network are processed on the same resources at different clock cycles. The advan-
tages and disadvantages are the same as for the multiplexing of inputs, however, this
allows to finish processing of a group of neurons at an earlier stage when compared to
starting the processing of all neurons immediately. This characteristic opens up new op-
portunities for additional pipelining, which will be discussed in the following. Both mul-
tiplexing variants are shown combined in the schedule presented in figure 4.6. In this
schedule, dotted lines are indicating different clock cycles. Operations are meanwhile
multiplexed in time by processing all input values of a single neuron within three consec-
utive clock cycles, with the next neuron being processed afterwards. At the same time at
which the next neuron is processed on the DSP slice, both the adder tree and the activa-
tion function are processing the previous neuron that is allowing an overlap in time with
the multiplications of the subsequent neuron.

Figure 4.6.: Schedule of a time multiplexed DSP. MAC operations of the different neurons
are performed on one DSP unit at different time intervals. Both the adding and
activation function can be interleaved with the processing of the next neuron.

Summary

Three alternatives with their distinct trade-offs are available for implementing a neuron.
They are summarized together with their latency, throughput, and resources in table 4.1.
Within this thesis, only the most aggressive low-latency option without any multiplex-
ing was not used since it easily exceeded the resources present on the available FPGAs.
Multiplexed operation is hereby used throughout the versions of the NNT, presented in

81

4. General Requirements and Fundamental Design Templates

section 5.2.5, to find a suitable trade-off between low-latency processing and resource
demand. Meanwhile, the high-throughput design is used for the OCA, described in sec-
tion 8.2.2.2, since throughput is representing the strictest requirement to be fulfilled.

Implementation Latency in cycles Throughput Resources

High-Throughput Inputs+1 300 - 700 MHz Inputs*DSPs

Low-Latency 1 + adder tree stages 100-200 MHz Inputs*DSPs +
Adder tree

Multiplexed Inputs /fixedDSPs 100-300 MHz fixedDSPs +
reduced Adder

Table 4.1.: Listing of the used implementation options for the MLP.

4.4.2. Low-Overhead Realization of the Activation Function

A direct translation of the mathematical function used for activation is typically very
compute- and resource-intensive when implementing for the resources available at an
FPGA. Two popular variants of these are the TANH and the sigmoid function. In both
variants, divisions are necessary for the calculation, which can usually only be carried
out inefficiently. Modern networks use simplified functions like ReLU to avoid this prob-
lem, however the networks used throughout this thesis are relying on the non-linearity of
classic activation functions in order to achieve a high resolution for the z-Vertex [92].

In order to keep both the computational and resource intensity low, the implementation
strategy within this thesis is to implement activation functions as LUTs on the FPGA.
The effectiveness of this approach depends on the bit widths used for both the address
and data. These bit widths are, in turn, depending on the required resolution. For large
address spaces, the realization as LUT is not scaling well and quickly becomes very in-
efficient as the demand for resources increases exponentially. For example, a BRAM on
a Xilinx FPGA supports the storage of data up to 36 Kbit. In case that a function to be
stored is exceeding the maximum provided storage, additional BRAMs must be allocated
to accommodate the required storage. For the targeted FPGAs from Xilinx, unreason-
able resource overhead was reached with address spaces larger than 4096 entries. In such
cases, an alternative solution is used. The alternative to implementation as a LUT is the
usage of partial linear interpolation between defined points. While being more resource-
efficient than the storage of the precise result, the accuracy is degrading.

Two activation functions are considered within this thesis, the TANH and sigmoid, both
of them being point symmetric. This characteristic can be used for optimization by only
storing the positive values, while negative values are calculated afterwards by inverting

82

4.4. Design of Neural Networks for FPGAs

the positive value. By employing this approach, additional logic is necessary for the in-
version. However, the demand for memory is cut to half. For address spaces above 1024
entries, as is the case in this thesis, it proved to be more efficient to use inversion logic
instead of storing negative values.

Further optimization can be achieved by taking into account that the activation function
is the same for all neurons within one layer. Meanwhile, BRAM on FPGAs is often ar-
chitecturally designed to provide a dual-port option. The optimization is then to share
single BRAM instances across pairs of neurons. Dual-port operation hereby allows using
fully parallel access from two separate sources. Typically this gets problematic in case of
parallel write and read access. However, since it is only implemented as a read-only LUT,
such situations cannot occur.

Activation Function

Sign
Buffer

Low Resolution
Memory

High Resolution
LUT

Saturation
Check

Inversion

Neuron0

Neuron1

Figure 4.7.: Architecture of a LUT-based implementation with the described optimiza-
tions.

Depending on the activation function to be used and the targeted bit width, certain ad-
dress spaces might only require a low-resolution implementation in order to achieve good
or even exact results. An example is the TANH function when using a 10 bit fractional
representation, as is the case for the NNT. For this configuration, high values are satu-
rating and are nearly constant across most of the upper address space. Instead of stor-
ing the function in the LUT uniformly for all possible input values, a case distinction is
implemented that identifies address spaces that are only requiring a low-resolution im-
plementation. In the case that the current input value is above a certain threshold, the
output of the function is not determined by using the BRAM. Instead, an alternative path
is used, which consists of additional parallel registers that contain the result for prede-
fined address ranges. The idea here is to use just a few registers to cover large ranges of
the function instead of allocating excessive memory space. This approach will introduce
some computational overhead since logic for case distinctions is necessary. In a function
like the TANH, however, only a few cases have to be checked when data is limited to a bit
width of 10 bit fractional. The savings in memory demand easily make up for that over-
head, as it proved to be the most efficient implementation. The architecture of a BRAM

83

4. General Requirements and Fundamental Design Templates

implementation with all optimizations is shown in figure 4.2. All used implementation
and optimization options are additionally summarized in the tables 4.2 and 4.3.

Implementation Description Effect Conditions
Look up table Pre-calculated No processing At most

activation function Precise 4096 entries
Linear Interpolation Interpolation between Balanced resources More than

pre-defined positions and performance 4096 entries

Table 4.2.: Listing of approaches towards implementing the activation function.

Optimization Description Effect Conditions
Dual-Port Access Resource sharing Memory reduction Reusable activation

across neurons function
Inversion Storing only Memory reduction At least

positive values Inversion logic 1024 entries
Saturation Separate low Memory reduction Low resolution

resolution memory Saturation logic address space

Table 4.3.: Listing of used optimization strategies for the activation function.

Examples for the usage of both implementation options, LUT, and linear interpolation,
are presented within this thesis. LUTs are used for the NNT presented in section 5.2.5,
while linear interpolation is being used for implementing the sigmoid function that is
required for the OCA as described in section 8.2.2.3.

4.4.3. Pipelining Options for Resource-Efficient Neuron Processing

When employing time-multiplexed processing for not only MAC operations but neurons
within a layer of the network, additional options for pipelining across different layers are
opening up. Processing in successive layers of the neural network requires the presence
of the results generated by its connected input neurons from the previous layer. Internal
processing can, however, already start when only a subset of all results is available. The
main idea is now to interleave operation between successive layers, as presented in fig-
ure 4.8, to optimize general operation. In this, time multiplexing of neurons is applied at
each layer. This leads to different times of arrival for partial results generated by a neuron
within the hidden layer of the network. The subsequent neuron from the output layer is
then operated in a way that it is processing these partial results before the remaining re-
sults of all neurons are ready. By doing such interleaving of layers, the overall latency can
be reduced since the interleaving clock cycles are saved. On the other hand, processing
within the output layer can be stretched across several clock cycles, as illustrated in fig-
ure 4.8. The possible options are listed in table 4.4, with the simple pipeline representing
no interleaving operation between layers and the other options representing either the

84

4.4. Design of Neural Networks for FPGAs

resource or latency optimized option. The pipelining methods described here are based
on the master thesis Ref. [Poe18].

Figure 4.8.: Schedule for pipelining across neural network layers when using time-
multiplexing of neurons.

Implementation Resources Latency Throughput
Simple Pipeline Neurontotal DSPs at OL Inputs/fixedDSPs 200-300MHz

Resource Pipeline Neuronmux DSPs at OL No change No change

Latency Pipeline No Change Interleaved clock No change
Cycles saved

Table 4.4.: Listing of used implementation options for pipelined operation of the MLP.

4.4.4. Network Architectures based on Heterogeneous Resources for
Increase of the Performance

So far, all presented designs for implementing neurons were based on DSPs. This is
mainly due to their higher efficiency when using variable inputs compared to Slice-based
implementations. Even though they represent the best solutions with regard to all non-
functional aspects, DSPs are rather scarce on modern FPGAs. In case that Slices are in

85

4. General Requirements and Fundamental Design Templates

less demand and spare resources are available on the FPGA, a heterogeneous architec-
ture using both resources can be used. Such heterogeneous architectures can help with
spreading the processing demand across all types of resources. Due to the different char-
acteristics of both, the implementation of such architectures is not straightforward. For
such an architecture, mainly the differences in achievable operating frequencies and re-
source inefficiency have to be addressed. First, it is better to separate network layers into
the type of resource to be used in order to achieve uniform characteristics within the layer
and minimize the clock slack. In addition, it allows using separate clock domains at the
intersections of layers with different resource types in order to bridge the difference in
frequencies. The second measure taken to implement such architectures is to use Slices
exclusively at the output layer of the network. These layers are consisting of much less
MAC operations, compared to hidden layers at, for example, the NNT that is featured
within this thesis. As a result, a smaller amount of MAC operations are implemented in
resource-inefficient Slices compared to implementation in other layers, thus the overall
penalty is kept low. However, this is strongly dependent on the used network topology,
with the topology used at the NNT representing one network in which it is beneficial.
The resulting heterogeneous architecture is shown in figure 4.9, with the clock domain
crossing being addressed by using FIFOs at the intersection. It is hereby assumed that the
preprocessing is most likely achieving a lower operation frequency than the DSP-based
neurons, as they can achieve the highest possible frequencies on the FPGA. Such hetero-
geneous architectures are mostly explored within the investigation of future operation of
the NNT featured in section 5.4.4. The heterogeneous architecture that is described here
is based on the master thesis Ref. [Poe18].

...

...

...

NeuronDSP

NeuronDSP

NeuronDSP

Clock
Domain
Crossing

FIFO

Slow
to

Fast

Preprocessing

Clock
Domain
Crossing

FIFO

Fast
to

Slow

Neural Network
Heterogenous

NeuronSLICE

NeuronSLICE

Figure 4.9.: Implementation of a two-layer MLP using both DSPs and Slices. In this case
the layers have to operated within different clock domains, for this additional
modules supporting the clock domain crossing are used.

86

4.4. Design of Neural Networks for FPGAs

4.4.5. Summary

Multiple different design strategies for bringing neural networks onto FPGAs were dis-
cussed within this section. Artificial neurons represent the basis for all processing within
the layers of the networks. These already have many implementation alternatives on
modern FPGA architectures. The best operational characteristics can be in general achieved
by relying on DSPs since they are providing the highest operation frequencies, lowest la-
tency and are already equipped MAC optimizations such as an internal accumulator as
well as cascading data transfer. Neurons can generally be mapped either onto a cascaded
or a tree architecture. While the former is achieving the highest frequency and is thus
suitable to achieve high throughput, the later is achieving the lowest latency at the cost of
throughput and resource efficiency.

Neural networks can easily exceed the number of available DSPs on an FPGA when using
these architectures as these resources are fairly limited. To compensate for this, time-
multiplexing of inputs, as well as, neurons themselves, can be applied. This effectively
allows stretching the overall processing across multiple clock cycles while significantly
reducing resource consumption.

Besides the heavy demand for MAC operations, each neuron has to implement an activa-
tion function. For the use cases investigated within this thesis, it proved to be infeasible
to follow the state-of-the-art approaches that are simplifying the function in order to ease
implementation. The activation function is not reduced to a simplified model but rather
fully implemented as either a LUT or based on using linear interpolation. The former
solution is using multiple optimizations that make use of the inherent capabilities pro-
vided by BRAM resources that are typically widely available on an FPGA as well as the
function’s characteristics.

An optimization strategy addressing the overall architecture that is discussed is the usage
of pipelining across separate layers of the network in a way that multiple layers are pro-
cessing the same input data set concurrently. This strategy can be hereby used to either
reduce overall latency or resources by again stretching processing across the newly saved
clock cycles.

The presented strategies are implemented and used for the later use cases of the NNT,
discussed in chapter 5, and the OCA that is discussed in chapter 8.

87

5. The Neural z-Vertex Track Trigger

This chapter discusses the FPGA-based realization of the NNT for the Belle II experiment.
Initially, only the requirements dictated by the experiment and the trigger system were
provided. The tasks of selecting a suitable FPGA platform, developing an architecture,
and defining the implementation process were all established as part of this thesis. These
aspects are examined and discussed in this chapter. Since the NNT evolved throughout
the development process, multiple used setups that were used in different stages of the
experiment’s operation will be presented.

5.1. Background Suppression using a Neural z-Vertex Estimation

delz
Entries 36019

Mean 0.03838

RMS 17.58

z0(cm)
-40 -30 -20 -10 0 10 20 30 40

o

f
T

ra
ck

s

0

200

400

600

800

1000

delz
Entries 36019

Mean 0.03838

RMS 17.58

Z distribution

Figure 5.1.: z-Distribution from the Belle experiment showing the recorded background
events represented by the peaks outside of z = 0 [5].

A consequence of the increased target luminosity for Belle II is the increased expected
occurrence of background events compared to its predecessor. Background events are
hereby not of interest to the search for new physics and are often not even part of the
intended experiments. One of the most significant contributors to background events
are particles that travel through the detector but have their origin well outside of the

89

5. The Neural z-Vertex Track Trigger

interaction point. These were already a problem at Belle, however there was no online
processing mechanism that took the origin relative to the z-axis into consideration. The
problem is highlighted by the z-Vertex distribution of particle tracks that were recorded
using a random trigger. This distribution is shown for the Belle experiment in figure 5.1.
Here, most of the recorded particle tracks had their point of origin at around z=0, which
represents the interaction point from which sought after decays are originating. However,
a significant amount of the observed tracks are well outside of the interaction point. This,
for example, can be seen by another maximum at around z=-10 cm. These tracks do not
relate to collisions, but are rather the result of unwanted effects. Optimally those tracks
can be detected and suppressed in order to reduce the outgoing data rates, which have to
be below the maximum rate supported by the DAQ. The dominant part of the background
events can be attributed to Touschek and Beam-Gas effects, which were introduced and
shortly described in section 2.3.2. Looking at early results from Belle II operation show
that the same situation is present here as shown in figure 5.2.

In order to suppress such tracks, algorithms for the reconstruction of the z-Vertex using
detector data were investigated for Belle II. These are based on the data recorded at the
CDC, which can be used to reconstruct a track in 3D. The main algorithm used for this
reconstruction is based on a conventional approach that was described in section 3.2. In
parallel to this approach, the NNT was developed to address this task by applying ma-
chine learning approaches, which are expected to fare well with the currently unknown
background events. Both approaches are hereby pursuing the same goal and have the
same requirements.

The advantages and reasons for using a neural trigger are that the algorithm is easily
adaptable to the current behaviour of the experiment and that it is expected to be more
robust when dealing with data that was not seen before during the training phase. The
neural network can meanwhile be continuously re-trained with data from the experiment.

Figure 5.2.: z-Vertex distribution recorded from an early run during experiment 7 of Belle
II is showing a similar but more pronounced distribution.

90

5.1. Background Suppression using a Neural z-Vertex Estimation

5.1.1. Estimation of Efficiency and Network Topology Studies

An investigation of the usability of neural networks-based algorithms was performed in
Ref. [92]. Different methods were considered here, whereby MLPs showed particularly
good properties. In addition, a suitable preprocessing was investigated, in which suitable
input values were calculated using the detector’s data. Additionally, different topologies
of the MLP were explored and characterized. The results of the investigations are sum-
marized in the following. At first, an efficiency metric is defined in order to assess the
performance of the MLP. The efficiency is hereby described as the ratio between the num-
ber of tracks whose actual origin lies within z = +/-6 cm around the interaction point and
the number of tracks for which the neural network is estimating the z-Vertex correctly
into the same range. The definition of efficiency is meanwhile independent of conditions
under which the observation took place that is independent of the used data set, either
simulated or experimental.

Number of Hidden Neurons

 E
 f
 f
 i
 c
 i
 e
 n
 c
 y

 %

Figure 5.3.: Plot of the efficiency for MLPs estimating the z-Vertex. It is shown for different
numbers of neurons and hidden layers [92].

The results for the achieved efficiency of the MLP are shown in figure 5.3. Different topolo-
gies are shown here, exploring the different options for operation. Looking to the results,
it becomes apparent that the network becomes more efficient with an increasing number
of neurons. Looking ahead to the resources of the available FPGAs, a network with 81
neurons and one HL was chosen as the reference topology. The total amount of MAC
operations of this topology would demand around 90% of the DSP resources when using
time-multiplexing on the UT3, which would theoretically achieve feasibility for imple-
mentation. Meanwhile, this network achieves an efficiency of around 87% [92]. Although
adding more neurons improves the efficiency, the improvement is rather marginal, which
leads to using the 81 neuron version for first iterations of the NNT. However, increasing
the number of neurons can be investigated for future operation after the initial system
was set up.

91

5. The Neural z-Vertex Track Trigger

5.1.2. Functional Description of the neural z-Vertex Trigger

Before getting into the details of the FPGA-based realization of the trigger, the functional
description is presented and discussed.

5.1.2.1. Preprocessing

In its first version, the trigger was based on using the data from the TSF directly as input
values for the neural network. Each individual TS represented an input node of the net-
work, while the drift time was used as the value. From the realization point of view on
the FPGA, this required a large amount of MAC operations per neuron, as shown in equa-
tion 5.1. For one neuron, 2338 MAC operations would have to be performed. Assuming
that the used FPGA can actually only calculate about 600 MAC operations per clock cycle,
as is the case for the available FPGAs, such a high number of inputs cannot be realized
within the targeted latency budget.

MACNeuron = #Inputs + 1

= #TS + 1 = 2337 + 1 = 2338
(5.1)

An alternative approach to the initial idea was to reduce the number of inputs by prepro-
cessing the data from the CDC as a first step. Here the first approach was to partition the
geometrical space of the CDC that is processed by a network into a set of sectors. These
sectors then only contained about 20 to 30 TSs each, instead of the entire 2337 TSs. For
each sector, a separate net was trained, which had to be stored on the FPGA. However, the
resulting memory space required to implement this, is larger than the available on-Chip
memory on the available FPGAs. As a consequence, this setup relied on using external
memory to be realized, which, however, added additional latency for the transfer of the
weights.

Figure 5.4.: Geometric depiction of the three input signals of the MLP relative to the wires
of the CDC [92]. These inputs are used in the operational systems developed
in this thesis.

92

5.1. Background Suppression using a Neural z-Vertex Estimation

Name Description

alpha Crossing angle of the track relative to the normal of the crossing
point of the track with the circular path of the layer.

±tdri f t Drift time of the TS. The sign indicates the direction of the pass-
ing particle either left or right. It is not used in case of an un-
known direction as defined by the TSF.

phi_rel Azimuth angle of the particle relative to the angle of the sense-
wire.

Table 5.1.: Listing and description of the three input values used for each of the SLs [92].

A better approach was developed afterwards in which input values that are optimized for
the network were generated from the CDC data. For this purpose, the active TSs within a
SL were transformed into triples of input values. These values are listed together with a
description in table 5.1. Their graphical representation relative to the CDC is additionally
shown in figure 5.4. Here, instead of considering just the TSs on their own, their relation-
ship to both the event time and a found 2D track are considered. For this, all TSs are at
first matched to a 2D track that was found by the 2DS. This matching is hereby already
partially provided by the 2DS as it relates the found track to the axial TSs that are located
the closest. For this approach, the matching is extended by including the previously un-
used stereo TSs. The matching procedure that was developed checks whether an active
TS is geometrically within the vicinity of the estimated 2D track. Only if it is close enough
to the track, is the TS considered for estimation of the z-Vertex.

Two of the defined input values for the MLP are afterwards calculated on the basis of the
found TS relative to the estimated track. These values are the crossing angle alpha and
the relative azimuth angle phi_rel. These two variables are then supplemented by the
drift time of the TS. Using this triple of input values allowed to reduce the size of single
neural networks and subsequently to fit it entirely into the on-Chip memory. This allowed
achieving reasonable performance, both in terms of efficiency and processing latency.

5.1.2.2. Configuration of Networks at Runtime

Training a single neural network for operation will yield a solution that can achieve rea-
sonable performance for all possible input combinations. Further improvements, how-
ever, can be achieved by training additional networks that are specialised on specific sub-
sets of the possible input data. This can be used to address situations in the experiment,
in which a general network is achieving a rather poor efficiency. This opportunity was
additionally explored to improve performance [92] further.

The first step for this is the definition of the subsets of data for which specialised networks
shall be deployed. One approach is partitioning in the geometric phase space of the CDC.
Depending on the part of the CDC in which a track was observed, different networks
are to be loaded. A better approach to this is to train dedicated networks such that they
could compensate for the absence of a viable TS in one of the stereo SLs. For this purpose,
four additional networks were trained. Each of them is specialized in compensating the

93

5. The Neural z-Vertex Track Trigger

respective TS. Since the presence of a 2D track is mandatory for operation, which requires
matching TSs in at least four of the axial SLs, the focus was put on the stereo TS. For this,
each of the four networks were trained without using data from one specified stereo SL,
for example, a network was trained without using any TSs from SL1.

With regard to the implementation on FPGAs, this means that the weight sets of five
different networks have to be available and swapped at runtime. However, due to the
latency of external memory, these must also be stored entirely in on-chip memory. An-
other consequence of this is that optimization of the weight set in order to save resources
on the FPGA is severely limited. Since weights inhibiting different values can be loaded
into the same processing unit during runtime, the implementation must be kept flexible
enough to load multiple sets of weights. This is especially influencing the usage of com-
pression methods. A general investigation of possible compression was carried out in
Ref. [Reu18], in which simple pruning and bit width reduction approaches were proto-
typed. These provided only marginally better resource usage results that could not justify
the ensuing loss of efficiency.

5.1.2.3. Configuration of the Multi Layer Perceptron

Several different algorithms and variants of neural networks were investigated for their
suitability to be used as a z-Trigger. Reasonable performance is already achieved by using
an MLP. It was configured with all of the neurons having a bias weight in addition to
the weighting of the inputs. Meanwhile, the TANH function was chosen as the activation
function throughout the network as its non-linear properties allowed to achieve good
efficiency. The topology was configured with respect to the analysis in section 5.1.1 to
consist of two layers, one HL and one Output Layer (OL). The HL is configured to consist
of the previously mentioned 81 neurons, while the OL is set to two neurons. These two
neurons are providing the final results of the NNT representing the estimated z-Vertex
and cotangent of theta, which allows for more in detail analysis of the event and could be
used by the GDL.

The definition of the topology is mainly driven by the hardware limitations of the UT3
platform, which theoretically could process the complete network within three clock cy-
cles when using fully parallel processing, whereby approximately 90% utilization is reached
for the DSPs. This implementation is also used in the first variants of the NNT, as de-
scribed in section 5.4.2.1.

In addition to the topology, the bit widths for processing the neurons were investigated.
In its full configuration, the NNT uses 14 bit to represent the input values of the neurons
and 18 bit to represent the weights with 10 bit fractional. With these widths, analyses
showed good results for estimating the z-Vertex.

5.1.3. Requirements for Trigger Operation

This section examines the concrete requirements for the NNT that are defined by the ex-
periment and L1 trigger system. It will focus on connectivity, latency and throughput,

94

5.1. Background Suppression using a Neural z-Vertex Estimation

which are key for integration and operation.

Connectivity

For the NNT to be integrated into the CDCTRG, it has to provide two types of interfaces.
On one hand, interfaces for the transmission of detector data and the establishing the data
flow are necessary. For this, the CDCTRG is relying on the usage of optical transmission
due to the data rates to be supported. For integration, the NNT has to provide the correct
optical modules and support the requested data rates. Besides the interfaces for the trans-
mission of the CDC data, additional interfaces used for configuration and monitoring are
required.

Since the NNT is receiving its input data from multiple different data sources, its hosting
platform must offer a variety of interfaces. The CDCTRG is mainly based on using GTH
transceivers since these have the most capabilities of all the IO resources on the targeted
FPGAs. Newer platforms, for example, based on the Ultrascale architecture, are mean-
while supporting more powerful transceivers like GTY and GTZ. These are especially
important for an upgrade of the system such as it is scheduled with the introduction of
the UT4 platform. While the input is requiring high data rate interfaces, data to be sent
from the NNT has to fulfil lower data rate requirements due to the data concentration that
an z-Vertex estimation is representing. For these interfaces the lower-performance GTX
transceivers can be used within the CDCTRG.

The number of transceivers that are to be provided by the NNT can then be determined by
analysing all data channels to be supported. The number of GTX transceivers that have to
be provided consists of one input channel for the data of the ETF and one channel for the
B2L. Meanwhile, data streams received from the 2DS and the stereo TSFs are possessing
significantly higher data rates that require the usage of GTH transceivers. Data represent-
ing the axial TSFs are transmitted together with the 2DS and thus do not need additional
consideration. The data for the four incoming stereo TSFs, on the other hand, are received
via the ETF. Whereby the data is not changed there, but only forwarded and delayed. In
total 64 GTH lanes must be supported by the NNT to cover the complete CDC. This is,
however, not possible to be realized with any of the available FPGA platforms. To solve
this, several FPGAs are planned to be used with a strategy partitioning the detector’s
space. The in-detail discussion of this topic can be found in section 5.2.1. The summa-
rized calculations related to amount of needed GT lanes are additionally shown in the
equations 5.2.

TotalGTX = ETF + Belle2Link = 2GTX Transceiver
TotalGTHstereo = TSFs · LanesTSF = 4 · 8 = 32Lanes

TotalGTH2D = 2D · Lanes2D = 4 · 8 = 32Lanes
TotalGTH = TotalGTHstereo + TotalGTH2D = 64Lanes

(5.2)

95

5. The Neural z-Vertex Track Trigger

Latency

The latency until trigger signals provided by the trigger system are ready for usage, is
one of the critical requirements to be fulfilled. Under no circumstances may it lead to the
CDCTRG exceeding the latency budget of the L1 trigger system. The NNT must hereby
guarantee a deterministic latency within the budget. The budget available for the NNT is
meanwhile derived from the accumulation of the latencies of the individual components
of the CDCTRG. This is including the individual data transfers coupled with the internal
latency of the data processing. The NNT must then generate its trigger signals at a point
in time so that it can be sent just in time for the subsequent GDL and GRL to consider
it. Both of these components have to perform their internal processing of trigger signals
before the fixed deadline.

The NNT is highly dependent on the latencies of its different data sources. Processing
can only commence when the required data is available. Across all used components of
the CDCTRG, the 2DS has the highest latency to be considered, since it has to wait for
the TSF. Only when a track is available, processing can start. The latency budget of the
NNT is therefore given by the worst case latency achieved by the 2DS and the processing
latency of GRL/GDL.

The separate latencies of the important components at the beginning of operation during
phase 3 of the experiment are shown in the following equations 5.4 and depicted in fig-
ure 5.5 that was provided by the CDCTRG group [63]. These latencies are represented as
the remaining time between the arrival time and deadline set by the GRL. As a result, the
shown numbers are all negative, which means they arrive before the deadline. As they all
have an inherent variance due to the measured transmission delays, the estimated worst
case time is considered. It is hereby only estimated as it was determined empirically from
experiments. Referencing the worst case latency of the 2DS and estimation for communi-
cation between NNT and GRL, a remaining time budget of around 350 ns is available for
all of the internal processing to be carried out at the NNT.

LatencyTRG > LatencyGDL + LatencyGRL + LatencyNT (5.3)

LatencyNNT = MAX(LatencyTSF, Latency2D, LatencyETF) + LatencyComm (5.4)

LatencysTSF = 1000ns
Latency2D = 750ns

LatencyComm = 400ns
MaxProcessingTimeNNT = 350ns

(5.5)

96

5.1. Background Suppression using a Neural z-Vertex Estimation

Figure 5.5.: Plotted histogram showing latencies of different components of the CDCTRG
recorded at the GRL [63].

Throughput

In contrast to latency, the throughput that has to be achieved is not fixed to a certain num-
ber but rather has to be within a defined range. This range is defined as the number of
2D tracks processed at each data clock cycle. While optimal operation is achieved when
all found 2D tracks are processed, the NNT can already be used when only one track is
supported. The throughput is described as the number of processed 2D tracks per time
unit. The maximum number of tracks is determined by the update rate of the implemen-
tation used for the 2D tracking. Since resources are limited for both the outgoing data
rates and the internal processing, the 2DS is only sending a subset of the possible tracks.
The selection of this subset is made on the basis of the estimated momentum for which
the tracks with the highest momentum are preferred.

Throughput = Tracks · Frequency2D

ThroughputMax = 6 Tracks · 31.75 MHz = 190.5 millionTracks/second
ThroughputHal f = 4 Tracks · 31.75 MHz = 127 millionTracks/second

(5.6)

The number of tracks meanwhile depends on the data rates supported by the hosting
FPGA platform. The 2DS might be implemented on both the UT3 and UT4, which could
achieve different rates. Considering the highest data rate for transmission across plat-
forms, six tracks can be sent at each data clock cycle. Since the UT3 can only achieve half

97

5. The Neural z-Vertex Track Trigger

of the maximum data rate, it is sending up to four tracks. Using these numbers as the up-
date rates, the throughput can be calculated as described in equation 5.6. The importance
of both presented throughputs depends on the operation status of the experiment. At
first, only ThroughputHal f will be achieved within the CDCTRG. Later on, with upgraded
electronics, ThroughputMax may be achieved and necessary to cope with high luminosi-
ties.

Considering the NNT, an estimation for each track requires the calculation of the com-
plete processing chain from preprocessing to the MLP. This must then be either instanti-
ated multiple times to allow processing of all tracks in parallel or operated with a high
frequency to allow pipelined time-multiplexing while reusing the same processing struc-
tures. This results in a trade-off between resource consumption and throughput or rather
achievable suppression of background events. Maximum throughput provides the best
suppression but requires more resources. Resources can be saved by reducing through-
put, but the suppression capabilities of the trigger will worsen since not all tracks will
have an estimation of the z-Vertex.

The minimum goal for the NNT is set to estimating at least the 2D track with the highest
momentum in any given data clock cycle. The 2DS, however, does not generate a new
track at every clock cycle during collisions, it is rather arriving in bursts of at most four
active successive clock cycles for a given event. Each burst is usually followed up by a
window of inactivity, which can be exploited to defer the processing of subsequent tracks
to later clock cycles in case that the NNT’s processing pipeline is occupied at the moment.

Summary

The NNT has a high overall demand for GTH/GTX ports in order to receive and send
all the data. In addition to the dataflow, it requires interfaces to use service functionality
such as DQM or SC. Accordingly, a selected board must provide the necessary number
of connectors. At the same time, the NNT must meet hard real-time requirements for
latency and throughput. It has only about 300 ns time to estimate the track parameters
so that the entire CDCTRG remains within its time budget. At the same time, it must be
able to process at least one track per data clock cycle and must not deviate from these
requirements.

5.2. Realization and Implementation of the neural z-Vertex Trigger

The focus of this section is put on the implementation of the NNT. This is introduced
by the presentation of the aspects regarding the integration into the CDCTRG and the
selection of a suitable platform. Subsequently, the treatment of the different transmission
protocols of the CDCTRG is presented.

98

5.2. Realization and Implementation of the neural z-Vertex Trigger

5.2.1. Integration into the Trigger System

2DS

ETFsTSF NNT

3DS

CDC
FEE

aTSF

GRL GDL

Figure 5.6.: System architecture for the L1 trigger system based on the CDC.

The NNT is performing the estimation of the z-Vertex for particle tracks based on the data
of the CDC. For this, it has to be integrated into the CDCTRG to be able to receive the
needed data and send the requested trigger signals. Receiving the raw data directly from
the FEE of the detector is not feasible due to the limited number of IO ports provided by
single FPGA platforms and the shared transmission infrastructure. Inputs are received
from the three components TSF, 2DS, and ETF. Due to the importance of reliable z-Vertex
estimation, the 3DS is generating trigger signals in parallel to the NNT. The system archi-
tecture of the CDCTRG, depicting all of its components, is shown in figure 5.6. The NNT
hereby represents the third and last step in the generation of trigger signals.

One difference to all other components that has to be addressed at both the NNT and 3DS
is that they are the only components receiving data from multiple data sources. These
sources have their own latencies for processing data, which leads to several parallel data
streams with different delays for data related to the same physics event. As an event
is processed as a whole by the NNT, it is necessary to synchronize these separate data
streams. Mechanisms must be introduced on the receiving side to compensate for the
different latencies. To solve this issue, the so-called unsyncher was designed and devel-
oped [61]. The unsychner’s task is to delay the data streams of the sTSFs for a given time
interval. Additionally, all of the sTSFs are not directly connected. Their data streams are
rather forwarded through the ETF. Such forwarding has two advantages, on the one hand,
it reduces the number of required IO ports for the sTSF as it only has to send the data once
instead to both NNT and 3DS. Contrary to the TSF, which is at the limit of the available
GT lanes, the ETF still has free ports available to transmit data in parallel to both z-Vertex
estimators. The other advantage resulting from this approach is that the data from the
sTSF is delayed. The connection to ETF introduces additional delay for the transmission
of the data. This is about the same delay for the data transmission to and from 2DS. This
delay thus makes it easier to synchronize as the difference between sources is reduced.
Additionally, data has to be buffered for shorter time intervals, keeping the footprint for
necessary synchronization overhead low. Only the processing latency of the 2DS and jitter
of the communication have to be additionally balanced.

99

5. The Neural z-Vertex Track Trigger

The high demand for GTH lanes that are required to be supported by the reception of
the entire CDC is higher than the resources provided by any available FPGA platform.
This not only applies to the NNT but already to the 2DS, so the same solution that was
found there will be adapted for the NNT. Instead of using the data from the entire de-
tector, it is hereby partitioned into separate regions that are processed separately. Here,
instead of multiplexing the transmission, which would introduce additional latency, mul-
tiple boards are installed that receive the data in parallel. The maximum coverage that can
be realized within the IO resource budget is about half of the CDC for one FPGA platform.
So theoretically, two boards should be sufficient to cover the entire detector.

However, since particles will not travel through the detector in a straight line but are
rather bending, this partitioning is not employed. The reason is that a particle that is
passing through both halves cannot be correctly processed, as its positional data is di-
vided. The number of such particles is substantial enough to justify the usage of another
partitioning. Instead of two halves, the readout is divided into four parallel data streams
that are related to quadrants. These are not strictly disjointed but are rather overlapping.
The entire space of one quadrant is overlapping with its two neighbouring quadrants. In
the CDCTRG, these quadrants are sent in parallel to separate FPGA platforms. Due to
the overlap, the same space of the CDC is always received by two separate boards. Al-
though this is redundant, it has two important advantages. The first is a better approach
to process particle tracks that are bending in space. The second advantage is that this
redundant data can be used for validation of correct operation. Redundant data should
appear in both of the overlapping regions across the physical borders of the transmis-
sion lines at the separate FPGAs. Additionally, this allows smoother recreation of TSF
data at the borders of the quadrants, in which unusual activity is used as an indicator for
problematic operation by the subsequent DQM.

TSF

2D0

2D1

2D2

2D3

GRL
&

 GDL

NNT0

NNT1

NNT2

NNT3

Entire CDC
Detector

Space

Q1

Q2

Q3

Q4

Figure 5.7.: Schematic representation of the partitioning of the CDC’s space.

The graphical representation of the partitioning of the CDC is shown in figure 5.7. The
representation shown there is an exact replication of the real setup, in which the edges
of a quadrant’s borders are bent. SLs that are located farther outside are covering larger

100

5.2. Realization and Implementation of the neural z-Vertex Trigger

ranges. However, the representation is sufficient to explain the principle and region pro-
cessed by each board. The details of the correct assignment on the granularity of single
TS IDs can be found in the Appendix A.3.2.

Using this partitioning of the CDC’s readout has a severe impact on the integration of the
NNT as it significantly decreases the number of required GTH ports. A system’s level
view of one NNT board as a module with the GTH ports shown as interfaces is hereby
depicted in figure 5.8.

NNT

2DS

sTSF

B2Link

GRL
8 GTH Lanes

3 GTH Lanes

1 GTH Lane

1 GTH LaneETF
1 GTH Lanes

Figure 5.8.: Interfaces supplemented by the amount of required GTH lanes for one NNT
board covering one of the CDC’s quadrants.

5.2.2. Selection of a Hosting Hardware Platform

The NNT is not bound to a predefined hardware platform to be hosted on. Above all,
the selected platform must meet the requirements of CDCTRG. In addition, however, the
cost of the platform and needed time until operational readiness have to be considered, as
each platform not sanctioned by the budget of the KEK, has to be funded through external
means.

In order to be integrated into the CDCTRG, a suitable FPGA-based platform has to be
found. Its FPGA has to be powerful enough to host the NNT such that its algorithms
can be implemented within the defined latency and throughput requirements. In addi-
tion, the used FPGA has to provide enough GTs that support the required data rates.
The hosting carrier board has then to route a sufficient amount of those ports to its IO
interface for connection of the necessary optical links. Optimally, it also contains the nec-
essary interfaces to be connected to the services outside of the essential data flow without
introducing demand for significant additional implementations. These services include
slow control, clock distribution, and a synchronized readout for DQM. These services are
highly application-specific compared to the rather general optical transmission used for
the data flow. They are often using additional physical interfaces such as VME or need
to support an additional add-on board, as is the case for B2L. Additionally, they require
dedicated custom IP cores that are implementing the corresponding protocols. These, can

101

5. The Neural z-Vertex Track Trigger

be dedicated to a specific FPGA when primitives are used. When using platforms that are
not supported, these IP cores have to be adapted to the hosted FPGA.

The number of available FPGA platforms is rather large. However, the special require-
ments for integration reduce the number of choices significantly. In the following, a selec-
tion of suitable solutions for a platform will be presented, and their suitability discussed.
The selection is limited to five possible platforms, which all meet the basic requirements
of the NNT. It consists of the UT3 and 4, the VC709 [134], and the Pulsar Board [10]. Ad-
ditionally, the possibility of developing a custom platform just for the NNT is an option.
The possible solutions are evaluated according to five main criteria. These criteria consist
of the provided performance, IO capabilities, external support in form of the availabil-
ity of IP cores, the availability to be ready for early operation, and the monetary cost for
obtaining the platform.

The generation and architecture of an FPGA ultimately determine the achievable perfor-
mance in terms of latency and throughput. The fact that modern FPGAs are typically
using the smallest available technology node on its own already reduces the signal de-
lays within the processing architectures. This applies to all relevant resources such as
DSPs, BRAMs and LUTs. At the same time, they usually offer more resources due to
the increased density of the circuits. Especially regarding both LUTs and BRAMs, FPGAs
have much more resources available across successive generations. However, the increase
in DSPs was stagnating until recently. Their availability is currently increasing due to the
ascension of machine learning as one of the main targeted application domains. However,
such platforms were not released in time to be used at the first stages of the experiment’s
operation.

In section 4.4, the implementation of an MLP on FPGAs was discussed. One of the main
points made there is that DSPs are particularly suitable for the implementation of neurons
in order to achieve high performance. As a result, their availability on a possible FPGA
platform is of particular interest in the selection. Remaining resources such as LUTs are
meanwhile of particular interest in the implementation of the preprocessing and commu-
nication infrastructure. A high amount of available LUTs is typically implicitly scaling
with the routing resources, which are important to resolve timing violations more easily.
Last but not least, BRAMs are needed in two areas. For one, they are used for storing
the network’s weights. A high amount of BRAM can allow more networks to be loaded
during runtime. However, this is not only dependent on the memory resources, but rout-
ing as well to achieve timing closure. The other area in which BRAM is used is for the
implementation of all functions that require significant processing resources when imple-
mented in LUTs. An example of this is the activation function, which is usually not linear
and at the same time might require good precision. The function can be stored in memory
instead of being calculated online.

One important factor with regard to integration is the form factor of the hardware plat-
form and its supply connections. In the end, it has to be integrated into the infrastructure
available at the experiment’s facility. A dedicated area called the E-Hut is designated to
provide the space for online processing hardware including the trigger system. For this
purpose, it is equipped with patch panels and crates that encompass the readout of the
CDC among all other detectors. The available crates are based on communication through
a VME backplane and support boards with a standardized form factor. In case a platform

102

5.2. Realization and Implementation of the neural z-Vertex Trigger

that is not complying with this standard is used, an alternative solution outside of the
crates has to be found. This can be a complex task since both space and cabling have to
be solved outside of the crate instead of using the already provided resources.

A tabular comparison of the considered platforms with regard to the criteria defined for
their suitability is shown in table 5.2. In the following, the differences and ultimately the
chosen platform will be discussed in more detail.

Platform Performance IOs Support Availability Cost

UT3 −− ++ ++ ++ ++

UT4 + ++ ++ − ++

VC709 − − −− + +

Pulsar − + −− − −
Custom ++ ++ −− −− −−

Table 5.2.: Comparison of available FPGA platforms for suitability to host the NNT.

The UT3 is a custom FPGA platform produced by an external contractor for the KEK.
It was primarily designed to meet the IO port requirements for all sub-systems of the
entire trigger system. At the start of the trigger system’s development, no alternative
platform with a sufficient number of IO was available. The only suitable FPGA is part of
the Virtex-6 HXT family. This family is a special branch of the Virtex line that is providing
the highest number of GTH ports. For these FPGAs, however, no hosting platform that
actually routes a sufficient amount of interfaces for external usage was available on the
market, thus a custom board had to be developed.

Since the board is primarily used at KEK, the development of modules implementing
functionality necessary for integration is carried out across the entire collaboration of the
experiment. As a result, it is already equipped with a library of IP cores that support
the used FPGA. These primarily provide the functionality necessary for integration. An
example is an IP core that implements the B2L protocol handling. Since many of these
functions can also be used by the NNT, the presence of the library is a big advantage
of the platform. Because the library is used within the collaboration, it is continuously
updated and maintained. The disadvantage is somewhat the resulting dependency when
using it. IP cores must be checked for their correct behaviour with each update. Since they
are external IP cores, the possibilities for manual adjustment for specialization or updates
are limited.

At the beginning of the development of the NNT, the UT3 was already available. It rep-
resents the only solution that is immediately available for both integration and testing
within the detector’s infrastructure. At the same time, it is bought and provided by the
KEK, which makes it the cheapest solution out of all possibilities. In addition, there are
several spare UT3 boards available that are part of the equipment available at KEK.

Although the UT3 is excelling at most of the relevant criteria, it has two significant dis-
advantages. At the current state of FPGA development, the Virtex-6 is rather old and
significantly less powerful than the modern alternatives. Another significant problem is
an board-level error affecting the GTH connections. At best the board is able to achieve

103

5. The Neural z-Vertex Track Trigger

only half of the maximum data rate when compared to the specification. This is already
impacting the CDCTRG at the stage of the TSF, which can only send a part of the max-
imum amount of active TSs within an SL of the detector. The causes of the problem are
known, but there is no way to solve it post-production. A smaller disadvantage is that the
board is scheduled for use at the experiment and thus has to be at the facility. This makes
testing of updates more difficult as a remote connection and sometimes physical access
are required.

Some of the disadvantages of the UT3 are addressed by its successor the UT4. It is based
on a newer generation of FPGAs. As Xilinx made the decision to release two successive
generations with only slight architectural changes, both the Ultrascale and Ultrascale+
models are pin-compatible with the design of the board. Generally, it is a significantly
better choice as it provides both more processing resources and GTs. As it is based on a
new board layout, it should solve the problems of data transfer, such that the transceiver
links should able to be operated with the maximum specified data rates.

At the same time, the UT4 is going to be supported by the KEK just like its predecessor
and will thus possess the same advantages regarding the usage of both the IP core library
and integration services. The big disadvantage of the UT4 is its availability. At the point
of creating this thesis, its final version was still under development. Using it for hosting
the NNT is therefore only possible for later stages of the experiment.

Another possible platform is the VC709 that is directly available from Xilinx. It is fulfilling
the basic requirements by providing a sufficient number of GTH ports. However, it is not
complying with the desired VME form factor and does not provide a physical connection
to the backplane of the crates used within the E-Hut. As a result, the typical way of
implementing both SC and DQM has to be conceptualized and implemented. The final
integration is additionally requiring an adapter board to make some of the GTH ports
available for usage and proper location within the E-Hut.

The big advantage of this platform is the enormous number of available DSPs provided
by the hosted Virtex-7 FPGA. These allow for fully parallel implementation of the NNT’s
MLP, which is in turn leading to the lowest possible latency and highest operating fre-
quency. At the same time, the platform is capable of operation with its GT set to maxi-
mum data rates. In addition, the platform has a high level of availability, as a sufficient
amount of boards are in stock and can be ordered within a short delivery time. Due to its
wide availability and presence, it was chosen to serve as a host for a local demonstration
setup, which is further described in section 5.4.3.

Designing and producing a custom platform is also a possibility for the NNT. The big
advantage is that this platform can be completely tailored to the special requirements. All
other possible variants are developed for more general purposes and as such are always
including some form of either overhead or disadvantages. On this platform a new gener-
ation FPGA, Ultrascale+ could be used, which has significant advantages for latency and
resources. The major drawback of this solution is, of course, the cost of development and
time until it is operational.

In the end, a combination of UT3 and UT4 was chosen for hosting the NNT. The UT3
is used in the first phases of the experiment, while the transition to the more powerful
UT4 is performed as soon as it is available and allowed by the maintenance schedule for

104

5.2. Realization and Implementation of the neural z-Vertex Trigger

experimental operation. The reason for this choice is mainly driven by the advantages
related to the availability, cost, and integration. Since the whole project is rather time-
critical, as the experiment’s schedule is determined by more important components and
financial factors, short development time is paramount for success.

5.2.3. Interfacing to the Trigger System

The NNT receives its input data from three independent sub-systems. Each of them is
using their own protocols and formats. As they are representing the data collected from
the CDC, the protocol is depending on the physical behaviour of the detector. In sum-
mary the NNT has to implement the protocol, data format, and timing of the individual
components. These three aspects are presented for the respective sources before the im-
plementation of the handling of the interfaces is described.

