
 

 

 

 

 

 

M A S T E R T H E S I S 

 

Neural Network based Pulse Shape Analysis  

with the Belle II Electromagnetic Calorimeter 

 

vorgelegt von 

Stella Katharina Wermuth 

 

 

 

 

 

   Fakultät: Physik 

   Studiengang: Physik Master of Science 

   Matrikelnummer: 7236313 

   Vorgelegt am 13. Juni 2021 

 

   Erstgutachter: Dr. Torben Ferber 

   Zweitgutachter: Prof. Dr. Oliver Gerberding 





Abstract

The Belle II experiment, located at the SuperKEKB e+e− collider in

Japan, uses pulse shape analysis techniques to distinguish electromagneti-

cally and hadronically interacting particles within the CsI(Tl) electromag-

netic calorimeter. The pulse shapes from the particle-dependent scintillation

response are nominally analysed with a multi-template offline fit to mea-

sure the fraction of scintillation emission produced by hadrons. This fitting

method allows for the determination of the total deposited energy, the total

scintillation emission by hadrons, and the time of energy deposit. This the-

sis reports on a new approach to extract the total deposited energy, and the

hadronic component of the scintillation emission from the pulse shapes using

machine learning techniques. For this, a neural network is trained on pulse

shapes produced in crystals from calorimeter clusters from simulated pho-

tons and pions, and is employed as a multivariate regression tool. Inferred on

photons, the neural network outperforms the current fitting method in terms

of crystal energy resolution and hadron intensity resolution. For pions the

neural network shows a similar resolution compared with the current fitting

method. Furthermore the neural network approach improves the discrimi-

nation of electromagnetic and hadronic interactions and is robust towards

fluctuations in photon pile-up from beam backgrounds. Overall the neural

network approach is promising, however additional fine tuning of the com-

position of the training sample could further improve its performance and

robustness.





Zusammenfassung

Das Belle II-Experiment, am SuperKEKB e+e−-Beschleuniger in Japan, ver-

wendet Methoden der Pulsform Analyse, um elektromagnetisch und hadro-

nisch wechselwirkende Teilchen innerhalb des CsI(Tl) elektromagnetischen

Kalorimeters zu unterscheiden. Die Pulsformen der teilchenabhängigen Szin-

tillationsemission werden nominell mit einem Multi-Template-Fit offline ana-

lysiert, um den Anteil der von Hadronen erzeugten Szintillationsemission

zu messen. Diese Fit-Methode erlaubt die Bestimmung der gesamten de-

ponierten Energie, der gesamten Szintillationsemission durch Hadronen und

des Zeitpunkts der Energiedeposition. Diese Arbeit befasst sich mit einen

neuen Ansatz, um die gesamte deponierte Energie und die hadronische Kom-

ponente der Szintillationsemission aus den Pulsformen mit Hilfe von maschi-

nellem Lernen zu rekonstruieren. Dazu wird ein neuronales Netz mit Puls-

formen trainiert, die in Kristallen von Kalorimeterclustern von simulierten

Photonen und Pionen generiert wurden, und als multivariates Regressions-

netz eingesetzt. Für Photonen übertrifft das neuronale Netz die konven-

tionelle Fit-Methode in Bezug auf die Auflösung der deponierten Energie

und der Hadronenintensität. Für Pionen zeigt das neuronale Netz eine

ähnliche Auflösung verglichen mit der konventionellen Fit-Methode. Darüber

hinaus verbessert das neuronale Netz die Klassifizierung von elektromagne-

tischen und hadronischen Wechselwirkungen und ist robust gegenüber Fluk-

tuationen von Photonen-Pile-up, welche aus Strahlhintergründen resultieren.

Insgesamt ist der Ansatz des neuronalen Netzes vielversprechend, jedoch

könnte eine zusätzliche Verfeinerung der Zusammensetzung des Trainingsets

die Auflösung und Robustheit weiter verbessern.
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1 Introduction

The Standard Model of particle physics describes the known elementary par-

ticles and their interactions. Its predictions have been verified by a large

number of experiments but it is known to be incomplete. One of the few

Standard Model predictions in tension with experimental data is that for the

anomalous magnetic moment of the muon. Its measurement is one of the

most precise in physics, yet it deviates by 4.2σ from the Standard Model

prediction, providing a possible hint to physics beyond the Standard Model

[1]. To further investigate this discrepancy the precision of the theory pre-

diction should be improved. For this it is necessary to precisely measure

the e+e− → π+π− cross section, which limits the precision of the Standard

Model prediction. One of the experiments with the goal to precisely mea-

sure the e+e− → π+π− cross section is the Belle II experiment, located at the

SuperKEKB e+e− collider in Japan. The measurement requires good par-

ticle identification techniques in order to discriminate pions and muons for

background-suppression. One method for particle identification at Belle II

is pulse shape analysis using the electromagnetic calorimeter. Thus far the

pulse shape is analysed via a multi-template fit which extracts information

about the underlying interaction and allows one to discriminate electromag-

netic and hadronic interactions. To potentially further improve particle iden-

tification with the Belle II electromagnetic calorimeter a neural network ap-

proach for pulse shape analysis is studied in this work. This thesis describes

a study of how this new approach performs compared with the current multi-

template fit and is structured in the following sections: The physics motiva-

tion is discussed in chapter 2 with focus on the anomalous magnetic moment

of the muon. This is followed by chapter 3, which describes the Belle II exper-

iment emphasising the electromagnetic calorimeter and the multi-template

fit used for pulse shape analysis. The simulation parameters and data se-

lection criteria used to generate pulse shapes for this study are presented in

chapter 4. Chapter 5 explains the architecture of the neural network used.

The results are presented in chapter 6, and an outlook and summary of this

work are given in chapter 7 and chapter 8 respectively.
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2 Physics Motivation

This chapter gives a short introduction to the Standard Model of particle

physics, based on [2]. An important area of research for physics beyond the

Standard Model is the anomalous magnetic moment of the muon, which is

presented in the second part of the chapter. The focus lies on the theory

of the anomaly and what limitation the theorists face in order to improve

the precision of the calculations, as described in [3–6]. This is followed by

a detailed look at one of the ways to improve the precision, which is the

e+e− → ππ cross section measurement [3, 7].

2.1 Standard Model of Particle Physics

The Standard Model of particle physics describes the known fundamental

particles of the universe and their interactions. All particles, which are sum-

marised in Figure 1, can be classed into fermions, which have a half-integer

spin, and bosons with integer spin.

Fermions are the fundamental particles which make up matter. Each

fermion has an anti-particle, which is identical in mass but has opposite

quantum numbers, such as electric charge. Fermions are further grouped into

quarks and leptons. Each of them has three generations with two particles

per generation. The quarks come in six flavour states: the up, down, charm,

strange, top and bottom quark. Experimentally only bound states of quarks,

called hadrons, are observed. Free quarks have never been observed due to

their colour confinement by the strong force. The most common hadrons at

collider experiments are mesons, made of two quarks, and baryons, made of

three quarks. Pions are the lightest mesons, which consist of one up and

one down quark. The charged leptons are electron, muon and tau, which all

carry an electric charge of −1, as well as neutrinos corresponding to each

charged lepton with an electric charge of 0.

Within the Standard Model vector bosons are the force carriers and re-

sponsible for the interactions. The forces described by the Standard Model

are the electromagnetic force, mediated by photons, the weak force, medi-
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ated by W± and Z0 bosons, and the strong force, mediated by eight dif-

ferent gluons. All of these bosons have spin 1. The photon is massless

and couples to electric charge. All fermions except neutrinos interact elec-

tromagnetically. The electromagnetic interaction is described by quantum

electrodynamics (QED). W± and Z0 bosons couple to hypercharge, which

all fermions carry. The electromagnetic and weak interaction can be com-

bined to the electroweak interaction. Gluons couple to colour-charge, carried

by quarks, not by leptons. The strong interaction is described by quantum

chromodynamics (QCD). Additionally there is the Higgs particle with spin

0, which gives mass to the particles, and was discovered in 2012 at the Large

Hadron Collider [8, 9].

