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Abstract

We measure the CP asymmetry in D+ → π+π0 decays reconstructed in e+e− col-1

lisions at the Belle II experiment using a data set corresponding to an integrated2

luminosity of 428 fb−1. A control sample of D+ → π+K0
S decays is used to cor-3

rect for detection and production asymmetries. The result, ACP (D
+ → π+π0) =4

(−1.8±0.9±0.1)%, where the first uncertainty is statistical and the second system-5

atic, is the most precise determination to date. It agrees with the prediction of CP6

symmetry from the standard model, and with results of previous measurements.7



In the standard model of particle physics, charge-parity (CP ) violation arises from8

the complex phase of the Cabibbo–Kobayashi–Maskawa matrix [1, 2] that governs the9

weak interactions of quarks. Experimental efforts over several decades have observed CP10

violation in processes involving K0, B+, B0, and B0
s mesons with results consistent with11

standard model predictions [3–11], but at a level that is insufficient to explain the matter-12

antimatter asymmetry of the Universe. Measurements in the charm sector have only13

recently achieved a sufficient level of precision to be sensitive to CP violation in charm14

transitions, which is suppressed due to the Glashow-Iliopoulos-Maiani mechanism [12]15

and the small size of the Cabibbo–Kobayashi–Maskawa matrix element |Vcb| [13–17]. The16

only observation of CP violation in charm comes from a single measurement of the dif-17

ference between the time-integrated CP asymmetries of D0 → K+K− and D0 → π+π−
18

decays [18], along with strong evidence that CP violation occurs mainly in the direct19

decay D0 → π+π− [19]. (Charge-conjugate modes are implied throughout, unless stated20

otherwise.) Non-perturbative QCD effects make it difficult to determine whether the21

measured CP asymmetry is consistent with standard model expectations [20–31]. Flavor22

and isospin symmetries can be used to relate measurements from different decay modes,23

helping to constrain non-perturbative QCD effects and identify possible beyond-standard-24

model contributions [32–34].25

TheD+ → π+π0 decay is of particular interest. To a good approximation, the standard26

model generates direct CP violation in the isospin-related D0 → π+π− decay through the27

interference of a leading tree-level amplitude and a suppressed QCD-loop amplitude that28

changes isospin by half a unit [32]. Unlike π+π−, the π+π0 final state has isospin I = 229

and can only be reached from the I = 1/2 initial state via a ∆I = 3/2 transition.30

In the absence of interference with a second amplitude, no CP violation is expected in31

D+ → π+π0 decays. Therefore, any observation at the current level of sensitivity will32

unambiguously indicate physics beyond the standard model [32,35]. Measurements of the33

CP asymmetry in D+ → π+π0, which is defined as34

ACP (D
+ → π+π0) =

Γ(D+ → π+π0)− Γ(D− → π−π0)

Γ(D+ → π+π0) + Γ(D− → π−π0)
, (1)35

with Γ being the partial decay width, are all consistent with zero [36–38]. The most36

precise result, (−1.3±0.9±0.6)%, where the first uncertainty is statistical and the second37

systematic, is from the LHCb experiment [38]. It is based on a sample of 28.7×103 D+ →38

π+π0(→ e+e−γ) decays reconstructed in a 9 fb−1 sample of pp collisions. Reconstructing39

the neutral pion in the e+e−γ final state enables the determination of the displaced D+
40

decay vertex, which helps to suppress background due to particles produced in the primary41

pp interaction. The Belle result, (2.3±1.2±0.2)%, is based on 108×103 D+ → π+π0(→ γγ)42

decays reconstructed in a 921 fb−1 sample of e+e− collisions [37]. Despite having a larger43

signal yield than LHCb’s, the Belle sample has substantially larger background from44

misreconstructed π0 candidates and neutral pions originating from unrelated processes,45

which degrades the measurement precision.46

In this Letter, we present a measurement of the CP asymmetry in D+ → π+π0
47

decays using e+e− → cc data collected by Belle II, which have an integrated lumi-48

nosity of 428 fb−1 [39]. By employing an improved reconstruction and selection of the49

D+ → π+π0(→ γγ) decay, we achieve substantially better signal purity and precision50
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compared to both Belle and LHCb. The raw asymmetry between the observed yields of51