5.2.3.1. Protocols of the Interfaces

In order to understand the interfaces, it is necessary to introduce two terms used in the
CDCTRG. One of these is the data clock, the frequency with which data from the optical
links is passed from the transceiver modules to the processing on the FPGA. This fre-
quency is defined at 32.125 MHz throughout all the systems. The system clock, on the
other hand, is the clock frequency with which the logic for processing is intended to be
operated with. It is set to 125 MHz, being a multiple of the data clock. Most of the sub-
systems within the CDCTRG are internally operated with this frequency. Meanwhile, two
key figures are used for the data rate. Firstly, the full data rate of 10.28 GBit/s. This data
rate was originally intended for the CDCTRG, but cannot be stably maintained over time
on any UT3 board. To work around this problem, half the data rate at 5.14 GBit/s is used
for the first stages of operation, with the outlook that the upgraded hardware will fix this
data rate problem. In the following the handling of the data for both possible data rates
are shown. In table 5.3 the introduced key values are shown again.

Name Value
Data Clock 32.125 MHz
System Clock 125 MHz
Full Rate 10.28 GBit/s
Half Rate 5.14 GBit/s

Table 5.3.: Terminology for data transmission within the CDCTRG.

105

5. The Neural z-Vertex Track Trigger

Stereo Track Segment Finder Connection to the NNT

Considering communication with the TSF, only the stereo Track Segment Finder (sTSF)s
has are directly connected to the NNT with axial information being sent as part of the
data sent by the 2DS. The data is hereby received at the processing side with the data
clock. The maximum number of TS that has to be processed per clock cycle is hereby
depending on the used data rate and version of the TSF. Up to 20 TS can be received per
clock cycle when using the full rate. Meanwhile, when using the half rate there are to
possibilities, that is either 10 or 15 TS. A configuration with 10 TS is intended to be the
base configuration for the first stages of operation. In case that the occupation of the CDC
is going to be high, an additional configuration supporting up to 15 TS was implemented
retrospectively. This configuration is utilizing the complete half rate whereby the 10 TS
variant was using only part of the available bandwidth. To summarize, both variants are
shown in table 5.4.

The position of an individual TS within the CDC is uniquely identified by a TS Identifica-
tion Number (ID). Geometrically, this TS ID describes the position of the primary priority
wire around which a segment can be constructed. Besides the TS ID, the estimated priority
timing is transmitted as well as the type of active priority wire and left/right information.

The NNT uses all this information for its preprocessing to generate the appropriate inputs
for the MLP. It is also used to decide which of the found stereo segments matches the best
to the estimated 2D-Track. When receiving the data, however, additional properties of
TSF and CDCTRG have to be considered that are due to the nature of the used detector,
as it is based around the drift of particles.

Configuration TSs per clock cycle
Half rate standard 10

Half rate maximum 15
Full rate 20

Table 5.4.: Possible data transfer configurations for the sTSF.

The most difficult aspect of the communication with the TSF is that the data of TS is not
synchronized across all SLs. Segments that belong to the same event can be detected
and sent by the TSF in different clock cycles. This is mostly due to the characteristics of
the CDC as wires are not immediately active after a particle passes through. They rather
experience drift in which it takes time depending on the position of pass-through until the
generated charge is detected in the detector. Besides that behaviour the actual structure of
a TS is important as it is only considered to be active when a sufficient number of wires are
active within the segment. Combined with the drift, a TS is changing it is characteristics
over time, possibly changing from inactive to active rather late compared to the other
matching TS or even leading to more precise resolution of the particles pass-through, by
updates of priority times and the associated priority wire.

Since one TSF module is only observing the wires within one of the SLs, it is not possible
to synchronize TS across the entire detector at this level. This is only worsened by the

106

5.2. Realization and Implementation of the neural z-Vertex Trigger

differing transmission delays across different trigger hardware platforms [99]. The be-
haviour observed at the interface of the NNT is shown as a timing diagram in figure 5.9.
In this, several TS are turning active that are all part of the same event. However, they
arrive at different points in time, so that they have to buffered and matched.

As this is not problematic enough, the NNT has to deal with the presence of background
events, which will intermix itself with collision events making it more difficult to detect
the correct TS. This is somewhat mitigated by suppression strategies, as described in sec-
tion 7.2.2, however, they do not cover all possibilities.

TSF7

TSF5

TSF3

TSF1

TSF7

TSF5

TSF3

TSF1

time time

(a) (b)

Figure 5.9.: Active TSs arriving at different points in time at the NNT with (b) and without
a persistor (a).

This behaviour is problematic for the NNT since it only processes the received TS together
with a matching track from the event. However, it is not possible to define an exact clock
cycle for which the appropriate TS are arriving. The NNT, therefore, needs a receiving
module for each TSF that temporarily stores incoming data for a certain amount of clock
cycles, so that they are processed together with the 2D-Tracks that are arriving later. This
module is called persistor because it stores incoming TS over a defined time interval. The
implementation of the persistor module for the NNT is discussed in section 5.2.3.2.

Reception of 2D Track Finder Data

The data sent by 2DS is centred around the estimated track parameters phi and omega.
These values are representing the cell of the Hough space representing the parameters
matching the observed segments the most. While omega can be negative, phi is repre-
sented as an unsigned value. Each 2DS board is capable of finding up to six track esti-
mates, however, due to the mentioned problems with the data rates it is limited to just
four at the beginning of operation. Each track estimate that is sent is accompanied by
status information and a selection of TS that are matching with the track. The same in-
formation as provided by the TSF is sent by the 2DS, thus they are indistinguishable in
the formatting and processing at the NNT. However as they are already matched to the
track, there is no need for implementation of a persistor for these TS. As with the TSF,
the 2DS is also impacted by the drift times of the CDC. As a result, the TSs belonging to

107

5. The Neural z-Vertex Track Trigger

the same event are updated at different clock cycles, in which the 2DS in turn also up-
dates its estimation of the track. Additional status bits are sent with each track to indicate
this. These status bits encode the information indicating whether a sent track is new or
an updated old one. This information can, for example, be used by the GRL/GDL to
detect trigger signals generated by the same track, which can be used to reduce trigger
rates. Sub-systems using this data can also use it to determine whether to process the
track again or perform additional optimization using values that were calculated the first
time this track appeared.

5.2.3.2. Realization of the Persistor for the Track Segment Finder

The persistor is an architectural module for handling the time-variant reception of TSF
data. This section describes the requirements, architecture, parametrization, and imple-
mentation of this module for the NNT.

Requirements

The basic task of the persistor is to temporarily store a received TS over a defined time
interval. The moment a 2D-Track arrives, all TSs that were received in this pre-defined
interval are subsequently passed on to the actual data processing of the NNT. This module
has to be carefully considered for the implementation on the FPGA. When receiving the
data, in the worst case not only the maximum number of incoming TS per clock cycles
has to be stored, but the total amount of TSs that were accumulated over a period of time
T. This means that a larger memory must be provided depending on the covered time
interval. The depth is hereby given by the formula 5.7. Here T is defined in clock cycles
and is determined by the readout of the CDC.

MemoryDepthP = TBu f f er · TS/ClockCycle (5.7)

An analysis of the detector’s behaviour was performed to determine a suitable time win-
dow T that allows buffering a sufficient amount of TS. Here the arrival times of the TS
across all SLs were analysed. These were then matched to the 2D-Track that is represent-
ing the physics event. Using the ensuing distribution of arrival times relative to the 2D-
Track, the buffer size can be determined. The used data was meanwhile acquired through
both experiment and cosmic ray operation. As the 2DS needs to perform the same task
for axial TS, the analysis was conducted there as well which can be reused for the S3D
discussed later on within this thesis.

The earliest point in time at which TS that are related to a 2D-track are arriving is at -28
clock cycles, before the reception of the track parameters from 2DS. Segments that arrived
even earlier are hereby mostly due to background events and other effects not related to
the experiment. The analysis showed that even an arrival time of -28 clock cycles is a
rather rare occurrence for targeted events. The two most reasonable time windows have
an earliest time of arrival of -24 and -16 data clock cycles, with which most of the related
hits are covered.

108

5.2. Realization and Implementation of the neural z-Vertex Trigger

The incentive behind keeping the persistor’s time interval as small as possible has two
reasons. For one it reduces the mixing of TS not related to the event with those that are
related since they are only occurring around the event. Additionally storing for longer
time intervals has a severe impact on the implementation on FPGAs, as more storage and
logic resources have to be allocated to fulfil this task.

The amount of TS to be stored is additionally depending on the data rate of the used TSF.
The required memory depths relative to the configuration are shown in table 5.5 with the
assumption that the maximum amount of segments is received at every data clock cycle.
However, observations of the TSF’s behaviour have shown that only around 24 to 32 TSs
are actually received, as most event data is occurring in time-local bundles of many hits
within one clock cycle. Outside of these bundles single TS are received only sporadically.
Experimental investigations showed that memory depths of 16 to 32 TSs are sufficient
when half the data rate is used.

TSF Configuration Memory Depth
Half rate 10 TS 320 TS
Half rate 15 TS 480 TS

Full rate 640 TS

Table 5.5.: Required depths of persistor memory for different possible output configura-
tions of the TSF.

Realization

Each sTSF is sending its own independent data stream that is representing the different
SLs. As those are completely independent of each other, each can be processed by their
own instance of the persistor which is allowing fully parallel processing. As the NNT
only receives the stereo data, a maximum of four persistor instances is hereby required.
In comparison, the S3D discussed in chapter 6.1 additionally requires the five aTSF. As
the S3D is part of this thesis, the overall architecture of the persistor is therefore designed
to be flexible and parametrizable in order to be reused again

Persistor SL_0

Persistor_Top

NNT

31.75 MHz

Enable

Data

...

Persistor SL_7

TSF

127 MHz

Data

Figure 5.10.: Architecture persistor at the NNT.

109

5. The Neural z-Vertex Track Trigger

Since the TSF is transmitting data with the data clock, the receiving side of the persistor
is implemented to be clocked with 31.75MHz. Valid input can hereby be received in each
clock cycle. As a result, the persistor can spend at maximum one data clock cycle for
receiving and buffering in order to keep up with the pipeline of the trigger system.

Readout of TSs that are buffered is controlled by the reception of tracks from 2DS. Buffered
TSs are only processed when such a track arrives. In this case, a read enable signal is
implemented at the readout side. As the readout is basically decoupled from the com-
munication with the CDCTRG and rather used for internal processing on the FPGA, it is
clocked with the internal clock used for processing across the NNT. Its clock frequency is
much higher compared to the data clock, but mostly dependent on the implementation
of the algorithms. The output of the presistor is then the combination of all TS observed
within a specified time interval.

In order to support the required different memory depths and data rates, the persistor is
designed to be parametrizable. The parameters consist of the number of TS received at
each clock cycle, the time window of buffering and the total memory depth representing
the total amount of stored TS. The parametrization is defined in a VHDL package, that
is included throughout the processing architecture. This way, the module can be easily
configured by external tools such as the generation framework discussed in section 5.3.1.

expiration expirationexpiration expiration
...

TS invalidated in
current cycle

expiration
...

TS recorded in
current cycle

Last TS within
time window

Next TS to be
overwritten

Persistor_Memory

TS
Mem[K]

TS
Mem[Max]

TS
Mem[0]

TS
Mem[J]

TS
Mem[I]

...

Figure 5.11.: Structure of the persistor’s buffering of TSs together with the notation of in-
ternal pointers used for memory management. Valid entries are indicated by
green expiration, while invalid entries are marked red. The status of the most
important entries is additionally described with text below arrows pointing
to them.

Functionally the persistor examines a defined number of TS from the respective input
stream at each data clock cycle to determine whether they are active or not. Depending
on the provided priority information of each TS, the persistor will tag single entries as
valid and buffer them. Each valid TS is stored together with a counter that represents
the point in time at which it was recorded. This time counter is used to implement the
persistor’s time window mechanism. As soon as the value of the counter is exceeding
a pre-defined limit of temporal validity it is marked as expired and invalidated. At the
point in time in which a 2D track arrives, expired entries will not be used for further

110

5.2. Realization and Implementation of the neural z-Vertex Trigger

processing. The buffering itself is hereby realised as a ring memory, which is managed
by a set of pointers that are indicating the position of the most important entries such as
the start and end locations. Additionally, there is no protection against valid TS being
overwritten. This is due to the fact that newer TS are more likely to be related to the
event than older ones. This is supplemented by the selection of suitable TS discussed in
section 5.2.4.4. The selection prioritizes segments with smaller drift times, that typically
arriver later than others. The memory structure and functionality are meanwhile both
illustrated in figure 5.11.

Evaluation

The most important question in the evaluation of the persistor is which configurations are
actually feasible for implementation. In the best case with regards to the efficiency of the
NNT a rather large time window and storage is the most beneficial since it is not known
at which point in time a segment is exactly occurring. In the following, this interval is
referred to as DW for the data window. In addition to the supported time interval, the
total number of stored TS is also of interest.

Since the available memory on an FPGA is constrained, only a limited number of TS can
actually be stored within a time interval. The maximum number of TS to be stored by a
persistor at a given point in time is referred to as ST. The last configuration parameter that
is examined is the number of TS supported or received per clock cycle. This is generally
variable due to different configurations of the CDCTRG, however, the NNT can decide to
use only a part of the maximum number of TS itself to reduce the resource demand. In
the following, different configurations are examined.

In order to investigate the influence of the different parameters on the resources and the
achievable clock frequency, they were explored by implementing the resulting persistor
configuration. First, the module is evaluated serving just one SL which represents sequen-
tial processing with regard to the achievable clock frequency and resource consumption.
The results are shown in table 5.6. They are the result of the Synplify tools for the synthe-
sis and the tools provided by Xilinx for place and route. The FPGA used as a reference is
the one mounted on the smaller UT3, which is the XC6VHX380T.

DW/ST/NT Frequency in MHz LUTs total LUTs in %
16/16/10 242 650 <1
32/24/10 191 8 319 2
32/32/10 188 5 093 1
32/32/15 148 14 800 3
32/32/20 138 18 386 5

Table 5.6.: Figures of merit for frequency and resources of different persistor configura-
tions that can be used during operation for one sTSF.

From the results, it can be seen that the persistor’s resource consumption increases sig-
nificantly with the increase of configuration parameters. Especially when considering the
amount of TS to be received in a certain clock cycle, with the maximum configuration be-
ing 20 TS, a single persistor is already demanding a lot of resources with around 5%. At

111

5. The Neural z-Vertex Track Trigger

the same time, the achievable frequency of 138 MHz is quite low but is still fine for oper-
ation with a system clock frequency at 127 MHz on the readout side. The final selection
of the parameters is depending on the remaining system’s implementation and will thus
be determined for each of the used setups separately. The used setups and configurations
are discussed in section 5.4.2.

The NNT requires the implementation of several persistors for the reception of all TS. The
lowest overall latency can be meanwhile achieved by instantiating four persistors for all
of the sTSFs. Exploration of the implementation parameters with parallel reception of all
sTSFs were conducted for this purpose. Table 5.7 shows the results of these tests. The
parameter SL is representing then how many persistors were implemented in parallel.
The same tools and FPGA were used as before.

Looking at the achieved values the big influence of the number of TS per clock cycle NT
is obvious here. In the maximum configuration, the persistors of the NNT are already
demanding up to 27% of the available resources on the FPGA. In anticipation of the final
setup, the maximum configuration will not feasible for implementation together with the
core algorithms and is thus unsuitable for operation, since high resource utilization is
leading to routing bottlenecks and preventing timing closure. Meanwhile, a configuration
with 10 supported TS is much more resource-efficient with only around 1% resources
used, even reaching almost 200 MHz for some configurations. At the same time, a setting
of DW at 32 is probably too demanding, thus 24 seems to be a choice more likely to be
feasible.

The results are especially interesting considering the transition to the S3D. Due to its sup-
port of all nine SLs the resources demand is going to be extremely high. An alternative
approach could be advantageous here, that is tailored to the algorithms used there. Such
an approach is presented in section 6.3.2.1. For the NNT however there is no alterna-
tive solution without redesigning the CDCTRG, a concept and investigation for this was
conducted in section 6.4.

SL/DW/ST/NT Frequency in MHz LUTs total LUTs in %
4/16/16/10 242 3 837 1
4/32/24/15 214 3 571 2
4/32/24/10 191 5 093 1
4/32/32/20 130 97 260 27

Table 5.7.: Figures of merit for using multiple parallel persistors for all of the sTSF.

5.2.4. Architecture of the Preprocessing

After the reception of the separate input streams, the raw data from the sub-components
of the CDCTRG are transformed into a more suitable representation to be used by the
neural network. The input transformation consists of several separate processing steps,
some of which can be performed in parallel and pipelined. The architecture showing the
data dependencies between the individual steps is shown in figure 5.12.

112

5.2. Realization and Implementation of the neural z-Vertex Trigger

Figure 5.12.: Overall internal architecture of the preprocessing.

The entire processing pipeline is controlled by the arrival of 2D-Tracks. As soon as a track
arrives, data processing of the NNT is started and the pipeline is filled. This starts with
loading the TS as described before from the persistors. At the same time, the parameters
of the incoming track are loaded and transferred to the preprocessing.

5.2.4.1. Preprocessing of 2D Track Parameters

Figure 5.13.: Architecture of the preprocessing of 2D tracks with parallel processing of the
SL’s priority position.

The preprocessing of 2D-Tracks has two responsibilities in the overall architecture. Firstly
it calculates the angle alpha of the track for each SL. This value is used as a direct input
to the neural network. The second responsibility is the calculation of intermediate values
that are used for determining the other two remaining inputs of the network, either di-
rectly or indirectly as it is also important for the selection of the most suitable TS for the

113

5. The Neural z-Vertex Track Trigger

estimated track. This intermediate value is the reference angle for phi, which is used later
on to determine the distance to a single TS referenced as phi_rel.

While alpha can be calculated independently from the others, the value is needed to calcu-
late phi_rel. This means that the two output values of this module cannot be calculated in
parallel and must be performed sequentially. For this reason, the entire architecture was
divided into two parts reflecting the calculation of alpha and phi_rel. An illustration of
the architecture is shown in figure 5.13. In the following, the implementation is discussed,
whereby the realization of alpha is presented first, reflecting the internal data flow

Implementation of the alpha Calculation

The input value alpha is calculated directly from the 2D-Track parameter omega. The
omega value received from 2DS hereby represents the coordinate in the respective 2D-
Hough Map. To be used for internal processing it has to be converted from the Hough
cell coordinate. An arithmetic conversion on the FPGA is quite complex since it features
divisions as shown in equation 5.8 [100]. After that conversion, the value has to be con-
verted to alpha according to equation 5.9 [91]. The best way to avoid this calculation is to
implement the mapping in a look up table. Here all the values are calculated in advance
and stored in memory. The calculation and instantiation of the respective modules are
then part of the semi-automated framework presented in section 5.3.1. Overall the input
parameter omega can assume 67 different values using signed representation. The look
up table based implementation is hereby supporting the entire input range to achieve the
best possible solution. Lower coverage can be used to reduce resource consumption but is
only investigated as a fallback solution in case implementation is not feasible otherwise.

pt = 0.3 ∗ 34/ωinput (5.8)

α = arcsin((rSL,pr ∗ pt)/2) (5.9)

Since alpha must be calculated separately for each SL and is also depending on the priority
position of the active TS, the look up table must be calculated and created 9*2 times in
total. However, the calculation for the different SLs is completely independent of each
other, such that they all can be processed in parallel. Since a TS belonging to a track
can only inhibit one of the types of the priority position, only one of the alpha values
calculated for each SL is actually is required and used for further calculation.

The used value of alpha thus depends on the selected TS as the priority position needs
to be considered. The selection is meanwhile calculated in the hit selection, which is
performed in a later step within the processing pipeline. Its result is then only available
after preprocessing of the 2D track. To compensate for this difference in time, alpha is
calculated in advance independent of the received TS for both types of priority, primary
and secondary position, in parallel. The value to be used for the neural network is then
selected later on based on the selected TS, while the other value is discarded. The main
parameter of this module is the precision in bit width which is used for the representation
of the value.

114

5.2. Realization and Implementation of the neural z-Vertex Trigger

The module was synthesized with the Synplify tools for three FPGAs, to evaluate its key
characteristics. These FPGAs are the possible options available for the UT3, UT4 and the
UT4+. The synthesis results for the module are shown in table 5.8. Additionally to the
different possible FPGAs, another test with 24 bit representation of the value α was evalu-
ated. The minimum number of bits for which no major deviations were determined at the
estimation of the z-Vertex is at 13 bits. However, this is a truncated representation as 24
bits are needed to recreate the arithmetic solution entirely. The extended representation
is primarily investigated in case higher precision is needed for operation in which the
smaller a bit width significantly impacts the estimation’s efficiency. As this might only
occur in later stages of the experiments, it is reasonable to explore this configuration be-
forehand to have the numbers readily available. The module is characterised in terms of
slices and BRAM. The BRAM is hereby used for storing the results of the ω conversion.
This is typically the more appropriate solution when compared to Slice-based memory
in the presence of relatively high bit- and address widths. Overall the implementation
requires one single BRAM for each instance while achieving fairly high clock frequencies
of up to 300MHz. The demand for BRAM is doubled when a 24 bit representation is used,
while the frequency is slightly reduced. Both implementations yield reasonable character-
istics in order to be used within the final system, the same holds true for the UT4 versions.
The overall latency for processing is hereby at one clock cycle throughout all versions.

Category UT3 13 Bit UT3 24 Bit UT4 13 Bit UT4+ 13 Bit
Slice LUTs total 86 152 83 141

BRAM 1 2 1 2
Frequency in MHz 304 289 331 318

Latency in Clock Cycles 1 1 1 1

Table 5.8.: Synthesis results for the calculation of crossing angle alpha.

Implementation of the phi_rel Calculation

Similar to the processing of alpha it is necessary to convert the track parameter phi that is
sent by the 2DS. It is as well sent encoded as the coordinate within the hough map. This
approach of transmitting coordinates might seem to be unnecessary overhead since con-
version approaches have to be implemented at every receiver. However, it is significantly
reducing the required bandwidth, which is, in turn, freeing up bandwidth for additional
track estimations. Considering that achieving a high bandwidth is a problematic task
since the optical transmission does not always operate at its maximum capacity, this ap-
proach is much preferred over sending the complete value.

Again repeating the conclusions from the implementation of the conversion of alpha, it
is unwise to implement the conversion algorithmically due to its complexity [100]. As
a result, it is similarly implemented in a look up table. This table has 83 entries, which
represents the estimated phi value for a track using 13 bit resolution as a fixed point value.
Since this step of the processing can be done independently of alpha and in order to keep
the overall latency as small as possible, it is scheduled into the first clock cycles of the
entire processing and performed in parallel to the calculation of alpha. In the next clock

115

5. The Neural z-Vertex Track Trigger

cycle both values, alpha and the translated phi, are available and used. The operation
in the second stage of processing is described in equation 5.10 [91]. With regards to the
schedule, at first, the subtraction is performed while the coefficient NSL

Wires/2pi is loaded.
This coefficient depends on the number of wires in a respective SL and thus varies across
instances of this module dedicated to service one SL. The result is a pre-defined TS ID that
represents the best selection in terms of matching the 2D-Track.

IDSL,pr
re f = (phi− alphaSL,pr) ∗ (NSL

Wires/2 · pi) (5.10)

The synthesis results for this module are shown in table 5.9 and were created similarly to
the approach taken for alpha. Two separate bit widths were considered here, that is 13
and 24. These bit widths were chosen since they represent the best options in terms of the
resource-accuracy trade-off and the maximum bit width. In all cases, a frequency of over
200MHz can be achieved. To implement the conversion of phi, one BRAM is required for
the look up table. The multiplication can be meanwhile implemented by either using a
DSP or slices. The latter option is especially of interest when looking forward towards
the later processing for the neural network that is mainly relying on the usage of DSPs.
The problem with using slices is typically the reduction of the maximum clock frequency.
However, results show that a clock frequency of over 200MHz can still be achieved, while
the resources remain relatively low. This option is considered in the configurations used
for operation.

Category UT3 UT3 SRAM UT3 24 Bit UT4
Slice LUTs total 31 425 77 31

BRAM 1 1 1 1
DSP 1 0 1 1

Frequency in MHz 284 223 248 313
Latency in Clock Cycles 3 3 3 3

Table 5.9.: Synthesis results for calculating the reference IDs that are matching the received
track.

Evaluation of the Complete 2D Processing

The synthesis results for the entire transformation of the 2D-Track parameters are shown
in table 5.10. Here the results are encompassing the implementation for all SLs and prior-
ities. These are additionally representing fully parallel operation and thus the best char-
acteristics in terms of latency. In this configuration, the maximum latency is at three clock
cycles. It is hereby not the sum of both sub-modules as their processing is interleaved to
save one clock cycle. This latency is achieved with a possible clock frequency of over 200
MHz. Slightly lower frequencies are meanwhile achieved when using an implementation
based on slices.

116

5.2. Realization and Implementation of the neural z-Vertex Trigger

Category UT3 UT3 slices UT3 24 Bit UT4
Slice LUTs total 681 3 832 1 147 631

BRAM 27 27 36 27
DSP 18 0 18 18

Frequency in MHz 268 219 220 295
Latency in Clock Cycles 3 3 3 3

Table 5.10.: Synthesis results for the entire preprocessing of 2D track parameters.

5.2.4.2. Calculation of the phi_rel Input Variable

As mentioned at the beginning, the value IDSL,pr
re f that is one of the results generated by the

preprocessing of the 2D-Track, is only an intermediate value used to calculate phi_rel. For
all TS, this input determines the deviation of the found 2D-Track relative to the position
of the TS within the CDC. At this point, there is a separation of the processing into axial
and stereo TS. As the former are already matched with the track and as a result are unique
throughout the entire preprocessing, as such only one TS has to be processed here. Stereo
TSs on the hand are different since they are not matched with the track. At this stage, it
is unknown whether they are related at all since the matching is performed later on at
the hit selection. As a result, all present TSs have to be processed within this stage of the
preprocessing.

Figure 5.14.: Architecture of the module for the calculation of phi_rel.

The result of this calculation is the phi_rel value as well as a flag indicating whether the
difference between received TS and the reference is within a pre-defined acceptance range
defined by the respective SL. These acceptance ranges depend on the trained net and have

117

5. The Neural z-Vertex Track Trigger

to be updated at the design time continuously during the lifetime of the NNT. Updating
these ranges across the entire processing structures of the NNT is the responsibility of
the semi-automated framework, which is generating the configuration parameters as part
of included packages. In case that a TS is out of range, it is invalidated and not used
further in the processing. The consequences are different depending on the orientation of
the invalidated TS. In the case of an axial, this means that the whole SL is not processed
further. With regards to stereo orientation, this has less severe implications, as invalidated
TS will just be removed from the pool of possible choices for the hit selection.

The calculation of phi_rel additionally depends on the hit position of the priority wire
and its supplementing Left Right information (LR) bits. Depending on whether it is left
or right, an offset representing this deviation is added or to the difference between IDSL,pr

re f
and the TS ID. This offset is stored in registers and loaded depending on the current LR
information. The algorithmic operations are additionally described in equation 5.11 [91].

φrel = (TSID + 0.5 · LR¯IDSL,pr
re f)%NSL

wires (5.11)

Processing of all SLs is independent of each other at this stage and can thus be imple-
mented for fully parallel execution. The degree of parallelism is one of the possible pa-
rameters of this module together with different bit widths for the reference ID and accep-
tance ranges. The architecture together with its parameters is illustrated in figure 5.14.

The synthesis results for the module are shown in table 5.11. With full parallel processing,
the overall latency is at one clock cycle at an achievable frequency of up to 200MHz. This
is hardly reduced by increasing the bit width to 32 bits instead of 20. At the same time,
resource consumption is very low with even fully parallel execution.

Category UT3 20 Bit UT3 32 Bit UT4 20 Bit
Slice LUTs total 10 246 23 630 9 504
Slice Register 181 348 179

Frequency in MHz 254 244 271
Latency in Clock Cycles 1 1 1

Table 5.11.: Synthesis results for the calculation of phi_rel.

5.2.4.3. Estimation of the Event Time

One of the inputs for the MLP is the estimated drift time of each TS. This can be calcu-
lated by analysing the individual drift times of the TSF. Within the CDCTRG this task is
the responsibility of the ETF. However, that component is still under development and
thus cannot be used in the early stages of the NNT’s operation. In order to still have an
operational version of the NNT that can be evaluated even before the ETF is available, an
alternative estimator was developed which is the focus of this section.

118

5.2. Realization and Implementation of the neural z-Vertex Trigger

The alternative approach is based around an event time estimator module that is imple-
mented within the NNT. Functionally it analyses all remaining TS after the hit selection
and chooses the smallest priority timing that is then assumed to be the event time. More
detailed analysis and comparison of the viability of such an estimated event time were
investigated, which showed that the approach is able to achieve reasonably good preci-
sion [57].

Architecturally, the module receives the TSs that were selected by the hit selector as the
input data stream to be processed. The amount of TS arriving at each clock cycle is hereby
always limited to a maximum of nine TS. As a result, the estimator does not have to be
designed to be flexible, as this number is representing the present SLs that will not change
over time. The logical implementation is then based around a tree-structure comparison
of the separate priority timings. Here, invalid TS are annotated with a timing value of -1
so that they are not taken into account. Otherwise, the default value for invalid TS would
be set to zero, which would be incorrectly taken into consideration and even be selected
as the smallest and thus the event time.

The synthesis results for the event time estimator are shown in table 5.12. Since the re-
sources are very small, below 1% of the available SRAM-LUTs, they are given as absolute
values. The module is hereby operating within a latency of one clock cycle at a frequency
of nearly 250 MHz for both versions of the UT.

Category UT3 UT4
Slice LUTs total 337 337
Slice Register 90 90

Frequency in MHz 249 281
Latency in clock cycles 1 1

Table 5.12.: Synthesis results of the event time estimation.

A special configuration of the event time estimation was developed later on in the ex-
periment, after studying the drift times recorded from collisions. Many of the observed
events included selected TS that had priority timings much smaller than most of the other
TS. While this is not a problem in the original concept of the NNT that is using the ETF, it
leads to high drift times when the smallest timing is assumed to be the event time. To ad-
dress this issue, there are two options for using the drift time at the MLP in case they are
exceeding the maximum allowed value. These options are either discarding the respec-
tive TS or setting its value to pre-defined bounds that represent the maximum/minimum
allowed values. Further analysis showed that a significant fraction of these TS with high
deviation in their priority timings are having stereo orientation. As a result, the issue can
be additionally addressed by only using the axial TS for the estimation of the event time.
While there is still a chance that these posses the same problem, it is occurring fat less
often compared to stereo TS. Additionally, this issue can be addressed at the 2DS with an
update of the firmware. While the presented solutions are mitigating the effect of such
priority timings, they are not completely solving the issue. The best solution in terms of
the impact on the accuracy of the estimation is the extension of the priority timing bit
width by incorporating the clock counters of the respective TSF. This is directly address-

119

5. The Neural z-Vertex Track Trigger

ing the source of the problem, which is an overflow in the 9 bit encoded priority time,
which can be solved by extension to 13 bit as is done at the 2DS [62].

5.2.4.4. Track Segment Selection

At any given point in time, several TS can be active simultaneously within the same SL.
While only segments with axial orientation are unique and already matched to the asso-
ciated 2D-Track, one suitable TS out of the pool of available TS must be selected for each
layer in case of stereo orientation. The selection of this TS is algorithmically defined by a
set of rules [91]. With regard to the implementation on the FPGA, the implementation of
these rules is the responsibility of the hit selection module, which is the focal point of this
section.

Firstly the interfaces of the module are defined. The input data are all of the TSs that have
been read from the persistor when a 2D-Track arrived. Since this number is variable, the
selection must be capable of processing a variable number of TS. The data flow between
the persistor and the following components is meanwhile controlled by synchronous en-
able and valid signals. The output of the module is then the complete set of the selected
TS to be used for the neural network to estimate the z-Vertex.

Opt Register

Rule
Compare

Rule
Compare

...

Opt Register

Rule
Compare...

...

Hit Selector

ParametersRule
Compare

Rule
Compare

Rule
Compare

Rule
Compare

Number of Inputs
Register Stages

Rule Priority

Figure 5.15.: Architecture of the track segment selection module.

For each SL, the module must select exactly one TS, whereby there are no dependencies
between the individual SLs. This means that the selection can be carried out in parallel
for all SL. In addition, the rule-based logic for selecting the TS is independent of the layer
thus the module can be reused, without the need for additional parameters. The overall
architecture is illustrated in figure 5.15.

The synthesis results of the module are shown for both relevant platforms UT3, in ta-
ble 5.13, and UT4 in table 5.14. Three configurations of supported numbers of TS were
hereby examined, namely for 8, 16 and 32. In addition, the resource consumption for all

120

5.2. Realization and Implementation of the neural z-Vertex Trigger

fully parallel solutions and one sequential solution are shown, whereby the sequential so-
lution requires four clock cycles to process all SL. The hit selector processing a pool of TS
that is bound to 8 is thereby able to achieve a clock frequency close to 200 MHz. However,
typically more than eight inputs can be expected during operation with collisions, as such
higher numbers were explored. The 8 TS version is thus primarily of interest for opera-
tion with a smaller amount of detector data, for example during cosmic ray tests. The 16
input option is meanwhile already only operational with much lower clock frequencies,
though they are still sufficient for operation with the 127MHz system clock. Achieving
this frequency becomes more critical when supporting up to 32 inputs. In this option, not
even the system clock can be reached as the maximum frequency is estimated to be at 120
MHz. When using the UT3, the only solution for this is to introduce another clock cycle
into the processing pipeline in order to increase the achievable frequency, although this
will, in turn, increase the overall latency. With such a setting, it is possible to achieve a
frequency of over 200 MHz for 32 TS while the even more demanding 64 TS can be still
operated with system clock. However, the resource utilization of 64 TS configuration is
very high with nearly 12% of the FPGA’s SRAM-LUTs. Due to the newer technology, the
characteristics of the UT4 are consistently better, here even the 16 TS option can be oper-
ated within one clock at 200MHz, while the 32 TS option can be operated with the system
clock within one clock cycle latency.

UT3 Category 8 TS 16 TS 32 TS 64 TS 32 TS 2Clk 64 TS 2Clk
LUTs sequential 532 781 1 031 4 482 1 296 4 782

LUTs parallel 4 770 9 594 18 801 40 338 11 664 42 338
Frequency in MHz 206 194 120 99 221 172
Latency in Cycles 1 1 1 1 2 2

Table 5.13.: Synthesis results of the hit selection for the UT3.

UT4 Category 8 TS 16 TS 32 TS
Slice LUTs total 4 424 8 900 17 440

Frequency in MHz 249 231 154

Table 5.14.: Synthesis results of the hit selection for the UT4.

5.2.4.5. Scaling of Network Input Variables

Before the preprocessed inputs can be used by the MLP, they must be scaled to a value
range within [-1:1] [91]. Here, the individual SLs can be processed separately again, so
that all nine triples of inputs can be processed in parallel. In addition, the individual com-
ponents of the triples are also independent of each other and can thus be processed in
parallel. A separate module has been implemented for each individual component of the
triple. Requirements with regard to flexibility are only required here due to different bit

121

5. The Neural z-Vertex Track Trigger

widths for the inputs and outputs. In the following, the implementation and character-
istics are discussed. Special consideration belongs hereby to the scaling of alpha, which
is algorithmically simple, as it can be implemented by bit shift operations. The scaling of
other inputs is more demanding thus separate modules were designed. The entire archi-
tecture of the scaling is additionally shown in figure 5.16.

Figure 5.16.: Architecture for scaling the input triples before being processed by the MLP.

Scaling of the Drift Times

Scaling of the drift time is based on the relationship between the priority timing of a
single TS and the used event time. It is basically the difference in event and priority
time. The sign of the result is then determined by the LR information of that TS. Left
will turn the value negative while right information will keep it positive. The result is
then further processed with a correction that shifts the fractional part of the value to the
correct position. This is implemented by a bit shift that is depending on the configured
bit width.

Besides the scaling operation itself, this module includes the bounding of the drift time
to the minimum and maximum allowed values. If the difference between event time and
drift time is higher than a defined maximum threshold, the value is set to this threshold.
In the base implementation, this value is defined as 256 which corresponds to a resolution
in 2 ns. The threshold can however also be configured using the VME configuration regis-
ters. Bounding of the drift time to the minimum value only applies when axial-only event
time estimation is used. In this case, it is possible that selected stereo TS have smaller drift
times than the estimated event time. The drift time of this TS is then set to zero.

Scaling of phi

Scaling the value phi_rel is performed by subtracting an offset that is depending on the
available TS ID within the respective SL. The offset is stored in memory beforehand and
calculated at design time for quick access. It is dependent on the current CDC configura-
tion and is implemented as part of the firmware generation framework. When adjusting
the algorithm or re-training the network for a different detector geometry, the framework
will update the respective parameters.

122

5.2. Realization and Implementation of the neural z-Vertex Trigger

Evaluation of the Scaling Module

The synthesis results of the scaling module for both full parallel and sequential processing
are presented for the UT3 in table 5.15. Generally, the resource consumption is small for
both options. One thing to consider is that DSPs are used in this implementation. As
one of the general ideas for the later MLP is to allocate DSP for neuron processing, here
again, an implementation as slices can be further investigated is saving of DSP resources
is required. The achievable clock frequency when using DSPs is at 272 MHz, well above
the minimum target of 127 MHz.

Category Sequential Parallel
Slice LUTs total 76 895
Slice Register 90 398

DSPs 1 9
Frequency in MHz 272 272

Latency in Clock Cycles 9 1

Table 5.15.: Synthesis results for the implementation of the scaling of input variables.

5.2.4.6. Overall Evaluation of the Preprocessing

In the previous sections, all components of the preprocessing were presented and char-
acterized individually. In this section, the entire preprocessing is evaluated. For this,
the overall resource and latency characteristics are shown in table 5.16. On the UT3, the
highest clock frequency that can be reached is achieved by using an implementation of
multiplications as slices across all modules. This comes with the cost of additional de-
mand for slices resources, however, it can be argued that freeing up DSPs for the MLP
is of higher priority. Overall, the additionally required resources amount to around 2%.
Due to the relatively low increase in resources, the option using entirely slices for logic
operations is preferred. Even for the option using DSPs the utilization is as well quite
low, as it only demands around 7% of the available slices of the UT3. The same holds true
for the implementation on the UT4 but with even better resources utilization ratios.

The results show that the preprocessing is implementable on the chosen UT3 without
demanded excessive resources. As the NNT has to fulfil strict latency requirements, the
focus is shifted on that part of the architecture. The longest path of preprocessing in terms
of required clock cycles is represented by the calculation of the event time estimation.
The reason for this is that it can only be performed after all internal processing stages,
except for the scaling, have finished. The latency of this path is at 13 clock cycles with
an operating frequency of around 200 MHz. However, it is either only slightly above
that frequency. Looking ahead at the integrated NNT, it is highly unlikely that these
frequencies will be achieved when the MLP is included, which is going to demand the
highest amount of the resources. However, it is highly likely to support operation with
the targeted system clock frequency at 127 MHz. The bottleneck for the frequency within
the preprocessing is located at the selection of the TS to be used. However, at this point,

123

5. The Neural z-Vertex Track Trigger

there are still possibilities to achieve higher frequencies if necessary. One such possibility
is the usage of the UT4, which is capable of achieving much higher frequencies in general
due to the newer FPGA. The other option is to request the bigger UT3 that is based on the
XC6VHX565T Virtex-6 FPGA, as it offers significantly more slices. However, this FPGA is
allocated to the 3DS and should only be used in the worst case.

Category UT3 Slices UT3 DSP UT4 VU80 UT4 VU125 UT4+
Slice LUTs total 27 515 19 179 25 506 25 506 25 199
Slice LUTs in % 7 5 6 % 4% 4%
Slice Registers 14 143 10 500 13 095 13 095 12 937

DSPs 0 18 0 0 0
BRAM 27 27 27 27 27

Frequency in MHz 206 199 254 254 272
Refresh Rate 1 1 1 1 1

Latency in Cycles 13 13 13 13 13

Table 5.16.: Synthesis results for the entire preprocessing of the NNT.

Besides the latency and clock frequency, the implementation is processing particle tracks
at every single data clock cycle. It is thus capable to accept incoming 2D-tracks at every
cycle. Since it can process a track at every data clock cycle, multiplexing can be employed
to process the in total four tracks at the higher internal clock frequency within one data
clock cycle. As it will be shown in section 5.2.5 it is due to the refresh rate of the MLP,
that multiplexed processing of multiple tracks per data cycle is not employed for the im-
plementation on UT3, as it does not offer significant improvements. However such mul-
tiplexing can be used for processing on UT4, which can allow for instantiation of multiple
MLPs.

5.2.4.7. Summary

This section introduced the FPGA-based realization of the preprocessing for the NNT. It
consists of three parallel data paths representing the different inputs to the MLP. Each
data path is processed by a set of components that are specific to this application, but are
designed to be flexibly configured in case changes to the architecture are to be made. The
flexibility covers parameters such as the bit width, degree of parallelism and number of
processed TS. Typical parameters to be used during operation were evaluated, with the
key figures about resources, latency, and throughput provided for the targeted FPGAs.
The feasibility of the architecture mainly depends on the number of TS to be processed
in parallel. This number is the limiting factor for both latency and resources. The base
configurations of 16 and 24 TS are well within reach of being realizable for even the older
UT3 platform. Higher TS counts that are 32, are on the other hand infeasible for the UT3,
but possible for the UT4, and thus for future upgrades.

124

5.2. Realization and Implementation of the neural z-Vertex Trigger

5.2.5. Architecture of the Multi Layer Perceptron

The architecture of the MLP is mainly based on the considerations presented in section 4.4.
As low latency is representing the most strict requirement to be fulfilled for the NNT, the
tree-based architecture introduced in section 4.4.1 is used for the realization. In addition
to this choice, multiplexed operation as discussed in section 4.4.1 will be employed. The
reason for this choice is the total amount of MAC operations to be performed within the
targeted network topology. This amount is exceeding the total number of DSPs available
on the FPGAs supported by both the UT3 and UT4. Hence a fully parallel implementa-
tion is not possible for the platforms that are available for hosting the NNT. This choice
is accompanied by the selection of an appropriate multiplexing factor that allows imple-
mentation without reducing the performance below the established requirements. The
lowest latency can hereby be achieved by using a multiplexing factor of three. As a result,
three MAC operations are mapped onto one DSP with the processing of one neuron being
stretched across three clock cycles. This factor will result in resource utilization of 90% for
the DSPs. Such a high utilization ratio is highly unlikely to culminate in timing closure for
the FPGA design. This was observed for all setups of the NNT except the early prototype
presented in section 5.4.2.1.

In order to increase the likeliness of achieving timing closure, a multiplexing factor of five
is used in all of the setups used for operation. While this is increasing overall latency, the
remaining latency budget is sufficient to compensate for it. Using this factor, both latency
and resources are within the available resource budget on the targeted FPGAs, however,
this choice results in a throughput below the maximum input rate. Using a multiplexing
factor of five leads to an input refresh latency of six clock cycles. The high utilization
ratio, meanwhile, allows only to implement one instance of the network. To match the
incoming rate of tracks, a clock frequency of around 200 MHz has to be achieved. Im-
plementation results show that this is not feasible for the Virtex-6 that is mounted on the
UT3. However, it is feasible for the Ultrascale FPGA that is used on the UT4. The overall
strategy here is to wait for the integration of the UT4 until the NNT is going to reach the
required throughput. Meanwhile, during the time in which operation has to be fulfilled
by the UT3, a reduced setup is used, that is not capable of reaching this throughput. How-
ever, FIFOs are used to delay newly incoming tracks for later processing. This approach is
overall feasible and in accordance with the early stages of the experiment. In these stages
only a rather low luminosity is achieved and thus fewer tracks are successively passing
through the pipeline. Experimental data showed hereby that tracks are received at most
for four successive clock cycles, which defines the sizing of the FIFOs in order to not lose
any arriving tracks. In addition, this approach does not lead to exceeding latencies as the
measured arrival times for trigger signals at the GDL are still within the targeted time
window. The trigger system is then scheduled to be transitioned to the UT4 by the time
high luminosity operation is going to start. This configuration together with the upgrade
schedule for higher throughput is already sufficient to fulfil the minimum requirements
for the NNT during high luminosity. The activation function is meanwhile implemented
using pre-calculated content with all optimization options listed in section 4.3 being en-
abled. The reasoning behind that is the sufficiently low bit width used for the activation
function, which avoids inefficient implementation.

125

5. The Neural z-Vertex Track Trigger

While the smaller feature size of the UT4 is solving the throughput problems of the im-
plementation for the UT3, it is still below the maximum achievable throughput. Further
improvement, however, has to be achieved using parallel instances of the NNT. The lim-
iting factor for this is the resource utilization. To address this shortcoming two additional
optimizations, that were introduced in section 4.4, will be considered. These are pipelin-
ing across different layers of the network and heterogeneous resource usage. Addition-
ally in order to facilitate resource saving, neuron multiplexing will be employed. The
best configuration was achieved for using a MAC multiplexing factor of three and neuron
multiplexing factor of three. Using these parameters a significant reduction of required
DSPs can be achieved.

Category UT3 UT4 UT4_Pipe UT4_Pipe_H
MAC_MUX_HL 5 5 3 3
MAC_MUX_OL 5 5 3 3

Neuron_MUX_HL 1 1 3 3
DSPs 433 433 261 243

Slice LUTs in % 33 12 23 26
Frequency in MHz 127 250 225 150

Refresh Rate 6 6 6 6
Throughput in MTracks 21 32 64 41

Table 5.17.: Listing of the properties for different investigated architectures used for the
MLP.

All these configurations are summarized in table 5.17. They are hereby all preferable for
one of the optimization dimensions. Architectures based on tree-based neuron processing
without pipelining are denoted as UT3 and UT4, which is representing the platform for
which these results were achieved. Meanwhile, UT4_Pipe is representing layer pipelining
and UT4_Pipe_H the usage of heterogeneous resources. The presented throughputs for
these two options were hereby generated by using two parallel instances of the NNT,
which was made possible by the reduction of required DSP resources. In addition, all
schedules are illustrated in figures 5.17, 5.18 and 5.19.