In general the Standard Model is able to describe a vast amount of ex-

perimental observations. However, it is known that the Standard Model is

incomplete, since it provides no explanation for phenomena like gravitation

or the matter-antimatter asymmetry, and is not able to describe Dark Matter

or Dark Energy. Furthermore one observes a tension between the Standard

Model prediction and experimental measurement for the quantity g−2, which

is described in detail in chapter 2.2.
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Figure 1: A Summary of the Standard Model of particle physics showing all
particles and their mass, charge and spin, from [10].
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2.2 Anomalous Magnetic Moment of the Muon

Since muons carry a spin ~s and electromagnetic charge e, they have a mag-

netic moment ~Mµ,

~Mµ = gµ
e

2mµ

~s (1)

where mµ is the muon mass and g is the so-called g-factor. This magnetic

moment makes muons precess like dipoles in an external magnetic field. In

classical theory with point-like vertices, one would observe g = 1 however for

relativistic quantum mechanics g = 2 is expected. Furthermore the Standard

Model predicts additional higher order radiative corrections, which lead to a

deviation from g = 2. This anomalous magnetic moment is expressed as

aµ =
g − 2

2
. (2)

Figure 2 shows different corrections to the interaction of a muon with a vir-

tual photon of an external magnetic field. These corrections lead to the

anomaly aµ. Radiative QED corrections have the dominant contributions to

aµ. However, they are also easiest to calculate with high precision and have

the smallest contribution to the uncertainty of the Standard Model predic-

tion. Weak interactions have the smallest contribution to aµ and are also well

known. Contributions due to the strong interaction can be separated into

hadronic vacuum polarisation (HVP) and hadronic light-by-light scattering

(HLbL). HLbL is suppressed compared to HVP. The muon itself does not

feel the strong force but it can emit a photon. In case of hadronic vacuum

polarisation this photon creates a quark-antiquark pair, which then forms a

hadron. The uncertainty on the HVP contribution dominates the uncertainty

of the Standard Model calculation of aµ.
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Figure 2: Processes which lead to the anomaly aµ from left to right:
Schwinger term predicted by QED, weak interaction with the Z and W±

bosons and contribution from QCD hadron vacuum polarisation, Figure from
[6].

Comparing the Standard Model prediction for aµ with an experimental

measurement provides a way to test the Standard Model theory very pre-

cisely. If a significant difference above 5σ between theory and experiment is

found, it is evidence for new physics. The magnetic moment of the muon is

measured by the high-precision g-2 experiment located at Fermilab, while the

Muon g-2 theory initiative works on reducing the uncertainty of the theory

prediction. At the time of writing a discrepancy of 4.2σ is observed between

theory and experiment, as shown in Figure 3. If this discrepancy persists

and the uncertainty of theory and experiment can be reduced, one might

find a 5σ evidence for new physics. This makes this research very interesting

and one of the most promising areas to reveal physics beyond the Standard

Model.

The remainder of this chapter will focus on the limitations for the Stan-

dard Model theory calculations, which are described in [3]. As mentioned

before, the HVP contribution aHV Pµ limits the precision of the Standard

Model calculation. One can see how different energy regions contribute to

the anomaly in the left diagram in Figure 4. The largest contribution with

more than 70% is the region from 0 GeV to 1 GeV with the ρ-meson decaying

to two pions. This two-pion channel also contributes in large parts to the

uncertainty of aHV Pµ , as seen in the right diagram.
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Figure 3: Comparison of the experimental average of the g-2 experiment,
which was first located at the Brookhaven National Laboratory (BNL) and
is now located at Fermi National Accelerator Laboratory (FNAL), and the
latest theory calculation, published by the Muon g-2 theory initiative [3].
One finds a 4.2σ discrepancy. Figure was published in [1].

Figure 4: Shares in % of contribution (a) and the square of the error (b) for
aHV Pµ from different energy regions as well as important meson resonances
within these energy regions, from [4].
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In order to calculate aHV Pµ non-perturbatively, one can use Eucledian

lattice QCD, which needs large-scale computational resources [11]. Alterna-

tively one can use a data-driven approach, which utilises measurements of

cross sections. Since the two-pion channel is the channel with the largest

contribution, the µ+µ− → ππ cross section is especially important. Due to

lepton universality one can extract this at e+e− colliders by measuring the

e+e− → ππ cross section. By improving the precision of the cross section

measurement, one can in turn improve the precision of the aHV Pµ calculation.

Since this is the limiting factor it will lead to an overall improved precision of

the aµ prediction and will make it possible to see if the discrepancy between

theory and experiment holds up with improved precision, which might open

a window for new physics.

2.3 e+e− → ππ Cross Section Measurements

To measure the e+e− → ππ cross section one needs to scan the ππ-invariant-

mass spectrum. For this one can use the scan method, where the centre-of-

mass energy of the collision is directly adjusted to different energies, as done

at CMD-2 [12] and SND [13]. However, this approach requires a good beam

energy resolution and it only allows for discrete data taking with gaps within

the spectrum. Alternatively one can use initial state radiation (ISR) in order

to indirectly adjust the centre-of-mass energy, known as radiative return. In

this case the electron or positron emits a photon before the annihilation. The

ISR leads to a decreased collision energy, making it possible to scan a whole

range of energies with a fixed beam energy. For this method, one selects

events with a ππγ final state. This was done at KLOE [14, 15], at BABAR

[16, 17], and more recently at BESIII [18] and CLEO-c [19].
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Figure 5: Comparison of the aHV Pµ calculation for the two-pion channel for
the range of 0.6 GeV to 0.9 GeV with the input of different experiments [3].

The calculated aHV Pµ at leading order with input from these different ex-

periments is shown in Figure 5. The most precise measurements where done

by KLEO and BABAR, however, these measurements do not agree. This

leads to an unresolved tension and the need for a new and precise measure-

ment of the e+e− → ππ cross section.

One of the most promising experiments to resolve the discrepancy be-

tween the experiments and provide improved precision for the aHV Pµ calcu-

lation is the Belle II experiment, which will be introduced in detail in chap-

ter 3. Belle II also uses radiative return. In Figure 6 data from the first

physics run from early 2018 is shown. One can see the comparison of data

and simulation for the invariant mass spectrum of two charged particles,

where each was assigned the pion mass. In this plot, one challenge of the

e+e− → ππγ cross section measurement is visible, which is the background

from e+e− → µµγ. In order to suppress this background and reduce the
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systematic uncertainty for this measurement good particle identification is

needed to separate muons and pions. One of the detectors which contributes

to the identification of these particles is the electromagnetic calorimeter,

which is presented in chapters 3.2.2 and 3.2.3.

Figure 6: Mass spectrum of two pions observed at Belle II in 2018 compared
with the Monte Carlo simulation of the signal and the main backgrounds
from the µµγ and KKγ processes, [7].
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Figure 7: The Belle II detector [20].

3 Belle II Experiment

The Belle II experiment is located at SuperKEKB e+e− collider in Tsukuba,

Japan. With a collision energy of 10.58 GeV at the Υ(4S) resonance Belle II

is designed as a B-factory, since the Υ(4S) mainly decays into B-meson pairs.

The main goals of Belle II are precision measurements, especially within the

flavour sector, the search for rare processes and searches for physics beyond

the Standard Model, like Dark Matter. This chapter gives a short overview

of the Belle II detector in the first part and the second part focuses on the

interactions, processes and signal reconstruction within the electromagnetic

calorimeter.

3.1 Detector

The Belle II detector is described in detail in [21–23], which this chapter

is based on. Its geometry is cylindrical around the interaction point, as

seen in Figure 7. From the innermost system outward the sub-detectors are

the tracking system, the electromagnetic calorimeter surrounded by a 1.5 T

solenoid and the KL − µ Detector. They are detailed in the following sub

sections.
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Vertex Detector

The vertex detector is located at a radius of 14 mm. It consists of two layers

of pixel detectors followed by four layers of double-sided silicon-strip detec-

tors, known as the silicon vertex detector. This detector system enables the

reconstruction of the vertex by measuring the transverse coordinates of hits

from the tracks of charged particles.

Central Drift Chamber

Spanning radii of 160 mm to 1100 mm the central drift chamber is the main

tracking device. The large volume drift chamber is filled with a gas mixture

of 50% He and 50% C2H6 and small drift cells. Charged particles will ionise

the gas resulting in free electrons. These electrons are accelerated towards

wires at high voltage and create an electron avalanche by further ionising the

gas. From combining these wire signals, the trajectories of charged particles

can be reconstructed. By measuring the curvature of the trajectory within

the magnetic field of the surrounding solenoid the momentum of the particles

can be calculated. Furthermore, the energy loss over distance travelled for

particles with low momentum is used for particle identification.

Particle Identification System

In order to distinguish charged particles, especially kaons and pions, Belle II

uses a particle identification system of two different Cherenkov detectors.

Charged particles radiate Cherenkov photons within detectors and from the

angle of these photons and the refractive index of the material one can re-

construct the velocity of the initial particle. From the velocity and the mo-

mentum of the particle the mass can be calculated and the particle can

be identified. In the barrel a Cherenkov-based time-of-propagation detector

with a fast time resolution provides two-dimensional information about the

Cherenkov ring image. Photo-detectors reconstruct time and position of in-

coming particles. In the forward endcap particle identification is provided by

an additional aerogel ring-imaging Cherenkov detector.
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Electromagnetic Calorimeter

The electromagnetic calorimeter (ECL) with an inner radius of 1250 mm in

the barrel part is made out of 8736 CsI(Tl) scintillator crystals. Photons and

charged particles interact with the detector material and lead to the emission

of scintillation light. This makes it possible to detect photons, measure the

energy of particles and separate electromagnetic and hadronic interactions

due to a different scintillation light response. Each crystal in the barrel has a

trapezoidal geometry with a front face area of 4.5× 4.5 cm2, a rear face area

of 5 × 5 cm2 and a nominal length of 30 cm. Two photodiodes are glued to

the rear face of each crystal. Crystals are also installed in the forward and

backward endcaps and the ECL provides an overall coverage of 90% of the

solid angle.