D+ and D− candidates,52

Aπ+π0

=
N(D+ → π+π0)−N(D− → π−π0)

N(D+ → π+π0) +N(D− → π−π0)
, (2)53

is determined using a fit to the π+π0 mass distribution. The raw asymmetry can be54

approximated as the linear combination of the CP asymmetry, the forward-backward55

asymmetric production of D+ and D− mesons in e+e− → cc events (AD
P ) [40–42], and the56

instrumental asymmetry in detection and reconstruction of π+ and π− mesons (Aπ+

ε ),57

Aπ+π0

= ACP (D
+ → π+π0) + AD

P + Aπ+

ε . (3)58

We correct for the latter two terms using an abundant control sample of Cabibbo-favored59

D+ → π+K0
S decays, where no direct CP violation is expected. The raw asymmetry of60

D+ → π+K0
S decays,61

Aπ+K0
S = AD

P + Aπ+

ε + AK0

, (4)62

receives contributions from the same production and detection asymmetries that affect63

the signal decays, and from effects due to CP violation and detection of the neutral kaon64

(AK0
). The latter can be estimated using the known time evolution of the K0-K0 system65

including regeneration effects due to the interactions with the detector material. Thus,66

the CP asymmetry of interest is derived as67

ACP (D
+ → π+π0) = Aπ+π0 − Aπ+K0

S + AK0

. (5)68

Variations of AD
P or Aπ+

ε due to kinematic differences between signal and control modes69

are investigated and treated as a source of systematic uncertainty. To improve sensitivity,70

we categorize signal and control D+ decays into two classes, named tagged and null-71

tag, depending on whether or not they originate from a reconstructed D∗+ → D+π0
72

decay. The tagged sample features a better signal-to-background ratio, while the null-tag73

has larger signal yield. The CP asymmetry is measured independently in each sample74

and the results are later combined. To avoid potential bias, the measured values of Aπ+π0
75

remained undisclosed until the entire analysis procedure was finalized and all uncertainties76

were determined.77

The Belle II detector [43,44] operates at the SuperKEKB asymmetric-energy e+e− col-78

lider [45]. It has a cylindrical geometry and consists of a silicon vertex detector comprising79

two inner layers of pixel detectors and four outer layers of double-sided strip detectors,80

a 56-layer central drift chamber, a time-of-propagation detector, an aerogel ring-imaging81

Cherenkov detector, and an electromagnetic calorimeter made of CsI(Tl) crystals, all82

located inside a 1.5T superconducting solenoid. A flux return outside the solenoid is in-83

strumented with resistive-plate chambers and plastic scintillator modules to detect muons84

and K0
L mesons. For the data used in this measurement only part of the second layer of85

the pixel detector, covering 15% of the azimuthal angle, was installed. The z axis of the86

laboratory frame is defined as the central axis of the solenoid, with its positive direction87

determined by the direction of the electron beam.88
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We use simulated event samples to identify sources of background, optimize selection89

criteria, determine fit models, and validate the analysis procedure. We generate e+e− →90

Υ(4S) events and simulate particle decays with EvtGen [46] and Pythia8 [47]; we91

generate continuum e+e− → qq, where q is a u, d, c, or s quark, with KKMC [48]92

and Pythia8; we simulate final-state radiation with Photos [49, 50]; and we simulate93

detector response using Geant4 [51]. Beam backgrounds are taken into account by94

overlaying random trigger data.95

Events are selected by a trigger based on either the total energy deposited in the96

calorimeter or the number of charged-particle tracks reconstructed in the central drift97

chamber. The efficiency of the trigger is close to 100% for both signal and control mode98

decays. The offline event reconstruction [52, 53] starts by selecting events that are in-99

consistent with Bhabha scattering, and by requiring at least three charged particles that100

originate from the e+e− interaction region, meaning that they have longitudinal and101

transverse distances of closest approach to the e+e− interaction point (impact parame-102

ters) smaller than 3 cm and 1 cm, respectively, and have transverse momenta greater than103