126

5.2. Realization and Implementation of the neural z-Vertex Trigger

Figure 5.17.: Schedule of the base configuration used at the beginning of NNT opera-
tion [Poe18].

Figure 5.18.: Schedule of the pipelined configuration that achieves the lowest la-
tency [Poe18].

Figure 5.19.: Schedule of the pipelined configuration that achieves the lowest resources.
This schedule is used for both UT4_Pipe and UT4_H [Poe18].

127

5. The Neural z-Vertex Track Trigger

5.2.5.1. Analysis of the Memory Footprint

Runtime loading of weights is one of the key concepts of the NNT. The initial use case is
hereby the loading of specialized networks for compensation of missing CDC data. This
idea can be expanded beyond that use case by for example using specialized networks
depending on predefined geometric areas of the detector, similar to the initial concept of
the trigger. The general question is hereby, how many networks can be stored and loaded
online during the experiment’s operation. In the following both off- and on-Chip mem-
ory usage is analysed in order to answer that question. This investigation will however
be constrained to the general topology used for the neural networks of the NNT.

Off-Chip Memory for Storing Runtime Networks

Off-Chip memory is providing the most resources for the storage of a network’s weights.
However, its usage is coupled with much higher latency added to the overall processing.
In addition to this, it is impacting the architecture on the FPGA especially in terms of the
required resources. In order to interact with off-Chip memory, additional logic is required
that is handling the protocol. The additional latency is meanwhile depending on the
amount of data to be transmitted. For this, the total data size of a network according to
the targeted topology is calculated using equations 5.12.

WeightMemoryHL = (InputsMLP · NeuronsHL + Bias) · BitWidthHL
= 28 · 81 · 18Bit = 40 824Bit

WeightMemoryOL = (NeuronsHL + Bias) · NeuronsOL · BitWidthOL
= 82 · 2 · 18Bit = 2 952Bit

WeightMemoryMLP = WeightMemoryHL + WeightMemoryOL

= 40 824Bit + 2 952Bit = 43 776Bit

(5.12)

Assuming the basic configuration of the NNT that uses a bit width of 18 bits for each
weight, 81 neurons in the HL, 27 input values and 2 neurons in the OL, the footprint of
the network to be stored, without any compression, is at about 5 KByte. Using this value
it is theoretically possible to store up to 16 different networks in the BRAM of the UT3.
This is meanwhile not considering the impact of the effects on timing and routing for
the signals. FPGAs generally have comparatively small on-Chip memory, but this allows
access with very low latency. However, to store more than the theoretically possible 16
networks, external memory must be used. Since the latency for the calculation of the z-
Vertex is a real-time requirement, it has to be examined whether the transfer of weights
from the external memory is fast enough in order to stay within the latency budget.

Off-Chip memory can only be used when using a dedicated memory controller module.
Such a module is provided by Xilinx with the MIG IP core [119]. In order to study the
latencies for using off-Chip memory, this IP core is evaluated. The total latency for load-

128

5.2. Realization and Implementation of the neural z-Vertex Trigger

ing the weights of an entire network can be determined by equation 5.13. The equation
consists of two parts that are on the one hand the ReadPreparationTime and the Data-
TransferTime on the other. The ReadPreparationTime is constant and necessary to set up
the transfer while the DataTransferTime is representing the actual latency for the data
transfer and is depending on the amount of data to be transmitted. The ReadPrepara-
tionTime is fixed to 48 clock cycles when using the UT3. Meanwhile, when using the
targeted topology the DataTransferTime is at 171 clock cycles until all data is transferred.
The total latency for loading one network is thus at 219 clock cycles. The IP core can
meanwhile be operated with a clock frequency of up to 400 MHz. This results in an up-
date of the weights with a latency of 500 ns. This is already well above the maximum
processing latency available for the NNT in its base configuration using the 2DS, which
is set to around 300 ns. However, an upgraded overall architecture is presented through-
out chapter 6, which is implementing both tracking approaches together on one FPGA.
This will increase the maximum latency budget to around 800 ns putting usage of off-chip
memory well within reach of being feasible. Further investigation for using standard off-
Chip memory is part of the future work.

WeightUpdateTime = ReadPreparationTime + DataTrans f erTime
= 48cycles + 171cycles = 219cycles

(5.13)

DataTrans f erTime =
NumWeights ∗ BitWidth

MemoryBusWidth

=
2432 ∗ 18Bit

256bit/cycles
= 171cycles

(5.14)

TotalNetworkTime = Inter f aceTime + WeightUpdateTime + MLPTime
= 10cycles + 219cycles + 20cycles

(5.15)

On-Chip Memory for Storing Runtime Networks

Considering the previous analysis it seems impossible to use off-Chip memory for the
NNT with the initially allocated latency budget. This does not mean that the idea of
dynamically loaded networks is not feasible, instead, on-Chip memory can be explored.
While being much smaller in terms of the provided storage, the question remains how
many networks could be stored. This number was investigated for both possible plat-
forms, UT3 and UT4. In both cases, network weights were stored in BRAM and not in
distributed RAM, as it is less efficient for this type of data. The FPGA available on the
UT3 is capable of storing up to 8 networks in parallel, with the overall BRAM demand
increasing to 66% [Wu16]. The UT4 is much more powerful with its upgraded FPGA,
providing six times more BRAM blocks compared to the UT3. As a result, it is capable of
hosting up to 48 networks, without consideration of resource optimization due to weight
reuse across all these networks.

129

5. The Neural z-Vertex Track Trigger

5.3. Tools and Monitoring for the Neural z-Vertex trigger

One of the requirements of the NNT is flexibility with regards to being reconfigured with
a specific set of network weights depending on the current state of the experiment. This
applies to not only the network itself but also its preprocessing. An adaptation of the
overall architecture should be carried out as automatically as possible to save time and
reduce the risk of errors. For this, a semi-automated framework for firmware generation
was developed and is presented in the following. In addition to this, all aspects regarding
the DQM will be presented, together with the toolflow and methodology for verification.

5.3.1. Semi-Automated Generation of Firmware

Preprocessing
Architecture

Algorithm

Experiment
Simulation

1

2

Implementation

HW/SW
CoSim

FPGA

Trigger Analysis

IP-Core
Library

3

4

5

Preprocessing
Analysis

Network
Training

Configure/
Optimize

Network
Architecture

Figure 5.20.: Semi-automated design flow used for the generation of NNT firmware. The
sequence of the design flow is indicated with numbered circles.

The FPGA-based implementation of the NNT has several parameters that have to be cho-
sen during the design time, such as the bit widths to be used internally and the weight
sets of the neural networks. Especially the latter type of parameters is depending on the
current status of the experiment and is going to change frequently over time, which is
the main motivation for developing a framework that generates all files related to VHDL

130

5.3. Tools and Monitoring for the Neural z-Vertex trigger

without too much additional manual involvement. A graphical representation of the en-
tire design flow that is supported by this framework is shown in figure 5.20 and will be
discussed in more detail in the following. The presented framework is hereby based on
the Ref. [Bae18a] by this thesis’s author.

The two domains of algorithm and FPGA-based design are separated in the design flow.
Here, the algorithmic side is using a simulation of the experiment to train the network
with simulated or experimental trigger data and mostly handled by physics experts. At
the same time, it is the part at which the preprocessing is refined and evaluated. This
process is going to be active and iterated throughout the lifetime of the NNT. Examples
of iterative changes after the initial concepts are the TS-based event time estimation and
the drift time threshold approach. Information between both domains is conducted by a
self-defined configuration file, which is described in section A.1.2.

The FPGA-based design is then supported by a custom framework written in C++ that
takes care of all tasks related to translating the configuration file into an architecture spec-
ification that can be implemented. Based on a predefined and implemented IP core library
the framework selects and parametrizes the required IP cores as defined in the configu-
ration file. In addition to that, it is loading SW-based models of the IP cores, that were
custom-developed in order to emulate the new processing architecture. This has the goal
to generate reference input and output data samples to be used for subsequent validation.

As two groups are working parallel to each other abstraction is used for the fast and effi-
cient design of trigger algorithms. Tasks in the flow are then separated in algorithm and
physics specific which are shown in green, while tasks that are part of the FPGA-based de-
sign are coloured blue. Following traditional approaches to digital design, development
for FPGAs is additionally separated into RTL and technology-specific steps, highlighted
in light rose. The sequence of tasks to be performed is partitioned into five separate steps.
An additional option, inspired by the state-of-the-art neural network generation for FP-
GAs is evaluating the influence of bit width truncation and general compression of the
network [Reu18]. However, these are often surpassed by the ability of the FPGA tools to
minimize resource consumption. A comparison in z-Vertex estimation is at the end per-
formed by using HW/SW Co-Simulation using the concepts described in Ref. [99] that
even allow the coupling to the trigger simulation framework.

5.3.2. Interfaces and Levels of Monitoring

The NNT has far-reaching influence over the entire DAQ of the experiment as it has the
capability to generate triggers signals that are used for the decision whether to read out
the detector for a given event. In case that the signals are wrongly estimated for an ob-
served track which has an origin within z=0, a valuable physics event might be discarded.
This makes correct functionality critical for the entire experiment. In order to not harm
subsequent physics analysis, it must be ensured that the estimations of the NNT do not
deviate too far from the real origin for a given track. In case that large deviations are
occurring during online operation there must be mechanisms to ensure a quick reaction,
for example, by excluding the NNT from the decision logic. As a result, the experiment
may lose its z-Vertex trigger, however, it is ensured that no data is lost without knowl-

131

5. The Neural z-Vertex Track Trigger

edge about its reasons. An online monitoring concept is hereby required to provide this
functionality, which is the main focus of this section.

Firmware

CDCTRG Detector DAQ

Chipscope / VME Belle 2 Link FastReco + B2L

FPGA

Trigger Operation Physics

Figure 5.21.: Different of scopes of monitoring at the NNT together with the responsible
interfaces.

The overall monitoring of the NNT can be divided into several areas. These are divided by
the scope of functionality that is possible to be monitored, as shown in figure 5.21. Hard-
ware monitoring is describing mechanisms that can capture internal processing within
the FPGA. It can be used to debug, validate and analyse the firmware together with its
data sources interfaces. However, it is limited to one specific FPGA board, as such moni-
toring cannot be performed beyond the boundaries of a single hardware platform. These
limits, for example, the analysis of the ratios of tracks processed by the 2DS and the NNT
which might indicate problems due to loss of tracks. Monitoring across different plat-
forms is the scope of the second area, which is in turn not able to generate in-detail data
about the internal processing on the FPGA. It rather provides a data collection in which
reduced event data can be analysed across all boards. This allows the validation across
all systems and thus qualitative statements about the NNT. The final area of monitoring
is encompassing the entire detector, which is the trigger readout, detector readout, and
subsequent physics analysis. Precise statements about the quality of the NNT are possi-
ble when both the online and the offline data from the precise reconstruction of an event
using detector data are available.

Depending on the respective area, suitable interfaces on the FPGA must be selected that
provide the necessary data. In addition, they also require expertise in the domain under
consideration. For example, the clock cycle accurate verification of the hardware process-
ing must be performed by the firmware designer or expert, while communication details
additionally require knowledge about the CDCTRG. The final validation that needs event
reconstruction requires knowledge about the physics experiment and BASF2 expertise.
As this thesis is focused on the hardware part of the NNT, this layer will not be further
discussed but can be found within documentation provided in Ref. [90].

First of all, suitable interfaces must be established in order to gather the necessary data
from operation. There are two possibilities to get the necessary data for validation of the
firmware, these are VME and Chipscope that using a Joint Test Action Group (JTAG) con-

132

5.3. Tools and Monitoring for the Neural z-Vertex trigger

nection. For validation across the CDCTRG and even take CDC data into consideration,
only the B2L remains a viable choice as it is the only interface that can provide synchro-
nization of data across all systems. However, even that is not sufficient as it requires
substantial software implementations for offline data extraction. The entire process of
monitoring based on B2L is shown in figure 5.22.

CDC
FEE

CDCTRG GDLNNT

NNT DQM

DAQ

Fast RecoSW NNT

TriggerReadout

Data Store / HLT

Figure 5.22.: Overview of B2L-based DQM. Boxes shown in green are dependent on the
NNT and its current configuration. In the equivalent system for S3D these
boxes are replaced accordingly.

Hardware Interfaces for Monitoring the NNT

Many interfaces are available in the CDCTRG for implementing monitoring of the NNT.
While it is possible to use custom interfaces, the NNT is mostly relying on the commonly
used options as they are already sufficient for providing the necessary features. None
of these interfaces alone is able to cover all levels of monitoring, as a result a combina-
tion of all of them is used. The individual interfaces Chipscope, VME Bus and B2L were
evaluated with regard to their relevant properties.

One of the key characteristics to be considered is the resolution in time at which data can
be recorded and received from the NNT. Verification of the design’s internal data pro-
cessing needs a clock cycle precise recording of internal signals. The only option allowing
this, is the usage of Chipscope. It is capable of recording data with a custom frequency on
the FPGA and is therefore scalable with the operating frequency selected for the NNT. In
contrast, any kind of data recorded via B2L is fixed to a frequency of 31.75 MHz. Coupled
with the size of internal signals, this basically prevents high-resolution verification of the
processing architecture, as it is targeted to be operated with much higher frequency. The

133

5. The Neural z-Vertex Track Trigger

VME bus is meanwhile accessed via relatively slow register accesses that have a latency
of around 0.8 s that was measured on the respective computer within the BDAQ. It is
thus not suitable for this task. Such high latency access can be used to read out general
information about operation, such as the health of communication links or operational
statistics such as a distribution of the z-Vertex estimation created online .

Another criterion is the availability and accessibility of the respective interface during
operation. Herein lies the advantages of the VME bus as it is always available after the
board is powered up within the hosting crate. For operation on the UT3 an additional IP
core has to used in order to use VME. This situation is improved with the transition to
its successor UT4, which is equipped with a dedicated Artix-7 FPGA that is handling all
related tasks. This has the advantage that the VME bus can be used even if no valid bit-
stream is loaded on the main FPGA. The Chipscope interface, on the other hand, requires
a connection to a local computer via JTAG. In principle a continuous availability can be
established, however, it can only be reached while being connected to the local network
of the KEK as the computers are part of BDAQ. Therefore a tunnel has to be set up for
access from outside of Japan. In addition, the JTAG interfaces on the local computer are
shared across several modules and therefore only available to a limited extent. In theory,
the B2L also has continuous availability, however, it is shared by all participants in the
overall system and combined in the DAQ. The problem here is that incorrect use by one
participant can cause an error state for the entire system. Such error states are not only
the result of the wrong usage of the interface, rather even the smallest timing violations
are sufficient to invoke instability.

The different interfaces of choice have different scopes of covering the data flow across the
CDCTRG. Both VME and Chipscope are limited to one board. This allows the recording
of local processing signals and IO behaviour. However, there is no easy procedure of
combining these signals across the boundaries of individual FPGA platforms. Herein lies
the main advantage of the B2L as it is the means of recording data of the complete readout
chain starting from the FEE of the CDC all the way to the GRL. At the same time, the B2L
contains the information about each platform’s relative delay via B2TT and can thus be
used to match locally recorded data across the entire data processing chain.

Using each interface on the board usually requires an implementation of the communi-
cation protocol on the FPGA. Their implementations can have a significant impact on the
overall design due to the increase of resource consumption or the impact on the achiev-
able performance. Out of all interfaces, only the VME access is transparent to the entire
design, when using the UT4, as it is implemented at a dedicated external FPGA. On the
UT3 its implementation is requiring resources, however, overall demand is quite low.
The more problematic aspect here is its influence on the achievable operating clock fre-
quency, as the current implementation often introduces timing violations. Using debug
cores as part of Chipscope, on the other hand, requires significant additional resources
while severely influencing the routing of the signals and thus influence the internal signal
propagation time. As a result, the generation of the new firmware is in general much more
time-consuming when enabling this interface. The B2L related IP cores have the biggest
influence on the overall design. Not only are these cores requiring a lot of resources, but
they also have a significant negative impact on the timing of the entire system. During all
implementation runs, timing violations at the B2L related transceiver ports were occur-

134

5.3. Tools and Monitoring for the Neural z-Vertex trigger

ring regularly and could thus far only be solved by the exploration of different place and
route strategies.

Another important characteristic of an interface is its capability to capture specific time
windows around interesting events. Additionally, high sample size is needed to achieve
large scale validation, as single events are insufficient to achieve high test coverage. The
B2L is particularly suitable for this since it is capable of recording a large fraction of the
events during a run of the experiment. Large-scale verification with statistical evaluation
can then be carried out afterwards. Chipscope, on the other hand, is capable of buffering
data across at most up to 4096 clocks following a custom trigger that starts the recording.
Data taking is hereby rather tedious compared to B2L since it is not automatically per-
formed. VME hereby has the lowest capabilities as it is very slow and limited to 32 bit
register accesses.

This concludes the evaluation of the available interfaces with regard to the most impor-
tant aspects. An overview of them is provided in table 5.18.

Property/Interface VME Chipscope B2L

Precision seconds clock cycles single events
Availability always always limited
Design Impact none high very high
Scope local local entire DAQ
Data rates 32 Bit 4096 Bit B2L data width
Time granularity arbitrary triggered per event
Accessibility BDaq local computer KEKCC

Table 5.18.: Overview of the different available interfaces with their characteristics.

Offline-Validation

The data written out by the NNT via B2L is available for usage within the internal DAQ
and KEK computing cluster, depending on the time passed after the experiment. At both
stages, this can be used to facilitate the validation of NNT hardware. The mechanisms
that were developed for offline validation are discussed in the following.

Data captured during an experiment is at first available at worker nodes within the in-
ternal DAQ network. Only after a certain amount of days or by request are they made
available in the collaboration’s computing cluster. As data size is quite substantial it is
not feasible to do any heavy processing within the DAQ network, thus this should be in
general done at the computing cluster. The first step is here to either wait for the avail-
ability of the data or to initiate manual transport to the cluster via the worker nodes.

The data to be processed is stored in the root format, which is typically used within
data storage in physics experiments as many tools are based on the accompanying root
toolkit [11]. Using this format and tools is, for example, the basis for most of the gener-
ated distributions shown throughout section 5.4. However, this format is not particularly
suitable for debugging of the hardware, since it required knowledge about the toolkit.

135

5. The Neural z-Vertex Track Trigger

As such it is not possible to directly generate signal diagrams that are typically used for
debugging hardware as they show the behaviour over time. At the same time, the format
is not directly supported by any hardware simulator. These aspects are addressed by the
usage of the B2VCD tool that is providing functionality for converting [101]. It is able to
convert the B2L data in the sroot format into a Value Change Dump (VCD) file. VCD is
a standard format used to describe signal behaviour over time and can be directly used
by most hardware simulation tools. Furthermore, additional conversion into simulation
scripts that can be used with Modelsim tools is quite simple. For the conversion, the sig-
nal definition of the read out data is required together with the information necessary for
identification of the board to be used.

Figure 5.23.: A waveform showing data signals received via B2L from one board that is
hosting the NNT. The data was recorded during run 05826 in experiment
10. The GTKWAVE tool is used to visualize the waveform. Data belonging
together is indicated by the yellow marker, with 2DS data being valid before
NNT data.

The identification information is represented by the COPPER and FINESSE IDs. These
IDs are unique for each board in the DAQ of the experiment. They are not only limited
to identifying the respective boards that are hosting the NNT but also every other com-
ponent of the CDCTRG using a B2L connection. Another advantage of using VCD files is
that they can be easily visualized with the help of software tools such as GTKWAVE [30].
A visualization using this tool is shown in figure 5.23. In this case, the information read

136

5.3. Tools and Monitoring for the Neural z-Vertex trigger

out from one NNT and 2DS quadrant is shown together with status information about
the experiment such as event and run number.

The basis of the employed offline validation for hardware-specific operation was laid out
with the introduction of the data conversion from root files to VCD. Before the used pro-
cess is discussed in more detail it shall be noted that it is a rather general approach in-
dependent of the NNT itself. It can thus also be used for the validation of the S3D that
is discussed throughout chapter 6. The difference to the NNT is solely in the usage of
different sub-components to be read out for validation.

The validation process is based around the recreation of the behaviour at the interfaces
of the respective board as it was observed during the experiment for usage in hardware
near simulation. For this, the script SimGen was developed that is using the respective
VCD files and translates them for the simulation. This translation includes the conversion
of the VCD format to the data format and protocol that the respective data sources are
using for transmission over GT. With this approach, the design can be simulated while
recreating input behaviour on clock cycle granularity as it is during operation. With re-
gard to the implementation, processing of VCD files is based on using the PERL module
Verilog::Vcd [105]. It provides internal tree structures for easier organization of single sig-
nals read from these files. The script is then translating the contents of these tree strictures
to the used simulator’s specific formats, for example, the commands interpreted by the
Modelsim simulator. In addition to this translation, the scripts is supported the verifi-
cation process by automating necessary tasks for setting up the conversion. These tasks
include the selection of the required data source and splitting up large simulation files into
smaller chunks in order to reduce runtime for simulation of single time windows. As the
data from the different sources does not include any temporal relationship information,
they are rather processed independently. The script is merging these different sources and
combing them with regard to a global time scale.

B2VCD SimGen

Event
Marking

Simulator
Interesting

Event

NNT B2L Validation

EventFile
sroot

Physics
Run Analysis

Simulator
File

Event Info

Figure 5.24.: Used process for hardware-specific offline verification based on B2L readout.
As it is not specific to a certain trigger component it can be used for both the
NNT and the S3D.

137

5. The Neural z-Vertex Track Trigger

With the generated simulation scripts, it is possible to recreate operation on the granular-
ity of single clock cycles. This level of detail in simulation is allowing to study operation
with the help of HDL simulators. Such a simulation is provided more detailed insight into
the internal processing than any kind of debugging interface since all signals can be recre-
ated while the read out data is representing a snapshot of the entire internal processing.
This allows to find and understand the problematic section of the implementation more
easily and thus to verify correct firmware operation with regards to the HDL description.

These scripts on their own are however not enough to enable efficient debugging and
validation. This is mostly due to the massive amount of debug data to be processed,
as each run is consisting of many events in the order of more than 1000. It would be
rather hard to identify single problematic events on low-level granularity. In addition,
the software-based DQM is only processing a subset of the hardware due to its inter-
nal implementation, in which TSs have to match predefined criteria in order to be used.
Large-scale validation of the entire run has its advantages, but there is a need to identify
the events that are leading to high deviations between simulated and real NNT. To al-
low easy identification of these events, an additional script was developed. Its task is to
merge the software-based DQM report with the simulation scripts in order to highlight
every event that is of particular interest for debugging. This step of the process is named
event marking. It is aware of the HDL simulator’s timeline and provides points in time at
which to look for in order to find the events of interest. The whole validation process is
illustrated in figure 5.24.

5.3.3. Slow Control

As a part of the electronics controlling the detector’s operation, the NNT must also sup-
port SC being a trigger component. This is implemented according to the scheme de-
scribed in section 2.3.3. However, the concrete technical implementation for the related
aspects such as the connection to the conditions database can be designed by each sub-
system, for example, the trigger system. However, two constraints have to be considered
for every sub-system in order for them to be included in the overall SC. First, the archiver
can only be accessed using EPICS. The condition database, on the other hand, can only
be accessed using the NSM protocol. The main application for the SC in trigger operation
is to monitor, control and configure single boards. As the general trigger system is based
around using VME crates to host each hardware platform, the communication concept
for the SC is to access the systems over the backplane of the crate. Access is meanwhile
performed by the master CPU within the crate. It is capable of issuing backplane ac-
cess to every board in the crate, but also provide the connection to external computers.
The responsibility for accessing certain boards is divided across several separate NSM
processes running in parallel on the master CPU. Both control and status data is commu-
nicated with a dedicated trigger server over NSM. The software package available at the
server includes the capability to convert data into EPICS in case it is necessary with the
goal to access the archiver. Meanwhile, it is directly communicating with the conditions
database using NSM.

When considering the implementation of the SC on the NNT, this approach in principle
fulfils all requirements. It has the added advantages that tools and reference implemen-

138

5.3. Tools and Monitoring for the Neural z-Vertex trigger

tations for the implementation are either already available or developed in collaboration
throughout the trigger system. It can thus be reused and customized to the special needs
of the NNT. However, this scheme has one severe disadvantage, which led to the choice
to develop a modified version. The weakness is present at the transition from NSM to
EPICS. The introduced indirection towards the archiver is in principle unnecessary, as
EPICS can be used directly and provides the same base functionality. The conversion
can lead to problems as it requires the additional implementation of basic functionality,
but even more significant is that EPICS is designed to record more information about
the status of a component than NSM. One result of this difference is that lossless conver-
sion of data towards EPICS is not possible nice since some status data is not recorded with
NSM. The last disadvantage of this approach with regard to the technical implementation.
The conversion leads to unstable operation during early operation and the development
phases. Here, process variables were sometimes generated at every single second such
that it exceeded the receiving capabilities of the archiver.

After evaluation of all possibilities, there are in principle three separate approaches that
can be employed for the NNT. These are a solution following the trigger-based NSM
approach, an approach in which only EPICS is used and a heterogeneous approach in
which both EPICS and NSM are used by instantiating separate processes in parallel on
the trigger server. As the NSM-only approach used throughout the trigger system was
already discussed, the following discussion will focus on the alternatives.

Instead of using NSM for implementing SC for a trigger board, the board can instead be
controlled directly by an EPICS process. As a result, the data intended for the archiver
can be forwarded directly without having to be converted at the trigger server first. By
bypassing the conversion, no information is lost and generating excessive workloads at
the archiver can be avoided. However, the connection to the condition database must
also be taken into account. In principle, it could also be operated with EPICS, but the
tools required for this would have to be re-designed and re-written. The estimated effort
required for this is quite high, as the implementation has to be thoroughly tested before
it is allowed to be used in the processing environment of the detector. Alternatively, the
approach used at the trigger system can be reversed at this point by converting the data
from EPICS to NSM on the trigger server. Here, however, data is lost again due to the
incompatibility, in addition, conversion software must be created. The implementation of
this conversion will not be easy to implement, as the currently existing problems of the
NSM to EPICS converter already showed. Compared to the general approach, improved
connection to the archiver is achieved by avoiding the need to implement a connection
of the conditions database. This approach has the additional disadvantage that software
has to be developed without any collaborative support. Thus the EPICS-only approach is
even more unsuitable than the general trigger solution.

Both of the previous approaches have their drawbacks due to the need to use both pro-
tocols in order to be compatible with the data sinks that are representing the SC in Belle
II. For this reason, a heterogeneous approach makes sense in order to avoid the disadvan-
tages of using strictly one protocol. The approach is in principle based on spawning two
separate processes at the master CPU within the VME crate. One process is representing
the EPICS functionality which is tasked with reading out the values related to the archiver
via the backplane. These values are then forwarded to the archiver without any detour

139

5. The Neural z-Vertex Track Trigger

through the trigger server as no conversion of the data is necessary anymore. At the same
time, no information, such as timestamps, is lost when using this approach, since data
is natively stored in the format supported by EPICS. In parallel to the first process, an-
other process is instantiated, which has the responsibility of handling all tasks related to
the conditions database. This process is implemented using NSM to avoid any additional
conversion. Few things change with regard to the implementation on the trigger server.
Here the master NSM is communicating the dedicated process present at the crate, while
no additional processes for the conversion are needed anymore. An additional advantage
of this approach is that this represents the original use case for both EPICS and NSM, as
they are collecting and distributing data independently without any need for interaction.
With this separation the expertise present within the collaboration accumulated by both
groups of developers and their reference implementations can be used to ease implemen-
tation. The structural setup of this approach is shown in figure 5.25.

Archiver

Conditions
Database

Trigger
Server

NNT

Local Trigger Network DAQ

VME Trigger
Computer

Figure 5.25.: Architecture of the slow control scheme used for the NNT. Direct access to
the trigger board is performed over the backplane available at the VME local
trigger computer. Two separate data streams are fed into DAQ, with data
related to the Archiver indicated by a grey arrow, while condition variables
are coloured red and summarized with all trigger data.

This approach is functionally the best solution for SC at the NNT since no data is lost
and all conversion problems are bypassed. However, it is not entirely without its disad-
vantages. The first, is the increase of complexity for all future maintenance tasks, as two
protocols have to be supported in parallel. Both alternative solutions are meanwhile rely-
ing on just one protocol. As this solution is requiring the instantiation of two processes in
parallel on the local VME trigger computers, these computers will experience an increase
in their workload. The same applies to the backplane of the crate, as two processes are
now trying to access it in parallel. Both of these drawbacks should not be problematic
during operation for the NNT as the used boards are sharing their crates with only a few
additional boards as illustrated in section 2.3.3.

Functionality is the main priority for the final implementation of SC and thus has the high-
est impact on the choice of the used approach. Loss of data, as well as unstable operation,
have to be avoided as far as possible. The other two criteria, such as implementation ef-
fort and maintainability play subordinate roles. Although the approach cannot be used in

140

5.3. Tools and Monitoring for the Neural z-Vertex trigger

case it exceeds the processing capabilities available at the VME crates, their master pro-
cessors are not heavily utilized. For this reason, the heterogeneous approach is pursued
for the NNT.

With regard to the hardware implementation of the NNT, this decision has no immediate
impact. Access via the backplane is seen the same way for the SC software as such it is in-
dependent of the type of process. These accesses are represented by simple VME register
access. Data that needs to be read out for SC is provided by a register set accessible over
via VME. The outline of the address space for these registers is shown in table 5.19. It en-
compasses the register space that is dedicated to the slow control. The remaining address
space is providing basic functionality for operation and test of the NNT. For example, the
current build version of the firmware is part of the general information.

Address-Space Description
0x0000-0x00FC General UT3 information
0x0100-0x01FC Flash Access
0x0200-0x023C Play and Record
0x0300-0x06FC CDCTRG Flow Control
0x0500-0x05FC Configuration Registers
0x0600-0x06FC Slow Control

Table 5.19.: Overview of the register address space accessible via VME that is encompass-
ing the registers dedicated to the SC.

5.3.4. Data Quality Monitoring

As described in section 5.3.2 the only possible way to send data from a trigger module
to be used for DQM is using B2L. This is the only interface within the DAQ that allows
synchronizing data across the borders set by the separate hardware platforms. The real-
ization of DQM can be divided into software and hardware related parts, while software
has the most tasks to fulfil as it has to be integrated into the DAQ environment. This
is always a delicate matter as it has to operate stably to avoid system-wide instability.
With regards to the hardware-based implementation for the NNT, the tasks are to sample
and transmit corresponding data to the IP core responsible for B2L communication that
is provided by the developers of the DAQ. This part is going to be the focus of this section.

DQM Data Format for B2L

The data format and protocol used for transmission via the B2L is the responsibility of
each sub-trigger, while the supported data rate is being dictated by the entire system. Data
taken this way is meanwhile not only suitable for the validation of the functional logic on
the NNT but also for validation of the interfaces to all of the connected sub-triggers. It
can be matched across systems and can thus validate correct transmission. As a result,

141

5. The Neural z-Vertex Track Trigger

data sent this way is generally divided into the two groups NNT and CDCTRG data. CD-
CTRG data contains the entire input data received from all used sub-components. This
data is hereby without being captured by any stage of processing besides storage itself.
The data is written to the buffers of the B2L directly after reception data and is aligned
with data taken from other sub-components using shared clock counters. Whether data
recorded using the B2L IP core is actually written out and made available for offline pro-
cessing, is determined by predefined conditions. Data rates in the DAQ are hereby quite
restricted. As a result, most of the data taken from trigger components during operation
is suppressed. First of all, events are only written out in case a condition is fulfilled, for
example, in the presence of a 2D-Track. Additionally only a fraction of the set is written
out, for example, 10% of all events that fulfil the conditions. Additionally, data is not only
written out for one specific clock cycle, but it also represents the accumulation across a
predefined time window. In the early stages of operation, this window was set to 48 sys-
tem clock cycles. The offline software that finally analyses the data must hereby know the
corresponding protocol of all input components to process the data correctly.

The NNT data is used purely for the validation of the algorithm’s implementation, at
which a distinction between preprocessing and MLP is made. The most important compo-
nents here are the intermediate values generated at the internal processing stages. These
values are the selected TS, the network used for processing and all of the 27 input values
to the MLP. The MLP is meanwhile validated by writing out its output values. These val-
ues can be additionally used to cross-check with the GRL for correct data transmission. A
detailed list of the values that are written out via the B2L for the DQM can be found in
figure A.1 for operation with both 10 TS and 15 TS.

Implementation of the Hardware-based Aspects of the DQM

With regard to the implementation of the DQM on the FPGA, an additional module
named NNTScope was developed. Its main task is to sample all of the requested data
and forward it to the B2L IP core. Since the NNT is operated in a pipelined way, inter-
mediate values have to be stored in a way that makes it easy to be matched with all the
data that is related to the processed track. Data to be matched has different latencies span-
ning across several system clock cycles. It can then be matched by using the characteristic
that the implementation on the FPGA is dedicated and deterministic. The recorded data
can then be matched offline with an analysing software that correctly applies the latency
delays to each of the read out values. However, this proved to be difficult to implement
during operation, as the internal processing is controlled by another clock source than
the B2L. This led to different readout timings across the boards that are hosting the NNT.
To avoid this problem, all data to be sent over B2L is synchronized internally within the
module. As a result, it is buffered and delayed until the generation of the output values
concludes, instead of being written out immediately.

142

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

5.4. Evaluation, Operation and Validation of the neural z-Vertex
Trigger

5.4.1. Setups for Testing the NNT

As the development of the detector’s infrastructure is a long term project sub-components
only become available over time or even late into the process. These updates make it nec-
essary to establish setups for early testing to evaluate the concept and implementation
as early as possible. Since the NNT is not a standalone component and is depending on
many data sources for its operation, the setup must reflect the final CDCTRG as realis-
tically as possible to achieve representative results. For this purpose, two different test
setups were set up at the experiment’s facility that facilitates the testing of trigger com-
ponents. Their main purpose is to provide an emulation or recreation of the data flow
as it is designed to be during the operation of the experiment. These two setups are the
experimental and merger play setup.

Category Merger Setup Experimental Setup
Test Data simulated or pre-recorded CDC readout data
Data Flow Coverage complete partial
Repeatability deterministic indeterministic
Robustness errors not critical errors influence entire readout
Availability any time depending on operation

Table 5.20.: Overview and comparison of both available test modes.

The difference between both options is in the emulation of the CDC’s readout. In the ex-
perimental setup, the complete data flow of the CDCTRG is enabled, here data is read out
from the detector and injected into the CDCTRG via the FEE. This setup corresponds to
the one used in the actual experiment. It has the big advantage that the data taken here
corresponds to the actual behaviour of the detector. Its main application case is for testing
in combination with cosmic rays, in which activity distributions of the detectors are easier
to correlate with simulation since the types of observed tracks are restricted, while back-
ground events are comparably rare as no beams are injected. Tracks are occurring with a
much lower frequency and are typically going straight through the detector, making them
easier to process.

Besides the validation of the algorithm’s performance on the FPGA this setup can be used
to test the connections to the entire data processing chain including the connection to the
DAQ over B2L. An illustration of this setup is shown in figure 5.26.

While the experimental setup is representing the best test mode for validating the overall
concept, it has some drawbacks when testing the FPGA implementation. For example,
trigger components can only be tested if the FEE of the CDC is actively taking data. For
this, the CDC has to be powered up which has to be coordinated with the experiment’s
operations group. At the same time, any component under test is influenced by the er-
roneous operation of the FEE or problematic data connections. During the early stages

143

5. The Neural z-Vertex Track Trigger

of testing, many of the mergers responsible for SL3 were not connected to the detector’s
readout. As a result, no data was received from this SL, which limited the testing capa-
bilities for the NNT as it is depending on all SLs. This is not the only drawback of this
setup. Since the data is received directly from the experimental operation, repeatability
of the tests is very difficult since the time intervals until input patterns are repeating are
rather large. In addition, the configuration of the NNT in this setup is influencing the
entire readout system. In case updated firmware is containing errors that influence, for
example, the flow control, the entire trigger chain might be endangered of being compro-
mised. As the system is shared and cosmic ray data is taken for multiple purposes, it is
undesirable to use this test setup for early development.

These disadvantages are avoided with the help of the merger play setup. Here, test data
patterns are first written to internal memory present at the mergers. These patterns are
then periodically fed into the CDCTRG after the data flow has been established. The
data used for such tests can be generated by the user and is thus used as test stimuli for
the system by containing combinations of input values that are cover defined use cases.
Another option is to use this setup to recreate the occurrence of previously recorded data
sets that caused problems in order to gain more in-detail information in combination with
Chipscope debugging. Recorded data can hereby be generated from the simulation of the
experiment or data derived from actual operation.

(a)

Experiment
CDC
TRG

GRL
CDC
TRG

(b)

Simulated
Data

MergersMerger

Mergers
MergerSimulated

Data

Simulated
DataSimulated

Data

CDC
TRG

GRL...

Figure 5.26.: System architecture for both the merger play (a) and experimental (b) test
setup used for components of the CDCTRG.

The drawback of this setup is first and foremost that the real behaviour of the detector
and coupling the NNT to the complete readout system cannot be investigated. However,
it allows easier debugging of the interfaces and the functionality. Input data is always
complete since it is independent of the FEE and its current cabling situation. The tests are
additionally highly repeatable as the received data is defined by the user and repeated
in a loop. Experimentation with new firmware is hereby, in general, easier to perform
with this setup since errors in the NNT are not critically influencing the work of other
developers as the CDCTRG is excluded from the global readout. The structure of this
setup is shown in figure 5.26. A comparison between both test setups with respect to their
properties is presented in table 5.4.1. As no setup is suitable to cover all kinds of tests,
both are in general used throughout the development.

144

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

5.4.2. Configurations for Operation in Belle II

Several different versions of the NNT were developed during the early stages of the ex-
periment. These were tailored to be operational with the current status of the readout
chain. The main goal of these early stages of operation was to prove the early correctness
of the concept with the available resources. Although the NNT was already operational
with reduced functionality in these phases, only, later on, was it possible to actually send
trigger signals. This chapter will present and discuss the main versions of the NNT that
were integrated into the CDCTRG.

5.4.2.1. Reduced Setup for Tests with a Partially Available Trigger System

The first version of the NNT was developed to achieve first insights into the behaviour
of the CDCTRG and the detector. The goal was here to have a version that could partic-
ipate in tests with cosmic rays. This setup was based around using CDC data that was
generated by cosmic rays going through the detector was used using neural networks
and preprocessing specialized on cosmics that already provided conclusions about the
correctness of the estimation without the need for an injection of particle beams. At the
same time, the communication infrastructure was investigated, especially the correct im-
plementation of the protocols for all of the interfaces to be used.

MLP

NNT Preprocessing

Reduced NNT

TSF
GTH

JTAGInput
Scaling

2D
Calculation

Hit
Selection

TSF Capture

Fixed 2D Info

Figure 5.27.: Architecture of the reduced NNT that was used for operation in early cosmic
ray testing.

The NNT used in this setup is quite different from the intended final version. Since the
NNT is dependent on the availability of several data sources such as TSF, ETF, and 2DS,
integration of the full setup has to wait until all of these components are ready to send
data. Since all mentioned components are developed in parallel to the NNT, a simplified
version was designed which is able to demonstrate correct basic functionality on the basis
of a simplified CDCTRG. This version is using solely TSF data in combination with cosmic
rays. In addition, it is only capable of providing a significantly reduced coverage of the

145

5. The Neural z-Vertex Track Trigger

CDC’s space by restricting the accepted data patterns. While these restrictions are not
representative of the final system, they are reflecting the prevailing status of the CDCTRG
in the early development stages of the experiment. In these, only a small part of the
CDC had cabling connections usable for transmission of detector data. Additionally, only
TSF modules connected to axial SLs were available. As a result, the setup is designed
to be only dependent on the availability of these TSFs providing simplified functionality.
Another important difference to the final setup is the unavailability of the 2DS which
is designed to be sending matched TS. As an alternative to this, axial TSs are received
directly from the respective TSF.

The first simplification is that the 2DS is compensated by emulating the incoming 2D
tracks online at the NNT. This is done by assuming that its two track parameters phi and
omega are most likely going to be highly restricted to few values viable for the restricted
detector coverage that is present at this stage of detector operation. This is of course not
valid for the real experiment but is a reasonable assumption fo the special restrictions
present during early cosmic ray tests. First, there is no magnetic field during these tests.
As a result, particle tracks passing through the CDC are not deflected from their path. As
a consequence, the amount of tracks that would be found by 2DS is significantly reduced
to just a few constant parameter pairs. The respective pairs of parameters can hereby be
determined by a rough analysis of the received TSs. As only a small part of the detector
is covered by TSF modules, the possibilities for different occurring particle tracks can
be further restricted. In parallel, this is also reducing the set of TS that can be received.
However, despite these simplifications, there are still enough tracks that are fulfilling all
of the criteria in such that testing can commence. Besides the 2DS there was a working
implementation of both ETF and aTSF throughout these tests. This was addressed by
not considering stereo TS and compensating the ETF with the usage of the event time
estimation as presented in section 5.2.4.3.

Figure 5.28.: Photograph of the integrated reduced NNT setup in the E-Hut at the experi-
ment’s facility.

146

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

In addition to revising the concepts of handling all of the input sources, the data sink for
the NNT was similarly not available at this stage. Neither B2L nor GDL were available at
this stage, which represent the main interfaces for analysing data of the NNT. The only re-
maining interfaces are therefore a JTAG [47] connection directly to the FPGA or communi-
cation over the VME backplane within the crate. Using JTAG is hereby easier to establish
as no special software is required to be additionally developed for its usage. This connec-
tion can be comfortably used with the help of the Chipscope infrastructure for debugging
FPGAs that is provided by Xilinx. Xilinx is providing a specific debugging software, the
analyzer, and dedicated IP-Cores called Integrated Logic Analyzer (ILA) [120]. This core
allows capturing arbitrary internal signals within the FPGA that are part of the same clock
domain as the ILA. The JTAG interface of the UT3 is then connected to a PC installed at
the E-Hut so that the NNT can be monitored remotely outside of the experiment’s facility.
A photo of the integrated UT3 used for testing is shown in figure 5.28.

The two major changes compared to the final setup, as well as the described limited ge-
ometry of the experiment, were taken into account in the MLP. This MLP was trained to
be as efficient as possible for exactly these conditions. With the help of these changes, it
was possible to take data at an early stage and perform initial tests independently of both
2DS and ETF.

As this setup’s primary focus is not on being used in actual trigger operation, but rather to
provide early benchmarks for operation, both throughput and latency were not measured.
The possibilities to measure these characteristics are additionally restricted due to the
unavailability of the necessary interfaces. Meanwhile, the characteristics of this setup in
terms of clock frequency and resource consumption are listed in 5.21. Using this setup it
was possible to achieve general verification of correct data reception and single events.
Sample events that were evaluated are not explicitly presented in this thesis as they are
superseded by the following operational setup.

Slices Registers DSPs Frequency Latency
13% 4% 91% 127 MHz 18 system cycles / 141 ns

Table 5.21.: Implementation characteristics for the reduced setup of the NNT.

147

5. The Neural z-Vertex Track Trigger

5.4.2.2. Setup for Operation in the Complete Trigger System

Figure 5.29.: Architecture of the final NNT for operation with beam injection. Included
are the service interfaces for SC and DQM. It represents the culmination of
all previous developments.

The NNT setup underwent many development iterations between the first tests with cos-
mic rays and its deployment during the first experiments with higher luminosity. How-
ever, these iterations were only incremental updates on the road to the final system that
was used during the main part of operation. The architecture of this final system setup is
shown in figure 5.29 and will be discussed in detail in the following.

Configuration of the Complete Setup

The setup of the NNT that was designed for operation with high luminosity and inte-
grated into the complete CDCTRG provides all of the required functionality necessary to
estimate the z-Vertex. The main difference of this setup compared to the conceptual de-
sign is hereby at the usage of the event time. In the initial design, it was intended to use
the ETF in order to have the most precise estimation of the event time. The operational
setup, however, is only receiving and recording the ETF’s data for subsequent analysis.
Instead of using it, the fastest priority time calculated and used as an estimation of the
event time. The reason for this is that the ETF is still in a prototypical development state
at the beginning of operation with collisions. However, recording the data allows the
investigation of its behaviour. In addition, the connection to ETF is providing another

148

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

input channel that can be used to investigate whether the general data flow is operating
correctly independent of the main data sources.

With respect to the internal architecture, the preprocessing is configured to the reception
of 10 TS, whereby the persistence time window is set to 16 clock cycles. In the first anal-
yses, this window width proved to be the best compromise between taking correct and
incorrect TS into account. A configuration capable of using the full 15 TS is meanwhile
ready to be deployed, but not used since recorded data did not show sufficient indications
for improvement to justify the overhead for resources. The neural network is meanwhile
configured to process a maximum of one track per clock cycle. This means that no parallel
processing of different tracks is supported. Since the rates with which tracks are arriving
are still rather low during early operation, this configuration is already sufficient for us-
age. The chosen configurations for both the neural network and the preprocessing are
summarized in table 5.22 and 5.23.

Since this setup is the basis for the first functionally complete operation of the NNT, the
presence of DQM is essential in order to prove correctness. Here all three input chan-
nels are recorded. In addition, all internally calculated and used singles from the prepro-
cessing and the estimation of the z-Vertex are written out for subsequent verification. In
addition to this, each track estimation is sent to the GRL. In order to allow easier identifi-
cation of the track, the estimation of the z-Vertex is sent together with the corresponding
2D-Track parameters.

Using this setup of the NNT data generated online during the experiment was recorded.
This is shown in figure 5.30 [49] for an early run of operation with cosmic rays. It shows
the distribution of estimated z-Vertices for a selected set of suitable tracks. The observed
distribution from the NNT is hereby agreeing with the expected distribution for the con-
figuration used at this experiment, in which the majority of the observed tracks are dom-
inated from the z>0 region due to the Trigger System of the ECL Detector (ECLTRG) pro-
viding the main trigger signals. At this point of development, the DQM was not yet ready
to provide a more sophisticated analysis for verification. Such analysis will be shown in
the following.