KL − µ Detector

The KL − µ detector is the outermost detector placed around the supercon-

ducting solenoid. Its sandwich structure is made out of alternating 4.7 cm

thick iron plates and active detector elements. This subdetector detects and

helps to distinguish muons and KL particles. Muons will create a track within

the active elements, while KL particles shower hadronically. Together with

the central drift chamber information both particles can distinguished. The

iron plates additionally function as a magnetic flux return for the solenoid.

In order to cope with high background hit rates the innermost layer and both

endcaps use scintillator strips for the active elements. The outer layers use

glass-electrode resistive plate chambers as active material.
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3.2 Electromagnetic Calorimeter

This chapter explains the processes within the ECL in more detail. The first

part focuses on the mechanisms by which particles interact with the detector

material and deposit energy within. This energy deposition is converted into

an electrical signal from the scintillation light, as described in the second part.

The last part of this chapter explains the signal chain and reconstruction of

the recorded signals.

3.2.1 Particle Interactions in the Calorimeter

At Belle II, the most important ways particles deposit energy within the ECL

are ionisation, electromagnetic showers, and hadronic showers. All of these

processes are described in great detail in the literature. This chapter is based

on [24].

Ionisation

When charged particles enter a material they lose energy through ionisation.

The particles transfer energy to the atoms of the detector material, which

then eject electrons. The mean energy loss of the initial particle per unit

length is described by the Bethe-Bloch equation, which depends on charac-

teristics of the particle and the material. The energy loss versus particle

momentum, according to the Bethe-Bloch equation for CsI(Tl), is shown in

Figure 8. Heavier particles, like protons, lose more energy on a given path

length due to ionisation than lighter particles, like muons. Particles, which

are minimal ionising, will deposit roughly 200 MeV in the 30 cm long crystal

and will travel further into the KL− µ detector. Additionally lower momen-

tum and higher charge leads to higher dE/dx. This makes α particles highly

ionising.
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Figure 8: Mean energy loss per unit length, calculated with the Bethe-Bloch
equation with the material properties of CsI(Tl), from [25].

Electromagnetic Shower

Electrons lose energy mainly by bremsstrahlung, due to their small mass.

In this case, an electron emits a photon in the Coulomb field of a nucleus.

Photons deposit energy by pair production, Compton scattering or the pho-

toelectric effect, depending on the energy of the photon. For the energies at

Belle II pair production is the most relevant. In this case the photon inter-

acts with a nucleus and creates an electron-positron pair. The electron and

positron can then again undergo bremsstrahlung. This repetition of photon

emission and pair production leads to a cascade of electrons, positrons and

photons, which is known as an electromagnetic shower. Such a shower is vi-

sualised in Figure 9. An important quantity of the material is the radiation

length X0, which describes the mean distance in the material over which an

electron loses 1/e of its energy as well as the mean free path of pair pro-

duction. X0 depends on characteristics of the material and is 1.65 cm for

CsI(Tl). The shower ends, if the energy of the photons is below 1.02 MeV

and they are not able to undergo further pair production, and if the energy

of the electrons is below a material dependent critical energy threshold Ec.



3 BELLE II EXPERIMENT 20

Figure 9: Sketch of an electromagnetic shower with an initial electron with
an energy E0, from [24].

Hadronic Shower

Hadronic showers are more complex than electromagnetic showers, since a

large number of different processes happen simultaneously, as visualised in

Figure 10. An incoming hadron interacts strongly with the protons and

neutrons of the detector material. In this internuclear interaction secondary

particles are produced and the nucleus can be excited. The most common sec-

ondary particles are pions, kaons, neutrons and protons. Charged secondary

particles, like π±, will ionise the detector material and can themselves inter-

act with other nuclei, leading to a hadronic cascade. Due to elastic collisions

with nuclei, those particles can also change their direction. Neutral secondary

particles, like neutrons, propagate without ionising the material and can in-

teract far from the original cluster, leading to so-called hadronic split-offs.

Short-lived neutral hadrons, like K0
S, will only travel for a short time until

they decay into charged particles, which further interact with the detector.

Moreover, a π0 will decay immediately into two photons, which start an elec-

tromagnetic shower. In addition, when the nuclei de-excite, they can either

undergo evaporation or fission. In case of nuclear evaporation low energy

hadrons are emitted, which are highly ionising due to their low momentum.
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For fission, the unstable nucleus will emit multiple neutrons and will break

apart. Furthermore, there is also an invisible component within the shower,

from energy which is absorbed to break up nuclei and from particles which

escape without interaction.

Figure 10: Sketch of a hadronic shower, from [24]
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3.2.2 Scintillation Emission in CsI(Tl)

The deposited energy stimulates the CsI(Tl) crystals of the ECL detector

to emit scintillation light, as described in [24]. If energy is deposited and

absorbed within the crystal, an electron is excited from the valence band to

the conduction band, leaving a positively charged hole in the valence band.

The electron de-excites after a characteristic time scale by emitting a photon.

In order to prevent reabsorption of this photon one uses doped materials, in

case of Belle II the crystals are doped with thallium.

The light is converted into an electrical signal by photomultiplier tubes at

the end of the crystal. Due to the photoelectric effect, electrons are ejected if

the photo-cathode absorbs light. These electrons are accelerated by an elec-

tric field and focused onto an electron multiplier. This way a small number

of electrons is amplified into a current, which can be measured. This current

is proportional to the light intensity of the scintillation light and therefore to

the energy deposition inside the crystal.

The scintillation response of CsI(Tl) is empirically known to depend on

the interaction type underlying the energy deposition [26, 27]. The time

structure of the scintillation light output can be modelled by a sum of ex-

ponential functions with different decay times due to different scintillation

components. Highly-ionising particles have an additional fast scintillation

component compared to particles with low dE/dx. Due to this, the shape of

the scintillation signal depends on the nature of the energy deposition. This

makes it possible to discriminate between electromagnetic and hadronic in-

teractions based on the corresponding pulse shapes [26]. Furthermore, it

makes it possible to distinguish between hadrons with different dE/dx, like

protons and α-particles [27].

3.2.3 Reconstruction

In the next step, the signal of the scintillation light is processed in order to

reconstruct the deposited energy within each crystal. This is described in

detail in [25, 28] and summarised in the following.
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Signal Chain

The signal chain is described in [29]. Two photodiodes per crystal convert

the scintillation light into electrical signals which are amplified by a pre-

amplifier circuit. The sum of the signals from both diodes are further shaped

by a shaping amplifier, called a “ShaperDSP”. This signal is digitised by

Analog-to-Digital converters (ADC) at a sampling rate of 1.76 MHz with 31

consecutive samples being read out per event. Two examples for simulated

pulse shapes, which are already shaped by the signal chain, are shown in

Figure 11. It can be seen that the pulse shapes differ due to the different

interactions of the corresponding simulated particles. The pion pulse has

a faster rise and fall time and has an undershoot, while the photon pulse

shape falls more slowly. Furthermore one can observe that the amplitude of

the pion pulse shape is larger, even though both particles deposit the same

energy in the crystal.
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Figure 11: Pulse shapes from a simulated photon and a simulated pion. Both
particles deposit an energy of 0.153 GeV in the crystal.
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FPGA Fit

The digitised pulse shapes are fitted at the time of data acquisition with a

single template in a Field Programmable Gate Array (FPGA). The template

is calibrated to model the full signal chain of an energy deposit from a pho-

ton, called the photon template. The fit reconstructs the energy deposited

within the crystal Ecrystal
FPGA and the time of the deposition. Since the signal

chain was designed before pulse shape discrimination was studied in detail at

Belle II, the firmware is not optimised for pulse shape discrimination. How-

ever, all digitised pulse shapes with Ecrystal
FPGA > 50 MeV are saved offline. The

energy cut is necessary due to bandwidth limitations.

Offline multi-template fit

Offline, a multi-template fit is performed with two templates for crystals for

which pulse shapes were recorded. One template is the photon template al-

ready used in the FPGA, the other template, called a hadron template, mod-

els the response of the signal chain for purely hadronic interactions. These

templates need to be calibrated for each crystal individually, which requires

the optimisation of 11 parameters, due to variations from crystal to crystal.