TS Depth Persistence alpha BW phi_rel BW Hit Selection Multiplication
24 16 14 24 1 stage Slices

Table 5.22.: Architecture configuration of the preprocessing for physics operation.

Weight Sets Weight BW Input BW MAC Activation MUX
5 18 13 DSP LUT full optimized 4

Table 5.23.: Architecture configuration of the MLP for physics operation.

The properties of the implementation are hereby based on the smaller UT3, the device
XC6VHX380T, and are presented in table 5.24. The clock frequency is hereby set to 127
MHz, while the resource utilization for slices and DSPs is at about 50%. Although the

149

5. The Neural z-Vertex Track Trigger

resources are not heavily utilized, timing closure for this setup is only achieved with sig-
nificant additional effort due to the routing congestion induced by parallel processing of
the input values. This usually required several iterations using design space exploration
directed by SmartXplorer with the main strategy being set to optimize routing conges-
tion. A firmware without timing violations is then typically achieved within 2-3 days on
the available server infrastructure. In many cases, the required timing was achieved for
the overall processing within the architecture, however, timing problems arose within the
supporting modules such as the VME controller, especially for write access to the FPGA.
However, this did not influence operation with the generated firmware.

Slices Registers DSPs BRAM Frequency Latency
46% 14% 53% 49 % 127 MHz 9 data cycles / 288ns

Table 5.24.: Implementation characteristics for the full setup of the NNT.

Validation and Evaluation of Hardware-based z-Vertex Estimation
The validation and evaluation are presented separately for the two main operational con-
figurations of the experiment, which are cosmic rays and physics collisions. As operation
with cosmics was the first to be available its results will be presented first. The accu-
mulated distributions from runs during experiment 6 are shown in figure 5.30. These
were generated solely based on data sent by the four NNT boards and thus represent
the hardware’s capabilities. General proof of correctness can be seen by analysing the z-
distribution. It includes two peaks, one around z=0 which is mainly produced by particle
tracks generated by collisions. The second peak is meanwhile more strongly pronounced
and present at around z = +50. This peak is expected for this configuration of the trig-
ger system, as it is based on triggering in the presence of ECLTRG signals. The ECLTRG
is meanwhile highly dominated by tracks from +z during this setup, which leads to the
observed distribution [49]. The plots mainly show two important aspects, first, that data
can be correctly received within the expected ranges and that the derived distributions for
both z and theta match with physics to be expected from the experiment’s configuration
during these runs. This is however only a light indicator of the correctness of both the
hardware implementation and the entire concept, as it has to be compared in more detail
with offline processing. However DQM was not fully available at this stage, in particular,
it was not possible to match the tracks observed by the hardware with the tracks recorded
and available at the offline storage. This was resolved in the later stages during collisions
at experiment 8 and shown in the following.

After discussing operation during cosmics the focus is now put on operation with particle
collisions. This mode was available during the later experiments and runs at which much
more information was available about, for example, the latency of the entire CDCTRG and
the coverage of the CDC. As this is necessary to show the mandatory functionality in order
to be operational, this will be discussed first, before moving towards more qualitative
measurements such as the estimation of the z-Vertex.

150

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

Figure 5.30.: Distributions for both z and theta that were read out via B2L from NNT hard-
ware. Data was taken during cosmic runs as part of experiment 6 [49].

After discussing operation during cosmics the focus is now put on operation with particle
collisions. This mode was available during the later experiments and runs at which much
more information was available about, for example, the latency of the entire CDCTRG and
the coverage of the CDC. As this is necessary to show the mandatory functionality in order
to be operational, this will be discussed first, before moving towards more qualitative
measurements such as the estimation of the z-Vertex.

At first, the focus is put on the receiving side of the NNT. Most indicative of correct inte-
gration is the reception of 2D-Tracks, as these are the main controlling element for internal
processing. The distribution of received 2D-tracks at the NNT is shown in figure 5.31 with
respect to the recorded angular distribution of phi. It shows the accumulated received
tracks across all quadrants, with more detailed distributions for every single quadrant
being shown in figure A.3. Most importantly it shows that the combination of all NNT
boards is able to cover the entire CDC. Peaks are hereby observable and mostly present at
the borders of each quadrant which can be explained by the overlapping of quadrants.

Besides the reception of 2D-tracks, the NNT is receiving unmodified stereo TS from the re-
spective sTSF. Their distribution under the same conditions as for the 2D-tracks is shown
in figure 5.32. The distribution hereby contains both the axial and stereo TSs. Again,
it shows that the NNT is receiving all data and achieves complete coverage across the
CDC as every ID is received. The distribution shows an irregular structure which is due
to the difference in receiving axial and stereo TS. While stereo TSs are received directly
and only once, axial TSs are sent together with their related 2D-track. The same TSs can
meanwhile be sent multiple times by the 2DS in case an already found track is updated.
This behaviour leads to the observed irregularity, in which IDs related to the axial SLs are
received in much higher numbers. In addition, it can be observed that there are some TS
ranges with high inefficiency since they are rarely observed, which might indicate prob-
lems at the respective FEE or susceptibility to background events.

151

5. The Neural z-Vertex Track Trigger

Figure 5.31.: Distribution of received phi at the NNT during run 1703 of experiment 8. It
represents the accumulation of all four installed FPGA platforms.

One of the most critical requirements of the NNT is to stay within the time budget of the
L1 trigger system. Its latency was previously only evaluated with respect to the clock
cycles allocated to the internal processing. However, in the end, it all comes down to the
latency measured during operation including all transmission delays and uncertainties to
determine whether the NNT is fulfilling the requirements and can thus be used. To deter-
mine this latency, all trigger signals were measured at the GRL [64]. These measurements
are shown in figure 5.33. The presented graph is showing the latencies for all sub-triggers.
Components of the CDCTRG have a finer description as it is consisting out of multiple
systems. Most importantly here is, of course, the latency of the NNT, which is shown by a
dotted red line. The shown latency is hereby represented as the time of arrival at the GRL
relative to the deadline for this event to be triggered in time. This deadline is represented
with a solid black line at around -500 ns. It can be seen that the NNT is right at the border
of this deadline. Overall all of the trigger signals generated by the NNT are arriving well
within the latency budget, thus fulfilling the goals. There is an observable uncertainty for
the time of arrival, here it has to be noted that this uncertainty is already present for the
arriving 2D-tracks which are in turn controlling the start of processing at the NNT, thus
accumulating at this stage.

152

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

Figure 5.32.: Distribution of received TSs at the NNT during run 1703 of experiment 8. It
represents the accumulation of all four installed FPGA platforms.

Figure 5.33.: Distributions of measured latencies for all sub-triggers. They are all plotted
relative to the GRL at which they were measured. The shown latencies were
measured during experiments 7 and 8 [64].

153

5. The Neural z-Vertex Track Trigger

With basic operational functionality already shown to be fulfilled, the focus is now put on
the estimations of the z-Vertex. Using the same experiment and run as before the values
read out from hardware are shown as distributions in figure 5.35 for the estimation of
the z-Vertex. In general, it shows a healthy distribution as was already observed during
cosmic ray operation, however, this time a much more pronounced peak at z=0 is observ-
able. This more pronounced peak is the result of the collisions that are now present in
this configuration. As before it is again observable that most tracks observed in the detec-
tor are originating from +z. This is indicating a high occurrence of background events in
the experiment and underlining the importance of the NNT as it will be able to suppress
these events. To show the correctness of the hardware results, a distribution of estimated
z-Vertices is shown in figure 5.34, however, this time not read out from the hardware, but
generated with a simulated NNT using the same data set from this run but processed by
an SW model. The distributions are generally very close to each other, with some slight
differences. Additionally, the simulated NNT is generating more outputs then the real
hardware. This is mostly due to the limited time window that is available to send a result
for the hardware that can still be recorded within the B2L time window. Late 2D-tracks
are not arriving in time to generate an output within the B2L time windows.

To have a better comparison of hardware and simulated NNT, two additional plots were
generated. Figure 5.36 is showing the difference in the estimation of the z-Vertex between
both options for the same track. The heavily dominant peak here is at zero, representing
complete agreement between simulation and hardware as there is no difference between
both versions estimations. Areas close to the peak are mostly due to the usage of fixed-
point operation at the hardware when compared to the SW model. However, there are
still larger deviations observable in the distribution. Before getting into the reasons for
these, however, an even more detailed examination is possible by studying the scatter plot
shown in figure 5.37. This plot is useful to show the agreement of both options within the
respective areas of the experiment along the z-Axis. It shows that agreement is present
across the entire z-Axis as both versions are generating very similar results throughout
the entire -50:50 cm range.

154

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

Figure 5.34.: Distribution of the estimated z-Vertex generated by software emulation of
the NNT using data received from the input data sources during run 1703.

Figure 5.35.: Distribution of the estimated z-Vertex read out from the hardware during run
1703.

155

5. The Neural z-Vertex Track Trigger

Figure 5.36.: Distribution of difference between software reference and hardware z-Vertex
estimation that was read out from the NNT hardware during run 1703.

Figure 5.37.: Scatter plot of the z-Vertex showing the relationship between software and
hardware implementation during run 1703 of Belle II operation.

156

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

Coming back to the reasons for the observed deviations, there are mainly two problematic
aspects to be considered besides the general precision problems when using fixed point
processing. The bright side here is that both problems are a result of problems in the syn-
chronization process between the hardware’s B2L readout and the implementation of the
offline DQM and not due to operational or functional problems. Smaller deviations are
due to the difference in the selection of TSs. This is however not the result of the algo-
rithmic implementation of the HitSelection module, but due to the way, the persistence
of stereo TS is implemented in both methods. While the hardware is operated using the
persistors as described in section 5.2.3.2, DQM is not considering any time windows but
is rather selecting from all occurring TS. As a result, some of the TS selected by DQM are
considered invalid by the persistor. This leads to different input values at the MLP for
the respective SL. The other source and the reason for large deviations is mismatching
between the tracks. In this case, two separate tracks are present within the same event
and time window of the B2L readout. In some cases, the DQM module mistook results
read out from hardware as belonging to another track. Both of the mentioned issues
are resolved as of experiment 10 run 5825 for which both versions are nearly completely
agreeing, with the main source of disagreement being the fixed point operation. The new
results based on revised DQM are shown in figure 5.38 and 5.39, again in the form of
a z-distribution comparing HW, SW model and reconstruction, the estimation range was
hereby set to -100:100 cm. An accompanying distribution for the theta estimation is shown
in figure 5.41. However, DQM was not ready for comparison, as such no qualitative state-
ment can be made at this stage of operation.

Figure 5.38.: Distribution of the difference between estimated z-Vertex read out from the
NNT hardware and the estimations from the reconstruction using data from
for experiment 10 [50].

157

5. The Neural z-Vertex Track Trigger

Figure 5.39.: Distribution of difference between estimated z-Vertex read out from the NNT
hardware and the software model for experiment 10 [50].

The results are very promising showing nearly complete agreement between the reference
implementation represented by a simulated software-based NNT and results read out on-
line during operation from the hardware. In addition to this, results were compared to
precise track reconstruction. Since only those events that are originating from z=0 are
stored, it is not of value to plot its z-distribution, as it is a narrow peak at zero. More inter-
esting is the difference between the hardware-based NNT and the reconstruction which
is presented in figure 5.40. Again for most events, an agreement in the estimation can be
observed, however, the deviations are much more pronounced here since the uncertain-
ties of the concept itself are now added to the hardware implementation. The results are
showing that cuts for the estimated z-Vertex should be set quite generously at this stage in
order to not lose too much valuable data. However considering that the main peak is lo-
cated at around z=50cm, a significant chunk of the background events can be suppressed
by setting the suppression cut to around z=40cm without losing too much valuable data
since the deviations beyond those values are less frequently occurring.

Further insight into the internal processing of the hardware NNT is gained by analysing
the generated input signals for the MLP as well as the intermediate signals generated at
the selection of TS. The data that was read out is presented as the difference between sim-
ulated and hardware NNT similar to before. The different types of inputs are discussed
in the following, as they cover parallel processing streams that are partially independent.

The distribution of phi_rel is shown in figure 5.42. It is calculated by using both the 2D-
track and stereo TS information. This value is thus influenced by all of the used input
data sources of the CDCTRG. The plot shows a clear peak located at around zero, which
indicates nearly complete agreement and correctness of the hardware implementation. As
it is the most computationally intensive input value, it is affected the most by precision
aspects of using fixed point computation. This value is additionally dependent on the se-
lection of matching TS. The results of the selection are hereby shown in figure 5.43. Small
deviations are observable here, which can be attributed to the differences in how simu-

158

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

lated and hardware NNT are implementing the time window of validity for TS. The next
input under investigation is alpha, which is plotted in figure 5.44. This input is solely de-
pendent on the estimated 2D-track parameters. Again agreement can be observed for the
most part, however there are deviations. The reason for these deviations are mismatches
in relating tracks hardware and simulated tracks in the DQM as described before. Since
the input is only dependent on the current track parameters, deviations can only occur
when different parameters are assumed in the comparison. These parameters are mean-
while directly taken from the incoming data stream from 2DS. Since these are matched
with the DQM of the 2DS, different chosen values can only be appearing due to several
2D-tracks being present in the same event time window, the resulting freedom of choice
led to the mismatch. The best matching is achieved for the estimation of the event time,
which is shown in figure 5.45. It is basically always correct independent of any synchro-
nization problems between hardware and DQM.

Summary

This section discussed the final setup of the NNT as used in higher luminosity operation
of Belle II. It is fully integrated and can be operated within the resource budget of the used
UT3. Additionally, this setup is capable of generating and sending its trigger signals in
time towards its finals destination the GRL to be considered for the final readout decision.
By fulfilling these requirements the NNT is in principle ready to be deployed. Accompa-
nying the fulfilment of these requirements, it was shown that the chosen approach to
integration is able to cover the entire space of the CDC detector as each SL is received
correctly. While these only show that the NNT is capable to fulfil all basic requirements,
qualitative statements about its capability to correctly estimate 3D-track parameters are
made. In general, the integrated NNT is able to reproduce the expected physics distri-
bution for the z-Vertex during online operation for both collisions and cosmic rays. It
is additionally nearly completely matching the results generated by emulating the algo-
rithms of the NNT offline in SW using the same detector data. The observed differences
are hereby either the product of fixed point processing or the current status of synchro-
nization with the DQM. There is no indication of internal problems or systematic errors
within the hardware implementation. All of the internally generated values are either
agreeing completely with the reference simulation or have slight deviations that can be
explained by the mentioned effects. While the comparison with precise track reconstruc-
tion shows that the resolution is currently not hitting the targeted 6cm, it has to be noted
that it still provides good enough performance to be used for suppression of background
events for the current state of the experiment. Additionally, these results were generated
with neural networks trained with simulated data. Training of networks with experiment
data is under way and preliminary studies show much improved resolutions.

159

5. The Neural z-Vertex Track Trigger

Figure 5.40.: Plotted distribution between the NNT hardware’s z-Vertex estimation and
the estimation of the reconstruction using the data received during run 1703
of Belle II operation.

Figure 5.41.: Plotted distribution of the NNT hardware’s theta-estimation using the data
received during run 1703 of Belle II operation.

160

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

Figure 5.42.: Distribution of the difference between the input variable phi_rel calculated
by the reference software and read out from hardware. The variable is used
as input for the MLP. It was read out from the NNT hardware during run
1703 of Belle II Operation.

Figure 5.43.: Distribution of the difference between hit selection calculated by the refer-
ence software and read out from hardware. It was read out from the NNT
hardware during run 1703 of Belle II Operation.

161

5. The Neural z-Vertex Track Trigger

Figure 5.44.: Distribution of the difference between the input variable alpha calculated by
the reference software and read out from hardware. The variable is used as
input for the MLP. It was read out from the NNT hardware during run 1703
of Belle II Operation.

Figure 5.45.: Distribution of the difference between the input variable drift time calculated
by the reference software and read out from hardware. The variable is used
as input for the MLP. It was read out from the NNT hardware during run
1703 of Belle II Operation.

162

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

5.4.3. Local Setup for Testing and Demonstration

One of the disadvantages of the UT3 is that it is only available on site at the KEK. In or-
der to test and evaluate the functionality on an FPGA platform outside of Japan, a local
prototyping system was developed. One of the most important aspects of this is a rep-
resentative emulation of the CDCTRG. To achieve this the local prototyping platform is
divided into two parts, one that emulates the CDCTRG with its data flow and the NNT
itself. The VC709 development platform is used as a host since it is widely available and
provides a sufficient amount of GTH interfaces in order to replicate the CDCTRG’s data
transmission. The presented approach to a local setup for testing is hereby based on the
bachelor thesis Ref. [Rin18].

The system architecture of this local setup is shown in figure 5.46. The TX board emulated
all the input components ETF, TSF, and 2DS. Their behaviour is recreated by sending trig-
ger data that is pre-recorded and stored locally on the FPGA in BRAM. This data derived
from either the simulation or recorded from the experiment. This way it is possible to
recreate special situations of trigger operation, that caused unexpected behaviour of the
NNT. The data is sent via four GTH ports to the RX board, which contains the prototype
implementation of the NNT that is currently under test.

In order to set up the data transmission, load the test data and also control the com-
plete operation, a Picoblaze [121] processing system was instantiated on both boards. In
addition to the provided features for easier operation, this is especially helpful for the
configuration of the optical communication and their clocking resources, since it is much
easier to solve these aspects in software. For this purpose, a dedicated clocking IC on the
board is configured to provide the correct clock frequencies for the optical transceivers.
This IC is configured for operation in the assembler instructions, which are stored at the
Picoblaze.

Figure 5.46.: System architecture of the local NNT setup for testing and prototyp-
ing [Rin18].

163

5. The Neural z-Vertex Track Trigger

5.4.4. Investigation of Alternative Platforms and new Technologies

For the first collisions and tests at the experiment, a suitable platform based on the Virtex-6
FPGA was selected for the NNT. The main reason for this was the connectivity capabilities
provided by the board, which met all the requirements for integration into the CDCTRG.
Additionally, it was ensured that the boards were going to be available in time in order
to be used at the early stages of operation. For the further operation of the experiment,
however, it is possible to switch to alternative platforms. In the following, the prototyp-
ical developments for the newer UT4 are presented. The final version of the board was
however not available for usage during the creation of this thesis, thus the results are still
showing prototypical features. In addition, further possible choices are presented and
discussed in the following.

Transition to the UT4

The current version of the NNT that was designed on the basis of the UT3 has in principle
only one significant limitation, namely the throughput. It is only capable of processing
one track at each system clock cycle, dropping alternative tracks provided by the 2DS.
This is mostly due to the throughput and the resource consumption of the MLP.

Its succeeding platform, the UT4 is meanwhile based on newer FPGAs of the Ultrascale
generation. Using this generation is opening up new possibilities for overcoming the
throughput limitation. Due to the smaller feature size, it is possible to implement internal
modules with a higher clock frequency as the signal propagation times are significantly
reduced. In addition, it provides more LUTs that can be used for more logic or additional
reduction of routing congestion. The UT4 is hereby supporting multiple FPGAs, the focus
will hereby be put on the VU80 and VU125 [132]. These two options represent the early
prototyping system and the production system for the final UT4.

The architecture presented in section 5.2.5 was adapted to the UT4 to investigate the pos-
sibilities of this platform. The investigation is hereby mostly focused on the achievable
operating clock frequencies and the degree parallelism that are impacting the through-
put. The achieved results are shown in table 5.25 for the VU80 option of the UT4. Three
architecture configurations are hereby shown. The base configuration with one network,
an extension with two networks either using only DSPs or as a heterogeneous configu-
ration, denoted as 2NN_H. These results were derived by a design that only consists of
the core processing logic excluding additional necessary infrastructure such as the B2L as
there was no implementation available at the time this investigation was carried out.

Type Slices Registers DSP BRAM Frequency Latency
1NN 12% 3% 43% 1 % 250 MHz 9 data cycles / 288ns
2NN 23% 5% 86% 2 % 200 MHz 6 data cycles / 180ns

2NN_H 26% 6% 80% 2 % 150 MHz 9 data cycles / 288ns

Table 5.25.: Implementation characteristics for the full setup of the NNT based on the UT4.

164

5.4. Evaluation, Operation and Validation of the neural z-Vertex Trigger

The first result is that the basic architecture is easily within the resources provided by the
platform. In addition, it is possible to achieve much higher operating frequencies through-
out the entire processing architecture. A frequency of 200 MHz is possible and was used
for testing on a prototype board. The most significant improvement is meanwhile that
two neural networks can be implemented for parallel processing. Using this parallel con-
figuration is reducing the frequency below the 200 MHz threshold on the VU80 however
it still allows increasing the throughput compared to operation on the UT3.

The instantiation of two networks, however, is still inducing high resource utilization for
the DSPs. They still fit into the available budget and are still achieving a sufficiently good
timing for implementation. With the addition of the service infrastructure required for
integration into the CDCTRG, however, achieving timing closure might become problem-
atic. To address this possible bottleneck, the heterogeneous implementation of the MLP as
introduced in section 4.4.4 is examined. Since the difference in achievable operating clock
frequencies is even larger on the UT4, separate clock domains for Slice- and DSP-Neurons
are used. Using this approach the utilization for the DSPs can be significantly reduced,
whereby with a frequency of 150 MHz being reached.

Summarizing the results, it is possible to transport the NNT to the UT4 using two parallel
neural networks and a higher clock frequency, which greatly improves the throughput,
primarily due to the shorter signal propagation times on the UT4. The investigation of
how to make use of the UT4’s increased capabilities in this context is intensified in sec-
tion 6.3.1, in which a unified integration with a more advances estimation of the support-
ing track parameters that serve the inputs of the NNT are investigated.

Alternative off-Chip Memory Solutions for Deterministic Reloading of Networks

In section 5.2.5.1 it was investigated to what extent it is possible for the NNT to use ex-
ternal memory to extend the number of neural networks that can be loaded dynamically.
Using on-chip memory only the targeted UT3 platform is theoretically capable of support-
ing up to 16 networks. When using external memory in addition to this, the latency for
loading all weights is set at around 500 ns. This exceeded the overall latency budget of the
NNT and therefore cannot be used for the initial configuration of the CDCTRG. The exter-
nal memory used within this considerations was based Double Data Rate (DDR) technol-
ogy, which is the most popular choice right now. However, nowadays new technologies
are emerging. Modern architectures, especially in the area of dedicated processing for ML
applications, rely on alternative memory structures typically based on 3D manufacturing
technology such as the High Bandwidth Memory (HBM) [45] or its counterpart Hybrid
Memory Cube (HMC) [74]. Since the NNT is going to be operational long-term with a
life-time spanning around 10 years, it is going to undergo several update cycles. It is
thus worth investigating the promising forecasts for these novel memory technologies.
For this, the usage of HMC was investigated and prototyped. The platform used for this
investigation is an AC-510 module provided by Micron [74]. This provides access to 4
GB of HMC based storage that can be read out with 30 GB/s throughput. The module
is equipped with a Kintex-7 FPGA that is handling all internal communication with the
memory. It additionally includes GT connections for communication with the hosting
system. The provided module is used together with a PCIe adaptor card, that allows easy
integration into a normal computer. Before presenting the details of the evaluation, it is to

165

5. The Neural z-Vertex Track Trigger

be noted that HBM is considered as well, however it was not available for easy prototyp-
ing at this stage. Using the described setup of the NNT it took around 950 ns to load the
weights of a neural network with the packet size being set to the maximum value of 128
Byte. While this is not an encouraging result, it is to be noted that the network is stored
in raw form without any optimization of the constant weights, which will bring latency
further down. As this is unlikely to reach the latency goal, it was not further explored.
The idea of using external memory is however not completely off limits, since unified
integration of NNT with the S3D is expected to open up a significant additional latency
budget.

5.5. Summary

This chapter covered all aspects of the neural z-Vertex Trigger that is tasked with esti-
mating the z-Vertex of particle tracks using the CDC of the Belle II detector. All aspects
relevant to the FPGA-based design and integration of this system into the overall trig-
ger system of the experiment were discussed here. As with all trigger components the
NNT has to fulfil strict requirements regarding latency and throughput coupled with a
high demand for IO resources in order to receive the data necessary for the estimation.
These requirements led to the investigation of selecting a suitable platform to host the
system. The most suitable platform is represented by the UT3 and 4, which are custom
FPGA-boards designed for the Belle II trigger system. While they are not equipped with
the most modern generation of FPGAs, they are fulfilling the requirements for IOs and
are equipped with an IP core library maintained by the experiment’s collaboration. Due
to the strict time schedule, it represented the best choice to allow early operation and
evaluation of the NNT in the experiment. The considered aspects for integration were ex-
plored beyond the selection of a suitable platform. This includes an integration strategy
that allows the complete coverage of the CDC without exceeding the number of available
UT3s. In addition, every interface protocol to be supported was investigated and FPGA
modules supporting these were developed. The most complex one is hereby represented
by the module handling the TSF as it cannot abstract from the CDC and is thus influenced
by drift times. To compensate for this, a persistor module was developed and discussed.
This module was designed in a flexible way since it has to consider several potentially
changing parameters.

This chapter also featured the presentation of the entire processing architecture that was
developed to realize the NNT. The presented solution for the implementation of the neu-
ral network is hereby based on the concepts introduced in section 4.4 with mostly using
the low-latency options discussed there. Preprocessing is meanwhile consisting of cus-
tom algorithms that are taking both the geometry and characteristics of the CDC into
account. The presentation of the preprocessing architecture is based on the architectures
common in Xilinx’s FPGAs. Each processing stage hereby followed a flexible design by
introducing variable parameters to be defined during design time as well as the possi-
bilities for parallel execution. Evaluating the entire resulting architecture the bottleneck
bounding the performance is located at the implementation of the neural network, while
the preprocessing is fulfilling all latency and throughput requirements without requiring
excessive amounts of resources. The present bottleneck is mostly a result of the limited

166

5.5. Summary

availability of DSPs on the considered FPGAs. While the latency requirement is being
satisfied by every developed architecture, throughput is always below the maximum rate
of tracks to be received during high luminosity operation when using a UT3. This is how-
ever improved by using the UT4 which is capable of processing up to two tracks every
system clock cycle. As these throughputs are only required in later stages of the experi-
ment, the presented setups of the NNT are already sufficient for the current status using
the low-throughput version on the UT3.

The developed realization and architecture of the NNT is supported by several auxiliary
tools and mechanisms. This includes support for the configuration of design time param-
eters for all internal processing that is performed by a semi-automated framework. This
framework uses an abstract configuration file for the neural network, which is provided
after the training phase. In addition, it includes mechanisms to easily reload different
trained neural networks and validate the architecture by the generation of simulation
scripts.

Since the NNT is assuming important responsibilities as it is used to decide whether to
read out the detector, it needs to be monitored for correct behaviour during operation.
These tasks are performed by the Slow Control and Data Quality Monitoring that were
both discussed. Solutions for these mechanisms based on the UT3 were presented with
DQM being realized by using the B2L and SL being covered by regular register accesses
over the VME bus.

All of the aspects and components that were developed for the NNT are finally combined
to form different setups that were integrated into the CDCTRG and active during the
operation of the experiment. The most important one is hereby the operational setup that
is discussed in section 5.4.2.2. This discussion includes a performance analysis using data
taken during collision operation with higher luminosity during phase 3 of the experiment.
The analysis hereby at first shows that the provided design used for the NNT is correctly
receiving all required data achieving coverage of the entire CDC. In addition to this, an
analysis of the arrival of trigger signals at the GRL was presented. This analysis shows
that the output signals of the NNT are arriving within the latency budget set for the L1
trigger system. Besides the fulfilment of the operational requirements, an analysis of the
quality of the estimation is provided for a selected collision run. The generated correlation
plots and histograms show that this setup is already capable of providing the desired
functionality when compared to ideal processing modelled in software. This setup is
capable of estimating the z-Vertex with a resolution of around 40cm. As a result, the
NNT can be used with suppressing cuts set to +/- 40cm. This is meanwhile achieved
without the usage of a network specifically trained with experimental data but rather
trained with data generated from the simulation of the experiment. It is expected that the
resolution will significantly improve with newly trained networks, forming the outlook
into the future operation of the NNT.

167

6. The Hough-based 3D Track Estimation

6.1. Upgraded Estimation of 3D-Track Parameters

The basis for track finding within the CDCTRG is represented by the detection and esti-
mation of particle tracks passing through the detector in the two dimensions omega and
phi. Estimating these parameters is the responsibility of the 2DS [98], which combines all
active axial TS across the different layers of the CDC. By combining a subset of suitable
TS, the 2DS estimates a particle track that is the matching them as close as possible. This
track hereby has the smallest distance between the location of the track and the TS across
the layers. This estimation represents the basic track trigger signals within the entire trig-
ger system and is used at the GDL as part of the readout decision rule set. Besides its
role in supplying the GDL, it is used for the subsequent estimation of additional track pa-
rameters such as both theta and the z-Vertex. Both of the systems dedicated to generating
these parameters, the 3DS and NNT, are in principle combining the estimated 2D track
parameters with additional stereo TS and the event time to derive desired parameters.

While the 2DS is performing as specified according to its concept, there is still room for
improvement by using enhanced derivatives of the core algorithm. One such approach
is the Hough-based 3D-Track Finding. This approach extends the original concept by
adding stereo TS to the hough-based track finding. In addition to this, the generated
hough map itself is extended by being weighted with the probability of track parameters
matching an observed TS. The original design was meanwhile using a binary represen-
tation, solely describing whether parameters are matching an observed segment. The
design of an FPGA-based solution using this approach is the core of this chapter. Both al-
gorithmic and detector specific aspects of the approach were investigated and developed
at the Max-Planck Institute (MPI) Munich which is for example described in Ref. [Ska19].
In summary, the investigations conducted there show that the accuracy of the overall track
estimation is greatly improved by using this approach.

6.1.1. Functional Description and Processing of the Proposed Approach

The S3D is algorithmically in many ways similar to the present 2DS. It has, however, some
differences which make it more complex for its adoption on FPGAs. The data flow can
hereby be separated into multiple sequentially processed functional components. The
first component in this flow is the creation of the 3D hough map itself. This is followed
up by a threshold filter that and an optional 3D clustering which is coupled with an es-
timation of the center-of-gravity. The last processing step is represented by the selection
of the suitable hits matching the estimated 3D-track. All of these components have to be

169

6. The Hough-based 3D Track Estimation

revised internally when compared to the original 2DS, however many of the implemen-
tation concepts are shared and can thus be reused.

Similar to the data flow of the S3D, the first step of 2D track finding consists of generating
a 2D hough map in this case solely using aTSF. The new processing element to be consid-
ered at this stage is the inclusion of the remaining sTSF. With the help of their inherent
orientation, these TS form the basis for extending the hough map towards the third di-
mension by adding the calculation of theta-planes. Each theta-plane is represented by a
separate new 2D hough map. The complete 3D hough map is then generated by calculat-
ing a 2D hough map for each separate theta-plane.

Each hough map consists of a set of hough cells. Each of these cells is hereby assuming
a distinct value which is representing the accumulation of the conditional probability for
a track parameter set belonging to an observed TS that is currently active in the drift
chamber. The conditional probability is hereby calculated by following Bayes-theorem as
described in Ref. [Ska19]. These probabilities are then normalized for each cell of the map
by taking both the mean value and the standard deviation of all related TS into account.
This normalized probability is then represented either binary, that indicates surpassing
of a predefined threshold, or by a configurable bit size. In the subsequent generation
of the hough map, this probability is used as a weight that is essentially representing
the contribution of a respective TS towards being represented by a certain track. The
option of using non-binary weights represents one of the major differences to the 2DS,
in which such an option is not available. The idea here is to have a higher resolution
for representing the contribution of a TS for the track finding. This added resolution,
is in turn, allowing more precise estimations of the track parameters. The bit width of
the weights is one of the available design-time optimization parameters. The trade-off
between higher and lower bit-widths is in the precision and resource consumption, as
higher bit widths require additional hardware resources.

After the generation of the hough map, a filter is applied to it in order to reduce both
the data to be stored and the space to be searched in the later stages of the processing
chain. A threshold is hereby applied to all of the cells. Each cell is checked for whether it
is surpassing a constant value defined during design-time to not be suppressed. At this
stage, the reference implementation of this approach is commencing the processing by
finding clusters of neighbouring active hough cells. A simplified alternative to this is to
just find the maximum cell and choose it to represent the best estimation for the track.
The reason for considering a simplified alternative is the added processing complexity of
clustering especially compared to the 2DS. This is due to the third dimension that has to
be taken into account. The reference implementation is hereby using DBSCAN [95]. The
actual track candidate is then at the end determined by calculating the center-of-gravity
within this cluster.

6.2. System Requirements

As with all components of the CDCTRG, the S3D has to fulfil the requirements set for
the L1 trigger system. These are defined in terms of latency, throughput and compat-
ibility characteristics to be provided for successful integration. These requirements are

170

6.2. System Requirements

discussed for the S3D within this section.

Connectivity

From the trigger system point of view, the S3D takes on the same role as the 2DS. The
method uses the found TS and tries to reconstruct a particle track most suitable to match
all of the observed segments. The big difference between both approaches lies in the es-
timation of the additional three-dimensional track parameter. This cannot be performed
by only using segments from axial SLs, rather it is required to also take stereo SLs into
consideration. In order to support this, additional communication channels have to be
established that are connecting the S3D to all of the sTSF. This also means that the se-
lected FPGA platform has to provide additional GT lanes for receiving this information.
Each sTSF is hereby sending data over four GTH lanes just like the axial Track Segment
Finder (aTSF). Since there are four SL with stereo orientation, an additional 16 GTH lanes
must be supported in total. This can, however, be reduced by using the same approach
as described in section 5.2.1 in which the complete space of the CDC was partitioned
into quadrants, for which separate FPGA-boards are responsible. This is reducing the
demanded GT lanes by half.

While the additional connections to sTSF are mandatory in order to be operational, there
are some options with regard to the required ports for the outgoing data and the inclusion
of ETF. This additionally depends on the chosen integration method with regard to the
NNT as it can be integrated together with 3DS on one FPGA platform. In the case of
a joint integration, GTH lanes can be saved between both systems when compared to a
separated integration. In the case that the S3D and NNT are implemented separately,
further lanes are necessary for the communication between both as the NNT requires the
track estimations. The total number of lanes required is depending on the number of 3D-
tracks to be sent. For this purpose, the matching TSs have to be sent in addition to the
three track parameters. The total amount of data to be sent for one data clock cycle is at
225 Bit as shown in equation 6.1. As each lane is capable of sending up to 170 Bit, this
results in at least two GTH lanes necessary to implement this connection for just for one
track. Each additional track to be sent hereby requires at least one additional GTH lane.
Thus it is highly desirable to pursue a joint integration in order to reduce both the latency
and required number of GT lanes.

S3DSingleTrack = TSData + TrackParameters + StatusData

= 9 · 21 + 3 · 8 + 12 = 225Bit
(6.1)

An interesting alternative to the joint integration is the relocation of the NNT’s prepro-
cessing to the FPGA hosting the S3D. In that case, only the inputs used for the MLP have
to be sent across the two boards. As a side effect, the resource consumption at the NNT
is reduced as it only has to implement the network itself. This solution would reduce the
demand for GT lanes to just one for every possible configuration of supported tracks.

The NNT is the only data sink of the S3D in case that the current 2DS is kept operational
in parallel. However, if it were to be replaced entirely, the S3D will be required to addi-
tionally send the track information to the 3DS and the GRL. The same considerations as

171

6. The Hough-based 3D Track Estimation

done before in the case of the NNT meanwhile apply to the connection of the 3DS as they
have the same principle interface.

The total number of GTH lanes to be provided is therefore at least 28 lanes with regard to
equation 6.3 for each quadrant. This already exceeds the maximum number of available
lanes on the UT3, which is limited to 24 lanes. Thus, this platform already falls short of
being a suitable host for the S3D. However, the newer UT4 is supporting up to 32 GTH
lanes by using the newer FPGA architecture of the Ultrascale generation.

Assuming that the UT4 is used as a host, four GTH lanes are remaining available in the
case that one track per data clock cycle is to be sent. The remaining lanes can then be used
to send more tracks. Since the 3DS can natively handle up to four tracks, these additional
lanes can be assigned for transferring the full number of tracks towards it.

Total InputGTH = axialGTH + stereoGTH = 5 · 2 + 4 · 2 = 18

TotalGTH3D = NNTGTH + 3DSGTH = 4 + 4 = 8

TotalOutput = GRL + B2Link = 2

(6.2)

TotalGTH = Total InputGTH + TotalOutputGTH
= 18 + 8 + 2 = 28

(6.3)

As shown in section 5.2.3.2, receiving data from the TSF must be handled by using a
persistor module that takes into account the operational characteristics of the CDC. As the
S3D is receiving data from each of the TSF, a separate persistor must be instantiated for
each SL. This will lead to higher resource demand compared to both the NNT and 2DS,
which are the other components currently using persistors. While this is complicating
things for the S3D it is advantageous for the NNT since it will receive already matched TS
and does not have to use persistors anymore.

8 GTH Lanes

10 GTH Lanes

4 GTH Lanes

4 GTH Lanes

1 GTH Lanes

1 GTH Lanes

3DHough

3DS

NNT

B2Link

GDL

aTSF

sTSF

Figure 6.1.: Block diagram of the S3D describing all required input and output interfaces
with the number of respective required GTH lanes. Interfaces depending on
the integration method are highlighted orange.

172

6.2. System Requirements

Considering both DQM and SC basically the same approaches as discussed in section 5.3
can be reused by using both B2L and VME. The increase in the amount of input data must
also be taken into account here since it is used for monitoring correct inputs. The overall
required interfaces are shown in a block diagram in figure 6.1.

Latency

As with all components, the maximum latency is determined by the CDCTRG by the
deadline of the GRL/GDL. As the S3D allows joint integration with the NNT, the avail-
able latency budget also depends on the selected integration strategy. In case that the 2DS
is to be replaced, the latency of the 3DS has to be considered as well. The maximum al-
lowed latency is thus determined by its two receiving components 3DS and NNT, which
have to be able to complete their tasks within the total latency of the trigger system. The
easiest approach to estimating the available latency budget for the S3D is hereby to apply
the same requirements as they are present for 2DS. As described in section 5.4.2.2, in the
current setup around 251.2 ns of processing time is allocated to 2DS which is resulting
in the trigger system that is just barely within the set deadline. In case of a separated
integration, the same latency budget can be used for S3D resulting in a system fulfilling
the requirements. If, however, the S3D is integrated together with the NNT, a higher
latency budget is available for the combined solution. In this case, the latency budget
consists of both the current processing latency of NNT and 2DS together with the time
necessary for sending the data between the two boards. Both latency budgets are shown
in equations 6.4 and 6.5. Especially the transmission delay makes a huge difference and
is allowing more flexibility for scheduling of the operations.

LatencyS3D = Latency2DS = 251.2ns (6.4)

LatencyS3D+NNT = Latency2DS + LatencyNNT + LatencyGTH

= 251 + 300 + 300 = 851.2ns
(6.5)

Throughput

Similar to the 2DS, a specified throughput for the found tracks is expected from S3D to
achieve optimal operation. However, as with the NNT, there are some degrees of freedom
in the number of tracks to be found in parallel at each data clock cycle. The version of the
2DS that is operational at this stage of the experiment, is sending up to four estimated
tracks per board and data clock cycle. The limitation is set by the maximum achievable
data rate achievable by using the GTH lanes of the UT3. The implementation itself is ca-
pable of finding and estimating up to six tracks in parallel for each data clock cycle. While
the NNT in its first fully operational version can only process one track for each data clock
cycle, its implementation on the more powerful UT4 is capable of processing up to two
tracks, with the assumption that the smallest available FPGA is used. In a CDCTRG in
which the S3D is solely used to improve the NNT, the maximum number of tracks to be
estimated is determined by its implementation. In case that the 2DS is replaced, at least

173

6. The Hough-based 3D Track Estimation

four tracks shall be estimated which is matching the current maximum throughput.

Flexibility

Demand for flexible implementation of the S3D is mostly the result of using weights as
the content of hough cells which are derived during the training phase using a data set.
As the data set used for training can be changing over time, for example, by switching
from a simulation data set to data gathered during physics operation, the weights have to
be adjustable over time. Overall this situation is similar to the weights used for the MLP
of the NNT. It is thus the best approach to again established a semi-automated toolset in
order to generate a firmware configuration quickly and effortlessly.

Summary

The requirements of the featured S3D are in general very similar to the requirements set
for the 2DS. Since the S3D is basically an alternative or replacing approach it is integrated
into CDCTRG at the same position with regards to the data flow. Meanwhile, the baseline
for both the maximum latency and minimum throughput in standalone operation is taken
from the current 2DS and set as a target for the S3D.

The main differences with regard to integration are the upgraded FPGA-platform that is
planned to be used, the UT4, and the inclusion of all of the TSF information, while the
2DS is only relying on aTSF. A rough estimation of the required total amount of GTH is
basically excluding the usage of the older UT3 platform and makes usage of the UT4 or
an alternative platform necessary.

The S3D has also to fulfil hard requirements on both latency and throughput. Since the
component is located in the middle of the CDCTRG data processing chain, its influence on
subsequent stages has to be considered. Overall, the latency of the 2DS must be matched.
This was already at the limit of what was feasible in the original design but was also based
on older Virtex-6 FPGAs. In the optimal case, the throughput achieved by the 2DS is also
matched. However, there are degrees of freedom in the number of tracks processed in
parallel, while more processed tracks are further increasing the efficiency.

6.3. Realization of the S3D

Having established the requirements to be fulfilled as well as the algorithmic fundamen-
tals of the track finding approach, the focus is put on the realization of the FPGA-based
S3D. At first, all aspects regarding the integration into the CDCTRG are discussed, espe-
cially the options for joint integration with the NNT. Following the integration consider-
ations, the focus is shifted over towards the implementation of the logic.

6.3.1. Integration into the Trigger System

There are three basic approaches for integrating the S3D into the CDCTRG. As it is basi-
cally an extension of the current 2DS, adding an additional track parameter, the S3D can

174

6.3. Realization of the S3D

be used to replace the previous 2DS entirely. Even though that might seem the only log-
ical conclusion as it is reducing the hardware effort, there are several arguments against
this approach. Since the 2DS is essential for the entire trigger system to be operational,
it must first be proven that any alternative realization can achieve comparable or better
performance in terms of tracking before replacement efforts can commence. This has to
be conducted thoroughly to prevent the hindering of the experiment.

Alternatively, it is possible to operate the S3D in parallel to the 2DS in order to facilitate
smooth operation and transition. The big disadvantage here is the need for additional
hardware, especially with regard to the E-Hut. New crates and space have to be allocated
within the E-Hut accompanied by the need for a new cabling plan.

A much better solution is available in case the S3D is integrated into the CDCTRG to-
gether with the NNT on the same FPGA board. Integrating both components on one
board would save cost, area and simplify the cabling. In addition, it would provide ad-
vantages regarding the latency. A joint integration of both components has the most ad-
vantages, the question herein is whether the available resources of the FPGA are sufficient
for realization. The options are additionally shown on an architectural level for all options
in the figures 6.2, 6.3, 6.4, except joint implementation without 2DS.

S3D

2DS 3DS

CDC
FEE

GRL GDL

NNT

TSF

Figure 6.2.: Architecture for separate integration into the CDCTRG without replacing 2DS.

2DS 3DS

CDC
FEE

GRL GDLTSF

S3D + NNT

Figure 6.3.: Architecture for joint integration into the CDCTRG without replacing 2DS.

175

6. The Hough-based 3D Track Estimation

S3D

3DS

CDC
FEE

GRL GDL

NNT

TSF

Figure 6.4.: Architecture for separate integration into the CDCTRG replacing 2DS.

6.3.2. FPGA Architecture of the S3D

S3D

Input
3D

Hough
Map

Max

Cluster CoG

Figure 6.5.: Processing architecture of the S3D. Orange boxes are representing the optimal
path in terms of most precise track estimation. It is a refinement step, which
can be bypassed at the cost of worse estimations.

The hardware architecture of the S3D can be divided into four separate components ac-
cording to the tasks to be performed. As with the NNT, input data handling is required to
support the TSF. After the reception of TSs, the first stage of processing is responsible for
the creation of the hough map by using the available pool of observed TS. The input to this
stage depends on the used configuration of the TSF. As such at least 10 TS are processed
at each data clock cycle, other possible configurations are 15 or 20 TSs. The following
processing steps are then applying a set of operations onto the generated hough map. At
first, a threshold is applied to suppress low-probability tracks. Afterwards a set amount
of maxima is found within the map. These maxima are already viable results of the S3D,
that can be used by the following components. However, the optimal path as defined
in the reference implementation is calculating a center-of-gravity using a cluster around
each of the found maxima. As such the architecture can be configured to either stop at the
maximum finding or proceed to calculating the centre-of-gravity. An illustration of the
entire architecture is shown in figure 6.5.

176

6.3. Realization of the S3D

6.3.2.1. Generation of the 3D Hough Map

The first component of the architecture is the handling of the input data received by the
TSF. In principle, it has to fulfil the same tasks as was the case for the NNT. Besides
complying with the communication protocol, the main elements are the persistors, which
accumulate the TS observed within a defined time window. One solution is to reuse the
implementation discussed in section 5.2.3.2. The S3D is however by nature different in
its algorithmic implementation, which allows for an alternative solution. The core idea
behind this alternative is to implement the persistors directly within the generation of the
Hough map instead of creating the pools of TS beforehand. As a result of this approach,
the persistors implementation is taking part after the input handling.

The generation of the hough map consists of filling its individual cells, which are rep-
resenting the possible track parameters, with the weights of the currently observed TS.
There are in principle two approaches to this, in one of these the hough map is filled by
using the current pool of TS. In the alternative approach, partial hough maps that are only
containing the information of one TS are generated at first independently of each other.
These partial maps are summed up afterwards to calculate the complete map. Within this
implementation, the former approach is chosen. The reasoning behind this choice is that
partial hough maps are either unnecessarily memory intensive, as several maps have to
be buffered before finally being summed up, or in case they are zero-suppressed can only
be summed up with higher computational effort, especially with regard to its latency.

Theta Hough Map Generation

Axial
Hough Map

Stereo
Single Theta
Hough Map Combined

Single Theta
Hough Map

+

Figure 6.6.: Architectural view on the combination of axial and stereo Hough maps. The
axial Hough map is added to each theta-Hough map separately in parallel.

The chosen basic principle for creating the Hough map is to mark every cell, which is
associated with a currently active TS. With that relationship known, the corresponding
weights are subsequently loaded and summed up across all of the cells. The combination
of all individual cells is then forming the three dimensional Hough map that is reflecting
the current state of the experiment from the CDC’s point of view. This can in principle
be implemented by using one adder coupled with a memory that stores the relationships
and weights. In order to meet both throughput and latency requirements, parallelism is

177

6. The Hough-based 3D Track Estimation

facilitated as much as possible. This is always accompanied by the decomposition of the
entire task and allocation to separate modules.

The first module to be defined has the task of generating a 2D-Hough map. The reason
behind this is to separate the processing of both the different SL orientations and the theta
slices of the complete map. As those are each handled differently, it is the better solution
to instantiate different modules instead of implementing a common one. Inputs to these
modules are the respective TS to be processed, at this point stereo and axial wires are
separated and processed on parallel data paths. Afterwards, both partial hough maps
are added to generate one theta plane of the entire map. This architecture is shown in
figure 6.6.

Internally, input data is additionally separated according to the separate SLs, the hough
map is hereby generated for each layer in parallel using only the TS present within that
layer. This reduces the amount of TS to be processed significantly, thus lowering the la-
tency for generating the map. However, for each SL a separate map is buffered before
being merged together. The architecture of this separated processing is shown in fig-
ure 6.7. The same separation can be applied to processing the different priority positions
that a TS can assume, thus first priority hits are processed in parallel to second priority
hits. The core of generating each partial hough map consists of processing each individual
cell. Which will be the point of focus in the following section.

+ Combined
Hough Map

Axial 2D
Hough Map

Axial 2D
Hough Map

Axial 2D
Hough Map

Hough Map Generation

Super Layer
Hough Map

Figure 6.7.: Architectural view on the generation of a Hough map. It is performed sepa-
rately for axial orientation and each theta.

Calculation of a Single Track Probability Represented by Hough Cells

Each cell of the hough map can be processed the same way. The first stage is hereby to
check whether a currently active TS may have been caused by the track representing the
cell under consideration. In case that TS and track are related to each other, the weight,
representing the probability is to be used. Doing this for all TS and summing up the
weights concludes the processing of the hough cell. Meanwhile, these operations can be
calculated independently for each cell of the map. Maximum parallelism is employed
here in order to minimize latency, thus each individual cell is processed in parallel. As the
operations are always the same, independent of the specific cell a single module is devel-
oped to carry out the calculations while being design flexibly to load weights effortlessly.

178

6.3. Realization of the S3D

The option for sequential processing is however provided by the implementation of this
module as well, in case FPGA resources are not sufficient and time budget is available.

=
TS

Input

Hough Cell ID

===
= >1

Weight

0

Weight
Output

Valid
ID0

IDN

...

TS
Memory

Design
Parameters

Parallelism
Depth IDs

Weight Bitwidth

Figure 6.8.: Architecture of the module responsible for determining the cell that is related
to a currently active TS.

The module is receiving the IDs of all TS from the respective SL at each data clock cycle.
In order to determine which TSs are related to a respective cell within the hough map, all
IDs contributing to one cell are stored within a TS memory. The contents of these cells are
defined during design time as the relationship is part of the algorithm’s training process.
All incoming IDs are then compared with the contents of this memory. In case one or
more IDs are matched, the hough cell is sending a valid signal indicating that it is to be
considered for further processing. In parallel to this, the respective weight is loaded and
send along with the valid signal. Weights are hereby stored in a separate memory that is
again filled during design time. The architecture of this module is shown in figure 6.8.

To synthesize the module for the FPGA, the size of both memories must be determined
in advance at design time. The size must be chosen so that the calculation of the map
stays within the resource budget. In case that not all of the possible TSs fit into the mem-
ory, a good trade-off can be found by not using TS with a low probability contribution
to its respective track. This way subsequent tracking accuracy is reduced the slightest.
The maximum number of TS stored for the developed prototype was defined by using a
provided sample data set. With regard to this data set, a memory depth of up to five IDs
is already sufficient to provide storage to fully store all IDs for all of the cells.

The complete hough cell is then processed by instantiating several single ID processing
units as illustrated in figure 6.9. The determined weight for each found TS is then summed
up and passed along to the next processing stage at which the cell’s weight is combined
with all the remaining cells processed in parallel. Parameters that are set during design
time are the bit width of the weights, parallel comparisons at each clock cycles and the
depth of the used memory.

179

6. The Hough-based 3D Track Estimation

Hough Cell_ID

===
= >1

Weight

0

Weight
Output

TS
Memory

ID0

IDN

...

+

Hough Cell_ID

===
= >1

Weight

0

Weight
Output

TS
Memory

ID0

IDN

...

Hough Cell

TS
Input

...

...

...

Cell
Weight
Output

Figure 6.9.: Architecture developed for the calculation of a cell’s accumulated weight de-
pending on the found TS IDs.

Consideration of TS Persistence within the Cell Processing

As described before, the persistence of TSs can be integrated into the creation of the
Hough map. The basic idea is hereby to store the result generated at the cell process-
ing of one TS for a fixed time interval instead of a single clock cycle. At each successive
clock cycle, this stored result is reused and updated with the currently generated result
for the newly arriving TS. Buffered intermediate results are hereby invalidated after the
expiration of the defined time interval. Compared to the original approach that was im-
plemented for the NNT, this alternative has several advantages. Firstly, there is no need
for the inclusion of a separate persistor module. This is already a significant improve-
ment, as the persistor is one of the bottlenecks of the NNT in terms of resources. Since
the S3D is using not only receiving a subset of the TSFs but all nine, the impact is even
more significant compared to all other components. The other advantage is that TSs that
were already processed in previous clock cycles are not processed again. Instead, their
previously calculated weight is used again. As a result, however, the processing unit is
including an additional memory together with a clock counter that represents the time
window of validity.

Evaluation of Resources, Latency and Throughput

The presented approach for generating hough maps was synthesized for the UT4 and
UT4+, that is Ultrascale and Ultrascale+. The UT4 option are hereby distinguished be-
tween the prototyping option, UT4 base hosting a VU80, and the expected final platform

180

6.3. Realization of the S3D

UT4 max, hosting a VU125. Results are shown in table 6.1 for a single cell of the map and
in table 6.2 for the entire hough map. The results were achieved with the configuration
listed in table 6.3. In total it is possible to operate the Hough map generation with a clock
frequency of 200 MHz at the UT4 and 255 MHz at the UT4+ with a latency of one clock cy-
cle. This means that the required input throughput frequency of the TSF at 31.75MHz can
be easily matched. The substantial difference between both clock frequencies can hereby
be used to stretch cell processing across several clock cycles in the case that overall re-
source utilization is high. The resource consumption for processing a single cell is very
small, however, it has to be used in large numbers number, as a large amount of Hough
cells have to be processed in total. This can be seen in the high overall resource demand
for the generation of the entire hough map. The result of this module is the entire 3D
hough map. Since it considers all of the incoming TS only one instance of this module is
to be implemented, as such the results are acceptable.

Category UT4 UT4+
Slice LUTs total 36 36

FF total 8 8
Frequency in MHz 200 245

Latency in clock cycles 1 1

Table 6.1.: Synthesis results for the calculation of one Hough cell’s content.

Category UT4 base UT4 max UT4+
Slice LUTs total 161 715 158 480 156 330

Slices LUTs percentage 36 % 22 % 26 %
FF total 10 853 10 636 10 262

FF percentage 1 % 1 % 1 %
Frequency in MHz 200 200 245

Latency in clock cycles 1 1 1

Table 6.2.: Synthesis results for the entire 3D Hough map.

Parameter Depth Parallelism Bit width weights
Value 5 IDs full 3 Bit

Table 6.3.: Configuration used to generate the synthesis results.

6.3.2.2. Finding the most Suitable Track Candidates

The first stage of internal processing is concluded with the creation of the Hough map.
The next task to be performed is the determination of the track parameters most closely

181

6. The Hough-based 3D Track Estimation

matching the observed event. For this, at first, the number of possible candidates is re-
duced by using a threshold filtering. This is implemented for every single cell separately
and performed in parallel, again with the goal to keep latency small. Although the re-
sulting map is substantially reduced after this filtering stage, it is still representing a large
space that is to be investigated. The used approach to find suitable track candidates within
this space is described in the following. The idea behind this approach is to partition the
entire map into a number of subsets to be searched for a local maximum probability cell.
The reason for the partitioning of the map is to keep the latency small and facilitate par-
allelism by searching smaller subsets of the map and enabling parallel search. As there
its no preferred way to partition the map, it is separated into subsets all having the same
size. The number of partitions to be used is meanwhile a parameter to be determined,
however, the most straightforward way is to set it to the number of track candidates to be
found. For the prototype investigation, it will be assumed that four candidates are to be
found, as it recreates the current implementation of the 2DS. Using this approach, there
is a chance that multiple maxima are present within each of the resulting quadrants. The
task of choosing the maximum to be used is again a design decision to be determined
depending on the required quality of the results. For this investigation, it is performed in
a way that is reflecting the 2DS. This means that the track candidate to be considered to
be used in each quadrant is the one with the highest probability ordered by its impulse.
To minimize latency, the search for a candidate is performed by separate modules for
each quadrant. These modules can be operated in parallel, significantly reducing the total
latency. The resulting architecture is depicted in figure 6.10.

Hough
Map

Max Finder
Max0

Design
Parameters

Num Sectors
Num Maxima

MaxN

...Partition0

PartitionM

......

Max
Sector0

Max
SectorM

Max0

MaxN

...

Figure 6.10.: Architecture of the track candidate finding using a partitioned Hough map.

The module for finding suitable track candidates was synthesised for the same platforms
as before. The results are summarized in terms of resources, latency and clock frequency
in table 6.4 for one quadrant and in table 6.5 for the entire map. The latency can be set as
desired, however, the best trade-off between all figures of merit was found at four clock
cycles. This is additionally the lowest achievable latency while keeping the maximum
frequency at over 200 MHz, thus preventing this module of being the bottleneck. The

182

6.3. Realization of the S3D

achieved resource utilization is, in general, reasonable and much smaller than the gener-
ation of the Hough map itself.

Category UT4 base UT4 max UT4+
Slice LUTs total 6 809 7 068 7 222

FF total 10 494 9 892 9 970
Frequency in MHz 200 200 245

Latency in clock cycles 1 1 1

Table 6.4.: Synthesis results for one quadrant of the 3D Hough map.

Category UT4 base UT4 max UT4+
Slice LUTs total 24 513 25 448 26 002

Slices LUTs percentage 6 % 4 % 4 %
FF total 23 320 21 983 22 157

FF percentage 3 % 2 % 2 %
Frequency in MHz 200 200 245

Latency in clock cycles 1 1 1

Table 6.5.: Synthesis results for the entire 3D Hough map.

6.3.2.3. Refinement of the Track Candidate

In principle, the already found maxima could be used as a lower-accuracy estimation
of the desired track parameters. Further refinement of the found candidate is however
possible by using the information about neighbouring active cells in the hough map as
there is still some probability that the correct track is to be found in those cells. Such
refinement of the estimation is the topic of this section in which the centre-of-gravity is
calculated for a connected cluster formed around the found maximum cell. It includes
two general approaches the unconstrained and area-constraint clustering. With the later
having to abide by a restricted maximum cluster area.

Unconstrained Clustering Approach

The unconstrained approach does not impose any restrictions on the maximum size of
the found clusters. Algorithmically, the approach taken for this is resembling a region
growing in which active cells of the map are at first detected and combined to multiple
successive neighbouring cells. These combined cells shall be called strips and are formed
along one of the dimensions for example phi. After all, strips are formed, the region is
expanded towards another dimension in a subsequent, that is either pt or theta. The ad-
vantage of this approach is the high degree of parallelization for combining cells since
rows of cells can be processed independently. The presented approach to unconstrained

183

6. The Hough-based 3D Track Estimation

clustering is hereby based on the master thesis Ref. [Hoc18].

Row StartCol EndCol

Figure 6.11.: Schematic description of the approach used in the unconstrained cluster-
ing [Hoc18].

As it has no specific constraint this approach is finding all of the clusters while providing
a high degree of parallelism, which is desired in order to achieve low latency. However
many cells might be merged without need as they are not part of the cluster chosen for
the representation of the track. These additional operations are herby potentially wasting
processing resources. As the goal is not only the realization of the S3D but also a unified
integration with NNT, a more resource-efficient solution is presented in the following.
Instead of considering all of the cells in the Hough map, the approach taken alternatively
is to only start from the already found maximum weighted cell and expand the cluster
from this cell by merging the row of the maximum with its neighbouring rows in one
dimension. This merging is continued until no neighbouring cell rows with active overlap
can be found. After the merging in the second dimension, the process is expanded to next.
In the case of the S3D, the order in which dimensions are processed is phi, pt concluding
with theta. This approach is shown in figure 6.11 for a 2D-Hough map that shows an
example cluster to be formed. Starting from row five in which the maximum is located, the
cluster is expanded towards lower pt, as this is the direction at which rows of active cells
are overlapping. The subsequent expansion into the third dimension is then illustrated in
figure 6.12.

This approach reduces resource consumption by two measures. First, the cluster is only
formed around the maximum cell. Then it is expanded in a row-wise manner in which
a maximum of two rows can be merged in parallel. This, however, is representing the
downside of this approach as it makes latency indeterministic since the number of rows
to be merged is varies with the currently processed hough map. This drawback is, in con-
clusion, the reason for the investigation of area-constrained approaches that have a fixed
latency.

184

6.3. Realization of the S3D

pT

φ

ϑ

(a)

(b)

(c)

Figure 6.12.: Graphical description of the 3D clustering approach employed without us-
ing area-constraints. Weights are written into the separate cells, with dark
green indicating the maximum cell, light green cluster members that are to
be found and red cells are showing cells that are not part of the desired clus-
ter [Hoc18].

Evaluation

The implementation of the unconstrained clustering was performed using the HLS tools
by Xilinx. Several options were hereby enabled such as array partitioning, array reshap-
ing and pipelining, which led to the generation of an architecture with parallel processing.
The results using this approach for the UT4 with the commonly used options are shown
in table 6.6. Looking at the results it is apparent that this approach cannot be used with
all of these FPGAs as it both exceeds the resources budgets of the LUTs and the latency,
which is in addition variable depending on the size of the cluster that is to be found. At
this point, there are two straightforward approaches to addressing these shortcomings.
For once this implementation is covering the entire Hough map, which will be reduced
when using multiple FPGA boards that are covering the different quadrants. While this
might solve the resource problem, latency has still to be addressed. The reason for the
high and variable latency is hereby due to the variable cluster sizes. By constraining the
maximum area that can be assumed by a cluster, this problem can be addressed as it is
done in the area-constrained approach that is presented in the following.

185

6. The Hough-based 3D Track Estimation

Category UT4 base UT4 max UT4+
Slice LUTs total 1 498 072 1 509 158 1 463 018

Slices LUTs percentage 338 % 211 % 243 %
FF 382 125 390 149 374 864

FF percentage 45 % 26 % 31 %
Frequency in MHz 200 200 218

Latency in clock cycles 103 to 3961 10 to 3961 103 to 3961

Table 6.6.: Synthesis results for the unconstrained clustering approach.

Area-Constrained Clustering Approach

The biggest drawback of the first clustering approach is its high and variable latency in the
worst case due to the possibility of a cluster spanning across a large area. An alternative
approach, to this is to constrain the maximum size a cluster can assume. The idea here
is to define an area around the maximum weighted cell in which cells are considered
for merging into a cluster. This fixes the number of cells to be considered and prevents
excessive latency. The presented approach to area-constrained clustering is hereby based
on the master thesis Ref. [Hua19].

(a) (b)

Figure 6.13.: Illustration of the area-constrained clustering approach. Starting from the
maximum weighted cell, shown in red. Surrounding areas are formed and
checked for active cells as shown in (a). The progression of cluster expansion
is indicated by the different colours yellow, green then blue. An example for
this is shown in two dimensions in (b), in which only the cluster A is merged
with the maximum [Hua19].

The first design question to be answered for this approach is how to set the parameters
of the area to be searched. This choice is representing a trade-off between accuracy and
resources/latency. The answer to this is meanwhile depending on the size of clusters
that lead to desired tracks. In the case that most of them are exceeding the defined area

186

6.3. Realization of the S3D

to be searched, accuracy might be significantly reduced. The approach to this is to first
choose a reasonable size that will result in a feasible implementation which will then be
used to represent a base solution to the problem. Additional mechanisms are meanwhile
investigated to increase the accuracy. Using the provided simulated data sets in which
clustering was performed by using DBSCAN, most of the clusters to be considered are
sufficiently covered by a cluster area of (phi,pt,theta)=(7,7,7).

The approach to finding the cluster is illustrated in figure 6.13. Here, at first all of the
neighbouring cells around the maximum are checked for their weight, which spans a
(phi,pt,theta)=(3,3,3) cube around the maximum. The idea is now to expand this ap-
proach to all the active neighbours within this area in order to generate a cluster in an
area representing a cube of (phi,pt,theta)=(5,5,5) and then (phi,pt,theta)=(7,7,7) around
the maximum. From an implementation point of view, each neighbouring cell can be
checked in parallel throughout all processing stages. However, the progression in area
can only be performed sequentially since the previous active neighbours must always be
known to advance. This is generating a good mixture of parallel processing for achieving
low latency and sequential processing for the reduction resource consumption.

This approach was implemented for the available options based on the UT4. The results
are shown in table 6.7 for one quadrant and table 6.8 for the entire hough map. It is
immediately observable that the new approach is faring better than the unconstrained
clustering. Both resource and latency are this time well within the available budget of the
FPGA and CDCTRG even for parallel processing of all quadrants. In addition, the latency
is now constant due to the constraint size of clusters.

Category UT4 base UT4 max UT4+
Slice LUTs total 42 345 39 430 38 054

Slices LUTs percentage 10 % 6% 6%
FF total 114 764 105 424 110 998

FF percentage 13 % 7 % 9 %

Table 6.7.: Synthesis results of the area-constrained clustering approach for one quadrant.

Category UT4 base UT4 max UT4+
Slice LUTs total 153 055 143 920 136 616

Slices LUTs percentage 35 % 20 % 23 %
FF total 233 475 214 477 223 786

FF percentage 27 % 15 % 19 %

Table 6.8.: Synthesis results of the area-constrained clustering approach for the entire
Hough map.

187

6. The Hough-based 3D Track Estimation

Category UT4 base UT4 max UT4+
Frequency in MHz 200 200 225

Latency in clock cycles 6 6 6
Throughput in million clusters 33 33 33

Table 6.9.: Performance results for the area-constrained clustering.

In addition to the implementation characteristics, the algorithm was evaluated in terms
of its accuracy. For this, simulated tracks were used to create sample clusters on which
the new area-constraint clustering approach and an implementation resembling the exact
algorithm were performed. Afterwards, both results were compared with each other. The
results are hereby shown in table 6.10 for two selected datasets. While the estimation gen-
erated by the area-constrained approach is equal to the reference implementation’s result
for dataset 993, there are deviations when investigating dataset 973. The reason for the de-
viation for dataset 973 is due to the shape of the processed hough map in which the cluster
to be found is spanning across cells that are outside of the area-constrained clustering’s
scope. A graphical representation is shown for both investigated datasets in figure 6.14.
It shows that the cluster to be processed in dataset 973 is having a long trail of active cells
that leads to a wide-spread cluster, not being covered by the discussed approach.

Dataset /Category Estimation Reference Deviation
Dataset 993 (11.49,38.80,2.48) (11.49,38.80,2.48) (0,0,0)
Dataset 973 (5.35,31.97,1.46) (5.90,31.28,1.47) (-0.54,0.69,0.01)

Table 6.10.: Comparison of the different achieved estimations by the presented area-
constrained clustering and the reference algorithm. The values represent the
Hough map coordinate in as ()phi,pt,theta)

188

6.3. Realization of the S3D

(a)

(b)

Figure 6.14.: Illustration of the used data samples with blue areas showing active cells and
the maximum cell being highlighted by a star as shown in (a). The area cov-
ered by the constrained clustering is meanwhile shown by an overlapping
cube as shown in (b) [Hua19].

Figure 6.15.: Illustration of the global area-constrained clustering approach, in which ad-
ditional assisting clusters are formed outside of the reach as defined by the
maximum weighted cell. The assisting cluster is shown in brown, while the
primary cluster is highlighted red [Hua19].

189

6. The Hough-based 3D Track Estimation

Global Area-Constrained Clustering Approach with Patching

The initial (phi,pt,theta)=(7,7,7) version of the area-constrained clustering can already be
implemented while fulfilling all requirements. However, it has room for improvement in
terms of the achieved accuracy as was shown in the respective investigation. Two addi-
tions will be introduced that are addressing this shortcoming of the initial approach. The
first idea for improvement is to extend the area within the hough map that is searched.
This is done by defining additional cells that will serve as additional centres around
which clustering is performed. The performed clustering method itself is hereby simi-
lar to the initial idea around the maximum cell. The benefit is here that an additional
(phi,pt,theta)=(7,7,7) area is investigated in addition to the original one. Extension of the
original cluster’s reach is then achieved by merging with the new additional cluster. The
additional area to be merged is hereby located towards the direction of the main clus-
ter’s growth in terms of the total weight of the cells towards the direction. The centre
of the additional cluster is then placed towards this direction with a constant distance
to the maximum cell, in one dimension. For the developed prototype a distance of five
in pt and phi was chosen. This value was chosen since it showed the best characteris-
tics when evaluating the clustering using the provided test data set, as it allowed a good
expansion of the original cluster. In addition to this, special cases are occurring around
the boundaries of the hough map. These special cases are addressed by introducing an
additional mechanism, the patching of clusters. For this, patches are added at a specific
location which ate are smaller areas of cells in the map that are to be searched, for exam-
ple, (phi,pt,theta)=(3,3,3). Using these patches allows covering smaller areas that are often
found in between the main cluster and the boundaries of the Hough map. Both of the in-
troduced additions require the implementation of additional new logic operations to be
performed. The question is hereby whether the increase in accuracy is worth the added
cost towards the resources. The general approach is additionally illustrated in figure 6.15
in which assisting cluster areas are added. An example of both added mechanisms, that
is including patching, is meanwhile shown in figure 6.16.

The comparison of the track parameter estimations using the global area-constrained ap-
proach without patching is shown in table 6.12. It shows the result for dataset 973 in
which the estimation was previously deviating from the correct solution. With the added
mechanisms, the clustering is now capable of exactly replicating the estimation of the ref-
erence implementation. The subsequent characteristics when implementing it for FPGAs,
are meanwhile shown in table 6.11. First of all, both latency and resources are still within
the defined limits, with the latency not decreasing due to parallel processing of the sup-
porting cluster. The resources demand is however significantly increased. The decision
whether to use these optimizations is now depending on the overall resource consump-
tion of the S3D together with the generation of the hough map. In addition, the most
precise option, the global area-constrained clustering with patching, has to be weighed
against a less accurate solution that is requiring less resource and is capable of achieving
unified integration with the NNT.

190

6.3. Realization of the S3D

(a) (b)

Figure 6.16.: Definition of an assisting merge cluster is shown in an example in (a) with
the distance to the maximum cell being set to 5, as defined by the gap. Patch-
ing is meanwhile shown in (b) in which a smaller area is defined at the
boundaries of the Hough map [Hua19].

Category UT4 base UT4 max UT4+
Slice LUTs total 241 762 232 627 225 323

Slices LUTs percentage 56 % 35 % 38%
FF total 609 868 590 870 579 627

FF percentage 70 % 41 % 48 %

Table 6.11.: Synthesis results for the global area-constrained clustering approach with
patching for the entire Hough map.

Dataset /Category Estimation Reference Deviation
Dataset 973 (5.35,31.97,1.46) (5.35,31.97,1.46) (0.0,0.0,0.0)

Table 6.12.: Comparison of the different achieved estimations by the global area-
constrained clustering and the reference algorithm. The values represent the
Hough map coordinate as (phi,pt,theta)

191

6. The Hough-based 3D Track Estimation

6.3.3. Evaluation of the Complete System

Category UT4 UT4 max UT4+
Slice LUTs total 186 228 183 928 182 332

Slices LUTs percentage 42 % 13 % 30 %
FF 34 173 32 619 32 419

FF percentage 4 % 2 % 3 %
Frequency in MHz 200 200 231

Latency in clock cycles 15 15 15

Table 6.13.: Implementation results for the track parameter estimation based on the maxi-
mum cell.

With the design and implementation of all required sub-components established, the en-
tire S3D can now be evaluated for its suitability to be used during operation. Three differ-
ent setups are considered for this. They differ in their resource consumption and achiev-
able accuracy. The first setup is calculating only the cell within the hough map with the
maximum weight for four quadrants and then sending the associated parameters. The
achieved operational characteristics of this setup are hereby shown in table 6.13. In gen-
eral, this solution is fulfilling all of the requirements in terms of resources, throughput,
and latency. However, none of the refinement options based on the center-of-gravity are
enabled which will result in reduced accuracy. Its impact on the overall trigger system is
meanwhile to be investigated, as it was currently only evaluated compared to the ideal
algorithm. The second setup adds a clustering and centre-of-gravity estimation for the re-
finement of the parameters. Its characteristics are shown in table 6.14. Here, both latency
and throughput are fulfilling the individual requirements. The resource consumption, on
the other hand, is close to reaching the limit with around 70% utilization. Such a high
ratio is typically rather unlikely to meet timing constraints set for the internal signals.
However, the final version of the UT4 will be based on the larger VU125. When consid-
ering this FPGA, the resource utilization is much more feasible. The last evaluated setup
is based on the area-constrained clustering with the addition of further refinement by us-
ing the global clustering and patching. The achieved resource characteristics are hereby
shown in table 6.15. While this setup is achieving the best accuracy across all options, it
has a high resource utilization even surpassing the number of available resources on the
VU80. Since it improves accuracy only for a certain subset of all of the occurring clusters,
it is currently not worth the additional cost in order to be considered for operation.

192

6.3. Realization of the S3D

Category UT4 UT4 max UT4+
Slice LUTs total 339 283 327 848 318 948

Slices LUTs percentage 76 % 46 % 53 %
FF 267 648 247 096 256 205

FF percentage 30 % 17 % 21 %
Frequency in MHz 200 200 245

Latency in clock cycles 15 15 15

Table 6.14.: Implementation results for the track parameter estimation based on the area-
constrained clustering.

Category UT4 UT4 max UT4+
Slice LUTs total 427 990 416 555 407 655

Slices LUTs percentage 96 % 58 % 68 %
FF 644 041 623 489 612 046

FF percentage 72 % 44 % 51 %
Frequency in MHz 200 200 231

Latency in clock cycles 15 15 15

Table 6.15.: Implementation results for the track parameter estimation based on the global
area-constrained clustering with patching.

6.3.4. Design Flow

The development flow for implementing the S3D on an FPGA must be easily adapt-
able in order to support the already existing software framework used for simulating
its software-based counterpart. This framework is implemented in python, which should
be interfaced with FPGA development tools as tightly as possible. In the proposed de-
sign flow the already established reference software implementation is also used for the
validation of the hardware modules. In addition to providing the reference algorithms
to be matched by the hardware, it is responsible for the generation of the weights to be
used and thus the definition of the hough map loaded into hardware. This hough map is
hereby based on the test data set used to define the probabilities.

To address the necessity for coupling of the hardware tools with the python-based refer-
ence implementation the design flow built around the usage of the Vivado HLS tools. Us-
ing these tools makes integration of the heterogeneous toolsets easier due to its HW/SW
Co-Design capabilities. In addition to the capability to interface HDL-based modules to
software-based implementations, the toolset is already integrated into an environment
coupled to the HW/SW co-simulation engine provided by Xilinx. The same test data
used for training and prototyping of the algorithm can then be used directly for creating a

193

6. The Hough-based 3D Track Estimation

testbench without the need of translating to a representation used for FPGA development
such as based on VHDL.

The strategy for implementing the actual functionality is hereby twofold, representing the
development history. HLS is used for the implementation of the hough map definition, as
the tools were able to efficiently implement this aspect. In addition to this, it is basically
the only part that has to be interfaced with external tools with regard to configuration pa-
rameters. The clustering algorithms, on the other hand, proved to be barely realizable on
the FPGA and are thus implemented on RTL-level design in VHDL in order to manually
tune and optimize the implementation. The clustering is then included as an external IP
core into the overall processing architecture.

Algorithm

3D-Hough
Training

BASF2

FPGA

Trigger Analysis

Soft IP für
ML

HLS CoSim

Trigger Config Hough Map

1

2

Implementation

3
4

5

Figure 6.17.: Design flow used for generating S3D firmware.

The resulting design flow is shown in figure 6.17 and follows the reference flow intro-
duced in section 4.3. Again the development is divided into algorithm and FPGA engi-
neering. The algorithm development is coupled in the reference implementation software
to the simulation of the experiment BASF2, with which it is possible to generate tracks for
given experiment configurations and data sets. A more accurate estimation of the real or
hardware-level performance of the algorithm is achieved by coupling to the HDL-based
simulation of the FPGA architecture. At this level, all information relevant for the imple-
mentation of the S3D on the FPGA is incorporated.

Extraction of the Architecture

All parameters that are depending on the learning process of the S3D algorithm are stored
in the popularly used object structures pickle [94]. It stores the configuration of the hough
map in terms of resolution in cells used for each dimension together with the probabil-
ity of occurrence PHough for each TS associated with a cell. Within the used design flow

194

6.4. Configurations for Operation at Belle II

this file is used to instantiate the respective FPGA-based modules that are responsible for
the hough map generation on the FPGA. From an implementation point of view, a new
tool was developed that extracts the parameters relevant for the hardware implementa-
tion and writes these into C++ header files. These header files can then be used for the
configuration of the FPGA-based modules with the help of Vivado HLS tools. Using this
approach allows for quick and easy adaptation of the architecture for each time that a
new pickle file is generated. This allows the implementation of newly trained maps in an
automated way, in order to facilitate a quick transition to new firmware versions.

6.4. Configurations for Operation at Belle II

As discussed in section 6.3.1 there are several ways to integrate the S3D into the CDCTRG.
The main criterion for deciding which of the options is selected in the end is the feasibility
according to the resources available on the selected FPGA. Due to the connectivity and
other requirements, the UT4 was already established as the targeted platform to be used.
As a result, the targeted FPGAs are of the Ultrascale series. Two choices can be used,
that are the VU80 and VU125 as they are both used for the trigger system. This section
examines how the NNT could be integrated on the same FPGA.

To provide a realistic estimation of the feasibility of the realization on the target platform,
all required modules need to be considered. This includes all of the service and commu-
nication modules typically required for operation in the CDCTRG. At present, there is no
representative basic setup available for UT4 since most of the components necessary for
communication, such as the GTH transceivers, do not have reference implementations.
These modules will contribute to an increase in the overall resource utilization and will
allow for a more accurate estimation of the achieved timings. As these components are
not available at the moment, this investigation will focus entirely on the functional com-
ponents. The influence on resource consumption due to the missing components will be
approximated by taking into account the results of the NNT.

The joint implementation of S3D and NNT allows multiple configurations. Both have
several design-time parameters, especially with regards to the scheduling of operations.
This is a result of the increased latency budget that is gained by avoiding the otherwise
required communication between both components. With regard to the S3D only one
instance is required as it is capable of generating several track estimations in parallel.
Here especially the clustering component can profit significantly from a higher latency
budget when considering its rather high resource consumption. The NNT can also be re-
scheduled using the additional latency. However, the biggest benefit here is in the usage
of parallel instances which can increase the throughput in terms of estimated tracks. The
throughput is the one major shortcoming of the current implementation. The optimal
configuration is hereby assumed to be at four tracks per system clock cycle, which reflects
the current CDCTRG.

However, this investigation is not focusing on the available rescheduling opportunities.
The integration effort will rather follow a strategy in which the lowest possible latency is
targeted and that is allowing early prototyping. Efforts targeting this optimization option
is part of the future work and the move from the prototypical implementation towards

195

6. The Hough-based 3D Track Estimation

a productive system. As the FPGA to be used was not known beforehand during the
creation of the results and the later decision to use the VU125 was largely influenced by
the results presented here, the following FPGAs will be considered VU80, VU95, VU125
and VU160. All of these were available for the UT4. Even though the more powerful Ul-
trascale+ series was available and compatible with the UT4, it is not considered in detail
within this investigation. An FPGA of this series would have been the best choice for an
integrated NNT and S3D, as it includes plenty of DSPs. However, the advanced manu-
facturing and decision process underlying the UT4 prevented it from being considered
without delaying the production timelines.

UT4 FPGA Slice LUT s DSPs max Networks
VU80 70% 50% 1
VU95 50% 35% 1

VU125 50% 50% 2
VU160 40% 60%/ 80% 3/4
VU190 30% 67% 4
VU5P 50% 35% 4

Table 6.16.: Evaluation of resource utilization for the possible FPGAs targeting an inte-
grated solution hosting both S3D and NNT.

The resource results for the relevant FPGAs are shown in table 6.16 using the low-latency
configurations for both S3D and NNT that were shown before. The basic FPGA VU80 is
hereby already capable of hosting both one S3D and one instance of the NNT in theory.
However, the utilization is already quite high with regard to the Slices. Taking into ac-
count that high utilization is influencing the timing, it will probably not be possible to
achieve timing closure. Especially when considering that additional required modules
are missing at this stage of development. However it shows that DSP utilization is low
enough to host at least one instance of the NNT with the overall bottleneck being the
utilization of Slices.

Using the VU95 is already alleviating the resource bottleneck considerably. The achieved
results show that an integrated solution is within reach of being feasible, with the as-
sumption that resource utilization is between 50 to 60%, will be sufficient to achieve tim-
ing closure. When considering several instances of the NNT, the bottleneck is now within
the DSP utilization. Considering this only a maximum of two networks is feasible, result-
ing in 70% utilization. However, this is already a quite high ratio and a heterogeneous
architecture for the neural network might be required to achieve timing closure.

The VU125 FPGA provides a massive increase for both Slices and DSP resources. Con-
sidering an integrated solution, both are utilized at about 50% when using two parallel
NNT. The spare resources might hereby even be sufficient to host additional parallel in-
stances when using heterogeneous architectures. The other optimization strategy here is
to exploit the increase in latency to facilitate the reuse of DSPs with a higher degree of
multiplexing.

196

6.5. Summary

In addition, the results for the VU160, VU190, and VU5P, of the Ultrascale+ series, are
shown. The VU5P is the best here, but cannot be used due to the manufacturing cycles.
However, it was the state-of-the-art FPGA at that time and provides an outlook into the
future of these kinds of trigger systems when using the newest available hardware. Both
the VU160 and VU190 provide better characteristics than previous FPGAs, however, the
improvements are rather marginal. In addition, they have a large price increase compared
to the VU125, which was the most cost-efficient FPGA in terms of processing element per
money unit.

With the analysis carried out here, the first indications are shown that combined NNT and
S3D solutions are possible with the available FPGAs. On that smallest available FPGA the
VU80, an implementation will probably not meet the timing requirements due to the high
resource utilization of the Slices. However, this could be addressed by rescheduling in-
ternal processing as the investigated architecture is configured to be low latency and does
not consider the additional latency budget. With the usage of the VU125, it is however
already possible to integrate multiple parallel NNT instances together with the S3D, all
while a sufficient number of spare resources are available to safely assume that feasibility
can be achieved.

Considering all available options for the UT4, the VU125 is the most suitable FPGA. It
is capable of hosting both methods even allowing multiple instances of the NNT. The
number of estimated tracks can be increased with additional effort put into rescheduling
and balancing of the resource. In addition, it is the most cost-efficient solution. Due to
this, the decision was made to use this FPGA for the final productive version of the UT4
that is to be used for the upgrade of the CDCTRG.

6.5. Summary

This chapter presented the design and prototypical implementation of a Hough-based
3D-Track Finding that is aiming at extending the current CDCTRG to improve its capabil-
ities. All considerations were performed with having an integration into the CDCTRG in
mind. However, due to the current production time windows, it was not possible to im-
plement such a system on the final hardware platform. The same problem is meanwhile
impacting the availability of supporting infrastructure such as the GT IP cores. As such
the presented design is only prototypical and representing the current availability of the
required resources.

The investigation of the S3D starts with an evaluation of the requirements that are im-
posed on the system. Here especially the increased amount of required GTs necessitates
the usage of newer FPGAs compared to the currently used UT3. Since all of the SLs of the
CDC are required to be processed by the S3D, the UT3 used for the NNT cannot provide
a sufficient number of GTs. Its succeeding platform the UT4, on the other hand, provides
the required number of ports. This property is making it suitable for the implementation
of the S3D. Using the more powerful FPGAs available for the UT4 is enabling new possi-
bilities for the integration into the CDCTRG. There are two approaches to integration as a
result. The system can be either integrated together with the NNT on one single platform

197

6. The Hough-based 3D Track Estimation

or separately. The former solution is currently preferred due to its manifold advantages
and the current prototypical implementation points towards a highly likely feasibility.

The subsequent section of this chapter is focusing on the FPGA-based realization of the
S3D. As the system is without the entire knowledge necessary for final integration, all of
the processing modules are designed to be as flexible as possible with the goal of allowing
a custom configuration as soon as all the details are available. The entire processing chain
is meanwhile including optional processing options that can be used to increase the pre-
cision of the implementation at the cost of resources and latency. The options are hereby
aiming at refinement of the track parameters representing the currently observed track.
The simplest and most resource-efficient solution is the finding of the maximum-weighted
Hough cell. However, clustering can improve the estimation additionally. For this, two
approaches to clustering were investigated. The unconstrained and the area-constrained
clustering. While the former is achieving the best results in terms of the estimation’s ac-
curacy, it is not feasible for implementation as both latency and resources are exceeded.
The area-constrained clustering is addressing these shortcomings by providing a solution
with much lower resources and a fixed lower latency while achieving reasonable accuracy.

The configuration of the complete architecture is meanwhile supported by a Vivado HLS-
based framework that has been developed. It is allowing to easily adjust the Hough map
parameters and weights of the architecture. Besides the advantages for the implementa-
tion, this tooling approach is also used for validation by using HW/SW Co-Simulation.

The developed architecture was subsequently implemented on the basis of the FPGAs
supported by the UT4. The achieved results show developed architecture based on a
maximum-weighted track estimation can be easily implemented, even on the smallest
FPGA, the VU80. Additional refinement based on the area-constrained clustering, with-
out any additional features such as patching is meanwhile as well supported by this
FPGA. Enabling these additional optimizations, however, will exceed the resources of
the VU80. The targeted biggest supported FPGA, the VU125, is on the other hand capable
of hosting the algorithm with all optimizations being enabled. This is already showing
the viability of the developed architecture to be used for the realization of the S3D in the
future operation of the experiment. These results were however generated without hav-
ing a unified integration with the NNT in mind. When implementing both systems on the
same platform, the VU80 is barely capable of fitting the requested resources. With regard
to timing closure, it is hereby highly unlikely that such a configuration will be feasible.
The VU125, however, is capable of hosting the S3D together with up to two instances
of the NNT. These results were subsequently highly influential towards the decision to
mainly use this FPGA for the UT4.

In general, the presented discussion provided an architecture that is realizing the S3D
together with ingratiation concepts towards operational readiness. It investigated the
available trade-offs between the accuracy of the estimation and resource efficiency as well
as low-latency operation in terms of multiple clustering solutions. A good trade-off be-
tween both characteristics was found by combining the generation of the hough map with
an area-constraint clustering approach. This combination is capable of being integrated
together with the NNT on one UT4 that is hosting the VU125 FPGA. As soon as all of
the supporting infrastructure is available for the UT4, the investigation can commence to
determine the final configuration to be used for the experiment.

198

7. The Track Segment Finder based on State
Machine

The functional principles of the initial TSF that was designed for the CDCTRG were intro-
duced in section 2.2.1.2. The concepts described there were implemented in the firmware
that was used during all of the early tests with cosmic rays and first collisions. In sub-
sequent analyses, the efficiency of the detection of TS was investigated and evaluated. It
revealed that some parts are having room for improvement for example in its handling of
noisy events. Data showed that some events were experiencing a high amount of active TS
due to the CDC’s susceptibility to noise, which occupied valuable outgoing bandwidth.
At other times additionally lower than expected efficiency for finding active TS was ob-
served. It is to note here that even though the TSF is being used during the experiment’s
operation, it is is still under development. While the problem of high output data rates
was addressed by implementing the suppression of adjacent active TS, a new implemen-
tation of the TSF logic was proposed in order to solve the remaining problems. This new
implementation is based around restructuring its purely combinatorial processing chain
toward the usage of state machines. Since the TSF is generating the inputs for all further
components of the CDCTRG and thus the NNT, the overall physics performance is in-
creased by improving TSF. The design and implementation of the revision based on state
machines is the focus of this chapter in the thesis. The work is based on the master the-
sis Ref. [Ung18] and expanded by additional optimization such as the selective usage of
BRAM that was also presented in Ref. [Ung20].

7.1. Analysis of the Initial Track Segment Finder

The new implementation of the TSF is mostly relying on the reuse of the already estab-
lished architecture that was developed for the original TSF. Only the logic within the
detection of TSs is addressed in this revision. All remaining aspects regarding the inte-
gration, interfaces and platform selection remain unchanged. The dissemination of these
is the focus of this section.

7.1.1. Integration into the Trigger System

The detection of an active TS can in principle be carried out independently for each pos-
sible candidate. The maximum number of candidates that can be examined in parallel is
therefore theoretically unlimited. Dependencies for processing are only introduced when
additional functionality is required, for example, the suppression of neighbouring candi-
dates. The maximum number of TS to be processed on one FPGA board is limited only

199

7. The Track Segment Finder based on State Machine

by the throughput of its input sources, the internal structure of the detector readout and
the maximum allowed latency. Due to the outline of the detector’s readout, it is possible
to realize every individual SL separately. For this purpose, exactly one UT3 is allocated
for each SL and is dedicated to processing data sent by the corresponding merger units.

One of the keys to implementing such a readout scheme is the used hardware platform
and especially the number of provided transceivers in order to receive data from all merg-
ers of a nSL. As the requirements are different across different SL it is sufficient to analyse
the SL with the highest processing demand, which is SL8. In addition to this, it is neces-
sary to use the GTH ports in order to achieve the data rates that are necessary to transmit
all of the information generated by the high amount of wires processed by each merger
unit.

The decision to partition the system this way is determining the number of required GTH
lanes per board. Data sent by each merger unit hereby contains information about its sta-
tus, the wire activity, the timing and drifts within every trigger cell formed by respective
wires. Meanwhile, each SL is read out by a variable number of merger units. The reason
for this is that each individual SL is containing a different total number of wires to be read
out. For example, five merger boards are used for SL0, while 12 merger units are being
used for the outermost SL8. Each of these merger units does not send the complete SL
rather it is responsible for processing a specified area of the CDC that it is responsible
for. The partitioning of a layer into areas processed by one merger unit is illustrated in
figure 7.1.

Figure 7.1.: Partitioning of the CDC into segments that are processed by one merger unit.
All wire cells that are processed by one merger are coloured. Primary priority
wire cells are coloured red, while secondary priority is indicated by green
cells. Cells coloured in blue are processed by the merger as well, but has no
special positioning information. Neighbouring cells that are coloured black,
are processed by different merger units. Here special cells, that are part of
neighbouring mergers but necessary to detect a TS are marked in rose.

One of the results of this partitioning is the introduction of artificial boundaries between
mergers. These boundaries have to be considered the algorithm of detecting active TS
employed on each TSF as active segments can be detected across different merger units.
For the TSF, this means that it must process TS candidates at the merger boundaries in a
special way. For segments that are located directly at the boundaries of a merger, addi-

200

7.1. Analysis of the Initial Track Segment Finder

tional wire information derived from the adjacent area must be considered. In addition to
this, the integration of the TSF is influenced by the output side of the employed readout
scheme. Considering the readout scheme described in section 5.2.1 the output data to be
sent towards 2DS, NNT and 3DS are distributed across four different hardware boards
that are responsible for the different quadrants of the detector.

7.1.2. FPGA Architecture of the Original TSF

Track Segment Finder

Input
Separation

TSFinder
Logic

Tracker Data
Separator

Tracker
Packer

ETF Packer

Figure 7.2.: Internal architecture of the original TSF design. The main component to be
addressed is the TSFinder Logic module.

The internal processing architecture of the TSF can be divided into several sub-components
as shown in figure 7.2 [52, 53]. The core of the entire processing chain is hereby repre-
sented by the TSFm module. The task to be fulfilled by this module is to find active TS
within a defined area of the respective SL. In principle the area processed by one instance
of this module could be used to cover the entire SL, however, the processing is internally
distributed on the level of granularity of single merger units, as they have to be processed
separately. As a result, the module is instantiated for each supported merger unit sepa-
rately. Since the number of merger units present in each SL is known in advance, both
the interfaces of the module and the number of required TSFm instances are known be-
forehand and thus statically defined in advance. As a result of this, each merger unit is
responsible for processing an area of the CDC that consists of 16 potential TS candidates.
This number defines the number of instances to be used for each TSF, for example, SL0 is
consisting of 80 TS candidates in total which requires 5 TSFm instances. Meanwhile each
TSFm module receives 256 Bit of detector data that is consisting of the hitmap and the
priority timing of the specific area of the CDC. In addition to this 18 Bits are received from
the neighbouring mergers, which are used to form TS at the boundaries of the designated
area.

201

7. The Track Segment Finder based on State Machine

The combination of this boundary information with the hitmap to be processed is per-
formed by the Input Separation module. The TS information found by each TSFm is func-
tionally divided into two categories. These are the data needed for needed for the track
estimation and data needed for the estimation of the event time. The difference between
both is mainly in the inclusion of wire timing. Both categories are handled by separated
data flows after the TSFm. Data intended for tracking is additionally split by the Tracker
Data Separator into packets bound for the different boards that are responsible for the
different quadrants of the detector. Formatting and sending tracking data in packets is
hereby the task of the Tracker Packer, while data bound for the ETF is packed separately.
With regard to the design of the TSFsm, the TSFm module is of particular importance as it
represents the core logic. It is thus discussed in more detail in the following. The packers
are meanwhile of lower importance as they are basically reused and remain untouched.