With the fitted total deposited energy within the crystal Ecrystal
Multi−template, the

hadron component of the deposited energy Ehadron
Multi−template and timing infor-

mation are reconstructed. Finally, the hadron intensity is calculated, which

is the fraction of the scintillation emission emitted by hadronic interactions

relative to the total scintillation emission

Hadron Intensity =
Ehadron

Multi−template

Ecrystal
Multi−template

. (3)

In an ideal case of a photon-like pulse shape, the hadron intensity is zero

and in case of highly ionising particles the hadron intensity is greater than

zero. In Figure 12, two examples of pulse shapes and their corresponding

multi-template fits are shown.
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Figure 12: Typical pulse shapes from Belle II fitted with a photon and hadron
template. The left side shows a pulse shape, typical for electromagnetic
showers, with a hadron intensity close to zero. The right side shows an
example for a pulse shape from a hadronic shower, with a higher hadron
intensity, from [28]

Fittype

Additionally the multi-template fit assigns a fittype to each pulse shape.

The fittype can be 0, 1, 2 or -1 and describes the quality of the pulse shape.

Examples for each fittype, are visualised in Figure 13. For a fit with χ2 < 60,

the pulse shape is assigned a fittype of 0. In the case χ2 ≥ 60 the fit is

performed again with an additional photon template with a time-offset to

account for a pile-up photon, which causes a second peak in the baseline of

the pulse. If the second fit fulfils χ2 < 60, the pulse shape is assigned a

fittype of 1. However, if the χ2 still exceeds the limit, the pulse shape is fit

using a photon template and a diode-crossing template, which models when

a photon deposits energy directly in the diodes at the end of the crystals.

If this fit passes χ2 < 60, the pulse shape is assigned a fittype of 2 and the

hadron intensity of the pulse shapes is set to 0. When the χ2 requirement fails

again, fittype -1 is assigned and for this pulse shape no reliable prediction of

Ecrystal
Multi−template and Ehadron

Multi−template is made. Currently, around 30% of all pulse

shapes have a fittype of -1 and can not be used for pulse shape discrimination.

However, it is expected that, with more luminosity this fraction will increase

due to higher background levels.
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Figure 13: Simulated photon pulse shapes as examples for the four different
fittypes.

Even though pulse shape discrimination works well at Belle II, it is worth

investigating how to improve the pulse shape analysis. Current downsides of

the multi-template fit are: the calibration, which is computationally expen-

sive and needs to be done for every crystal separately, as well as pulse shapes

with high noise where the fit fails, which is becoming more and more relevant.

This thesis studies an alternative method using a neural network approach,

since neural networks have the additional potential to be implemented on

an FPGA for real time pulse shape discrimination. For this, various pulse

shape samples are needed for training and testing procedures. How these

pulse shape samples are created is the topic of the following chapter.
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4 Simulated and Experimental Data Sets

Various types of pulse shapes are used to investigate improvements to the

Belle II pulse shape discrimination technique. In particular pulse shapes as-

sociated with electromagnetic and hadronic interactions are needed. This

study focuses on pulse shapes from photons as examples of electromagnetic

interactions and pulse shapes from charged pions as examples of hadronic

interactions. The neural network based pulse shape analysis technique em-

ployed in this work is based on supervised learning and requires labelled data

with associated reference quantities. In order to generate labelled training

sets, simulated events are used. This enables comparisons to the true energy

Ecrystal
Truth and the true hadron intensity. The performance of the pulse shape

analysis method can also be studied using simulation and to some degree

also on data. This chapter gives an overview of the event simulation and

the experimental data sets used. The first part of the chapter focuses on the

simulation methods and settings as well as the data description. The second

part presents the selection criteria, which are applied to select samples of

photons and charged pions.

4.1 Event Simulation

The interaction of particles with the Belle II detector is simulated with GEANT4

[30]. GEANT4 simulates the event topology and the interaction of particles

in the detector as well as the resulting detector response. Since GEANT4

does not simulate the dE/dx dependent scintillation light response of CsI(Tl)

by default, it is added to the simulation as described in [28, 31]. In order to

add detector noise to the pulse shapes the simulation includes run dependent

beam induced background overlays. These overlays are taken from randomly

triggered data events. Sources for beam induced background are described in

detail in [32]. The Monte Carlo truth matching algorithm is run on all simu-

lation samples. This associates the reconstruction level objects, for example

tracks and clusters, with the underlying generated particles.
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4.1.1 Single-Particle Simulation

The Belle II Particle Gun event generator simulates events with only a single

propagating particle [33]. This way one can simulate its interactions with the

detector as well as the detector response. This study used the prerelease-05-

00-00b of the Belle II software [34]. A set of 1000000 photon events and a set

of 1000000 charged pion events were generated. For both sets the following

simulation settings were applied:

• Momentum generated uniformly in the range of 0.05 GeV/c− 6 GeV/c

• Polar angle θ generated uniformly in the range of 30°− 125°

• Azimuthal angle φ generated uniformly in the range of 0°− 360°

• Beam induced background overlay from experiment 12 run 3363, 3402,

4074 or 5649

• Option to add random time shift, which is uniformly distributed in the

range of ±2000 ns

At the time the pulse shape is recorded by the FPGA, the full reconstruction

of the interaction time t0 is not completed, which can lead to a shift of the

pulse shape, as shown in Figure 14. The random time shift accounts for this

pulse shape shifting.
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Figure 14: Example of shifted pulse shapes. Both pulse shapes are from
different simulated photon events each with fittype 0 and Ecrystal

Truth = 3.23 GeV.
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4.1.2 Full-Event Simulation

In addition to single particle simulations, realistic physics events were simu-

lated with the Belle II software release 04-02-09. Samples of generic modes

(B0B0, B+B−, uu, dd, ss, cc and τ+τ−) and e+e− → µ+µ−γ were gener-

ated using background overlays from experiment 10 data. The simulation is

equivalent to an integrated luminosity of 10 fb−1.

4.2 Data

The data used was taken in 2019 in experiment 10. All good runs were

used covering run number 3129 to 5902, which corresponds to an integrated

luminosity of 3.741 fb−1. These runs were reprocessed to reconstruct the

pulse shapes using the same release as for the simulations (release 04-02-09

of the Belle II software).

4.3 Selection

Two kinds of processes are studied in data and full-event simulation:

e+e− → µ+µ−γ. (4)

as a sample of photons and

D∗+ → π+D0 [→ π−K+] (5)

as a sample of charged pions. These two processes are selected by applying

the following criteria.

4.3.1 Single-Photon and Single-Pion Selection

For the single-particle simulation of photons and pions the same selection

criteria were applied:

• Ecrystal
Truth > 50 MeV

• Crystal within the barrel: ECL Cell ID: 860 to 8022
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In total 800000 pulse shapes were selected to study the neural network ap-

proach, of which 400000 photon and 400000 pion pulse shapes. A time shift

was applied to half of all pulse shapes, while the rest have no time shift.

The distributions of crystal energy and hadron intensity of this pulse shape

selection as well as the fraction of fittypes is shown in Figure 15 and Figure

16.
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Figure 15: Distribution of the Ecrystal
Truth (a) and the true hadron intensity (b)

sampled by photon and pion pulse shapes.
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Figure 16: Fraction of fittypes versus the Ecrystal
Truth (a) and versus the true

hadron intensity (b).
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4.3.2 e+e− → µ+µ−γ Selection

As a sample for electromagnetic interactions, radiative muon events were

selected from data and full-event simulation. Two tracks with muon mass

hypothesis and a trackless energy deposition within the calorimeter were

reconstructed. The following criteria were applied for the event selection:

• Minimal reconstructed cluster energy: Ecluster > 1 GeV

• Cluster within the angular acceptance of the barrel: 32.2° < θcluster <

128.7°

• Total invariant mass of µµγ: Mvirtual photon > 9 GeV/c2

• Both tracks have a muon identification probability: Muon ID > 0.1

• Tracks originate from interaction point: transverse distance of vertex

to interaction point |dr| < 2 cm and longitudinal distance of vertex to

interaction point |dz| < 5 cm

• Both muon momenta: pµ > 1 GeV/c

The pulse shapes from those remaining events need to further satisfy:

• Ecrystal
FPGA > 50 MeV

• Crystal within the barrel: ECL Cell ID: 860 to 8022

• Multi-template fit did not fail (Ecrystal
Multi−template 6= −1 GeV)

This selection results for simulation in about 600000 photon pulse shapes

and for data in roughly 300000 photon pulse shapes.

Backgrounds of the selection were not studied. The largest contribution

is expected to be from muons, which also interact electromagnetically. Thus

the sample remains largely uncontaminated from hadronic contributions to

the pulse shapes.
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4.3.3 D∗+ → π+D0[→ π−K+] Selection

In order to have charged hadron pulse shapes a D∗ selection was performed on

full-event simulation and on data, inspired by [35]. A D0 was reconstructed

with two opposite charged particles with kaon and pion mass hypothesis.