7.1.3. TSFm Module

TSF Logic

... ...iTSF_0 iTSF_K...

TSFm 0

...
iTSF_0 iTSF_K...

TSFm N

Figure 7.3.: Internal architecture of the TSF logic, consisting of several TSFm instances
that are responsible to separate each merger unit to be processed and iTSF
instances, which are checking each TS candidate.

Each instance of the TSFm module has the task of determining which of the TS are active at
a certain point in time on the granularity of single merger units. For this, each potential TS
is examined separately and in parallel. The actual check for activity is carried out inside
another internal module, the iTSF. For each segment, this module is checking whether
a sufficient number of wires are active according to a pre-defined geometric shape. The
resulting overall architecture of the TSF logic is shown in figure 7.3. Each iTSF instance
receives all the data associated with the potential TS that is to be checked to determine
activity. This data includes the secondary priority information as well as the fastest and
priority timing. Based on this information two separate outputs streams are generated.
One of these is representing the information required to determine the event time. It
contains the fastest time across all of the present wires within a certain TS with a resolution
of 9 bit. The other stream is generated to be used by the tracking mechanisms of the
CDCTRG. This data stream consists of the 9 bit priority timing, the LR information, and
the priority wire type. Both outputs streams differ in that protocol at which they are

202

7.2. State Machine Approach

send injected into the remaining CDCTRG. Information about the event time is hereby
only sent once while tracking information is updated with the occurrence of new wire
information from the CDC. These updates are mostly due to the drift time, which can
lead to more refined LR information due to the arrival of additional wire hits. For this, it
is possible that wire hits will not arrive in time to be sent in the same clock cycle as the
other wires as it rather arrives later on.

iTSF

TS Checking LUT

Signal Widening

Figure 7.4.: Internal architecture of the iTSF module.

The internal structure of the iTSF module is shown in figure 7.4. At first, incoming CDC
data is sent to a signal widening module. This module stores the data for a pre-defined
time interval of up to 16 data clock cycles. This mechanism is employed to compensate
for different arrival times of separate wire information. The accumulated wire informa-
tion is then passed on to a LUT, which is responsible for checking whether all criteria
are fulfilled in order for the TS to be assigned the active status. The contents of this LUT
are defined and filled during design time by estimating the relationship between a track
passing through the TS and the internal wires. This estimation is performed by simulating
particle tracks passing through the TS. The content can vary over the course of the exper-
iment, as such, they are designed to be easily configurable during design time by using
VHDL-based generics. Additionally, the content is depending on the current condition
of the actual wires in the CDC. In case that a wire is operating with below its intended
performance, the LUT can be trained to reflect this ultimately improving the checking for
activity.

7.2. State Machine Approach

After establishing the basics of the initial TSF implementation, the focus is now shifted
over towards the state machine based revision, the TSFsm, that is covered within this
section.

203

7. The Track Segment Finder based on State Machine

7.2.1. Functional Description

2nd_PR

IDLE

1st_PR

1st Priority Hit

1st Priority Hit 2nd Priority Hit

TimeoutTimeout

Figure 7.5.: Control flow of the TSFsm represented as a state machine [Ung18].

To improve the original TSF a new version based on state machines [41] was proposed.
This new revision is intended to solve the present problems of lacking maintainability
and sometimes lower than expected TS detection efficiency. The new approach can be
divided into the actual state machine with its transitions and the processing directives
within each state. The state machine is hereby shown in figure 7.5. It consists of three
states, starting from the idle state, in which no active TS is found within the observed area
of the CDC. Depending on whether a first or a second priority hit is observed, the state is
changed to indicate activity. Due to the properties of the CDC wire hits can be arriving
across several clock cycles. Even when currently being in active states an additional check
thus is performed to incorporate recently arriving TSs. In this case, these TSs are added
to the detection processing. However, the state is not kept indefinitely. A predefined
time interval describes the time for which the active states are maintained. If the internal
activity time counter exceeds a pre-defined value, the state machine is reset back to the
idle state. For the overall logic of the TSF this means that the previously found TS is no
longer active. Subsequent hits are then assumed to be caused by another later occurring
event. A special case here is the distinction between the priorities. In case a secondary
priority hit was observed at first and a first priority hit afterwards, the overall state is
going to change to first priority, which includes a different set of individual operations
to be performed as shown in the figure 7.6. The difference between both states is in the
protocol used for transmitting the output. First priority hits, will always trigger activity
signalling for the respective TS towards further processing steps. Secondary priority hits
are meanwhile only sent when at least three additional hits are found in separate wire
layers of the TS.

204

7.2. State Machine Approach

Idle 1st PR Hit 2nd_PR
2nd and
>3 Hits

1st_PR

1st PR Hit Timeout

Timeout

Figure 7.6.: Control flow and branches within the TSFsm processing [Ung18].

7.2.2. Suppression of Neighbouring Active Track Segments

The decision to determine activity separately for each TS, allowed for full parallel pro-
cessing. However, it introduces an important disadvantage in the presence of high noise
within the CDC. The TSF may be quickly reaching its maximum outgoing bandwidth, due
to a high amount of TS being active all at once. This is even worsened by the problems
of the used UT3 platform, as it fails to achieve its maximum specified bandwidth. As a
result of that a saturation of the outgoing data rate was observed several times during
the operation of the experiment with collisions. This however had a negative effect on
subsequent track finding, as potentially important TS were not send and received.

3456789
1819202122232425

35363738394041
5051525354555657

67686970717273

567
2122

38
5354

697071

456
2021

37
5253

686970

First Priority Hit Second Priority Hit

Figure 7.7.: Example for the suppression of neighbouring active TSs [Ung18].

An efficient mechanism that is addressing this problem is the suppression of any poten-
tially unnecessary TS. The main mechanism employed for this is the suppression of neigh-
bouring active segments that are having different priority statuses. An example of this is

205

7. The Track Segment Finder based on State Machine

illustrated in figure 7.7. In this, a particle’s track is estimated by a dotted line. Because
the wire cells of neighbouring TS candidates are overlapping, two TS are active at the
same time, indicated by the priority wires IDs 38 and 37. Following the general rule for
determining activity, both TSs are assigned active state since both are possessing at least
four wires that are active in separate layers. However, it is sufficient to send only the TS
with priority wire 38, while the adjacent segment can be discarded since it is only of sec-
ondary priority. The neighbourhood suppression mechanism is recognizing and solving
such situations.

LockedIDLE

Timeout

Neighbor Hit

Figure 7.8.: State machine graph showing the neighbour suppression [Ung18].

The implementation of the suppression must still contain a waiting time similar to that
of the segments themselves in order to compensate for the different drift times. For this
purpose, a state machine was defined that is shown in figure 7.8. The timeout was hereby
determined stimulative and set to 16. This additional state machine is included in the
FPGA-based processing module responsible of processing TS.

7.2.3. Architecture of the TSFsm

The new TSFsm will only replace the original internal logic for determining the activity
of TSs. The remaining components will be retained for the time being, whereby some
joint revision with the packer might allow for additional optimization potential. The new
architecture is shown in figure 7.9. To make the transition as simple as possible and to be
interchangeable with the old TSF, the original interfaces are retained. In the same way, the
internal division of processing an SL is retained, as such, each TS is going to be processed
by its own iTSFsm instance in parallel. In contrast to the original implementation, how-
ever, the previously external additional modules for generating the output are integrated
into the state machine as well. Even though this part of the overall processing coupled
with the TSF logic, this approach avoids the necessity of implementing another additional
module. Each iTSFsm module is meanwhile clocked with the data clock frequency and is
receiving hit information for each clock cycle.

206

7.2. State Machine Approach

Track Segment Finder

Input
Separation

TSFsm
Logic

Tracker Data
Separator

Tracker
Packer

ETF Packer

Figure 7.9.: Overall architecture of the revised TSF using the state machine approach.

The new TSFsm will also be equipped with a signal widening to be able to compensate
for the different arrival times of the wires. For this, a module is provided which is able to
support different time windows. The interfaces of the newly implemented modules are
shown in figure A.5 as part of the appendix.

7.2.4. Realization of Left/Right Look Up Tables

The original LR-LUT of the TSF is using a dedicated BRAM for processing each track
candidate. For each possible combination of active wires inside of a segment, the LR
characteristic is calculated in advance during design time by using a simulation of the
detector. The required amount of BRAM resources is then depending on the number of
total wires within a segment. For the SL1-8, each segment is made up out of 10 wires. This
number is then corresponding to the required address width to be supported by a BRAM.
The implementation is treated differently for SL0 as each of its segments is consisting
out of 15 wires. As a result, more memory resources are required for SL0. The resource
requirements for both types of configurations in terms of BRAMs are shown in table 7.2.4.
It can be seen that an LR-LUT used for SL0 is requiring significantly more resources than
the other SL. This is one of the reasons for SL0 traditionally being the hardest to implement
on a UT3.

Category SL0 SL1-8
BRAM 16 2

Table 7.1.: Resource consumption of one LR-LUT for all both types of configuration in
terms of required BRAMs.

Since such a BRAM has to be instantiated for each TS, the resource consumption of the
TSF scales with the number of merger units to be supported. Especially the SL0 is infer-

207

7. The Track Segment Finder based on State Machine

ring a high resource demand. It is currently implementable, however, it is not possible
to use the two main debugging interfaces Chipscope and B2L. The bottleneck for this is
at the number of BRAMs required to implement their inherent buffering structures as it
exceeds the resource budget. In addition to this, high demand for BRAM is often resulting
in timing violations in the implementation. Both of these issues are motiving the investi-
gation of optimization strategies.

Selective Usage of Dual-Port BRAM

The method used within the design of the TSFsm that is addressing the high demand for
BRAM is the selective usage of dual-port BRAMs. By configuring BRAM for dual port op-
erations the issue of high resource demand can be resolved. Since the LR-LUT to be stored
has the same content for each segment, regardless of its position within the CDC, it can
be shared across multiple modules processing the TSs. Using multi-port implementation
is then allowing to share the same BRAM.

However, using the dual-port BRAM in parallel means that the LR-LUT has to always
remain the same for all of the segments. However, there are use cases in which different
LR-LUTs are required. The most prominent example is a segment in which a wire is de-
fective and cannot be used anymore. To compensate such a defect, a specialized LR-LUT
can be generated that takes this wire into account. These special cases are then preventing
the usage of shared BRAMs, however, they represent a rare exception. In order to pro-
vide, an optimized overall solution, with keeping the resources as low as possible, both
implementation variants are supported.

For the implementation of selective BRAM usage, all segments are divided into groups of
two. These pairs of TS can then potentially share the same BRAM. Additionally, a list of
segments with defective wires is defined for each TSF separately at design time. When
subsequently instantiating the iTSF, this list is evaluated in order to decide whether a pair
of segments can share a BRAM or have to be realized separately in case of the presence of
special cases. Assuming that only a small number of segments can be containing defective
wires, resource consumption is still significantly reduced compared to the original design.

The specific configuration for using this heterogeneous BRAM architecture is determined
at design time. Defective wires are typically detected after a more detailed analysis of
the current status of the detector and its efficiency. Subsequently, specialized LUTs are
trained, which might then be used from that point on. These only need to be adjusted
afterwards in case another defective wire is found in the same merger area. Overall, new
LUTs will be rarely generated and loaded, thus they will be in use for a long period of
time. A configuration at design time is as a result already sufficient with no advantage by
using runtime adaptability.

208

7.3. Evaluation

7.3. Evaluation

7.3.1. Characterization

The new TSFsm that is presented in this thesis was synthesized and implemented on the
basis of the UT3 that is hosting an XC6VLX550T FPGA. This is the bigger FPGA com-
pared to the UT3 used for the NNT. For this characterization, TSFs were implemented
and evaluated for all of the SLs. The characteristics are additionally compared with the
original TSF. Achieved results are listed in table 7.3.1 representing the resource consump-
tion. The resources are hereby divided into three main categories that are LUTs, registers,
and BRAM. The LR-LUTs are implemented with BRAMs and are therefore in high de-
mand. This is especially true for SL0, in which the amount of observed TS is the largest
due to their inherent pyramid shape.

In all of the presented variants, it can be immediately seen that the TSFsm is achieving
lower resource consumption for the LUTs across all layers. The demand for BRAMs is
hereby reduced due to the mechanism presented in section 7.2.4. The combination of
savings for both resource types leads to more SLs being able to support the two additional
interfaces B2L and Chipscope. Supporting these interfaces allows for more sophisticated
analysis and debugging.

Category TSF 0 TSFsm 0 TSF 1 TSFsm 1 TSF 2 TSFsm 2
LUTs % 26 21 30 21 32 22

Registers % 18 20 20 15 20 14
BRAMs 91 46 32 16 29 15

Category TSF 3 TSFsm 3 TSF 4 TSFsm 4 TSF 5 TSFsm 5
LUTs % 43 31 45 34 51 36

Registers % 28 21 29 23 33 24
BRAMs % 35 18 26 13 26 13

Category TSF 6 TSFsm 6 TSF 7 TSFsm 7 TSF 8 TSFsm 8
LUTs % 55 39 59 44 63 49

Registers % 36 26 41 30 41 30
BRAMs % 24 12 30 15 27 14

Table 7.2.: Synthesis results achieved for all SLs using the newly developed TSFsm logic.

7.3.2. Methodology for Testing

The validation of the TSFsm is very extensive due to its large amount of possible test in-
puts. In addition to the amount of data to be tested, there are 9 different TSF instances to
be tested individually. Each TSF is meanwhile connected to a varying number of merger
units for which data has to be collected over multiple clock cycles to imitate the opera-
tional behaviour. Considering the overall amount of different test cases to be covered, a

209

7. The Track Segment Finder based on State Machine

large amount of test data is required to achieve high test coverage with confidence. The
problem here is that only a few samples of test data were provided, which only cover a
small number of test cases.

To address this shortcoming, two additional test mechanisms are introduced to facilitate
more comprehensive testing. The first is a selective test environment that allows speci-
fying all parameters under which a merger is producing its data that is sent to TS. This
is used to recreate certain situations as they might occur in the experiment and test them
individually. It was for example used to test the inclusion of the neighbour suppression
and the correct processing of a merger’s corners.

The other test mechanism that was developed aims at achieving large scale testing by cov-
ering as many test cases as possible and showing that the TSF delivers the correct results
with high statistics. Assuming a uniform distribution for the active wires throughout the
CDC, the distribution of found TS should have a uniform distribution as well. For this
purpose, a test with randomly generated merger unit data was created. This test used to
emulate the input data for the TSF. Both of these test modes are shown together in fig-
ure 7.10 in a flow diagram. An additional screenshot of the graphical interface that was
developed for the generation of specific test cases is shown here.

(a) (b)

Figure 7.10.: Offline testing flow used for the TSFsm in (a) and the graphical interface
used to define special test cased in (b) [Ung18].

7.3.3. Validation

Validation of the TSFsm was performed using both offline tests based on simulation and
online tests in which the TSFsm was integrated inside the CDCTRG. The first online tests
hereby could only be performed using a merger play setup since the detector itself was
in a maintenance cycle in which it was prepared for usage for phase 3 of the experiment.
This means that early tests were using predefined input patterns that are considered to
cover the most critical functional paths of the CDCTRG. The result is that wire activity as
it would be produced in the presence of noise is not taken account. This is mostly an issue
for testing of the neighbour suppression as it is designed to reduce noise.

For comparison to the original design, both variants, the original TSF and the new imple-
mentation were tested. Since this is difficult with cosmic ray operation as the input data is
not known in advance, a merger play test setup with a predefined event is preferable. This

210

7.3. Evaluation

event was generated via TSIM and used to validate the original TSF. This event includes
multiple active TS which IDs are known in advance.

The results of this test are shown in figure 7.10 as part of the Appendix. The detection of
an active TS is hereby represented by a peak in the signal diagram for the respective bit
value. Both variants are able to recognize the active TS, showing the correct operation of
the new implementation. However, in the original variant, a second output is generated
in which the LR information is updated.

While representing the best approach to test a trigger component with consideration of all
integration aspects, the merger play test is rather unsuitable for achieving high test cover-
age due to the limitation of using only selected single events. The random number based
test is more suitable for this purpose. Using this test, both the new TSFsm and the origi-
nal design were evaluated regarding their abilities to detect both first and second priority
TS. Since the implementation across all TSFsm is functionally based on the TSFm module,
which is responsible for covering one merger unit, it is sufficient to test only this module
to achieve representative results. Figure 7.11 hereby shows the results for using random
input data, with the y-Axis showing the percentage of found TS for a certain type of pri-
ority and the x-Axis showing the respective TS that was found in this area. For the proof
of correct functionality, a uniform distribution is expected across all of the possible TSs.
This characteristic can be observed in both variants and is indicating correct functional
behaviour. An additional comparison in absolute numbers is shown in table A.7.

(a)

30%

35%

40%

45%

50%

55%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

Second Priority Hit

First Priorty Hit

Track Segment

(b)

30%

35%

40%

45%

50%

55%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

First Priorty Hit

Second Priority Hit

Track Segment

Figure 7.11.: Histogram of found TS using random event generation for both the original
TSF (a) and new TSFsm (b) [Ung18].

In addition to the general functionality of the TSFsm, tests were conducted to show the
correctness of the neighbour suppression logic. The same random test input generation
approach was used for this, with different levels of occupation within the CDC. The re-
sults of these tests are shown in figure 7.12. Here, the y-Axis is showing the total number
of found TS for different occupations in the CDC that are represented as percentages on
the x-Axis. With low occupation, most of the TS that are active and not suppressed. This
increases with higher occupation as more TSs are suppressed in order to save the output

211

7. The Track Segment Finder based on State Machine

bandwidth. In addition to showing general correctness regarding the intended function-
ality, it also shows that the new TSFsm logic coupled with the neighbour suppression is
generating fewer TSs which is consistent with the expected results.

Figure 7.12.: Validation of TSFsm neighbour suppression logic [Ung18]. The blue line is
showing the number of found TS for the original design while green is rep-
resenting the TSFsm.

7.3.4. Results from Tests within the CDCTRG

In addition to a purely simulative validation using the presented test methods and a re-
duced operational validation using the merger play setup, the TSFsm was evaluated while
being integrated into the CDCTRG with a connected CDC. An excerpt from the observed
behaviour is discussed in this section. The efficiency is hereby used as the main metric
for the evaluation. It is describing the ratio of events of a specific type for example "-fff",
which means more than two 2D tracks were found [83], that are expected to be found by
analysing the data and events actually found by the CDCTRG.

The achieved efficiencies are hereby shown in figure 7.13 for several runs. It is addition-
ally partitioned into phase 2 and phase 3, with the difference being that the TSFsm was in
use during phase 3 while the original TSF was being used during phase 2. Immediately
it is observable that efficiency is never reaching 100% showing that some inefficiency is
always present. The exact reasons for this are currently still under investigation. The
benefit of using the TSFsm is shown when comparing it to its predecessor. Across all in-
vestigated runs, the original TSF was achieving an about 10% lower efficiency. This shows
that TSFsm is not only contributing to finding TS more efficiently but events themselves,
which are even more important.

212

7.4. Summary

-c4|hie
-fff|ffo|ffb
-fff

ef
fic

ie
nc

y

Run number

Phase3Phase2

Figure 7.13.: Comparison between the efficiencies for hadronB skim during phase2 using
the old TSF and phase3 using the new TSFsm [58].

7.4. Summary

The TSF is the first stage of data processing of the CDCTRG, all other more complex trig-
ger components such as the NNT are based on its capability to efficiently and reliably
provide TS. In the early phases of the experiment, a first version of the TSF logic was
integrated. This version was continuously updated and at some point lost maintainabil-
ity in addition to the loss of detector efficiency. Since this efficiency is critical for the
entire trigger, optimizations are necessary that include a structural revision of the core
logic. The proposed approach for this update of the TSF is to convert the mostly com-
binatorial design of the original realization to a state machine-based design. Using the
original TSF as the starting point the TSFsm was developed. The new design is based on
the architectural patterns for state machines as it is recommended by Xilinx, the FPGA’s
manufacturer [118].

The resulting implementation itself is consistently achieving lower resources demand
compared to the original. Further optimization of the resources is achieved by addressing
the implementation strategy for look-up tables that are used to determine the LR infor-
mation of a TS. The followed strategy is hereby based on using BRAMs with selective
dual port configuration instead of the previous single port solution that was used for all
LUTs. In order to take into account special situations that might be occurring within the
CDC, e.g. defective wires, an option was added that allows instantiation as a single port
at design time to load special LUTs which can achieve better performance.

Additionally, tools were developed to assist with the usage of the new TSF. These tools
enable the generation of specific test patterns, which can be used to emulate certain events

213

7. The Track Segment Finder based on State Machine

in order to check the logic in detail for correctness. At the same time, TS suppression based
on neighbours was added to the core logic to achieve more efficient usage of the limited
output bandwidth. The new implementation was validated with the help of randomly
generated data, the merger play test and early experiment operation. In all variants the
correct function of the approach was proven, even showing that track finding efficiency
of the subsequent 2DS can be improved.

214

8. The Online Cluster Analysis

8.1. Online Cluster Analysis for Rescuing Slow Hadrons

The online cluster analysis represents the application case within this thesis for machine
learning-based online data reduction using hardware realization. It is aiming at showing
the viability of such algorithms to be used in real-time on FPGAs to efficiently identify
particles of a certain type by using the experiment’s pixel detector. The following sections
are discussing its role within the experiment and the functional principles.

8.1.1. Experimental Context

The main method for online data reduction of PXD data is the RoI approach presented
in section 2.3.1. While it is highly efficient, it has the drawback that at least three layers
of the SVD have to be reached in order for a particle to be considered. Most particles
are reaching the required number of layers, however, a fraction of the possible decays
can result in particles not reaching the required number of layers due to low momentum.
However such particles can still be of high importance to the physics experiment, the
most important example for this are slow pions. To retain detector data generated by
these particles, an alternative mechanism to the RoI is required. Architecturally the idea
is to add an additional particle identification mechanism in parallel to the current one.
This additional mechanism shall be capable of correctly identifying such particles using
PXD data only.

In Belle II, the SVD is used for this kind of data reduction. The extrapolation is based on
track data generated from several successive layers of the detector. Here the probability of
the random background throughout these layers of the detector is very small, making the
SVD a good candidate to be the basis for the definition of RoIs. An approach based on the
SVD, however, has the disadvantage that a track has to be found in order to extrapolate
it to the PXD. This is only possible if a sufficient number of layers of the detector have
been reached by a particle. The necessary number of layers is determined by the tracking
algorithm of the SVD [16] [96]. Particles that do not hit enough layers are meanwhile
suppressed.

215

8. The Online Cluster Analysis

Figure 8.1.: Range of slow pions in the form of SVD layers reached depending on pt [93].

A candidate for particles that are potentially suppressed, but are important for the exper-
iment, are pions. Their reach within the SVD is shown in figure 8.1. Here a momentum of
60 MeV may already not be sufficient to reach enough layers of the SVD for tracking. As
a result pions with or below this momentum cannot be used for the RoI approach.

The question arises as to how important these particles are for the actual experiment and
thus also whether one can live with their loss. Considering the important B->D*->pi D0

decay they appear quite often as shown in the red superimposed histogram figure 8.2,
which is a result of conducted studies in Ref. [93]. In addition, entries are plotted with re-
spect to their momentum. Since D* and D0 have only a small mass difference, the result-
ing pion can only inhibit a low momentum. However, these will not reach the first three
SVD layers, thus losing corresponding data from the PXD. As a result, the probability that
such a decay will subsequently be correctly reconstructed is decreasing significantly.

Several possible algorithms were investigated for the identification of low momentum
particles. The NeuroBayes algorithm is hereby providing the best performance in terms
of achievable classification, even when being confronted with the most significant parts
of the anticipated background, QED and Toushek, which make up an estimated 70% of
the total background events. A characterization of the capability of identifying particles
using a trained NeuroBayes network is presented in figure 8.3. It shows the distribution
of the network’s output which is representing the probability of a cluster of pixels located
at the PXD either being related to signal, desired particles, or background. An output
value of 1 represents the highest estimated probability of a cluster being signal while -1 is
representing the highest estimated probability of it belonging to background events. The
real assignment of data to one of the two groups is known beforehand in this case and
indicated by the colouring of its bin. Red bins are representing signal, while background

216

8.1. Online Cluster Analysis for Rescuing Slow Hadrons

Figure 8.2.: Contribution of pions in D* decays [93].

is highlighted in black. By studying the plot it is obvious that the algorithm is capable of
separating both classes from each other, as the majority of estimations for both classes are
trending towards the opposite side of the output x-Axis. Additionally, both classes are
mostly correctly classified, with only a few outliers being present.

This plot is however just generally showing that the algorithm is performing well. A more
quantified view is provided in figure 8.4. Here, the signal efficiency and background
efficiency are facing each other for a used data sample. To have more insight into the
nature of the classified particles, they are plotted separately for different momenta, which
are colour coded. Especially low momentum particles are of interest as these are the ones
that will be suppressed by the RoI approach. For the target background rejection ratio of
90%, a signal efficiency of 95% can be achieved even for the group of particles possessing
the lowest momentum. This is showing the effectiveness of the algorithm.

8.1.2. Functional Description of the OCA

For an effective design of a data reduction system, it is first necessary to study the foot-
prints of the probable particles within the pixel detector. When a particle passes the PXD,
it is often not only effecting a single pixel but is rather interacting with several neighbour-
ing pixels. This results in a cluster of active pixels caused by the same particle. These
clusters form the basis for all processing within the OCA. Data that is essential to identi-
fying the observed particle can be classified into the three groups of charge, spatial and
detector-related information. Spatial information describes, for example, the size of the
produced cluster in two dimensions. Meanwhile, information about a particle’s momen-
tum is derived by making use of the DEPFET sensor’s capability to record the deposited
charge with a fine resolution. These two classes form the most significant information nec-

217

8. The Online Cluster Analysis

Figure 8.3.: Distribution of the cluster classification based on the NeuroBayes algo-
rithm [93].

essary for particle identification. In addition to them, the position of the cluster relative to
the detector is taken into account in the form of the respective ladder, at which the cluster
is recorded. The significance of considering the deposited charge is apparent when study-
ing the expected background events. These events are predicted to only deposit a small
amount of charge in pixel sensors compared to signal events. Especially the targeted pions
with a momentum of lower than 100 MeV are expected to generate much higher charge
values in the sensors. The difference is so significant that the first attempts of realizing
an OCA were solely based on applying a threshold on the recorded charge. Background
particles are additionally expected to produce pixel clusters with significantly different
shapes. Preliminary studies showed that for example, Touschek background will lead to
long drawn-out clusters with many members, while clusters produced by pions are hav-
ing fewer members and more uniform shapes. Based on these considerations, 9 separate
characteristics of a cluster are used for the particle identification. These are correspond-
ing to the inputs for the neural network that is used later on for the classification. An
overview of the characteristics is provided in table 8.1.

Based on the considerations about pixel clusters, the general functional approach of the
OCA is to calculate these characteristics out of pixel detector data and then pass them to a
neural network that was trained for the identification of particle types. The network was
trained as part of Ref. [93]. The definition of physics signals is represented by slow pions
but could be extended such as described in Ref. [116]. Targeted slow pions are assumed
to have small momentum such that they are most likely not reaching the outer layers of
the SVD, thus potentially being suppressed by the RoI.

218

8.1. Online Cluster Analysis for Rescuing Slow Hadrons

Figure 8.4.: Efficiency-Rejection of the NeuroBayes algorithm for classification of particles
using PXD data. It is plotted for different momenta, with low momenta parti-
cles having the highest significance for the experiment [93].

Input name Description
Total Charge Summed charge of all pixels in cluster
Max Charge Maximum charge across all pixels in the cluster
Min Charge Minimum charge across all pixels in the cluster
Variance Charge Variance of the charge for all pixels
Members Number of pixels in the cluster
Length r Maximum spread of the cluster along rho
Length z Maximum spread of the cluster along z
Ladder Position of the pixel cluster

Table 8.1.: Characteristics of pixel clusters that are used for the OCA.

8.1.3. Requirements

Being an instrument that is used to reduce the outgoing data rate online, the requirements
for the OCA are set by the parameter of the DAQ that was designed to be used together
with the experiment’s VXD. In this section, the focus is put on the major characteristics to
be achieved represented by the throughput and required background suppression.

The minimum throughput to be achieved by the OCA is dictated by the maximum amount
of data to be read out from the PXD for one event. This value is determined according
to equation 8.1. Besides the amount of data required to transport the information of one
pixel, both the maximum occupancy and the total amount of pixels in the detector major

219

8. The Online Cluster Analysis

contributing factors. The occupancy is hereby describing the fraction of pixels active for a
given event. The maximum occupancy is meanwhile estimated by simulation due to the
lack of real experiment data. With even the most conservative estimation, that is likely
overestimating the real fraction, the maximum occupancy is excepted to be at around 3%.

DataRateMaxPXD = PixelCountPXD · OccupancyMaxPXD · Bytespixel

= 8 · 106 · 0.03 · 4
Byte

Event

= 937.5
kByte
Event

(8.1)

The maximum allowed data rate for transporting PXD data through the DAQ is per de-
sign set to a fixed amount of 100 kByte

Event . In nation with the maximum occurring data rate
for an event, the reduction factor to be achieved can be determined by using equation 8.2.
Thus a reduction factor of around 10% has to be achieved to not exceed the available
bandwidth.

DataRateReductionPXD =
DataRateMaxPXD
DataRateDAQPXD

=
100

937.5
= 0.11

(8.2)

8.2. Realization of the OCA based on the NeuroBayes Algorithm

8.2.1. Integration into the DAQ of the PXD

Compared to the previous systems such as the NNT, there are much fewer degrees of free-
dom in terms of integration possibilities into the DAQ with the PXD as it was an already
established system when the OCA was proposed. As such there are no opportunities in
terms of using new hardware, all integration efforts have rather be made in accordance to
the present system. Most of the considerations presented here are based on the publica-
tion Ref. [Bae15] by this thesis’s author.

Selection of the Platform

Considering the DAQ’s architecture there are only two viable locations at which the OCA
can be integrated. These are at the DHH or the ONSEN. The former is located earlier in the
data processing chain and mainly tasked with combining pixel data from several different
ladders. Additionally, it hosts the clustering algorithms that combine neighbouring ac-
tive pixels. These clusters are hereby representing the input data basis for the OCA. Even
though these tasks are requiring significant portions of the underlying FPGA’s resources,
around 50% of the logic resources are still available to be used [69]. The ONSEN, on the
other hand, is located directly after the DHH and is thus much later in the processing
chain. While representing a viable host for the OCA, the chances for integration at this
point are very slim, due to the high occupation of logic resources by its vital functions.

220

8.2. Realization of the OCA based on the NeuroBayes Algorithm

Around 90% of the logic resources are already in use, basically rendering integration of
the OCA impossible. For this reason, the DHH is chosen as the targeted hosting platform.
An architectural view of an OCA integration into the DHH is shown in figure 8.5.

DHH

Clustering Protocol
Handling

Feature
Extraction

NeuroBayes
Expert

Online-Cluster Analysis

Framing

Figure 8.5.: Overall processing architecture used for the OCA. The modules Clustering
and Framing are expected to be provided at the DHH.

Handling of Interfaces

The input values for the OCA are arriving in the form of pre-calculated clusters consisting
out of neighbouring active pixels. On the DHH these are passed on in their own data
format and protocol as is defined within the DAQ of the VXD. This data has to be both
unpacked and subsequently processed in order to be usable for the OCA.

The clustering engine of the DHH is providing up to two pixels that are part of a cluster at
each clock cycle. In the case that larger clusters are transmitted, several clock cycles are re-
quired. As mentioned previously clusters that are belonging to signal events have a rather
small footprint. To limit the maximum latency and resource consumption, the maximum
cluster size supported by the OCA is already defined in advance and set to 16 pixels.
This number is derived from studies of simulated events in the PXD. These showed that
clusters produced by signal have at most 16 members, with even more members pointing
towards background events. This means that a maximum amount of 8 clocks are required
to accept a single cluster. At the same time, pixels belonging to different clusters can arrive
at the same clock cycle. These are treated separately, with a new cluster being buffered
and the old one being forwarded towards further processing. The calculation of the most
input values is computationally simple. The charge-based values are mostly relying on
comparisons or accumulation of the individual pixel values. Spatial information is mean-
while indicated in each pixel of the cluster, as dedicated flags are used to represent the
increase in the direction of phi or z. Both charge and spatial data can be processed at
each clock cycle, for example, a partial sum is calculated even though not all pixels were
received.

221

8. The Online Cluster Analysis

OCA Input Calculation

Parameters

Parallel
Processing
Bitwidths
Latency

Number of Inputs

ChargeValues

AreaValues

Variance
Calculation

ShiftRegister

Hit1

Hit0
Cluster
Frame

Figure 8.6.: Architecture of the calculation of inputs for the OCA using cluster frames.

The computationally most complex value to be calculated is the variance of the charge.
However, by constraining the maximum supported size for a cluster, it can be greatly sim-
plified by implementing the required division as a multiplication with a constant. Since
the variance can only be calculated after the arrival of the entire cluster, it is at the end
after all members arrived. This results in the architecture shown in figure 8.6 for the input
calculation.

8.2.2. Architecture of the OCA on FPGA

Online Cluster Analysis

Input
Preprocessing

Preprocessing

Zero
Iteration

Postprocessing

Cluster Buffer

Output

Figure 8.7.: Complete FPGA architecture for the NeuroBayes algorithm based on the zero
iteration.

222

8.2. Realization of the OCA based on the NeuroBayes Algorithm

The developed architecture used for the realization of the OCA is shown in figure 8.7.
First, the incoming clusters are buffered and decoded within. The now decoded values are
then used to generate the defined input values to be used for the prediction algorithm. In
this case, nine parallel data streams are generated each representing the respective input
signal.

Parallel to these data streams, the received cluster data is written untouched into a cluster
buffer. These raw clusters are delayed by the same number of clock cycles as the latency
required for the processing of the algorithm. Since there is no clock domain crossing
and maximum throughput requires to accept a cluster at each clock cycle this buffer is
implemented as a shift register. The reason for keeping the cluster data unchanged is
that it shall be passed untouched to the next stage. The OCA is only setting a flag that
represents the prediction result, which is the classification into background or signal. This
flag is added at the output stage, which is additionally implementing the protocol for
transferring processed clusters to the next stage.

The algorithm itself consists of three processing stages, which can be interchanged with
different components depending on the current use case. The first stage is representing
the preprocessing of the algorithm, in which the received input values are transformed
into a representation suitable for the solution algorithm. In this version of the algorithm,
all of these input values are processed independently of each other. This is indicated by
parallel instances in the architectural view. The subsequent zero iteration algorithm is
then combining all processed data streams into one final output value. This value is then
processed in the final stage, the postprocessing. Here the membership for the cluster is
determined and represented as a binary decision. The following sections will focus on the
design and characterization of each individual component used for the OCA.

8.2.2.1. Preprocessing

The preprocessing of the input data for the NeuroBayes algorithm is realized either by us-
ing a two-dimensional correlation function or a Cumulative distribution function (CDF).
For the use case of the OCA, using a CDF is already sufficiently accurate for predicting
clusters. In addition to this, it is less complex to implement as it requires less processing
operations. As a result, only the CDF is considered in this design in detail but could be
swapped with another method in future operation. The principal internal processing ar-
chitecture of the module that was designed for realizing the CDF is shown in figure 8.8.
In principle, it can be divided into finding the suitable bin followed up by an optional in-
terpolation to increase the accuracy. The design characteristics of the interpolation hereby
strongly depend on the used bit width or maximum possible value of the input value to
be processed.

The design is hereby differentiated into two separate cases. In the first case, the assumed
bit width is less than 6 bit. In the context of the OCA, this is the case for all of the area-
based input values. In this case, all of the individual bins can be directly mapped onto
the input values, since the number of bins used within the algorithm is a constant set to
100. Since each input value can be mapped exactly to one bin, no interpolation is neces-
sary. However, as soon as the input value range is exceeding the 100 bins, an additional
interpolation has to be applied to addresses that are within a bin’s boundaries.

223

8. The Online Cluster Analysis

CDF_Preprocessing

Parameters

Parallel
Processing
Bitwidths
Latency

Number of InputsBin Search

Step
Memory

Interpolation
Input
Value

Border
Memory

Figure 8.8.: Architecture used for the realization of the CDF within the OCA.

For even bigger input value ranges, the functionality hereby no longer changes, however
it has an impact on the choice of implementation used for the interpolation. For smaller
bit widths, joint implementation of binning and interpolation using a LUT is represent-
ing the most efficient solution in terms of accuracy and resource demand. However, this
changes as soon as the bit width is increased since resource demand is not scaling well.
In this case, an alternative approach is used. Focusing on the requirements of the OCA,
however, shows that the defined input value ranges are all within the limits at which an
implementation as a LUT is still reasonable. Since the base algorithm can change over
time, due to the changing behaviour of the experiment, an alternative solution for inter-
polation with large input value ranges was designed.

Architecturally this alternative solution is different from the LUT-based approach. Here,
the finding of the correct bin and the interpolation are designed separately from each
other as individual modules. Finding a bin consists of two parts as well. It consists of
a memory that contains the bin boundaries that are defined during design time for an
input value. Subsequently, an additional processing step is necessary to look up the value
assigned to this bin.

Based on the found bin, the value can be then interpolated. A linear interpolation is used
for this to approximate the value to be used for the solution algorithm. The interpolation
is hereby implemented by using a memory that stores a constant offset for each value that
lies within the bin’s boundaries. The offset is then multiplied with the difference between
the starting boundary of the bin and the input value itself.

The architecture used for implementing the CDF is presented in figure 8.8. It represents
the most complex case when using interpolation with large input value ranges. The solu-
tion for small ranges is mostly the same, however, it is omitting the explicit interpolation
that is otherwise implemented in a separate module. The discusses architecture was con-
figured for the use case of the OCA and implemented on the basis of the DHH. The overall
results are shown in table 8.2. All of the characteristics are sufficient allowing implemen-
tation and fulfilling the set requirements, since the resource demand is rather low while

224

8.2. Realization of the OCA based on the NeuroBayes Algorithm

the frequency is well above the targeted input clock frequency of 200 MHz as 322 MHz
are achieved.

Category LUTs total Registers Frequency Latency
Preprocessing on DHH 1 890 181 322 4

Table 8.2.: Synthesis results for the complete preprocessing of the OCA.

8.2.2.2. Solution Algorithm

The algorithm selected for the OCA zero iteration variant of the NeuroBayes algorithm.
Its advantage compared to a full neural network is that it can achieve very good estima-
tion results while using only one single neuron. This significantly reduces the resource
demand for the FPGA. This advantage is somewhat bought at the expense of a more
complex preprocessing, which introduces additional latency. This additional latency is,
however, tolerable for the use case of the OCA.

For the use case of the OCA, low-latency is only a secondary objective. The most im-
portant criterion is the achievable throughput. In the considerations from section 4.4.1,
an architecture was designed in which neurons are designed to achieve a maximum pro-
cessing clock frequency using a high degree of pipelining. In this architecture, DSPs are
cascaded with the big advantage being that specially dedicated communication channels
between them are used to transfer the common data as fast as possible. This architecture
is used for the OCA, with the different cluster-based input values representing the cas-
caded data to be transmitted. The complete architecture is not explicitly shown as it is
mostly resembling the one shown in figure 4.4.

A remaining question when using this architecture is the selection of the bit width. Es-
sentially, the question here is whether the zero iteration with the limitations of the DSPs is
still capable of achieving sufficiently good estimation results. For this purpose, analyses
were carried out to determine the influence of the bit width on the overall result. For this,
the algorithm was performed with a set of different constrained bit widths. The results
of these were subsequently compared with the reference solution modelled in SW that is
using unconstrained data types. It shows the standard deviation of the results between
SW and HW for different bit widths. Complete matching can be achieved with a 25 bits
width for both weights and inputs. The optimal configuration of 25 · 18 is able to achieve
a deviation of 1.5 · 10−5 which is negligible. The results of this investigation are shown in
more detail in figure A.2 as part of the appendix.

Overall, the zero iteration algorithm behaves quite well when reducing the bit width.
Even at very low widths, the deviations are still rather small. The optimal configuration
from the hardware’s point of view is still at a bit widths of 18 and 25. For this configuration
only very small differences at O(106) are observed, which are negligible.

In addition to the investigation of the influence of the bit width on the achieved accuracy
of the design, it was implemented to determine the resource consumption. The achieved
results are listed in table 8.3. The generated results are all very promising, with generally

225

8. The Online Cluster Analysis

low resource consumption and a maximum clock frequency of up to 367 MHz, which is
well within the targeted frequency.

Category LUTs total DSPs total Registers Frequency Latency
OCA on DHH 565 9 367 303 11

Table 8.3.: Synthesis results for the solution algorithm of the OCA.

8.2.2.3. Postprocessing

In the post-processing processing step, the calculated value of the zero iteration is first
transformed again using a CDF. The same implementation is hereby used as in section 8.2.2.1.
The value is then passed onto the activation function. For the OCA the sigmoid function
is used. As with the tanh in the case of the NNT, the calculation of the sigmoid function
is rather complex and is thus implemented using a LUT. Since the value range is quite
large this time, the resource consumption of this implementation would be rather high.
To avoid this, the function is stepwise linearised, as discussed in section 4.4.2. The output
of the activation function is finally binarized using a configurable threshold filter. The
output is either 1 or -1 indicating whether a cluster should be kept or not.

8.2.2.4. Configuration of the OCA for Belle II

The previously individually presented modules are in combination forming the complete
OCA design. The results derived from implementing the complete architecture on the
basis of the DHH, which is hosting a Virtex-6 VLX130T-2 are listed in table 8.4. Overall
all requirements can be fulfilled with the complete architecture. Both LUTs and DSPs are
well below the set goals of 30% for LUTs and 50% for the DSPs as they are at around
2% for LUTs and 3% for DSPs. Additionally, the achieved throughput is well above the
minimum goal of 200 MHz output rate, as it is reaching up to 303 MHz.

Category LUTs total DSPs total Registers Frequency Latency
OCA on DHH 2 455 9 548 303 15

Table 8.4.: Implementation results for the complete OCA.

8.2.3. Design Flow for the OCA

Inspired by the design flow concept described in section 4.3, a semi-automated framework
was developed for the OCA. It is meanwhile based on the publication Ref. [Bae16] by this
thesis’s author. In contrast to the concepts described there, some differences have to be

226

8.2. Realization of the OCA based on the NeuroBayes Algorithm

considered for this use case. As this is the first implementation of the zero iteration algo-
rithm based on FPGAs, no analyses that were investigating the influence of fixed point
processing on the estimation performance of the algorithm were available. The other big
difference lies in the software environment of the NeuroBayes. For the development, a
Python-based implementation of the zero iteration was provided. In addition to the im-
plementation of the algorithm, an environment for verification was provided, which is
based on unit tests using already available libraries.

Algorithm

NeuroBayes
HW-Model

BASF2

FPGA

NeuroBayes
SW-Reference

IP-Core
Library

FLI CoSim

Preprocessing
Config

Zero-Iteration
Config

1

2
3

Implementation

2

4

Figure 8.9.: Developed design flow for the generation of OCA firmware.

Since there was no preparatory work on the analysis of fixed-point processing, a design
space exploration is included in the developed framework. The aim of this is to inves-
tigate the influence of different bit width configurations as was shown in section 8.2.2.2.
Design exploration typically suffers from very long processing times due to the massive
amount of free parameters to be considered in the hardware-based design. However, con-
sidering the time at which the OCA has to be operational, a combinatorial exploration can
be used. In addition, in case a new network is to be created, there will always be long time
windows until it can be loaded into the operational environment. In addition, the param-
eter space to be investigated is rather small due to the efficiency of the zero iteration. Due
to these reasons, the analysis of fixed-point processing is implemented in the framework
as a combinatorial exploration in which all possible configurations are tested. When tran-
sitioning the general NeuroBayes design to other use cases, a redesign of the design space
exploration might be necessary to avoid excessive design times. The overall design flow
used for the OCA is shown in figure 8.9.

227

8. The Online Cluster Analysis

Realization

The core of the framework is the integration of the Python-based implementation of the
zero iteration algorithm together with the HDL-focused implementation. Several frame-
works are meanwhile already available that allow a description of such HW-level models
in python. They are even capable of allowing conversion of the model directly into an
HDL description. However, not all language constructs are supported which makes their
usability rather limited [24]. The recommended description of functionality according to
the user guides of such frameworks are basically representing the same level of abstrac-
tion as Verilog or VHDL. However, the advantages of HDLs such as the support of IP core
libraries and tool directives for optimization, are not supported.

For this reason, such frameworks are not used in the design flow for the generation of
the firmware. The approach pursued here is to continue the description of processing
modules in an HDL thus relying on tools and libraries for optimization. The behaviour
of the module is meanwhile simulated in python as a model. This python model is then
validated against reference software and HDL implementation using the existing unit test
infrastructure. The parameters of this model are then extracted and used to configure the
HDL module, allowing to use less computationally intensive design space exploration.
The validation is meanwhile performed with HW/SW co-simulation in an automated
way. Only for the parameter selection, intervention is still necessary, since compromises
must be made between the different performance and resource characteristics achieved
by the investigated configurations.

Native python does not support variable bit widths, which is required in order to model
processing on the FPGA. However, this functionality can be added by using external li-
braries. The best solution for this is provided by the myHDL library. While it aims at cre-
ating HDL descriptions within python, it also provides types with constrained bit widths
that can be used in general programs. The use of this library also has the advantage
that existing unit tests can be reused for validation. The validation of the HDL modules
against their python models was meanwhile realized with the help of the tool Model-
sim [73]. This tool provides several possibilities for coupling external software to an HDL
simulation. One such possibility is the Foreign Language Interface (FLI) [76]. It has the
advantage of already being supported by myHDL, so that additional effort is kept to a
minimum for the implementation.