The D0 was combined with a pion of the opposite charge to the other pion

to reconstruct a D∗ meson. The following criteria needed to be fulfilled by

the event:

• Tracks originate from interaction point: transverse distance of vertex

to interaction point |dr| < 2 cm and longitudinal distance of vertex to

interaction point |dz| < 4 cm

• D0 → K−π+ with a reconstructed D0 mass:

1.8 GeV/c2 < MD0 < 1.95 GeV/c2

• D∗ momentum in the centre-of-mass frame: p∗D∗ > 2.5 GeV/c

• Difference of the reconstructed D∗ mass and reconstructed D0 mass:

0.1438 GeV/c2 < MD∗ −MD0 < 0.1468 GeV/c2

The pulse shapes from those remaining events need to further satisfy:

• Ecrystal
FPGA > 50 MeV

• Crystal within the barrel: ECL Cell ID: 860 to 8022

• Multi-template fit did not fail (Ecrystal
Multi−template 6= −1 GeV)

This results for simulation in about 20000 charged pion pulse shapes and for

data in about 10000 charged pion pulse shapes.

Backgrounds of the selection were not studied. The largest contribution

is expected to be from kaons, which also have a hadronic component.
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5 Artificial Neural Networks

Artificial neural networks are a multivariate method of information process-

ing. They are found in increasingly many areas of data analysis and often

show improved performance compared with conventional methods. In this

work, neural networks are evaluated as an analysis tool for the ECL crystal

pulse shapes. The first part of this chapter gives a short introduction to

the relevant fundamental concepts of neural networks based on [36–40]. The

second part focuses on the specific neural network architecture used for this

study.

5.1 Machine Learning and Neural Networks

Neural networks are models for information processing, consisting of a set

of neurons with weighted connections between them. These weights are ad-

justed to a specific task using a (machine) learning algorithm. The architec-

ture of a network describes how the neurons are organised into layers and

how they are connected. This thesis focuses on fully-connected feed-forward

neural networks. These networks process information in only one direction,

from the input layer to the output layer, and every single neuron is fully

connected to the neurons from the adjacent layers.

A simple example of a fully connected network is sketched in Figure 17.

The first layer of the network is the input layer, where data enters the net-

work. This is followed by a series of hidden layers. These neurons receive a

number of inputs coming from the previous layer. Figure 18 visualises, how

the input is processed in a single neuron. Each input xi is multiplied with

a weight wi, the weighted inputs are summed and a bias Θ is subtracted.

The resulting value y is passed through an activation function f . This way

the output f(y) of one hidden layer becomes the input of the next hidden

layer. The last layer is the output layer, which processes the outputs of the

previous hidden layers and returns the networks response.
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Figure 17: Schematic drawing of a fully-connected feed-forward network,
modified from [41].
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Figure 18: Sketch of how a single neuron processes N inputs to a single
output f(y), modified from [42].
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During an iterative learning process, called training, the weights and bi-

ases are adjusted. There are different methods for learning and the following

discussion focuses only on supervised learning. During supervised training

the network is presented with a set of training inputs and desired outputs,

called targets. A loss function evaluates the difference of targets and the

corresponding responses of the network. The goal of the training is to min-

imise the loss by adjusting the weights and biases. This is done by a back-

propagation algorithm, which calculates the gradient of the loss in respect to

the weights and biases. Those parameters are optimised for the next training

cycle in the direction of minimal loss. The step size of this is defined by the

so-called learning rate. Networks tend to perform better when the learning

rate is reduced over the training cycles, since the slope of the loss function

usually decreases closer to the minimum of the loss. In order to reduce com-

putational memory usage during this training process, the training set is split

into batches. One full cycle, where the network saw all training inputs once,

is called an epoch. The number of epochs is not directly limited, however,

training can become computationally expensive and a network might run

into overtraining, if the number of epochs is too large.

5.2 Neural Network Architecture of this Work

The goal for a neural network based pulse shape analysis is to feed a pulse

shape to a regression network, which returns relevant quantities, or to a clas-

sifier network, which separates pulse shapes into different classes. Several

research groups have demonstrated that neural networks can be applied to

pulse shape analysis [41–45]. The applications and architectures differ, since

some groups use this approach to reconstruct quantities like pulse height or

rise time [43, 44], while others use it to classify pulse shapes for background

rejection [41, 42, 45]. However, all groups found a similar or improved per-

formance compared with analytical methods and faster computation.

For the application described in this thesis, the goal was to reconstruct

the crystal energy and hadron intensity for each pulse shape. The task was
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Figure 19: Sketch of the architecture for the energy network and hadron
intensity network.

split between two regression networks, in order to adjust the weights for each

quantity individually. One network returns the crystal energy, referred to

as the energy network, and the other network returns the hadron intensity,

referred to as the hadron intensity network. Instead of a regression network,

one could set up the hadron intensity network as classifier, which is trained to

separate pulse shapes from electromagnetic and hadronic interactions. How-

ever, a regression network gives the option to not only differentiate between

electromagnetic and hadronic interactions but also between particles with

different dE/dx, for example protons and α particles.

This study used the open-source machine learning framework PyTorch [46].

During the study a range of architectures was tested. This included varia-

tions in the number of layers and neurons, as well as different initial learning

rates and activation functions. A good performance was observed, when both

networks have the following architecture: the input layer has 31 neurons, two

hidden layers, which have 512 and 128 neurons respectively, and the output

layer has one neuron. This architecture is sketched in Figure 19. This leads

to 82177 free parameters for each network. All hidden layers use a rectified
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Figure 20: Loss of the energy network (a) and the hadron intensity network
(b). Training pulse shapes refer to pulse shapes used for training, while
testing pulse shapes are unknown for the networks.

linear unit activation function [47]. As loss function both networks use the

mean square error [48] and an adaptive moment estimation optimiser [49, 50].

The energy network has an initial learning rate of 0.0001 and the hadron net-

work has an initial learning rate of 0.001. In both cases the learning rate is

reduced by 4% in every 50th epoch. Since neural networks tend to perform

better if the input and target values are between 0 and 1, all pulse shapes

were scaled by 1
218

, since 218 corresponds to the maximal possible ADC count.

The target for the energy network is converted from energy in GeV to ADC

counts and scaled in the same way as the pulse shapes. The hadron intensity

targets were not scaled since they are, by definition, between 0 and 1. The

networks were trained with 720000 pulse shapes from simulated photons and

pions in batches of 2000. The simulation and selection of those pulse shapes

is described in detail in chapter 4. Both networks were trained for 10000

epochs on a CPU, which takes around 60 hours. The loss for both networks

is shown in Figure 20, which stagnates after approximately 7000 epochs.

A comprehensive optimisation of the hyper-parameters and the architecture

needs to be done in a succeeding work.
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6 Neural Network Performance

This chapter summarises the performance of the neural networks, introduced

in chapter 5.2, inferred on the data sets, introduced in chapter 4. The first

section describes the performance when inferred on single-particle simulation

of photons and pions and compares it with the default methods of the FPGA

and the multi-template fit. The performance is evaluated in terms of energy

resolution, hadron intensity resolution, and separation power. The second

section focuses on the robustness of the neural network when time shifts

and unknown beam backgrounds are introduced. The third section describes

how the neural network prediction for the crystal energy affects the cluster-

energy resolution. The fourth section shows the neural network output when

inferred on simulated single-proton events. The final chapter presents the

performance of the neural networks inferred on full-event simulation and

data.

6.1 Performance with Single-Particle Simulation

In this chapter the performance of the neural network is evaluated when

inferred on single-particle simulation of photons and pions. The figures of

merit are the crystal energy resolution, the hadron intensity resolution, and

the separation power. The network outputs are compared with the FPGA

and multi-template fit prediction. The comparison is performed separately

for photons and pions and different fittype categories respectively.

6.1.1 Crystal Energy Prediction

A first step to study the performance of the neural networks is to compare the

network response with the Monte Carlo truth value, as visualised in Figure 21

for photons and pions. For both particle types the neural network response

is overall linear with respect to Ecrystal
Truth , whereas pions appear occasionally

as outliers. The input pulse shapes are already subjected to time shifts and

represent all fittypes, this therefore shows a high degree of robustness in the

response.
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Figure 21: Linearity of the energy prediction from the neural network com-
pared with the true crystal energy for photons (a) and charged pions (b).
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The same comparison is done for the response of the multi-template fit in

Figure 22 and in Figure 23, where for Figure 23 pulse shapes with fittype -1

are excluded. These plots show that the multi-template fit does not perform

well for pulse shapes with fittype -1. For this reason the multi-template fit

is only applied to pulse shapes with fittype 6= -1 in the following.