Using models of FPGA processing can in parallel be used to make rough estimations
about the resource demand at an early design stage. This ability is implemented by calcu-
lating the characteristics of the available HDL-based modules in advance for several con-
figuration parameters and then providing the results to the framework. The estimated
characteristics are then scaled according to the currently investigated parameters. The
same approach is also possible for metrics such as latency and throughput. Even more
precise estimates can be generated by using the HLS-based estimation similar to the de-
sign flow presented in section 6.3.4.

228

8.3. NeuroBayes Demonstrator

8.3. NeuroBayes Demonstrator

The realization of the OCA on the DHH as described in section 8.2 is designed for the
requirements dictated by the Belle II experiment. The throughput was hereby designed
to keep up with the maximum throughput achieved by the clustering as it represented
the strictest requirement to be fulfilled. To meet these requirements it is already suffi-
cient to implement a single instance of the zero iteration based processing architecture.
Meanwhile, one single instance required only a few of the available resources that are
provided by the hosting FPGA. Additionally, most resources of the FPGA were already
occupied by the clustering. For the developed implementation and architecture, however,
an open question that is remaining is to what extent the throughput is scalable, which is
particularly important in systems with higher throughput requirements. A demonstrator
was developed to answer these questions. This demonstrator is presented and discussed
throughout this section.

Selection of Communication Interfaces

Since the goal of the demonstrator is to achieve the highest possible throughput, a com-
munication interface is required with which as much data as possible can be transferred
to and from the FPGA. The PCIe is hereby particularly suitable for this task by provid-
ing high data rates and being widely supported in regular computing systems such as
desktop computers. Most modern high-performance GPUs are equipped with this inter-
face. Since the high-performance computing market is of interest to FPGAs, most of their
modern development platforms are equipped with a PCIe interface to be connected as
a co-processor. This widespread adoption of PCIe is making it easier to find a suitable
platform.

Selection Hardware Platform

Category/Platform DHH Demonstrator
Interface AXI Stream PCIe
Maximum incoming data rate 200 3.6
Maximum outgoing data rate 200 1
FPGA Virtex-6 Virtex-7
DSPs 480 3600

Table 8.5.: Comparison of characteristics between the demonstration platform and the
DHH that is hosting the OCA.

The VC709 development platform from Xilinx was selected as the hosting FPGA plat-
form. At the time of development, it had the most advanced FPGA available, a Virtex-7,
which is a generation newer than the FPGA used at the DHH. In addition, this platform
is supporting the PCIe 3.0 standard, which at that time was the version with the highest
achievable data throughput. More modern platforms nowadays are meanwhile already
relying on PCIe 4.0. The FPGA also provides a large number of DSP resources. Since these

229

8. The Online Cluster Analysis

make up the main part of the algorithm’s processing, the platform is suitable for exploring
a high degree of parallelism. Table 8.3 compares the properties of both the DHH and the
demonstrator. The FPGA-based PCIe infrastructure is meanwhile based on Ref. [San14b].

System Architecture

The overall system architecture is based on a standard desktop computer that is equipped
with a PCIe slot in which the VC709 is inserted. Both the desktop PC and FPGA need
additional functionality in order to establish high throughput communication. On the
host side, a PCIe driver is required to access the FPGA. At the same time, an infrastructure
based around a PCIe IP core is required on the FPGA to take care of the PCIe protocol. In
order to achieve the highest possible throughput, communication must be carried out via
Direct Memory Access (DMA), which needs to use a dedicated controller on the FPGA.
The theoretical maximum achievable throughput can hereby only be achieved if the data
transfers are carried out with maximum pipelining.

On the host side, a Linux operating system is used to allow easy development of the
device driver. On the start-up of the system, it will find and bind the correct PCIe device
based on the device code. The main functionality is hereby in setting up and initiating the
DMA transfers. In addition, the driver handles interrupts sent by the FPGA, which will
be used to indicate the conclusion of estimations. To initiate the data transfers, the driver
is transmitting both the start and end addresses of the data to be fetched from the main
memory via memory-mapped IO. In addition, the address range is transferred at which
the FPGA is allowed to write its results.

The driver is used by an application on the host side that loads simulated detector data
into memory and initiates data transfers to the FPGA. This application also contains a vi-
sualization showing the achieved results and throughput. It provides two separate oper-
ating modes. Either a data set is manually defined and transmitted to the FPGA, with the
result being read out afterwards for evaluation. This is of particular interest for demon-
strating correctness together with specific test data samples. The other mode is used for
demonstrating the throughputs that can be achieved. In this mode, cluster data is read
from a predefined file and written into the designated locations in the main memory.
This is concluding with the initiation of the transfer to the FPGA. The operation is then
performed in a loop so that data is transmitted continuously until an abort is requested
explicitly. In parallel to this transfer loop, the output of the FPGA is continuously evalu-
ated with the throughput being measured either for a specific time interval or by the total
accumulation of estimations over time.

On the FPGA side, the architecture can be divided into three sections. The first section is
consisting of all the components required for PCIe communication. A custom-designed
infrastructure meanwhile controls all the DMA operations for reading and writing the
data. It includes an interrupt control unit that supports the usage of MSIX. Following
this, data is interpreted as cluster data and distributed among several parallel instances
of the OCA.

The realization of the OCA is configured to host the maximum amount of parallel in-
stances at which the output throughput is still increasing. Since the output data rate is
representing the bottleneck for the demonstrator, the amount of instances is set in a way

230

8.4. Summary

that it is saturated. When using only binary decisions describing the classification, the
maximum degree of parallelism is equal to the number of bits that can be transferred per
clock cycle. For the selected host platform, this is at to 128 bit, so that 128 instances are
instanced in parallel. This amount of instances of the OCA are then occupying around
40% of the available resources. The overall system architecture is meanwhile shown in
figure 8.10.

VC709 FPGA-DemonstratorDesktop-PC

NB
Expert

DMA
Engine

NB
Expert

.

.

.

AXI

AXI

PCIe
IF

PCIe
Device
Driver

Test Data Set

QT Visualization

Demo
Application

Data

Estimation

Data

Estimation

Figure 8.10.: System architecture of the throughput demonstrator based on the VC709.

8.4. Summary

For the identification of slow hadrons from the collisions of the Belle II experiment, a
online pixel cluster analysis based on the NeuroBayes algorithm was developed for op-
eration on FPGAs. When integrated this approach within the DAQ of the PXD at the
so-called DHH, it is capable of achieving the requested functionality while fulfilling all
operational requirements in terms of resource demand and throughput.

The presented solution of the NeuroBayes algorithm on FPGAsrepresents the first real-
ization of this algorithm based on this technology. The design choices and alternatives are
meanwhile mainly dependent on the internally used bit widths of the input values as well
as the options of used preprocessing. For the OCA application case, a throughput focused
architecture was developed. A latency optimized alternative is architecturally feasible us-
ing the alternative realization of neurons discussed in section 4.4.The developed architec-
ture is flexibly configurable in order to be adjusted due to changing operational condi-
tions. This is supported by a developed semi-automated design framework that maps a
description of the algorithm to a corresponding architecture. Properties such as resource
demand, throughput, latency and above all the influence of bit widths were investigated
and discussed. The framework is meanwhile based on Python in order to allow integra-
tion with the provided unit tests. The influence of bit widths meanwhile conducted using
modelling of hardware processing with the help of the myHDL library [24]. This is sup-
ported by HW/SW co-simulation for validation using the FLI of Modelsim [76]. Overall,

231

8. The Online Cluster Analysis

the OCA can be implemented with the architecture and implementation presented here
within the resource budget and in compliance with all requirements of the experiment.
The problem for future use is that the algorithm is proprietary and might thus stay in its
prototype form.

232

9. Conclusion and Future Work

9.1. Conclusion

Modern particle accelerator experiments achieve extreme data rates for which the trans-
mission infrastructure necessary for the complete storage of the generated data would be
too expensive to be feasible. To address this problem, typically mechanisms for triggered
data readout are used. These mechanisms select at runtime which data is to be stored for
later analysis. Such systems were part of most of the high data rate experiments in the
past and allowed a good trade-off between infrastructure cost and efficiency in terms of
keeping most of the desired data that is a result of the experiment. One of the experi-
ments that is depending on the usage of an efficient trigger system is Belle II. Preliminary
analysis of the experiment’s behaviour hereby shows that a large fraction of the expected
tracks is going to be caused by unwanted background events instead of collisions, having
their point of origin outside of the interaction point with respect to the z-Axis that is along
the beam pipe. Identifying and suppressing such tracks is one of the primary goals of the
L1 trigger system of the experiment. While many established algorithms are available to
address this problem, the task is made difficult by the currently unknown behaviour of
high luminosity operation and the complex structure of the observed background events.
The motivation is now to employ algorithms based on machine learning to solve these
problems.

The main contribution of this thesis is thus the neural z-Vertex Trigger for the Belle II
experiment. This trigger represents the first trigger system based on neural networks that
is operating at the L1 of an experiment’s trigger system. First and foremost this thesis
shows that such a system can be implemented on the FPGAs available at the time of
the construction of Belle II while fulfilling all of the operational requirements in terms of
latency, integration, and throughput. It is then shown that such a trigger system is capable
of estimating the z-Vertex of tracks with reasonable accuracy. It is currently capable of
being used with a resolution of around +/- 40 cm.

Along the way of developing this system, several achievements were achieved. At first, a
general architecture on the basis of dedicated preprocessing algorithms and general MLPs
was investigated and developed. The preprocessing is designed to be highly flexible in
terms of parallelism and the internally used bit widths. While the MLP is implemented to
be low-latency and resource-efficient to fulfil the set requirements. Several optimization
techniques such as layer pipelining and heterogeneous resource usage were developed
and discussed, which to produce a solution dedicated to the trigger use case. The correct-
ness of the approach is shown with example collision runs in which DQM data is available
and histograms of the z-Vertex were created across all NNT boards. Fulfilment of both la-
tency and throughput is performed experimentally as well. Latency was measured at the

233

9. Conclusion and Future Work

data sink of the trigger system, the GDL, at which trigger signals are arriving just in time
to be used for the decision making. Throughput is currently sufficient to keep up with
early luminosity runs as no tracks are dropped in all of the considered runs.

The scope of the NNT development was expanded towards higher luminosity operation
and the new hardware platform that will be used in later stages. The presented architec-
ture was hereby re-evaluated and configured to be operational on this platform. Results
showing resource utilization were generated by developing an early prototype since the
real platform is not available. It shows that the architecture can be easily transitioned
to the new platform, even increasing the throughput by allowing the usage of multiple
instances of the NNT on one FPGA.

From an integration point of view, this work includes all of the aspects required to be
addressed in order to reach operational completeness. This started with the investiga-
tion of viable hardware-platforms based on FPGAs. The platform was chosen to fulfil
the required number of IO ports, support for assisting IP cores and effort for integration
into the location at which trigger hardware is placed. To compensate for the behaviour
of the central drift chamber, dedicated protocol IP cores were developed in a flexible way
to deal with changing requirements. In addition to this, interfaces and solutions for inte-
grating the NNT into both slow control and data quality monitoring were developed and
presented.

The NNT itself is already a powerful tool that allows triggering on the z-Vertex with a suf-
ficiently reasonable resolution. However, an even better resolution is requested for later
operation. The strategy followed for increasing the resolution is to focus on the preceding
processing stages. For this, two optimization strategies were investigated within this the-
sis. The most powerful and more experimental approach is represented the Hough-based
3D-Track Finding. This method significantly increased both the efficiency and accuracy
of the z-Vertex estimation. Within this thesis, an FPGA-based architecture was presented
that is realizing the S3D. The presented architecture is capable of providing 3D-track pa-
rameters within the set requirements and is currently in a prototyping state since the
hardware is currently in production. In addition to a study about the feasibility of inte-
grating this system into the current CDCTRG, an investigation was conducted to explore
the possibilities of integrating the S3D with the NNT. These studies showed that the cur-
rently planned FPGA VU125 will be capable of hosting both the S3D and two parallel
instances of the NNT, which will increase the number of tracks processed at each clock
cycle.

A less powerful but important optimization is presented with the redesign of the Track
Segment Finder. This component represents the basis for all track trigger operation within
the CDCTRG. By using a state-machine-based architecture called TSFsm, several charac-
teristics were improved. Not only is resource consumption reduced across all SL, but the
new system is also increasing the efficiency for finding particle tracks. It is meanwhile
already in operation in the experiment providing TS reliably during collision operation.

While the main contribution of this thesis is represented by the achievements targeting the
Belle II trigger system, additional data reduction approaches based on machine learning
were investigated. The Online Cluster Analysis was developed for this purpose, which is
currently in a prototyping state. It is based on the proprietary NeuroBayes algorithm and
capable of classifying particles, that is slow pions and background, reliably while being

234

9.2. Future Work

deployed on FPGAs located close to the pixel detector readout. As data rate reduction
is most efficient when performed as early as possible in the process of data taking, the
OCA is performed online as part of the experiment’s DAQ. An architecture fulfilling all
of the imposed requirements was developed for this purpose. It is based on throughput
optimized processing of neural networks, as this is the tightest requirement to be fulfilled
by the system.

9.2. Future Work

The presented systems that are estimating particle track parameters or identifying particle
types online and in real-time, are the first operational realizations of this type based on
machine learning methods. As they are representing the first such systems and are part of
a high energy physics experiment that is currently in its first stages of operation several
opportunities for future work are present.

The main opportunity for the extension is at the analysis and observation of the opera-
tional setup as presented in section 5.4.2.1. While it is already achieving good estimations
for the current state of the experiment, there is still room for improvement. The measured
resolution is sufficient to operate the trigger in early stages, however, the requirements
will tighten with the increase of luminosity. The planned approach to address this is to
train neural networks on the basis of collision data since the current system is still based
around simulated collisions. Using such a network is projected to improve the estima-
tion’s efficiency significantly, thus the probability of successfully improving the NNT is
very high since its architecture is designed to be flexible. The employed network was
hereby already updated multiple times, for example, with weight sets trained for cosmic
rays or extension of the estimation to +/- 100 cm.

Further optimization based on the presented operational setup can be achieved by using
the ETF as intended in the original trigger concept. The ETF is still under development
and scheduled for a redesign until then the alternative event time estimation based on the
fastest priority times is going to be used. The current setup will have to be reconfigured in
order to include data from ETF. Since the ETF is in a development state, the success of this
is more difficult to estimate. However, from a theoretical point of view with ideal event
times, the improvement to the estimation is significant. Even without this optimization,
the NNT should be fine for operation.

One immediate change and opportunity for improvement is the extension of the system
to the usage of 15 TS since the current version is only supporting up to 10. Studies based
on early collision data showed that certain events will generate more than 10 TS, which
will however currently be ignored since they are are not used. Usage of the full 15 TS will
impact the NNT as its preprocessing has to be adjusted to reflect the increased amount of
data to be processed. At the same time, this is invoking changes in both SC and DQM, as
they have to be extended to send the increased size of data. Its impact on the achievable
resolution is currently unknown and will have to be investigated in further studies.

Longer term improvements are mostly based around the usage of newer FPGA-platforms
such as the UT4. While architecture and integration were being presented within this the-
sis, the platform itself is currently not available. All of the physical integration tasks and

235

9. Conclusion and Future Work

subsequent evaluations have to be performed as soon as it is available. However, the risk
of the NNT not being used on the UT4 is rather low since a prototypical implementation
is already available.

The highest projected increase in resolution is achieved by the S3D as presented in sec-
tion 6. Due to the non-availability of the UT4 and early development stage of the Hough-
based processing, it is currently waiting to be integrated into the CDCTRG. However as
presented in this thesis, a reasonable integration concept was developed that is projected
to be realizable with significant improvements to the overall operation. As this step is
highly dependent on the new unknown platform it has both the highest risks as well.
However, all of the previously mentioned improvements have a very high probability of
success.

Reaching beyond the work presented in this thesis several additional opportunities exist.
First of all new modern machine learning algorithms and FPGA-based inference frame-
works could be explored. On the other hand, the concept of a neural network trigger can
be extended towards a new trigger system that is combining data from multiple detectors
instead of only the CDC. This approach is already a work in progress on a conceptual
stage, with the TOP detector, for example, providing the event time. On an architectural
level, improvements can be achieved by extending the concept of dedicated neural net-
works targeting certain special conditions. This is based around the usage of the entire
on-chip memory or even inclusion of off-Chip memory, which might be within the latency
budget for the integrated S3D and NNT solution.

236

A. Appendix

A.1. Neural z-Vertex Trigger

A.1.1. Belle2Link Data Quality Management Interface

Figure A.1.: Table of the used B2L-DQM format of the NNT from available since operation
in phase 2.

The method used for DQM via the B2L, which is presented in section 5.3.2, used the
format shown in table A.1 during the first stages of the NNT’s operation. The current

237

A. Appendix

format is found in the internal document management system of the experiment, however
this version already provides the ideas and meaning of this format.

A.1.2. Description of the accepted Network Input

The following describes the text file format used for the configuration of the NNT. It is
generated by tools at the algorithmic side of the design flow and used by the framework
supporting the firmware generation to support the configuration of the architecture.

networkNumber_completeTS
ID0min ID0max ID1min ... ID8max
sectorpattern patternmask
numInputs numHLNeurons numOLNeurons
weight_HLNeuron0_Input0 weight_HLNeuron0_Input1 ... weight_OLNeuronN_InputM
networkNumber_stereo1missing
...
networkNumber_stereo7missing
...
weight_HLNeuron0_Input0 weight_HLNeuron0_Input1 ... weight_OLNeuronN_InputM

A.1.3. Results of NNT operation during experiment 8

The most important results of the NNT were shown in section 5.4.2.2. This attachment is
expanding on that by showing the results in more detail, that is distributed across the sep-
arate quadrant, which allows to analyze the correctness for each of the four UT3s hosting
the NNT.

238

A.1. Neural z-Vertex Trigger

(a) (b)

(c) (d)

Figure A.2.: Histograms of z-Estimations sent by the NNT for each quadrant are shown,
the quadrant is indicated within each plot in the information box. Reasonable
distributions are generated for each quadrant.

239

A. Appendix

(a) (b)

(c) (d)

Figure A.3.: Histograms of phi values received at NNT for each quadrant are shown, the
quadrant is indicated within each plot in the information box. All quadrants
a received correctly.

240

A.2. OCA bit width analysis

A.2. OCA bit width analysis

(a)

(b)

Figure A.4.: Comparison of HW and SW implementation of the zero-iteration for different
bit widths with the deviation being plotted. Ranges from 3 to 25 bits are
shown in (a) while the range 15 to 25 is shown in more detail in (b). The later
range represents the operating range supported by the DSPs of the considered
FPGA.

241

A. Appendix

A.3. TSFsm

A.3.1. Data format and Interface

(a) (b)

Figure A.5.: Interfaces provided by the new TSFsm. (b) is showing the interface of the
new TSF_m and (a) the interface to the state machine module [Ung18].

A.3.2. Configuration of the TSF within the CDCTRG

As described in section 5.2.1, a total of four UT3 boards is used to cover the entire CDC
the amount GTH ports required to the supported for full readout. The unique assignment
of TS, represented by its ID, to each boards is shown in table A.3.2. In addition, the table
contains the total number of TS and supported mergers. With this table it is possible to
identify the space covered by each board hosting an instance of the NNT.

242

A.3. TSFsm

SL #Merger #TS Quad 0 Quad 1 Quad 2 Quad 3
TSF0 7 160 0-79 40-119 80-159 120-159, 0-39
TSF1 5 160 0-79 40-119 80-159 120-159, 0-39
TSF2 6 192 0-95 48-143 96-191 144-191, 0-47
TSF3 7 224 0-111 56-167 112-223 168-223, 0-55
TSF4 8 256 0-127 64-191 128-255 192-255, 0-64
TSF5 9 288 0-143 72-215 144-287 216-287, 0-71
TSF6 10 320 0-159 80-239 160-319 240-319, 0-79
TSF7 11 353 0-175 88-263 176-351 264-352, 0-87
TSF8 12 384 0-191 96-287 192-383 288-383, 0-95

Table A.1.: Configuration of the TSF present in the CDCTRG together with the unique
assignment of each TS and their quadrant.

RCBE
<<27>>

Merger
<7>

TSF_0CDC SL0

RCBE
<<20>>

Merger
<5>

TSF_1CDC SL1

RCBE
<<24>>

Merger
<6>

TSF_2CDC SL2

RCBE
<<28>>

Merger
<7>

TSF_3CDC SL3

RCBE
<<32>>

Merger
<8>

TSF_4CDC SL4

RCBE
<<36>>

Merger
<9>

TSF_5CDC SL5

RCBE
<<40>>

Merger
<10>

TSF_6CDC SL6

RCBE
<<44>>

Merger
<11>

TSF_7CDC SL7

RCBE
<<48>>

Merger
<12>

TSF_8CDC SL8

Figure A.6.: Graphical representation of the system architecture connecting the CDC with
the entry point into the CDCTRG.

243

A. Appendix

A.3.3. Validation of the TSFsm

Instead of the relative amounts of found TS during testing with random number gener-
ated merger inputs, table A.7 is showing the absolute numbers.

Figure A.7.: Comparison of the total number of found hits with random input generation
using the TSFsm.

244

A.3. TSFsm

(a) (b)

Figure A.8.: Signal diagrams showing data from both TSF (a) and TSFsm (b) that were
captured using Chipscope while performing merger play tests.

245

List of Figures

1.1. Developments of both energy (a) and luminosity (b) in particle accelerator
experiments over the last 50 years [102]. 2

1.2. Comparison of neural network-based processing with traditional approaches
over the last years in terms of their accuracy relative to the scale of data to
be processed [23]. While traditional approaches were representing the best
solution in the past (a), the current increase of available computing power
favoured the usage of neural networks as they are scaling better due to for
example their inherent degree of parallelism (b). 4

2.1. Layout of the SuperKEKB accelerator ring on the left; and a grahpical com-
position of the Belle II particle detector [15]. 13

2.2. 3D Rendering of the PXD. DEPFET matrices are shown in grey [5]. 14
2.3. Bethe-Bloch plot that shows the relationship between momentum and en-

ergy loss [79]. 15
2.4. System architecture of the readout system of the PXD. 16
2.5. Alignment and configurations of the Super Layers in the CDC [Poe18]. . . . 17
2.6. Overview of the entire L1 trigger system used at Belle II. 19
2.7. Shapes of TS for both the SL0, pyramid shape (a), and the remaining SLs

1-8, hourglass shape (b). 20
2.8. Example for track finding that is using the Hough transform [Hoc18]. A

geometric view of the detector’s space is shown in (a) while the resulting
hough map is shown in (b). The best matching track candidate is found at
the intersection point of all tracks in the hough map. 21

2.9. Plot of the Hough map generated by a simulated 2DS [Hoc18]. The two
expected tracks are found and represented, dark green, by the two high
count intersection points. 22

2.10. Example of the phi parameters that were estimated for detected 2D tracks
during Belle II operation. 23

2.11. Physics trigger signals generated from the ECL. 24
2.12. Schematic of the ECL trigger system’s architecture [66]. 25
2.13. Physics trigger signals generated from the KLM. 26
2.14. Trigger signals generated by the TOP trigger. 26
2.15. System architecture of the TOP trigger system. 27
2.16. System architecture of the Belle II DAQ. 28
2.17. The architecture of the detector’s readout scheme that is based on the uni-

fied interface Belle 2 Link. 29
2.18. Architecture of the Belle 2 Link sender and receiver pairs. Coloured arrows

indicate data (black), timing (gold) or status (white) information. 30

247

List of Figures

2.19. Graphical representation of the Region of Interest approach used for data
reduction at the PXD. At first, particle tracks are estimated solely by using
data from the SVD. These tracks are then extrapolated to the PXD. Regions
are formed around the intersection of the PXD and the extrapolated track
as shown by the red areas. Only the pixel data within these regions is kept
for subsequent processing [96]. 31

2.20. Architecture of the RoI-based data reduction system for the VXD. 32
2.21. Architecture of the slow control used within the ECL trigger, that represents

the reference implementation for all sub-triggers. 35
2.22. Structural description of the slow control setup across all sub-triggers [55].

It shows the present processes colour-coded by their type together with
their hosting computing platforms. 36

2.23. Architecture of SliceM logic resources used at Virtex-6 FPGAs [125]. 38
2.24. Mapping of a logic function into LUTs of FPGAs. 39
2.25. Typical design flow for the development of FPGA designs. 42
2.26. Design flow for FPGA implementation using the Vivado HLS tools [Hoc18]. 45
2.27. General plot showing the relationship between purity and efficiency. 47
2.28. Structure of a single artificial neuron within a MLP. 48
2.29. Representation of the data flow in an image recognition use case that is a

typical application case for CNNs [65]. 50
2.30. Illustration of the processing principle for neurons within a RNN [65]. . . . 51

3.1. System architecture of the trigger system used at the HERA experiment. . . 54
3.2. Design flow of the HLS4ML Framework for inference of neural networks

on FPGAs [26]. 55
3.3. Illustration of the transformation of particle tracks into a related represen-

tation in the r-phi plane [97]. 57
3.4. Portfolio of possible technologies for the realization of algorithms based

on machine learning. They differ in their trade-off between flexibility and
efficiency. 58

3.5. Design flow generating a neural network hardware accelerator based on
FINN [111]. 62

3.6. System architecture of the ACAP. Programmability, flexible custom pro-
cessing and efficient support of ML applications are combined by using
heterogeneous resources [135]. 65

4.1. Overlying architecture template for neural network-based trigger and data
reduction systems. The control flow is indicated by white arrows. 72

4.2. Design flow template that serves as a reference for all derivatives used
across all of the developed machine learning based systems of this thesis. . 75

4.3. Architecture of a module performing MAC operations as they are present
in an artificial neuron. 77

4.4. Architecture of an implementation of MAC operations that is optimized for
high-throughput operation. 79

4.5. Architecture of a MAC realization for low-latency operation. 80

248

List of Figures

4.6. Schedule of a time multiplexed DSP. MAC operations of the different neu-
rons are performed on one DSP unit at different time intervals. Both the
adding and activation function can be interleaved with the processing of
the next neuron. 81

4.7. Architecture of a LUT-based implementation with the described optimiza-
tions. 83

4.8. Schedule for pipelining across neural network layers when using time-
multiplexing of neurons. 85

4.9. Implementation of a two-layer MLP using both DSPs and Slices. In this
case the layers have to operated within different clock domains, for this
additional modules supporting the clock domain crossing are used. 86

5.1. z-Distribution from the Belle experiment showing the recorded background
events represented by the peaks outside of z = 0 [5]. 89

5.2. z-Vertex distribution recorded from an early run during experiment 7 of
Belle II is showing a similar but more pronounced distribution. 90

5.3. Plot of the efficiency for MLPs estimating the z-Vertex. It is shown for dif-
ferent numbers of neurons and hidden layers [92]. 91

5.4. Geometric depiction of the three input signals of the MLP relative to the
wires of the CDC [92]. These inputs are used in the operational systems
developed in this thesis. 92

5.5. Plotted histogram showing latencies of different components of the CDC-
TRG recorded at the GRL [63]. 97

5.6. System architecture for the L1 trigger system based on the CDC. 99
5.7. Schematic representation of the partitioning of the CDC’s space. 100
5.8. Interfaces supplemented by the amount of required GTH lanes for one

NNT board covering one of the CDC’s quadrants. 101
5.9. Active TSs arriving at different points in time at the NNT with (b) and

without a persistor (a). 107
5.10. Architecture persistor at the NNT. 109
5.11. Structure of the persistor’s buffering of TSs together with the notation of

internal pointers used for memory management. Valid entries are indicated
by green expiration, while invalid entries are marked red. The status of the
most important entries is additionally described with text below arrows
pointing to them. 110

5.12. Overall internal architecture of the preprocessing. 113
5.13. Architecture of the preprocessing of 2D tracks with parallel processing of

the SL’s priority position. 113
5.14. Architecture of the module for the calculation of phi_rel. 117
5.15. Architecture of the track segment selection module. 120
5.16. Architecture for scaling the input triples before being processed by the MLP. 122
5.17. Schedule of the base configuration used at the beginning of NNT opera-

tion [Poe18]. 127
5.18. Schedule of the pipelined configuration that achieves the lowest latency [Poe18].127
5.19. Schedule of the pipelined configuration that achieves the lowest resources.

This schedule is used for both UT4_Pipe and UT4_H [Poe18]. 127

249

List of Figures

5.20. Semi-automated design flow used for the generation of NNT firmware. The
sequence of the design flow is indicated with numbered circles. 130

5.21. Different of scopes of monitoring at the NNT together with the responsible
interfaces. 132

5.22. Overview of B2L-based DQM. Boxes shown in green are dependent on the
NNT and its current configuration. In the equivalent system for S3D these
boxes are replaced accordingly. 133

5.23. A waveform showing data signals received via B2L from one board that is
hosting the NNT. The data was recorded during run 05826 in experiment
10. The GTKWAVE tool is used to visualize the waveform. Data belong-
ing together is indicated by the yellow marker, with 2DS data being valid
before NNT data. 136

5.24. Used process for hardware-specific offline verification based on B2L read-
out. As it is not specific to a certain trigger component it can be used for
both the NNT and the S3D. 137

5.25. Architecture of the slow control scheme used for the NNT. Direct access
to the trigger board is performed over the backplane available at the VME
local trigger computer. Two separate data streams are fed into DAQ, with
data related to the Archiver indicated by a grey arrow, while condition vari-
ables are coloured red and summarized with all trigger data. 140

5.26. System architecture for both the merger play (a) and experimental (b) test
setup used for components of the CDCTRG. 144

5.27. Architecture of the reduced NNT that was used for operation in early cos-
mic ray testing. 145

5.28. Photograph of the integrated reduced NNT setup in the E-Hut at the ex-
periment’s facility. 146

5.29. Architecture of the final NNT for operation with beam injection. Included
are the service interfaces for SC and DQM. It represents the culmination of
all previous developments. 148

5.30. Distributions for both z and theta that were read out via B2L from NNT
hardware. Data was taken during cosmic runs as part of experiment 6 [49]. 151

5.31. Distribution of received phi at the NNT during run 1703 of experiment 8.
It represents the accumulation of all four installed FPGA platforms. 152

5.32. Distribution of received TSs at the NNT during run 1703 of experiment 8.
It represents the accumulation of all four installed FPGA platforms. 153

5.33. Distributions of measured latencies for all sub-triggers. They are all plotted
relative to the GRL at which they were measured. The shown latencies were
measured during experiments 7 and 8 [64]. 153

5.34. Distribution of the estimated z-Vertex generated by software emulation of
the NNT using data received from the input data sources during run 1703. . 155

5.35. Distribution of the estimated z-Vertex read out from the hardware during
run 1703. 155

5.36. Distribution of difference between software reference and hardware z-Vertex
estimation that was read out from the NNT hardware during run 1703. . . . 156

5.37. Scatter plot of the z-Vertex showing the relationship between software and
hardware implementation during run 1703 of Belle II operation. 156

250

List of Figures

5.38. Distribution of the difference between estimated z-Vertex read out from
the NNT hardware and the estimations from the reconstruction using data
from for experiment 10 [50]. 157

5.39. Distribution of difference between estimated z-Vertex read out from the
NNT hardware and the software model for experiment 10 [50]. 158

5.40. Plotted distribution between the NNT hardware’s z-Vertex estimation and
the estimation of the reconstruction using the data received during run 1703
of Belle II operation. 160

5.41. Plotted distribution of the NNT hardware’s theta-estimation using the data
received during run 1703 of Belle II operation. 160

5.42. Distribution of the difference between the input variable phi_rel calculated
by the reference software and read out from hardware. The variable is used
as input for the MLP. It was read out from the NNT hardware during run
1703 of Belle II Operation. 161

5.43. Distribution of the difference between hit selection calculated by the refer-
ence software and read out from hardware. It was read out from the NNT
hardware during run 1703 of Belle II Operation. 161

5.44. Distribution of the difference between the input variable alpha calculated
by the reference software and read out from hardware. The variable is used
as input for the MLP. It was read out from the NNT hardware during run
1703 of Belle II Operation. 162

5.45. Distribution of the difference between the input variable drift time calcu-
lated by the reference software and read out from hardware. The variable is
used as input for the MLP. It was read out from the NNT hardware during
run 1703 of Belle II Operation. 162

5.46. System architecture of the local NNT setup for testing and prototyping [Rin18].163

6.1. Block diagram of the S3D describing all required input and output inter-
faces with the number of respective required GTH lanes. Interfaces de-
pending on the integration method are highlighted orange. 172

6.2. Architecture for separate integration into the CDCTRG without replacing
2DS. 175

6.3. Architecture for joint integration into the CDCTRG without replacing 2DS. . 175
6.4. Architecture for separate integration into the CDCTRG replacing 2DS. . . . 176
6.5. Processing architecture of the S3D. Orange boxes are representing the opti-

mal path in terms of most precise track estimation. It is a refinement step,
which can be bypassed at the cost of worse estimations. 176

6.6. Architectural view on the combination of axial and stereo Hough maps.
The axial Hough map is added to each theta-Hough map separately in par-
allel. 177

6.7. Architectural view on the generation of a Hough map. It is performed sep-
arately for axial orientation and each theta. 178

6.8. Architecture of the module responsible for determining the cell that is re-
lated to a currently active TS. 179

6.9. Architecture developed for the calculation of a cell’s accumulated weight
depending on the found TS IDs. 180

6.10. Architecture of the track candidate finding using a partitioned Hough map. 182

251

List of Figures

6.11. Schematic description of the approach used in the unconstrained cluster-
ing [Hoc18]. 184

6.12. Graphical description of the 3D clustering approach employed without us-
ing area-constraints. Weights are written into the separate cells, with dark
green indicating the maximum cell, light green cluster members that are
to be found and red cells are showing cells that are not part of the desired
cluster [Hoc18]. 185

6.13. Illustration of the area-constrained clustering approach. Starting from the
maximum weighted cell, shown in red. Surrounding areas are formed and
checked for active cells as shown in (a). The progression of cluster expan-
sion is indicated by the different colours yellow, green then blue. An exam-
ple for this is shown in two dimensions in (b), in which only the cluster A
is merged with the maximum [Hua19]. 186

6.14. Illustration of the used data samples with blue areas showing active cells
and the maximum cell being highlighted by a star as shown in (a). The area
covered by the constrained clustering is meanwhile shown by an overlap-
ping cube as shown in (b) [Hua19]. 189

6.15. Illustration of the global area-constrained clustering approach, in which
additional assisting clusters are formed outside of the reach as defined by
the maximum weighted cell. The assisting cluster is shown in brown, while
the primary cluster is highlighted red [Hua19]. 189

6.16. Definition of an assisting merge cluster is shown in an example in (a) with
the distance to the maximum cell being set to 5, as defined by the gap.
Patching is meanwhile shown in (b) in which a smaller area is defined at
the boundaries of the Hough map [Hua19]. 191

6.17. Design flow used for generating S3D firmware. 194

7.1. Partitioning of the CDC into segments that are processed by one merger
unit. All wire cells that are processed by one merger are coloured. Pri-
mary priority wire cells are coloured red, while secondary priority is indi-
cated by green cells. Cells coloured in blue are processed by the merger as
well, but has no special positioning information. Neighbouring cells that
are coloured black, are processed by different merger units. Here special
cells, that are part of neighbouring mergers but necessary to detect a TS are
marked in rose. 200

7.2. Internal architecture of the original TSF design. The main component to be
addressed is the TSFinder Logic module. 201

7.3. Internal architecture of the TSF logic, consisting of several TSFm instances
that are responsible to separate each merger unit to be processed and iTSF
instances, which are checking each TS candidate. 202

7.4. Internal architecture of the iTSF module. 203
7.5. Control flow of the TSFsm represented as a state machine [Ung18]. 204
7.6. Control flow and branches within the TSFsm processing [Ung18]. 205
7.7. Example for the suppression of neighbouring active TSs [Ung18]. 205
7.8. State machine graph showing the neighbour suppression [Ung18]. 206
7.9. Overall architecture of the revised TSF using the state machine approach. . 207

252

List of Figures

7.10. Offline testing flow used for the TSFsm in (a) and the graphical interface
used to define special test cased in (b) [Ung18]. 210

7.11. Histogram of found TS using random event generation for both the original
TSF (a) and new TSFsm (b) [Ung18]. 211

7.12. Validation of TSFsm neighbour suppression logic [Ung18]. The blue line
is showing the number of found TS for the original design while green is
representing the TSFsm. 212

7.13. Comparison between the efficiencies for hadronB skim during phase2 us-
ing the old TSF and phase3 using the new TSFsm [58]. 213

8.1. Range of slow pions in the form of SVD layers reached depending on pt [93].216
8.2. Contribution of pions in D* decays [93]. 217
8.3. Distribution of the cluster classification based on the NeuroBayes algo-

rithm [93]. 218
8.4. Efficiency-Rejection of the NeuroBayes algorithm for classification of parti-

cles using PXD data. It is plotted for different momenta, with low momenta
particles having the highest significance for the experiment [93]. 219

8.5. Overall processing architecture used for the OCA. The modules Clustering
and Framing are expected to be provided at the DHH. 221

8.6. Architecture of the calculation of inputs for the OCA using cluster frames. . 222
8.7. Complete FPGA architecture for the NeuroBayes algorithm based on the

zero iteration. 222
8.8. Architecture used for the realization of the CDF within the OCA. 224
8.9. Developed design flow for the generation of OCA firmware. 227
8.10. System architecture of the throughput demonstrator based on the VC709. . 231

A.1. Table of the used B2L-DQM format of the NNT from available since opera-
tion in phase 2. 237

A.2. Histograms of z-Estimations sent by the NNT for each quadrant are shown,
the quadrant is indicated within each plot in the information box. Reason-
able distributions are generated for each quadrant. 239

A.3. Histograms of phi values received at NNT for each quadrant are shown,
the quadrant is indicated within each plot in the information box. All quad-
rants a received correctly. 240

A.4. Comparison of HW and SW implementation of the zero-iteration for dif-
ferent bit widths with the deviation being plotted. Ranges from 3 to 25 bits
are shown in (a) while the range 15 to 25 is shown in more detail in (b).
The later range represents the operating range supported by the DSPs of
the considered FPGA. 241

A.5. Interfaces provided by the new TSFsm. (b) is showing the interface of the
new TSF_m and (a) the interface to the state machine module [Ung18]. . . . 242

A.6. Graphical representation of the system architecture connecting the CDC
with the entry point into the CDCTRG. 243

A.7. Comparison of the total number of found hits with random input genera-
tion using the TSFsm. 244

253

List of Figures

A.8. Signal diagrams showing data from both TSF (a) and TSFsm (b) that were
captured using Chipscope while performing merger play tests. 245

254

List of Tables

2.1. Properties of the PXD. 15
2.2. Properties of all Super Layers of the CDC. 18
2.3. Overview of the data readout properties of all sub-detectors in Belle II. . . . 29
2.4. Development of resource availability in FPGAs across the latest generations. 41
2.5. Most influential tool options for optimizing the physical implementation. . 44

4.1. Listing of the used implementation options for the MLP. 82
4.2. Listing of approaches towards implementing the activation function. 84
4.3. Listing of used optimization strategies for the activation function. 84
4.4. Listing of used implementation options for pipelined operation of the MLP. 85

5.1. Listing and description of the three input values used for each of the SLs [92]. 93
5.2. Comparison of available FPGA platforms for suitability to host the NNT. . 103
5.3. Terminology for data transmission within the CDCTRG. 105
5.4. Possible data transfer configurations for the sTSF. 106
5.5. Required depths of persistor memory for different possible output config-

urations of the TSF. 109
5.6. Figures of merit for frequency and resources of different persistor configu-

rations that can be used during operation for one sTSF. 111
5.7. Figures of merit for using multiple parallel persistors for all of the sTSF. . . 112
5.8. Synthesis results for the calculation of crossing angle alpha. 115
5.9. Synthesis results for calculating the reference IDs that are matching the re-

ceived track. 116
5.10. Synthesis results for the entire preprocessing of 2D track parameters. 117
5.11. Synthesis results for the calculation of phi_rel. 118
5.12. Synthesis results of the event time estimation. 119
5.13. Synthesis results of the hit selection for the UT3. 121
5.14. Synthesis results of the hit selection for the UT4. 121
5.15. Synthesis results for the implementation of the scaling of input variables. . 123
5.16. Synthesis results for the entire preprocessing of the NNT. 124
5.17. Listing of the properties for different investigated architectures used for the

MLP. 126
5.18. Overview of the different available interfaces with their characteristics. . . . 135
5.19. Overview of the register address space accessible via VME that is encom-

passing the registers dedicated to the SC. 141
5.20. Overview and comparison of both available test modes. 143
5.21. Implementation characteristics for the reduced setup of the NNT. 147
5.22. Architecture configuration of the preprocessing for physics operation. . . . 149
5.23. Architecture configuration of the MLP for physics operation. 149

255

List of Tables

5.24. Implementation characteristics for the full setup of the NNT. 150
5.25. Implementation characteristics for the full setup of the NNT based on the

UT4. 164

6.1. Synthesis results for the calculation of one Hough cell’s content. 181
6.2. Synthesis results for the entire 3D Hough map. 181
6.3. Configuration used to generate the synthesis results. 181
6.4. Synthesis results for one quadrant of the 3D Hough map. 183
6.5. Synthesis results for the entire 3D Hough map. 183
6.6. Synthesis results for the unconstrained clustering approach. 186
6.7. Synthesis results of the area-constrained clustering approach for one quad-

rant. 187
6.8. Synthesis results of the area-constrained clustering approach for the entire

Hough map. 187
6.9. Performance results for the area-constrained clustering. 188
6.10. Comparison of the different achieved estimations by the presented area-

constrained clustering and the reference algorithm. The values represent
the Hough map coordinate in as ()phi,pt,theta) 188

6.11. Synthesis results for the global area-constrained clustering approach with
patching for the entire Hough map. 191

6.12. Comparison of the different achieved estimations by the global area-constrained
clustering and the reference algorithm. The values represent the Hough
map coordinate as (phi,pt,theta) . 191

6.13. Implementation results for the track parameter estimation based on the
maximum cell. 192

6.14. Implementation results for the track parameter estimation based on the
area-constrained clustering. 193

6.15. Implementation results for the track parameter estimation based on the
global area-constrained clustering with patching. 193

6.16. Evaluation of resource utilization for the possible FPGAs targeting an inte-
grated solution hosting both S3D and NNT. 196

7.1. Resource consumption of one LR-LUT for all both types of configuration in
terms of required BRAMs. 207

7.2. Synthesis results achieved for all SLs using the newly developed TSFsm logic.209

8.1. Characteristics of pixel clusters that are used for the OCA. 219
8.2. Synthesis results for the complete preprocessing of the OCA. 225
8.3. Synthesis results for the solution algorithm of the OCA. 226
8.4. Implementation results for the complete OCA. 226
8.5. Comparison of characteristics between the demonstration platform and the

DHH that is hosting the OCA. 229

A.1. Configuration of the TSF present in the CDCTRG together with the unique
assignment of each TS and their quadrant. 243

256

Acronyms

ACAP Adaptive Compute Acceleration Platform

ARICH Aerogel Ring Imaging Cherenkov Detector

ASIC Application Specific Integrated Circuit

BPID Barrel Particle Identification Detector

BASF2 Belle Analysis Software Framework 2

BTRGSRV Belle II Trigger Server

BNN Binary Neural Networks

BW bit width

BRAM Block Random Accessible Memory

CDC Central Drift Chamber

CPU Central Processing Unit

CP Charge and Parity

CMS Compact Muon Solenoid

CLB Configurable Logic Block

CNAPS Connected Network of Adapted Processors

CERN European Organization for Nuclear Research

CNN Convolutional Neural Networks

CDF Cumulative distribution function

DAQ Data Aquisition

DHHC Data Handling Controller

DHH Data Handling Hybrid

DHP Data Handling Processor

DQM Data Quality Monitoring

DLA Deep Learning Accelerator

DNN Deep Neural Networks

DSP Digital Signal Processor

257

List of Tables

DMA Direct Memory Access

DDR Double Data Rate

DCD Drain Current Digitizer

ECLTRG Trigger System of the ECL Detector

EDA Electronic Design Automation

E-Hut Electronics Hut

EPID Endcap Particle Identification Detector

ECL Energy and Cluster Detector

ETF Event Time Finder

EPICS The Experimental Physics and Industrial Control System

FPGA Field Programmable Gate Array

FIFO First-In First-Out Memory

FLI Foreign Language Interface

FINN Framework for Fast Scalable Binarized Neural Network Inference

FEE Frontend Electronics

GT Gigabit Transceivers

GDL Global Decision Logic

GRL Global Reconstruction Logic

GPU Graphics Processing Unit

HDL Hardware Description Language

HL Hidden Layer

HLS4ML High-Level Synthesis for Machine Learning

HBM High Bandwidth Memory

KEK High Energy Accelerator Research Organization

HLS High-Level Synthesis

HLT High Level Trigger

S3D Hough-based 3D-Track Finding

HMC Hybrid Memory Cube

TANH Hyperbolic Tangent

ID Identification Number

IO Input/Output

IC Integrated Circuit

ILA Integrated Logic Analyzer

IP Intellectual Property

258

List of Tables

JTAG Joint Test Action Group

KLM Kaon and Muon Detector

KEKB KEK-B-factory

KEKCC KEK Computing Cluster

LHC Large Hadron Collider

LR Left Right information

L Level

L1 First Level

LUT Look Up Table

LVDS Low Voltage Differential Signalling

ADC Analog Digital Converter

ML Machine Learning

MPI Max-Planck Institute

MLP Multi Layer Perceptron

MAC Multiply and Accumulate

NSM Network shared memory

NNT neural z-Vertex Trigger

OCA Online Cluster Analysis

ONSEN ONline SElector Node

OL Output Layer

PCIe Peripheral Component Interconnect express

PC Personal Computer

PXD Pixel Detector

PDF Probability Density Function

QED Quantum Electrodynamics

RAM Random Memory Access

RECBE Readout Electronics for the CDC

RX receiving port

ReLU Rectifier Function

RNN Recurrent Neural Networks

RoI Region of Interest

RTL Register Transfer Level

ReBNet Residual Binarized Neural Network

SVD Silicon Vertex Detector

259

Abbreviations

SBC Single Board Computer

SIMD Single Input Multiple Data

SC Slow Control

SW Software

SRAM Static Random Memory Access

TDC Time to Digital Converter

TOP Time of Propagation Detector

2DS 2D-Track Finder

3DS Conventional 3D-Track Finding

TS Track Segment

TSF Track Segment Finder

sTSF stereo Track Segment Finder

TSFsm Track Segment Finder based on state machines

aTSF axial Track Segment Finder

TX transmitting port

TSIM Trigger Simulation

CDCTRG Trigger system of the Central Drift Chamber

TTC Trigger and Timing Control

UT Universal Trigger Board

VCD Value Change Dump

VME Versa Module Eurocard bus

VXD Vertex Detector

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLIW Very Long Instruction Word

xDNN Xilinx Deep Neural Network Processor

260

Bibliography

[1] ABACO SYSTEM: GE V7865 Datasheet.