Figure 24 shows the comparison of the FPGA response to the Monte Carlo

truth values for the crystal energy. The outliers of the FPGA fit for photons

result from shifted pulse shapes, which were described in chapter 4.1.1. Since

the FPGA is designed to use only photon templates for the fit, the energy

reconstruction for pions is less accurate as seen in the broadening of the line.

This is the reason why in the following the FPGA is only considered for

photons.

Overall one finds a linear relation between the crystal energy reconstruc-

tion and the Monte Carlo truth values for all three methods. However the

FPGA fit can only be applied to photons and shows shortcomings if the pulse

shapes are shifted while the multi-template fit is restricted to fittypes 0, 1,

and 2 in terms of the crystal energy reconstruction. The neural network has

a good response without restrictions on the pulse shapes.
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Figure 22: Linearity of the energy prediction from the multi-template fit
compared with the true crystal energy for photons (a) and charged pions (b)
including all fittypes.
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Figure 23: Linearity of the energy prediction from the multi-template fit
compared with the true crystal energy for photons (a) and charged pions (b)
excluding fittype -1.

0 1 2 3 4 5

Ecrystal
Truth  [GeV]

0

1

2

3

4

5

Ecr
ys

ta
l

FP
GA

 [G
eV

]

Belle II
Simulation

Inferred on photons (single particle simulation)

100

101

102

103

En
tri

es
 p

er
 B

in

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ecrystal
Truth  [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ecr
ys

ta
l

FP
GA

 [G
eV

]

Belle II
Simulation

Inferred on pions (single particle simulation)

100

101

102

103

En
tri

es
 p

er
 B

in

(b)

Figure 24: Linearity of the energy prediction from the FPGA compared with
the true crystal energy for photons (a) and charged pions (b).



6 NEURAL NETWORK PERFORMANCE 43

6.1.2 Hadron Intensity Prediction

Since the multi-template fit makes no reliable hadron intensity prediction for

pulse shapes with fittypes -1 and 2, these fittypes are excluded in all following

plots.

For photons, the hadron intensity is expected to be zero without signif-

icant tails, as shown by the true hadron intensity in Figure 25. The multi-

template fit and the neural network peak at zero, but the multi-template fit

predicts negative hadron intensities more frequently than the neural network.

One finds that the neural network has smaller tails than the multi-template

fit. Overall the neural network shows a more precise hadron intensity pre-

diction for photons than the multi-template fit.

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Hadron Intensity

100

101

102

103

104

105

106

En
tri

es
 p

er
 B

in

Belle II
Simulation

Inferred on photons, Fittype -1 or 2
 (single particle simulation)

Multi-template fit
Neural Network
MC Truth

Figure 25: Hadron intensity for photons, excluding pulse shapes with fittype
-1 and 2.
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For pions one expects a predicted hadron intensity in the range of 0 to 0.5

with a peak at zero resulting from pions which only ionise and do not undergo

hadronic interactions. This is shown in Figure 26. The multi-template fit

predicts negative hadron intensities more often than the neural network and

also underestimates the number of pulse shapes with a hadron intensity of

zero. In Figure 27, the hadron intensity prediction of the neural network (a)

and the multi-template fit (b) are shown as a function of the true hadron

intensity. Both methods show a linear relation and again, one finds that

the neural network predicts negative hadron intensities less often than the

multi-template fit and results in fewer outliers overall.
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Figure 26: Hadron intensity of pions, excluding pulse shapes with fittype -1
and 2.
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Figure 27: Hadron intensity prediction for pions using the hadron intensity
network (a) and the multi-template fit (b) compared with the true hadron
intensity, excluding pulse shapes with fittype -1 and 2.

6.1.3 Energy and Hadron Intensity Resolution

To calculate the energy resolution, the difference of the predicted and the

true value is evaluated in bins of true energy for all three methods. As an

example, the resulting distributions for the range Ecrystal
Truth = 50 to 80 MeV are

shown in Figure 28. The distributions are fitted with a Gaussian.
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Figure 28: Difference between the predicted crystal energy and true crystal
energy for photon crystals with a true energy of 50 MeV to 80 MeV, as pre-
dicted by the energy network (a), the multi-template fit (b) and the FPGA
(c). Fitted with Gaussians.
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The relative crystal energy resolution, defined as σE/E, is shown in Fig-

ure 29. For photons with Ecrystal
Truth < 250 MeV, the neural network improves the

crystal energy resolution compared with the multi-template (FPGA) fit by

up to 40% (14%). Above this energy, the neural network resolution is equal

to that of the FPGA fit, which is slightly superior to the multi-template fit.

For pions with Ecrystal
Truth < 300 MeV, the neural network improves the crystal

energy resolution by up to 36%. Above this energy the resolution degrades

slightly compared with the multi-template fit. Here one should note that the

better performance in the low energy range could result from the composi-

tion of the training data, shown in Figure 15. The training data contained

more low-energy events to account for the expected energy distribution dur-

ing physics data taking.

Analogously, the hadron intensity resolution for photons is calculated as

a function of the crystal energy, shown in Figure 30a. The hadron intensity

resolution is drastically improved by the neural network across all crystal

energies. The reader is reminded that, in contrast to the multi-template fit,

the neural network contains pulse shapes of all fittypes, which also shows the

high degree of robustness of this result.

Furthermore the relative hadron-energy resolution is calculated for pions

in dependence of the true hadron energy, shown in Figure 30b. One finds

an improved resolution for pulse shapes with a small Ehadron
Truth < 5 MeV . For

larger hadron energies, the resolution of the multi-template fit and the neural

network approach converge.

For completeness, all resolution plots are shown for each fittype individ-

ually in appendix A.1.
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Figure 29: Relative crystal energy resolution for photons (a) and charged
pions (b) fitted with the empirical energy-resolution function.
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Figure 30: Hadron intensity resolution for photons (a) and and relative
hadron energy resolution for charged pions (b).



6 NEURAL NETWORK PERFORMANCE 49

6.1.4 Separation of Photons and Pions

In order to use the neural networks to discriminate between hadronic and

electromagnetic interactions, a classification variable C, with

C =
Hadron Intensitypredicted − Hadron Intensity Offset(Ecrystal

predicted)

σHadron Intensity(Ecrystal
predicted)

, (6)

is defined as the hadron intensity, corrected for an energy-dependent off-

set, divided by the energy-dependent hadron intensity resolution from Figure

30a. The energy-dependent offset of the hadron intensity prediction is taken

as the mean of the hadron intensity prediction for photons. The variable C

is calculated for each pulse shape and the resulting distribution is plotted in

Figure 31. Figure 32 shows the pion rejection rate versus the photon effi-

ciency that would result from different cut values on C. This is shown for

the different fittypes. The neural network outperforms the multi-template fit

for fittypes 0 and 1. For fittype 2 and -1, the multi-template fit cannot be

used but the neural network provides good discrimination.
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Figure 31: Normalised distribution of the classification variable C for the
neural network and the multi-template-fit.
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Figure 32: Pion rejection rate versus the photon efficiency for different fit-
types.
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6.2 Robustness of the Neural Network Approach

This chapter investigates how well the neural network performs when time

shifts and unknown beam backgrounds are introduced. The figures of merit

are crystal energy and hadron intensity resolution which are compared with

the performance presented in 6.1.3.

6.2.1 Time Shift

A time shift, as described in 4.1.1, results in a shift of the pulse peak. If no

time shift is applied during the generation of the pulse shape, the position

of the maximum is in 85% of the cases at the 20th position and in 14% of

the cases at the 21st position. For the training of the neural networks a

time shift was applied to half of the pulse shapes. The position of the pulse

maxima within this training set was 72% at the 20th position, 17% at the

21st position and 8% at the 19th position. A separate set of pulse shapes was

selected, excluding pulse shapes with a maximum at position 20 or 21. This

set is used for testing. The peak position distribution of these two sets are

shown in Figure 33.
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Figure 33: Position of pulse shape maximum of the training set and of the
set of pulse shapes used to study the effect of shifted pulse shapes.
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Figure 34: Predicted crystal energy by the neural network (a), the FPGA
(b) and the multi-template fit (c) compared with the true crystal energy for
photons, excluding fittype -1.

As already seen in chapter 6.1.1, the FPGA fit is less robust when exposed

to time shifted pulse shapes. With the intentionally introduced time shifts

in the training and testing sets, this is again clearly visible, as illustrated in

Figure 34.

The crystal energy resolution for the multi-template fit and the neural

network approach are plotted in Figure 35. For photons the resolution of the

neural network is slightly degrading for shifted pulse shapes compared with

no shifted pulse shapes, while the multi-template fit is not affected. For pions

one observes for small true crystal energies that the multi-template fit and

the neural network resolution are worse when time shifts are introduced. For
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higher crystal energies both methods are barely affected by the time shift.