[2] ABADI, M. et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. CoRR, abs/1603.04467, 2016.

[3] ABDELFATTAH, M. S., D. HAN, A. BITAR, R. DICECCO, S. O’CONNELL,
N. SHANKER, J. CHU, I. PRINS, J. FENDER, A. C. LING and G. R. CHIU:
DLA: Compiler and FPGA Overlay for Neural Network Inference Acceleration. CoRR,
abs/1807.06434, 2018.

[4] ABE, K. et al.: Observation of Large CP Violation in the Neutral B Meson System. Phys.
Rev. Lett., 87:091802, Aug 2001.

[5] ABE, T. et al.: Belle II Technical Design Report. 2010.

[6] ABREU, P. et al.: Observation of orbitally excited B mesons. Physics Letters B, 345(4):598
– 608, 1995.

[7] ADACHI, I. AND BROWDER, T.E. AND KRIZAN, P. AND TANAKA, S. AND USHI-
RODA, Y.: Detectors for extreme luminosity: Belle II. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, 907:46 – 59, 2018. Advances in Instrumentation and Experimental
Methods (Special Issue in Honour of Cai Siegbahn).

[8] ADAPTIVE SOLUTIONS INC.: CNAPS System Architecture Manual. Beaverton, Ore-
gon, 3.0 ed., 1993.

[9] ADAPTIVE SOLUTIONS INC.: CNAPS VME Board Reference Manua. Beaverton, Ore-
gon, 1.0 ed., 1993.

[10] AJUHA, S., A. CASCADAN, T. COSTA DE PAIVA, S. DAS, R. EUSEBI, V. FINOTTI FER-
REIRA, K. HAHN, Z. HU, S. JINDARIANI, J. KONIGSBERG, T. T. LIU, J. F.
LOW, Y. OKUMURA, J. OLSEN, L. ARRUDA RAMALHO, R. ROSSIN, L. RISTORI,
A. AKIRA SHINODA, N. TRAN, M. TROVATO, K. ULMER, M. VAZ, X. WEN, J.-
Y. WU, Z. XU, H. YIN and S. ZORZETTI: A Full Mesh ATCA-based General Purpose
Data Processing Board (Pulsar II). Techn. Rep. FERMILAB-TM-2650-E, Jun 2017.

[11] ANTCHEVA, I., M. BALLINTIJN, B. BELLENOT, M. BISKUP, R. BRUN, N. BUN-
CIC, P. CANAL, D. CASADEI, O. COUET, V. FINE, L. FRANCO, G. GANIS,
A. GHEATA, D. G. MALINE, M. GOTO, J. IWASZKIEWICZ, A. KRESHUK, D. M. SE-
GURA, R. MAUNDER, L. MONETA, A. NAUMANN, E. OFFERMANN, V. ONUCHIN,
S. PANACEK, F. RADEMAKERS, P. RUSSO and M. TADEL: ROOT - A C++ frame-
work for petabyte data storage, statistical analysis and visualization. Computer Physics
Communications, 180(12):2499 – 2512, 2009. 40 YEARS OF CPC: A celebratory is-
sue focused on quality software for high performance, grid and novel computing

261

Bibliography

architectures.

[12] AUBERT, B. et al.: Observation of CP Violation in the B0 Meson System. Phys. Rev. Lett.,
87:091801, Aug 2001.

[13] AUSHEV, T. et al.: A scintillator based endcap KL and muon detector for the Belle II exper-
iment. Nucl. Instrum. Meth., A789:134–142, 2015.

[14] AYDONAT, U. AND O’CONNELL, S. AND CAPALIJA, D. AND LING, A. AND CHIU,
G.: An OpenCL™Deep Learning Accelerator on Arria 10. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’17,
pp. 55–64, New York, NY, USA, 2017. ACM.

[15] BELLE II COLLABORATION: Super KEKB and Belle II, 2019.

[16] BERNLOCHNER, F. AND DESCHAMPS, B. AND DINGFELDER, J. AND MARINAS, C.
AND WESSEL, C.: Online Data Reduction for the Belle II Experiment using DATCON.
EPJ Web Conf., 150:00014, 2017.

[17] BETZ, V. and J. ROSE: VPR: a new packing, placement and routing tool for FPGA re-
search. In LUK, W., P. Y. K. CHEUNG and M. GLESNER (eds.): Field-Programmable
Logic and Applications, pp. 213–222, Berlin, Heidelberg, 1997. Springer Berlin Heidel-
berg.

[18] BLANCO, R. AND LEYS, R. AND PERIĆ, I.: Integrated readout electronics for Belle II
pixel detector. Journal of Instrumentation, 13(03):C03001–C03001, mar 2018.

[19] CAI, Y.: Design of an asymmetric Super-B Factory. In Proceedings of EPAC 2016, Edin-
burgh Scotland, 2006.

[20] CALAFIURA, P. et al.: TrackML: A High Energy Physics Particle Tracking Challenge. In
Proceedings, 14th International Conference on e-Science: Amsterdam, Netherlands, Octo-
ber 29-November 1, 2018, p. 344, 2018.

[21] CHEON, B.-G. et al.: Electromagnetic calorimeter trigger at Belle. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 494(1):548 – 554, 2002. Proceedings of the 8th Interna-
tional Conference on Instrumentatio n for Colliding Beam Physics.

[22] COURBARIAUX, M. AND BENGIO, Y.: BinaryNet: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

[23] DEAN, J. AND THE GOOGLE BRAIN TEAM: Recent Advances in Ar-
tificial Intelligence and the Implications for Computer System Design.
https://www.hotchips.org/archives/2010s/hc29/, August 2017.

[24] DECALUWE, J.: MyHDL manual, 0.11 ed., May 2019.

[25] DENBY, B. AND GARDA, P.: Fast triggering in high-energy physics experiments using
hardware neural networks. IEEE Transactions on Neural Networks, 14(5):1010 – 1027,
2003.

[26] DUARTE, J. et al.: Fast inference of deep neural networks in FPGAs for particle physics.
JINST, 13(07):P07027, 2018.

[27] EVANS, L. and P. BRYANT: LHC Machine. Journal of Instrumentation, 3(08):S08001,

262

Bibliography

2008.

[28] FEINDT, M.: A Neural Bayesian Estimator for Conditional Probability Densities. ArXiv
Physics e-prints arXiv:physics/0402093, Feb. 2004.

[29] FELDBAUER, F.: Analyse des Zerfalls bei BES-III und Entwicklung der Slow Control fuer
das PANDA-Experiment. PhD thesis, Ruhr-Universitaet Bochum, 2012.

[30] FINKELSTEIN, U. et al.: GTKWave 3.3 Wave Analyzer User’s Guide.
http://gtkwave.sourceforge.net.

[31] FIORINI, M.: The NA62 Gigatracker: Detector properties and pixel read-out architec-
tures. Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment, 624(2):314 – 316, 2010.
New Developments in Radiation Detectors.

[32] GHASEMZADEH, M., M. SAMRAGH and F. KOUSHANFAR: ResBinNet: Residual Bi-
nary Neural Network. CoRR, abs/1711.01243, 2017.

[33] GIORDANO, R., G. TORTONE, S. PERRELLA, V. IZZO and A. ALOISIO: Monitoring
single event upsets in SRAM-based FPGAs at the SuperKEKB interaction point. Journal
of Instrumentation, 12(07):C07039, 2017.

[34] GRINSTEIN, S. et al.: Overview of the ATLAS insertable B-layer (IBL) project. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, 699:61 – 66, 2013. Proceedings of the
8th International Hiroshima Symposium on the Development and Application of
Semiconductor Tracking Detectors.

[35] GUO, K., L. SUI, J. QIU, S. YAO, S. HAN, Y. WANG and H. YANG: From model to
FPGA: Software-hardware co-design for efficient neural network acceleration. pp. 1–27, 08
2016.

[36] HAN, S., J. KANG, H. MAO, Y. HU, X. LI, Y. LI, D. XIE, H. LUO, S. YAO, Y. WANG,
H. YANG and W. J. DALLY: ESE: Efficient Speech Recognition Engine with Compressed
LSTM on FPGA. CoRR, abs/1612.00694, 2016.

[37] HAN, S., H. MAO and W. J. DALLY: Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. arXiv e-prints, p.
arXiv:1510.00149, Oct 2015.

[38] HIGUCHI, T. et al.: Development of a PCI based data acquisition platform for high inten-
sity accelerator experiments. eConf, C0303241:TUGT004, 2003.

[39] HIGUCHI, T., M. NAKAO and E. NAKANO: Radiation tolerance of readout electronics
for Belle II. Journal of Instrumentation, 7(02):C02022, 2012.

[40] HORII, Y.: TOP Detector for Particle Identification at the Belle II Experiment. The Euro-
pean Physical Society Conference on High Energy Physics -EPS-HEP2013, 2013.

[41] IWASAKI, Y.: TSF State Machine idea. KEK, 2017.

[42] JAIN, A. K., S. A. FAHMY and D. L. MASKELL: Efficient Overlay Architecture Based
on DSP Blocks. In Proceedings of the 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines, FCCM ’15, pp. 25–28, Washington,
DC, USA, 2015. IEEE Computer Society.

263

Bibliography

[43] JAMES, T.: Level-1 Track Finding with an All-FPGA System at CMS for the HL-LHC. In
2019 Connecting the Dots and Workshop on Intelligent Trackers (CTD/WIT 2019), 2019.

[44] JDA SOFTWARE GROUP: Blue Yonder Webpage, September 2019.

[45] JEDEC SOLID STATE TECHNOLOGY ASSOCIATION: JESD235B - HIGH BAND-
WIDTH MEMORY (HBM) DRAM.

[46] JIA, Y., E. SHELHAMER, J. DONAHUE, S. KARAYEV, J. LONG, R. B. GIRSHICK,
S. GUADARRAMA and T. DARRELL: Caffe: Convolutional Architecture for Fast Feature
Embedding. CoRR, abs/1408.5093, 2014.

[47] JOHNSON, R. AND STEWART, C.: JTAG 101 : IEEE 1149.x and Software Debug. Intel
Corp., 2009.

[48] KEMMER, J. and G. LUTZ: New detector concepts. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, 253(3):365 – 377, 1987.

[49] KIESLING, C.: The Neural z Trigger Project. Neurotrigger Spring 2019 Project Meet-
ing. "https://confluence.desy.de/display/BI/Trigger+NNT+Meeting+Slides".

[50] KIESLING, C.: Hardware results on recent Exp./Run 10/05825-35-HLT1-f00xxx. Presen-
tation at Weekly Trigger-Meeting, December 2019.

[51] KIM, C. H., B. G. CHEON, S. H. KIM, I. S LEE, H. E CHO, Y. UNNO, Y. J. KIM, J. K.
AHN, E. J. JANG and S. K. CHOI: Development of Slow Control Package for the Belle II
Calorimeter Trigger System. 2018.

[52] KIM, K., J. KIM and E. WON: Status of TSFinder. Presentation at 21st B2GM, 2015.

[53] KIM, K., J. B. KIM and E. WON: Status of TSF Recent Cosmic Result. Presentation at
29th B2GM, 2018.

[54] KIM, S., I. LEE, Y. UNNO and B. CHEON: Status of the Electromagnetic Calorimeter
Trigger system at the Belle II experiment. Journal of Instrumentation, 12(09):C09004,
2017.

[55] KIM, C.: TRG Archiver(+SLC). Presentation at ECLTRG meeting 10th October, Oc-
tober 2018.

[56] KOEHNE, J.: Realization of a second level neural network trigger for the H1 experiment at
HERA. Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment, 389(1):128 – 133, 1997.
New Computing Techniques in Physics Research V.

[57] KOGA, T.: ECL-CDC fastest priority timing. Presentation at trigger weekly meeting,
June 2019.

[58] KOGA, T.: TRG operation status. Presentation at 33rd Belle II General Meeting, June
2019.

[59] KONNO, T.: The Slow Control and Data Quality Monitoring System for the Belle II Ex-
periment. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 62, NO. 3„ JUNE
2015.

[60] KRIZHEVSKY, A., I. SUTSKEVER and G. E. HINTON: ImageNet Classification with

264

Bibliography

Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’12, pp. 1097–1105, USA,
2012. Curran Associates Inc.

[61] LAI, Y. T.: 3D input unsynchronizer study. CDCTRG Meeting September 2017,
September 2017.

[62] LAI, Y. T.: CDCTRG firmware. Presentation at Belle II Trigger and DAQ Workshop
2019, August 2019.

[63] LAI, Y. T.: GRL Status. Presentation at trigger weekly meeting, March 2019.

[64] LAI, Y. T.: Status of GRL and short tracking. Presentation at 33rd B2GM, 2019.

[65] LECUN, Y., Y. BENGIO and G. HINTON: Deep learning. Nature, 521(7553):436–444,
5 2015.

[66] LEE, I. S., S. H. KIM, C. H. KIM, H. E. CHO, Y. J. KIM, J. K. AHN, E. J. JANG, S. K.
CHOI, Y. UNNO and B. G. CHEON: Progress on the Electromagnetic Calorimeter Trigger
Simulation at the Belle II Experiment. 2018.

[67] LEE, S., R. ITOH, T. HIGUCHI, M. NAKAO, S. Y. SUZUKI and E. WON: Belle-II High
Level Trigger at SuperKEKB. Journal of Physics: Conference Series, 396(1):012029,
2012.

[68] LEISERSON, C. E. and J. B. SAXE: Optimizing Synchronous Systems. Journal of VLSI
and Computer Systems, 1983.

[69] LEVIT, D., I. KONOROV and S. PAUL: FPGA based data read-out system of the Belle II
pixel detector. pp. 1–2, 05 2014.

[70] LI, C.: Trigger and Data Acquisition Systems at the Belle II Experiment. Jul 2015.

[71] LIVENTSEV, D.: KLM TRIGGER STATUS AND PLAN. Belle II Trigger/DAQ work-
shop Presentation.

[72] MACCHIARULO, L., X. GAO, K. NISHIMURA and G. VARNER: A probability-
optimized fast timing trigger for the Belle II time of propagation detector. IEEE Nuclear
Science Symposuim & Medical Imaging Conference, 2010.

[73] MENTOR GRAPHICS CORPORATION: HDL Simulation - ModelSim PE, January 2018.

[74] MICRON TECHNOLOGY INC.: Achieve High-Performance Computing in Three Easy
Steps. Techn. Rep., 2017.

[75] M.NAKAO and S. SUZUKI: Network shared memory framework for the Belle data ac-
quisition control system. IEEE Conference on Real-Time Computer Applications in
Nuclear Particle and Plasma Physics. 11th IEEE NPSS Real Time Conference. Con-
ference Record, 1999.

[76] MODEL TECHNOLOGY INCORPORATED: ModelSim Foreign Language Interface Refer-
ence. Model Technology Incorporated, 2002.

[77] MOLL, A.: The Software Framework of the Belle II Experiment. 2011 J. Phys.: Conf. Ser.
331 032024, 2011.

[78] MOON, H., K. KIM and J. KIM: Event Time Finder Status. Presentation at 29th B2GM,

265

Bibliography

2015.

[79] NAKAMURA, K. et al.: Review of Particle Physics. Journal of Physics G: Nuclear and
Particle Physics, 37(7A):075021, 2010.

[80] NAKAO, M.: Timing distribution for the Belle II data acquistion system. Journal of
Instrumentation, 7(01):C01028, 2012.

[81] NAKAO, M., T. HIGUCHI, R. ITOH and S. Y. SUZUKI: Data acquisition system for Belle
II. Journal of Instrumentation, 5(12):C12004, 2010.

[82] NAKAO, M., M. YAMAUCHI, S. SUZUKI, R. ITOH and R. FUJII: Data Acquisition
System for the Belle Experiment. IEEE Transactions on Nuclear Science (Volume: 47 ,
Issue: 2 , Apr 2000), 2000.

[83] NAKAZAWA, H.: GDL Configuration (Trigger I/O Bits) for Phase 2, November 2019.
https://confluence.desy.de/pages/viewpage.action?pageId=89667646.

[84] NICOL, C.: A dataflow processing chip for training deep neural networks. IEEE Hot
Chips 29 Symposium, 2017.

[85] NISHIMURA, K.: The Time-of-propagation counter for Belle II. Nucl. Instrum. Meth.,
A639:177–180, 2011.

[86] NISHIMURA, K., T. BROWDER, H. HOEDLMOSER, B. JACOBSON, J. KENNEDY,
M. ROSEN, L. RUCKMAN, G. VARNER, A. WONG and W. YEN: An imaging time-
of-propagation system for charged particle identification at a super B factory. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, 623(1):297 – 299, 2010. 1st International
Conference on Technology and Instrumentation in Particle Physics.

[87] NORUM, W. E.: Getting started with EPICS on RTEMS.

[88] NURVITADHI, E., D. SHEFFIELD, J. SIM, A. MISHRA, G. VENKATESH and D. MARR:
Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC.
pp. 77–84, 12 2016.

[89] PARK, S., Y. KWON, M. NAKAO, S. UEHARA and T. KONNO: Environmental Moni-
toring for Belle II. 21st IEEE Real Time Conference (RT2018), 2018.

[90] POHL, S.: Data Quality Monitoring. MPI, 2017.
https://confluence.desy.de/display/BI/Trigger+NNT+DQM.

[91] POHL, S.: Neurotrigger algorithm details. MPI, 2017.
https://confluence.desy.de/pages/viewpage.action?pageId=98076080.

[92] POHL, S.: Track Reconstruction at the First Level Trigger of the Belle II Experiment. PhD
thesis, Ludwig-Maximilians-Universitaet Muenchen, 2017.

[93] PULVERMACHER, C.: dE/dx Partile identification and Pixel Detector Data Reduction for
the Belle II Experiment. Master’s thesis, Karlsruhe Institut of Technology, 2012.

[94] PYTHON SOFTWARE FOUNDATION: pickle - Pyhton object derialization, 2018.
https://docs.python.org/3/library/pickle.html.

[95] SANDER, J., M. ESTER, H.-P. KRIEGEL and X. XU: Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and Its Applications. Data Mining and Knowl-

266

Bibliography

edge Discovery, 2(2):169–194, Jun 1998.

[96] SCHNELL, M.: Development of an FPGA-based Data Reduction System for the Belle II
DEPFET Pixel Detector. PhD thesis, Bonn U., 2015.

[97] SCHUH, T.: Entwicklung des CMS-Spurtriggers fuer den Hochluminositaetsbetrieb des
Large Hadron Colliders. Dissertation, Karlsruher Institut fuer Technologie, 2017.

[98] SHENG, T.-A.: 2D Tracker in CDC Trigger. Presentation at Trigger DAQ Workshop,
2016.

[99] SHENG, T.-A.: Development of 2D Tracker Firmware in CDC Trigger System. Presenta-
tion at 24th B2GM, 2016.

[100] SHENG, T.-A.: Output format of the 2D tracker. NTU, 2017.

[101] SHENG, T.-A.: B2VCD, March 2018. https://confluence.desy.de/display/BI/B2VCD.

[102] SHILTSEV, V. D.: High-energy particle colliders: past 20 years, next 20 years, and beyond.
Physics-Uspekhi, 55(10):965–976, oct 2012.

[103] SIMONYAN, K. and A. ZISSERMAN: Very Deep Convolutional Networks for Large-Scale
Image Recognition, 2014.

[104] STOROZHEV, S. and A. DUTHOU: Timing Closure Exploration Tools with SmartXplorer
and PlanAhead Tools. Xilinx Inc., 2009.

[105] SULLIVAN, G.: Verilog::VCD, 05 2018. "https://metacpan.org/release/Verilog-
VCD".

[106] SUN, D., Z. LIU, J. ZHAO and H. XU: Belle2Link: A Global Data Readout and Trans-
mission for Belle II Experiment at KEK. Physics Procedia, 37:1933 – 1939, 2012. Pro-
ceedings of the 2nd International Conference on Technology and Instrumentation
in Particle Physics (TIPP 2011).

[107] SYNPLICITY INC.: Synplify Pro Reference Manual. Synplicity Inc., 2014.

[108] TANIGUCHI, N.: Central Drift Chamber for Belle-II. Journal of Instrumentation,
12(06):C06014, 2017.

[109] TENG, Y.-S., C.-H. WANG, S.-M. LIU, J.-G. SHIU, Y.-T. LAI and C.-S. LIN: The
Status of High-Speed Trigger Multiplexer Module with Aurora Protocol Implemented on
Arria II FPGA for the Belle II Cylindrical Drift Chamber Detector. IEEE Nuclear Science
Symposium and Medical Imaging Conference, 2013.

[110] UCHIDA, T.: Readout Electronics for the Central Drift Chamber of the Belle-II Detector.
EEE Transactions on Nuclear Science (Volume: 62 , Issue: 4 , Aug. 2015), 2015.

[111] UMUROGLU, Y., N. J. FRASER, G. GAMBARDELLA, M. BLOTT, P. H. W. LEONG,
M. JAHRE and K. A. VISSERS: FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference. CoRR, abs/1612.07119, 2016.

[112] USHIRODA, Y., A. MOHAPATRA, H. SAKAMOTO, Y. SAKAI, M. NAKAO, Q. AN
and Y. WANG: Development of the central trigger system for the BELLE detector at the
KEK B-factory. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 438(2):460 – 471,
1999.

267

Bibliography

[113] WANG, J., K. YAN, K. GUO, J. YU, L. SUI, S. YAO, S. HAN and Y. WANG: Real-Time
Pedestrian Detection and Tracking on Customized Hardware. In Proceedings of the 14th
ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia, ESTIMedia’16,
pp. 1–1, New York, NY, USA, 2016. ACM.

[114] WON, E.: A hardware implementation of artificial neural networks using field pro-
grammable gate arrays. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
581(3):816 – 820, 2007.

[115] WON, E., J. B. KIM and B. R. KO: Three-dimensional fast tracker for the central drift
chamber based level-1 trigger system in the Belle II experiment. J. Korean Phys. Soc.,
72(1):33–37, 2018.

[116] WUNSCH, C.: Pixel Detector Cluster Rescue for the Belle II Experiment. Master’s thesis,
Karlsruhe Institut of Technology, 2015.

[117] XILINX INC.: Virtex-5 FPGA RocketIO GTP Transceiver User Guide UG196. Xilinx Inc.,
v2.1 ed., 2009.

[118] XILINX INC.: XST User Guide - UG627. Xilinx Inc., 11.3 ed., 2009.

[119] XILINX INC.: Memory Interface Solutions UG086. Xilinx Inc., v3.6 ed., 2010.

[120] XILINX INC.: LogiCORE IP ChipScope Pro Integrated Logic Analyzer. Xilinx Inc., v1.04a
ed., 2011.

[121] XILINX, INC: PicoBlaze 8-bit Embedded Microcontroller User Guide - UG129, 2011.

[122] XILINX INC.: Virtex-6 FPGA GTH Transceivers User Guide UG371. Xilinx Inc., v2.2
ed., 2011.

[123] XILINX INC.: Virtex-6 FPGA GTX Transceivers User Guide UG366. Xilinx Inc., v2.6
ed., 2011.

[124] XILINX, INC: ISim User Guide - UG660, 14.1 ed., 2012.

[125] XILINX INC.: Virtex-6 FPGA Configurable Logic Block, UG364 v1.2 ed., 2012.

[126] XILINX INC.: Virtex-6 FPGA Memory Resources. Xilinx Inc., v 1.8 ed., 2014.

[127] XILINX INC.: Virtex-6 FPGA Product Table. Xilinx Inc., 2014.

[128] XILINX INC.: UltraScale FPGA Product Tables and Product Selection Guide. Xilinx Inc.,
2016.

[129] XILINX INC.: UltraScale Architecture GTY Transceivers User Guide UG578. Xilinx Inc.,
v1.3 ed., 2017.

[130] XILINX INC.: 7 Series Product Tables and Product Selection Guide, 2018.

[131] XILINX INC.: Accelerating DNNs with Xilinx Alveo Accelerator Cards. White Paper,
October 2018.

[132] XILINX INC.: UltraScale Architecture and Product Data Sheet: Overview. Xilinx Inc.,
DS890 v3.5 ed., August 2018.

[133] XILINX INC.: UltraScale+ FPGA Product Tables and Product Selection Guide. Xilinx
Inc., 2018.

268

Bibliography

[134] XILINX INC.: VC709 Evaluation Board for the Virtex-7 FPGA UG887. Xilinx Inc., 2018.

[135] XILINX INC.: Versal: The First Adaptive Compute Acceleration Platform (ACAP). White
Paper, October 2018.

[136] XILINX INC.: Virtex UltraScale+ product brief . Xilinx Inc., 2018.

[137] ZENG, H., R. CHEN, C. ZHANG and V. PRASANNA: A Framework for Generating High
Throughput CNN Implementations on FPGAs. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA ’18, pp. 117–126,
New York, NY, USA, 2018. ACM.

[]

269

Own Publications

[A+17] ABLYAZIMOV, T. et al.: Challenges in QCD matter physics –The scientific programme
of the Compressed Baryonic Matter experiment at FAIR. The European Physical
Journal A, 53(3):60, Mar 2017.

[A+21a] ABUDINÉN, F. et al.: First search for direct CP-violating asymmetry in B0 → K0π0

decays at Belle II. arXiv preprint arXiv:2104.14871, 4 2021.

[A+21b] ABUDINÉN, F. et al.: Measurements of branching fractions and direct CP-violating
asymmetries in B+ → K+π0 and π+π0 decays using 2019 and 2020 Belle II data. In
arXiv preprint arXiv:2105.04111, 5 2021.

[A+21c] ABUDINÉN, F. et al.: Search for B+ → K+νν̄ decays using an inclusive tagging
method at Belle II. arXiv preprint arXiv:2104.12624, 4 2021.

[A+21d] ABUDINÉN, F. et al.: Study of B→ D(∗)h decays using 62.8 fb−1 of Belle II data. In
55th Rencontres de Moriond on QCD and High Energy Interactions, 4 2021.

[Ada15] ADAM, D. AND TVERDYSHEV, S. AND ROLFES, C. AND SANDMANN, T. AND
BAEHR, S. AND SANDER, O. AND BECKER, J. AND BAUMGARTEN, U.: Two ar-
chitecture approaches for mils systems in mobility domains (automobile, railway and
avionik). In International Workshop on MILS: Architecture and Assurance for Secure
Systems (MILS 2015), 20.01.2015, Amsterdam, 2015.

[Bae15] BAEHR, S. AND SANDER, O. AND HECK, M. AND PULVERMACHER, C. AND
FEINDT, M. AND BECKER, J.: Online-analysis of hits in the belle-ii pixeldetector for
separation of slow pions from background. Journal of Physics: Conference Series,
664(9):092001, 2015.

[Bae16] BAEHR, S. AND SANDER, O. AND HECK, M. AND FEINDT, M. AND BECKER, J.:
A framework for porting the neurobayes machine learning algorithm to fpgas. Journal
of Instrumentation, 11(01):C01058, 2016.

[Bae17] BAEHR, S. AND SKAMBRAKS, S. AND NEUHAUS, S. AND KIESLING, C. AND
BECKER, J.: A neural network on FPGAs for the z-vertex track trigger in Belle II.
Journal of Instrumentation, 12(03):C03065, 2017.

[Bae18a] BAEHR, S. AND KEMPF, F. AND BECKER, J.: Data readout triggering for phase 2
of the belle ii particle detector experiment based on neural networks. In Proceedings
of the 31th IEEE International System-on-Chip Conference (SOCC), Arlington, VA,
September 4-7, 2018, 2018.

[Bae18b] BAEHR, S. AND KEMPF, F. AND BECKER, J: Data reduction and readout trigger-
ing in particle physics experiments using neural networks on fpgas [in press]. In Pro-
ceedings of the 18th International Conference on Nanotechnology (IEEE-NANO 2018),
Cork, IRL, July 23-26, 2018, 2018.

271

Own Publications

[Bae19a] BAEHR, S. AND POEHLER, J. AND UNGER, K. AND HOCHSTUHL, A. AND
BECKER, J. AND SKAMBRAKS, S. AND MCCARNEY, S. AND MEGGENDORFER,
F. AND KIESLING, C.: Low latency neural networks using heterogenous resources on
fpga for the belle ii trigger. In 2019 eConf Proceedings of Connecting the Dots and
Workshop on Intelligent Trackers (CTD/WIT 2019), 2019.

[Bae19b] BAEHR, S. AND UNGER, K. AND BECKER, J. AND SKAMBRAKS, S. AND MCCAR-
NEY, S. AND MEGGENDORFER, F. AND KIESLING, C.: Online estimation of particle
track parameters based on neural networks for the belle ii trigger system. In Electrontic
Conference Proceedings of the Symposium Artificial Intelligence for Science, Industry
and Society, 2019.

[Bap15] BAPP, F. K. AND SANDER, O. AND SANDMANN, T. AND VU DUY, V. AND
BAEHR, S. AND BECKER, J.: Adapting commercial off-the-shelf multicore processors
for safety-related automotive systems using online monitoring. In SAE 2015 World
Congress & Exhibition. SAE International, apr 2015.

[Bel19] BELLE II COLLABORATION AND BAEHR, S. ET AL.: Search for an invisibly de-
caying z′ boson at belle ii in e+e− → µ+µ−(e±µ∓) + missing energy final states.
Physical review letters 124 (14), 141801, 2019.

[Bel20a] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. AND OTHERS:
Measurement of the integrated luminosity of the phase 2 data of the belle II experiment.
Chinese Physics C, 44(2):021001, jan 2020.

[Bel20b] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. AND OTHERS:
Studies of the semileptonic b̄0 → d∗+`− ν̄` and b− → d0`− ν̄` decay processes with
34.6 fb−1 of belle ii data. arXiv:2008.07198, 2020.

[Bel20c] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: A cali-
bration of the Belle II hadronic tag-side reconstruction algorithm with B→ X`ν decays.
arXiv preprint arXiv:2008.06096, 8 2020.

[Bel20d] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: Charm-
less B decay reconstruction in 2019 Belle II data. arXiv preprint arXiv:2005.13559, 5
2020.

[Bel20e] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: Exclu-
sive b0 → π−`+ν` decays with hadronic full event interpretation tagging in 34.6 fb−1

of belle ii data. arXiv:2008.0881, 2020.

[Bel20f] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: First
flavor tagging calibration using 2019 belle ii data. DOI:10.3204/PUBDB-2020-02972,
2020.

[Bel20g] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.:
Measurement of hadronic mass moments 〈mn

x〉 in b → xc`ν decays at belle ii.
arXiv:2009.04493, 2020.

[Bel20h] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: Mea-
surement of the B0 lifetime using fully reconstructed hadronic decays in the 2019 Belle
II dataset. arXiv preprint arXiv:2005.07507, 5 2020.

[Bel20i] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: Mea-

272

Own Publications

surement of the branching fraction B(B̄0 → D∗+`− ν̄`) with early Belle II data. arXiv
preprint arXiv:2004.09066, 4 2020.

[Bel20j] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: Mea-
surements of branching fractions and cp-violating charge asymmetries in charmless b
decays reconstructed in 2019–2020 belle ii data. arXiv:2009.09452, 2020.

[Bel20k] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: Redis-
covery of b → φk(∗) decays and measurement of the longitudinal polarization fraction
fl in b→ φk∗ decays using the summer 2020 belle ii dataset. arXiv:2008.03873, 2020.

[Bel20l] BELLE II COLLABORATION AND ABUDINEN, F. AND BAEHR, S. ET AL.: Search
for axionlike particles produced in e+e− collisions at belle ii. Phys. Rev. Lett.,
125:161806, Oct 2020.

[K+18] KOU, E. et al.: The belle ii physics book. INT-PUB-18-047, 2018.

[Lai18] LAI, Y.-T. AND BAEHR, S. AND CHANG, M. C. AND IWASAKI, Y. AND KIM,
J. B. AND KIM, K. T. AND KIESLING, C. AND LU, P. C. AND LIU, S. M. AND
MOON, H. K. AND MOON, T. J. AND NAKAZAWA, H. AND SHIU, J. G. AND
SHENG, T.-A. AND WANG, C. H. AND WON, E.: Level-1 track trigger with central
drift chamber detector in belle ii experiment. NSS/MIC, 2018.

[Lai20] LAI, Y.-T. AND AOYAMA, M. AND BAEHR, S. AND CHANG, M. C. AND
IWASAKI, Y. AND KIM, J. B. AND KIM, K. T. AND KIESLING, C. AND LU, P.
C. AND LIU, S. M. AND MOON, H. K. AND MOON, T. J. AND NAKAZAWA, H.
AND SHIU, J. G. AND SHENG, T.-A. AND WANG, C. H. AND WON, E.: Develop-
ment of the level-1 track trigger with central drift chamber detector in belle ii experiment
and its performance in superkekb 2019 phase 3 operation. In INSTR20: Instrumenta-
tion for Colliding Beam Physics : JINST, 2020.

[McC19] MCCARNEY, S. AND BAEHR, S. AND KIESLING, C. AND MEGGENDORFER, F.
AND SKAMBRAKS, S. AND VAN TONDER, R.: Optimizing the first level neural net-
work z-trigger for the drift chamber at the belle ii experiment. In 2019 Talk at Connect-
ing the Dots and Workshop on Intelligent Trackers (CTD/WIT 2019), 2019.

[Meg20] MEGGENDORFER, F. AND SKAMBRAKS, S. AND BAEHR, S. AND UNGER, K.
AND BECKER, J. AND KIESLING, C.: Performance of the z trigger under luminos-
ity conditions: First experience. In 2020 Talk at Connecting the Dots and Workshop on
Intelligent Trackers (CTD/WIT 2020), 2020.

[Pfa18] PFAU, J. AND FIGULI, S. P. AND BAEHR, S. AND BECKER, J.: Reconfigurable fpga-
based channelization using polyphase filter banks for quantum computing systems. In
Applied Reconfigurable Computing - Architectures, Tools, and Applications, Proceed-
ings of the 14th International Symposium, ARC 2018, Santorini, Greece, 2nd - 4th
May 2018. Ed.: Nikolaos Voros, volume 10824 of Lecture Notes in Computer Science,
pages 615–626. Springer, Cham, 2018.

[Rei15] REINHARDT, D. AND ADAM, D. AND LUBBERS, E. AND AMARNATH, R. AND
SCHNEIDER, R. AND GANSEL, S. AND SCHNITZER, S. AND HERBER, C. AND
SANDMANN, T. AND MICHEL, H. U. AND KAULE, D. AND OLKUN, D. AND
REHM, M. AND HARNISCH, J. AND RICHTER, A. AND BAEHR, S. AND SANDER,
O. AND BECKER, J. AND BAUMGARTEN, U. AND THEILING, H.: Embedded vir-

273

Own Publications

tualization approaches for ensuring safety and security within e/e automotive systems.
In Embedded World Conference, Nürnberg, February 24 - 26, 2015, 2015.

[San14a] SANDER, O. AND AND SANDMANN, T. AND VU DUY, V. AND BAEHR, S. AND
BAPP, F. K. AND BECKER, J. AND MICHEL, H. U. AND KAULE, D. AND ADAM,
D. AND LUEBBERS, E. AND HAIRBUCHER AND RICHTER, A. AND HERBER, C.
AND HERKERSDORF, A.: Hardware virtualization support for shared resources in
mixed-criticality multicore systems. In 2014 Design, Automation Test in Europe Con-
ference Exhibition (DATE), pages 1–6, March 2014.

[San14b] SANDER, O. AND BAEHR, S. AND LUEBBERS, E. AND SANDMANN, T. AND VU
DUY, V. AND J. BECKER: A flexible interface architecture for reconfigurable coproces-
sors in embedded multicore systems using pcie single-root i/o virtualization. In 2014
International Conference on Field-Programmable Technology (FPT), pages 223–226,
Dec 2014.

[San14c] SANDER, O. AND BAPP, F. K. AND SANDMANN, T. AND VU DUY, V. AND
BAEHR, S. AND J. BECKER: Architectural measures against radiation effects in mul-
ticore soc for safety critical applications. In 2014 IEEE 57th International Midwest
Symposium on Circuits and Systems (MWSCAS), pages 663–666, Aug 2014.

[Ska19] SKAMBRAKS, S. AND BAEHR, S. AND KIESLING, C. AND MCCARNEY, S. AND
MEGGENDORFER, F. AND VAN TONDER, R.: A 3d track finder for the belle ii cdc l1
trigger. Journal Of Physics: Conference Series, 2019.

[Ska20] SKAMBRAKS, S. AND BAEHR, S. AND UNGER, K. AND BECKER, J. AND
MEGGENDORFER, F. AND KIESLING, C.: A machine learning based 3d track trigger
for belle ii. In 2020 Talk at Connecting the Dots and Workshop on Intelligent Trackers
(CTD/WIT 2020), 2020.

[Ung20] UNGER, K. AND BAEHR, S. AND IWASAKI, Y. AND KIM, K. T. AND LAI, Y.-T.
AND BECKER, J.: Realization of a state machine based detection for track segments in
the trigger system of the belle ii experiment. Proceedings of Science, TWEPP2019,
2020.

[Vu 14a] VU DUY, V. AND SANDER, O. AND SANDMANN, S. AND BAEHR, S. AND HEI-
DELBERGER, J. AND BECKER, J.: Enabling partial reconfiguration for coprocessors
in mixed criticality multicore systems using pci express single-root i/o virtualization.
In 2014 International Conference on ReConFigurable Computing and FPGAs (ReCon-
Fig14), pages 1–6, Dec 2014.

[Vu 14b] VU DUY, V. AND SANDMANN, T. AND BAEHR, S. AND SANDER, O. AND
BECKER, J.: Virtualization support for fpga-based coprocessors connected via pci ex-
press to an intel multicore platform. In 2014 IEEE International Parallel Distributed
Processing Symposium Workshops, pages 305–310, May 2014.

[Vu 15] VU DUY, V. AND SANDER, O. AND SANDMANN, T. AND HEIDELBERGER, J.
AND BAEHR, S. AND BECKER, J.: On-demand reconfiguration for coprocessors in
mixed criticality multicore systems. In 7th International Workshop on Dependable
Many-Core Computing (DMCC 2015), Amsterdam, July 20 – July 24, 2015, 2015.

[]

274

Supervised Student Research

[Gao19] GAO, Z.: Flexible parameterization and time persistence for a 3D-Hough Map on FP-
GAs. Bachelor’s Thesis, Karlsruhe Institute of Technology, Institute for Informa-
tion Processing Technologies, 2019.

[Hoc18] HOCHSTUHL, A.: A Hough-based 3D-Track-Finder for the Belle II Particle Collider
Experiment. Master’s Thesis, Karlsruhe Institute of Technology, Institute for In-
formation Processing Technologies, 2018.

[Hua19] HUANG, J.: An Integrated Estimation of 3D-Track Parameter for the Belle II Parti-
cle Accelerator Experiment. Master’s Thesis, Karlsruhe Institute of Technology,
Institute for Information Processing Technologies, 2019.

[Ma19] MA, Y.: Investigation and Implementation of Soft Error Mitigation and Detection for
Belle II Trigger Modules. Bachelorarbeit, Karlsruhe Institute of Technology, Insti-
tute for Information Processing Technologies, 2019.

[Ohn15] OHNEZAT, N.: Development and Evaluation of a flexible architecture for big data appli-
cations for embedded systems. Diploma Thesis, Karlsruhe Institute of Technology,
Institute for Information Processing Technologies, 2015.

[Pfa17] PFAU, J.: Scalable FPGA-based Channelization using Polyphase Filter Banks. Mas-
ter’s Thesis, Karlsruhe Institute of Technology, Institute for Information Process-
ing Technologies, 2017.

[Poe18] POEHLER, J.: Optimierung der neuronalen Netze fuer den z-Vertex Track Trigger in
Phase 3 des Belle II Teilchenexperiments. Master’s Thesis, Karlsruhe Institute of
Technology, Institute for Information Processing Technologies, 2018.

[Reu18] REUTER, T.: Interfacing and Data Quality Management for the z-vertex Trigger of Belle
II. Bachelor’s Thesis, Karlsruhe Institute of Technology, Institute for Information
Processing Technologies, 2018.

[Rin18] RING, J.: Adaptation of the z-Vertex Trigger to VC709 Board and Creation of a Demon-
strator of the Belle II CDC DAQ. Bachelor’s Thesis, Karlsruhe Institute of Technol-
ogy, Institute for Information Processing Technologies, 2018.

[Ste19] STEINHILPER, T.: Entwurf eines Interfaces als integrierte Hochspannungs-CMOS
Schaltung fuer Kfz-Generatorspannungsregler mit programmierbarer Funktion. Mas-
ter’s Thesis, Karlsruhe Institute of Technology, Institute for Information Process-
ing Technologies, 2019.

[Ung18] UNGER, K.: A State Machine based Track Segement Finder for the Belle II Particle
Collider Experiment. Master’s Thesis, Karlsruhe Institute of Technology, Institute
for Information Processing Technologies, 2018.

[Wu16] WU, X.: Exploration and Development of Neural Networks on FPGAs for the Z-Vertex

275

Supervised Student Research

Trigger of Belle II;. Bachelor’s Thesis, Karlsruhe Institute of Technology, Institute
for Information Processing Technologies, 2016.

[Zha18] ZHANG, R.: Evaluation of Binary Neural Networks on FPGAs for Belle 2 Trigger
Systems. Master’s Thesis, Karlsruhe Institute of Technology, Institute for Infor-
mation Processing Technologies, 2018.

276

	Introduction
	Motivation
	Contribution
	Outline

	Fundamentals
	The Belle II Particle Accelerator Experiment
	Overview of the Experiment
	Sub-Detectors for Track Finding

	Belle II Trigger System
	Trigger System for the Central Drift Chamber
	Trigger Systems of Additional Sub-Detectors

	Belle II Data Acquisition System
	Data Reduction for the Vertex Detector
	Signal and Background Events
	Slow Control and Data Quality Monitoring

	Field Programmable Gate Arrays
	Application Domains
	General Architecture
	Design Flow for FPGAs
	Design Space Exploration
	High-Level Synthesis

	Machine Learning and Classification
	Classification
	Approaches based on Supervised Learning

	State of the Art
	Related Trigger Systems based on Track Finding
	Approaches based on Neural Networks

	Alternative Track Trigger Approaches
	Hardware Acceleration for Machine Learning Algorithms
	Realization of Neural Networks on FPGAs as Soft-IP
	Realization of Machine Learning Accelerators as Hard-IP or ASIC

	Summary

	General Requirements and Fundamental Design Templates
	Requirements and Constraints
	Connectivity
	Monitoring
	Accuracy
	Throughput and Latency
	Memory Demand
	Runtime Adaptivity
	Design Time Flexibility
	Summary

	Basic Architecture Template
	Basic Design Flow Template
	Design of Neural Networks for FPGAs
	Realization of Low-Latency and High-Throughput Neurons
	Low-Overhead Realization of the Activation Function
	Pipelining Options for Resource-Efficient Neuron Processing
	Network Architectures based on Heterogeneous Resources for Increase of the Performance
	Summary

	The Neural z-Vertex Track Trigger
	Background Suppression using a Neural z-Vertex Estimation
	Estimation of Efficiency and Network Topology Studies
	Functional Description of the neural z-Vertex Trigger
	Requirements for Trigger Operation

	Realization and Implementation of the neural z-Vertex Trigger
	Integration into the Trigger System
	Selection of a Hosting Hardware Platform
	Interfacing to the Trigger System
	Architecture of the Preprocessing
	Architecture of the Multi Layer Perceptron

	Tools and Monitoring for the Neural z-Vertex trigger
	Semi-Automated Generation of Firmware
	Interfaces and Levels of Monitoring
	Slow Control
	Data Quality Monitoring

	Evaluation, Operation and Validation of the neural z-Vertex Trigger
	Setups for Testing the NNT
	Configurations for Operation in Belle II
	Local Setup for Testing and Demonstration
	Investigation of Alternative Platforms and new Technologies

	Summary

	The Hough-based 3D Track Estimation
	Upgraded Estimation of 3D-Track Parameters
	Functional Description and Processing of the Proposed Approach

	System Requirements
	Realization of the S3D
	Integration into the Trigger System
	FPGA Architecture of the S3D
	Evaluation of the Complete System
	Design Flow

	Configurations for Operation at Belle II
	Summary

	The Track Segment Finder based on State Machine
	Analysis of the Initial Track Segment Finder
	Integration into the Trigger System
	FPGA Architecture of the Original TSF
	TSFm Module

	State Machine Approach
	Functional Description
	Suppression of Neighbouring Active Track Segments
	Architecture of the TSFsm
	Realization of Left/Right Look Up Tables

	Evaluation
	Characterization
	Methodology for Testing
	Validation
	Results from Tests within the CDCTRG

	Summary

	The Online Cluster Analysis
	Online Cluster Analysis for Rescuing Slow Hadrons
	Experimental Context
	Functional Description of the OCA
	Requirements

	Realization of the OCA based on the NeuroBayes Algorithm
	Integration into the DAQ of the PXD
	Architecture of the OCA on FPGA
	Design Flow for the OCA

	NeuroBayes Demonstrator
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Neural z-Vertex Trigger
	Belle2Link Data Quality Management Interface
	Description of the accepted Network Input
	Results of NNT operation during experiment 8

	OCA bit width analysis
	TSFsm
	Data format and Interface
	Configuration of the TSF within the CDCTRG
	Validation of the TSFsm

	Indexes
	Figures
	Tables
	Abbreviations

	Bibliography
	Own Publications
	Supervised Student Research