For the hadron intensity resolution, shown in Figure 36, almost no effect

for photons and a slightly worse resolution for pions is visible for the neural

network. The multi-template fit is not affected in terms of photon resolution,

and for pions the result in inconclusive.
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Figure 35: Crystal energy resolution for photons (a) and pions (b) comparing
the effect of time shifted pulse shapes.
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Figure 36: Hadron resolution for photons (a) and pions (b) comparing the
effect of time shifted pulse shapes.
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6.2.2 Beam Induced Background

In order to investigate how the neural networks perform, if faced with beam

induced background overlays, which are not included in the training, a set

of pulse shapes was selected which only used the background overlays from

run 3363, 3402 and 4074 for the training. This way the network has not

seen any pulse shapes with run-dependent beam induced background from

run 5649 during training. When inferred on pulse shapes generated with this

unknown background file, the energy resolution is overall worse compared

with the resolution if inferred on pulse shapes with the background overlay

that the neural networks were exposed to during training, as shown in Figure

37. The hadron intensity is shown in Figure 38 and also degrades for both

photons and pions. This observation suggests that the neural network does

not easily generalise to new beam backgrounds without retraining. It shows

that a variety of pulse shapes and background overlays is important during

training for an improved robustness.
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Figure 37: Crystal energy resolution for photons (a) and pions (b) inferred
on pulse shape sets of known and unknown beam backgrounds.
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Figure 38: Hadron resolution for photons (a) and pions (b) inferred on pulse
shape sets of known and unknown beam backgrounds
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Figure 39: Example of a simulated photon cluster with a Monte Carlo true
photon energy below 1 GeV, from [51].

6.3 From Crystal Energy Resolution to Cluster Energy

Resolution

In chapter 6.1.3 it was shown that the neural network can improve the en-

ergy resolution on crystal level for photons with small Ecrystal
Truth . This chapter

discusses the effect of the neural network on the cluster energy resolution for

photons. A photon cluster, as visualised in Figure 39, consists of up to 5x5

crystals. The majority of energy is deposited in the central crystal and up

to a few 10 MeV in the surrounding crystals.

To study the effect of the neural network on the cluster energy resolution

the Particle Gun Simulation was modified to either use the neural network

prediction, the FPGA prediction or the Monte Carlo truth information for the

crystal energy in order to reconstruct the cluster energy. With this modified

simulation, photon events were generated with four different fixed photon

momenta. The complete simulation settings are reported in appendix A.2.

The reconstructed cluster energy is shown in Figure 40. The reconstruction

using the FPGA and the Monte Carlo truth information agree, suggesting

that the cluster resolution is not limited by the precision by which the crystal

energy is known. The reconstruction using the neural network is shifted and

shows a worse resolution compared with the FPGA.

The reason for this shift is that the neural network is only trained with

pulse shapes from crystals above 50 MeV. When reconstructing the cluster en-

ergy the neural network is in this case inferred on crystals Ecrystal
Truth < 50 MeV.

In Figure 41 one can see that for crystals below 50 MeV the network has
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a worse performance than the FPGA. The neural network tends to predict

crystal energies above the true crystal energy, which translates into the shift

of the cluster energy. This is expected since the neural network was not

trained with pulse shapes in this energy range. However as in the exam-

ple cluster shown in Figure 39 most crystals within a cluster are below the

50 MeV threshold, suggesting why the effect of the training constraint is

rather severe. Therefore it is important to include crystals below 50 MeV

within the training. This should be investigated in a subsequent work.
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Figure 40: Reconstructed cluster energy of simulated photon events with a
true photon energy of 50 MeV (a), 100 MeV (b), 1 GeV (c) and 5 GeV (d).
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Figure 41: Difference of crystal energy prediction and true crystal energy for
photon crystals with a true crystal energy of 0 MeV to 50 MeV, as predicted
by the energy network (a) and the FPGA (b).

6.4 Band Structure in Single Proton Simulation

To discriminate between different hadrons, like protons and alpha particles,

one can use the hadron intensity distribution as a function of the crystal

energy. In this distribution different hadron types lead to different bands

[27]. As an example, single protons were simulated with Particle Gun. The

full simulation settings are presented in appendix A.3. The band structure of

these single-proton events is plotted in Figure 42. The true hadron intensity

as a function of the true crystal energy (a) clearly shows the single proton

band in the lower left. The other bands result from different secondary

particles such as deuterons. For the neural network (b) and multi-template fit

(c) the band structures are blurred out significantly. This is due to the limited

hadron intensity resolution for hadrons which is similar for both methods, as

presented in Figure 30b. Whether this can be improved by the addition of

protons and other hadrons to the training sample is another possible topic

for a subsequent work.
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Figure 42: Band structure in the correlation of hadron intensity and crystal
energy for simulated single protons using the truth values (a), the neural
network response (b) and the multi-template fit (c).
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6.5 Performance with Full-Event Simulation and Data

The last part of this thesis focuses on the performance of the neural networks

if inferred on pulse shapes from full-event simulation and experimental data.

The first section describes the performance if inferred on photons, of which

the selection criteria were presented in chapter 4.3.2. The subsequent sec-

tion summarises the performance regarding the charged pions, selected as

described in chapter 4.3.3. In the final section the classification variable,

which was introduced in section 6.1.4, is used to study the discrimination of

photons and pions in full-event simulation and in experimental data.

6.5.1 Photons from e+e− → µ+µ−γ

As a first step, the crystal energy prediction of the neural network and the

FPGA are compared as shown in Figure 43. An overall linear relation is

observed for simulation and for data. For data the line is broader and shows

more outliers.
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Figure 43: Crystal energy prediction of the neural network versus the FPGA
fit for simulation (a) and data (b).

The neural network response is further compared with the multi-template

fit in Figure 44. For simulation the relation is linear and shows fewer outliers

than in the comparison of the neural network with FPGA. In the case of
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data, the relation is linear with a broader line. For the outliers the neural

network tends to predict smaller crystal energies than the multi-template fit.
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Figure 44: Crystal energy prediction of the neural network versus the multi-
template fit for simulation (a) and data (b).

The hadron intensity prediction of the neural network and the multi-

template fit are shown in Figure 45. For both sets, the neural network

predicts zero for more pulse shapes compared with the multi-template fit.

In simulation, both methods peak at zero. However the multi-template fit

has larger tails and reconstructs a negative hadron intensity for a larger

fraction of pulse shapes than the neural network. The neural network shows

a second smaller peak around the hadron intensity of 0.00126. In case of data

one observes that the multi-template fit peaks slightly above zero, while the

neural network peaks at zero. The multi-template fit reconstructs a negative

hadron intensity for more pulse shapes than the neural network. The tails

for a hadron intensity prediction of both methods above approximately 0.004

align in the logarithmic scale. The neural network often predicts a hadron

intensity of 0.00433 for simulation and even more frequently for data. The

reason for this is not understood, and would be a good topic of further

investigation.
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Figure 45: Hadron intensity distribution of the multi-template fit and neural
network inferred on simulation (a, c) and data (b, d). Plotted on a linear (a,
b) and logarithmic scale (c, d). Excluding pulse shapes of fittype -1 and 2 in
all plots.
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6.5.2 Charged Pions from D∗+ → π+D0[→ π−K+]

In Figure 46, the neural network crystal energy response is compared with the

response of the multi-template fit for charged pions from the D∗+ selection,

which was presented in chapter 4.3.3. The relation is linear for simulation

and for data, with a broader spread for data.
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Figure 46: Crystal energy prediction of the neural network versus the multi-
template fit for simulation (a) and data (b).

Figure 47 compares the hadron intensity prediction of the neural network

and the multi-template fit. For simulated pulse shapes which have a posi-

tive hadron intensity prediction from the multi-template fit, the correlation

between neural network and multi-template fit is linear. Pulse shapes with

negative hadron intensity reconstructed by the multi-template fit have a cor-

responding neural network prediction close to zero. For data a linear relation

is not clearly visible. The predicted hadron intensities are further compared

in Figure 48. The neural network predicts negative hadron intensities less

often than the multi-template fit. Instead, the neural network predicts zero

more frequently.
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Figure 47: Hadron intensity prediction by the neural network compared with
the prediction of the multi-template fit for simulation (a) and data (b).
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Figure 48: Hadron intensity distribution of the multi-template fit and neural
network inferred on simulation (a, c) and data (b, d). Plotted on a linear (a,
b) and logarithmic scale (c, d). Excluding pulse shapes of fittype -1 and 2 in
all plots.
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6.5.3 Separation of Photons and Pions

Using equation 6 one can calculate the classification variable C for each pulse

shape. The distribution of C is shown in Figure 49. Under the assumption

that the selections described in chapter 4.3 provide sets of pulse shapes from

only photons or hadrons, one can further calculate the pion rejection rate

versus the photon efficiency, as shown in Figure 50 - 52. Fittype 2 is not

presented, since not enough pulse shapes with this fittype were available. In

case of simulation the neural network has a stronger separation power than

the multi-template fit for all fittypes. For data unexpected turning points are

observed, especially for fittype 0. These might be a result from the difference

of simulation and data, for example regarding the background. This can lead

to a less precise prediction by the neural network if inferred on data, since it

is trained on simulation. This could be further investigated in a subsequent

work.
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Figure 49: Normalised distribution of the classification variable C for simu-
lation (a) and data (b) for different pulse shape analysis techniques.
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Figure 50: Pion rejection rate versus the photon efficiency for fittype 0,
simulation (a) and data (b).
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Figure 51: Pion rejection rate versus the photon efficiency for fittype 1,
simulation (a) and data (b).



6 NEURAL NETWORK PERFORMANCE 68

0.0 0.2 0.4 0.6 0.8 1.0
pulse shape from cluster

0.0

0.2

0.4

0.6

0.8

1.0

1
pu

lse
sh

ap
ef

ro
m

±
clu

st
er

Belle II Simulation
D* ± ± D0[ K ± ]
e + e +

LMC dt = 10 fb 1

Inferred on photons and pions, Fittype = -1 (simulation)

Neural Network

(a)

0.0 0.2 0.4 0.6 0.8 1.0
pulse shape from cluster

0.0

0.2

0.4

0.6

0.8

1.0

1
pu

lse
sh

ap
ef

ro
m

±
clu

st
er Belle II Data

D* ± ± D0[ K ± ]
e + e +

L dt = 3.741 fb 1

Inferred on photons and pions, Fittype = -1 (data)

Neural Network

(b)

Figure 52: Pion rejection rate versus the photon efficiency for fittype -1,
simulation (a) and data (b).
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7 Outlook

The work described in this thesis could be extended and further optimisation

could be investigated. One important area of investigation is the composition

of the training sample and its impact on the neural network performance.

The neural network presented in this thesis, which was trained on 50% pho-

tons and 50% pions, showed a better crystal energy resolution and hadron

intensity resolution for photons than for pions. This suggests that the predic-

tion for pions is more challenging. To account for this, pions might need to

make up a larger fraction within the training sample. Furthermore, it might

be worthwhile to train with a larger variety of beam induced background

overlay files and time shifts, since this increases the robustness of the neural

network, as described in chapter 6.2. The robustness of the neural network

might also be improved by adjusting the training parameters or architecture

to allow for more generalisation. For example, one can try to implement

drop out layers during the training. As discussed in chapter 6.3, the train-

ing needs to include crystals below 50 MeV to avoid the shift seen in the

reconstructed cluster energy as well as the degrading of the cluster energy

resolution. Moreover, other hadrons, like protons and alpha particles, could

be included to the training sample, which might improve the hadron intensity

resolution and might positively affect the resolution of the band structure,

which was presented in chapter 6.4. While changing the composition of the

training, it is important to investigate if it influences the performance of the

neural networks if inferred on data and full-event simulation, where some

artefacts are not understood, as discussed in chapter 6.5. To further study

the neural network inferred on data and full-event simulation, more pulse

shapes are needed to reach a sufficient statistical precision, for example for

pion pulse shapes and rare fittypes. A different approach worth pursuing is

implementing the neural network as a classifier instead of as a regression tool

in which case the neural network could be trained on data.

At the time of writing, the FPGA-implementation of the neural networks

is already under study. An FPGA-implementation would make a real-time
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application of the neural networks possible. Similar FPGA implementations

of neural networks for pulse shape analysis were found to improve the par-

ticle identification power for other experiments [43]. The architecture of

the neural network might need to be adjusted in order to fit the resources

and memory constraints of an FPGA. For example a single neural network,

which predicts the crystal energy and hadron intensity simultaneously, could

be more efficient in terms of precision, network size, and calculation speed.

The optimum of network size, calculation speed, and resolution needs to be

determined.

Furthermore, the neural networks can be applied in the e+e− → ππγ anal-

ysis to study if the precision of the e+e− → ππγ cross section measurement

is improved. Since the neural network inference showed an improved sepa-

ration power for electromagnetic and hadronic interactions compared with

the multi-template fit, the neural network approach might help to improve

the particle identification in the e+e− → ππγ analysis. This can lead to a

reduction of the e+e− → µµγ background and reduction of the systematic

uncertainty of the e+e− → ππγ cross section measurement. As discussed

in chapter 2.2 and 2.3, this measurement is important for a more precise

calculation of aHV Pµ and a more precise calculation of the Standard Model

prediction of aµ, which could eventually reveal physics beyond the Standard

Model.
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8 Summary and Conclusion

The goal of this work was to investigate if neural networks are a feasible

approach for pulse shape analysis for the Belle II ECL. To answer this ques-

tion pulse shapes from photon and pion events were simulated and selected

as the training sample for a neural network. Additional simulation events

were generated and experimental events were selected as testing samples to

study several aspects of the performance of the neural network, like the ro-

bustness, the effect on cluster energy reconstruction, the performance with

simulated single-proton events and the inference on full-event simulation and

experimental data.

Two feed forward neural networks with a simple architecture of two fully

connected hidden layers with a total of 672 neurons were trained as a pro-

totype network and achieved a good initial performance. For photons the

neural network approach improves the crystal energy resolution compared

with the multi-template fit and FPGA fit. The hadron intensity resolution is

drastically improved by the neural network. In the case of pions with small

Ecrystal
Truth , the neural network outperforms the multi-template fit in terms of

crystal energy resolution. The hadron intensity resolution is similar for both

methods. The separation power of electromagnetic and hadronic interactions

of the neural network outperforms the multi-template fit. One additional ad-

vantage of the neural network is that it has no restriction on the pulse shapes

in terms of particle type or noise level, while the FPGA fit is restricted to

photons without time shift and the multi-template fit is restricted to pulse

shapes with low levels of noise (fittype 0 and 1). This advantage will become

even more important in the future, since it is expected that the fraction of

pulse shapes with pile-up noise (fittype -1) will increase with higher luminos-

ity.

In addition the robustness of the neural network was studied by presenting

it with shifted pulse shapes and unknown beam induced background. Here

the neural network showed good but potentially improvable performance, and

methods to further improve the robustness were discussed. The effect of the

neural network on the reconstructed cluster energy was studied. However due
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to an energy threshold in the training sample a degrading in the cluster energy

resolution was observed, which can be mitigated using a lower threshold

data set. Moreover, this work demonstrated that the neural network can

be used for inference on full-event simulation and data, for which further

optimisations in the training procedure should be considered.

In conclusion, the neural network approach shows promising improve-

ments in terms of resolution, separation power and robustness, especially

towards pulse shapes with high noise levels and diode crossing. To achieve

operation readiness, next steps should be taken for example by improving

the training, implementing the neural networks on an FPGA and applying

the neural networks as part of the particle identification in the e+e− → ππγ

analysis.
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A Appendix

A.1 Resolution for each Fittype
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Figure 53: Crystal energy resolution for photons with fittype 0 (a), fittype 1
(b), fittype 2 (c) and fittype -1 (d).
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Figure 54: Crystal energy resolution for pions with fittype 0 (a), fittype 1
(b), fittype 2 (c) and fittype -1 (d).
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Figure 55: Hadron intensity resolution for photons with fittype 0 (a), fittype
1 (b), fittype 2 (c) and fittype -1 (d).
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Figure 56: Hadron energy resolution for pions with fittype 0 (a), fittype 1
(b), fittype 2 (c) and fittype -1 (d).

A.2 Simulation Settings and Selection to study Clus-

ter Energy

A set of 100000 photon events were generated with the following simulation

settings:

• Fixed momentum of 0.05 GeV/c, 0.1 GeV/c, 1 GeV/c or 5 GeV/c

• Polar angle θ fixed to 110° (within the barrel)

• Azimuthal angle φ fixed to 200° (within the barrel)
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• Beam induced background overlay from experiment 12 run 3363, 3402,

4074 or 5649

• No random time shift added

For the further selection Monte Carlo Truth Matching was applied, with-

out any other selection criteria.

A.3 Simulation Settings and Selection for Single Pro-

tons

A set of 1000000 proton events were generated with the following simulation

settings:

• Momentum generated uniformly in the range of 0.05 GeV/c− 6 GeV/c

• Polar angle θ generated uniformly in the range of 30°− 125°

• Azimuthal angle φ generated uniformly in the range of 0°− 360°

• Add random time shift, which is uniformly distributed in the range of

±2000 ns

• Beam induced background overlay from experiment 12 run 3363, 3402,

4074 or 5649

The following selection criteria were applied:

• Ecrystal
Truth > 50 MeV

• Crystal within the barrel (ECL Cell ID: 860 to 8022) resulting in 191946

pulse shapes from single proton events in total.
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