200MeV/c.104

Charged pion candidates must originate from the e+e− interaction region, have tracks105

with hits in the central drift chamber, transverse momenta larger than 0.1GeV/c, and mo-106

menta in the e+e− center-of-mass system (c.m.s.) larger than 0.8GeV/c. Charged particles107

are identified as pions with an efficiency of 98%, and a kaon-to-pion misidentification rate108

of 27%, using requirements on the output of a neural network that combines kinematic109

information, and particle-identification information from each subdetector [54]. We re-110

construct photon candidates from localized energy deposits (clusters) from at least two111

calorimeter crystals. The clusters should have polar angles within the acceptance of the112

drift chamber (17 < θ < 150◦) to ensure that they are not matched to tracks. Clusters113

originating from beam-background particles, split-offs of hadronic showers, and track-114

cluster matching failures are suppressed using two multivariate discriminators, based on115

the time difference between the collision and reconstructed cluster, cluster-shape infor-116

mation [55], the distance between the cluster and the nearest track, and pulse-shape117

discrimination [56]. Pairs of photon candidates are combined to form neutral pion can-118

didates. Neutral pions from the D+ decay are referred to as “hard” pions, to distinguish119

them from the lower-momentum “soft” pions originating from the D∗+ decay. Photons120

used to form hard-pion candidates must have energies greater than 80, 30, or 60MeV if121

reconstructed in the forward (12.4 < θ < 31.4◦), barrel (32.2 < θ < 128.7◦), or backward122

(130.7 < θ < 155.7◦) regions of the calorimeter. Hard neutral pions must have a diphoton123

mass in the range [120, 145]MeV/c2 (the typical diphoton mass resolution is 7MeV/c2) and124

c.m.s. momentum larger than 0.9GeV/c. Photons used to form soft-pion candidates must125

have energies greater than 25MeV if reconstructed in the forward or barrel region of the126

calorimeter, and greater than 40MeV if reconstructed in the backward region. Soft neutral127

pions must have a diphoton mass in the range [105, 150]MeV/c2 and c.m.s. momentum128

larger than 0.1GeV/c. Both hard and soft neutral pions are subject to a kinematic fit that129

constrains the diphoton mass to the known π0 mass [57] . Only candidates with successful130

fits and, for soft neutral pions, having χ2 probabilities larger than 0.01 are retained for131

subsequent analysis.132

Candidate D+ → π+π0 decays are reconstructed from combinations of charged pions133
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and hard neutral pions with invariant masses m(π+π0) in the range [1.6, 2.3]GeV/c2.134

They are subject to a kinematic-vertex fit that constrains the D+ production point to the135

measured position of the beam-interaction region [58]. Only candidates with successful136

fits and having χ2 probabilities larger than 0.01 are retained. Candidate D∗+ → D+π0
137

decays are reconstructed from combinations of D+ and soft neutral-pion candidates. The138

difference between the masses of the D∗+ and D+ candidates, ∆m, is required to be139

between 138 and 143MeV/c2 (the typical ∆m resolution is 2MeV/c2). If more than one140

D∗+ candidate is present for the same D+ candidate, only the one with mass closest to141

the known D∗+ mass is considered. To suppress events where the D+ candidate comes142

from the decay of a B meson, which may be affected by CP violation in the B decay, the143

c.m.s. momenta of the D+ candidate in the null-tag sample and the D∗+ candidate in the144

tagged sample are required to exceed 2.65 and 2.5GeV/c, respectively.145

An artificial neural network based on a multilayer perceptron is trained to suppress146

combinatorial background [59,60] . The neural network is trained and tested on indepen-147

dent samples of simulated decays to prevent overtraining. The training is performed for148

null-tag candidates with m(π+π0) in the range [1.7, 2.0]GeV/c2, to exclude background149

from partially reconstructed charm decays, and uses the following input variables: the150

asymmetry between the c.m.s. momenta of the D+ final-state particles, their scalar sum,151

the logarithm of the charged pion transverse impact parameter, the charged pion longi-152

tudinal impact parameter, and the product between the reconstructed D charge and the153

output of a charm-flavor tagger based on the rest of the e+e− → cc event [61]. The input154

variables are chosen for their ability to distinguish between signal and background and155

for their similarity between signal and control modes. (For the control mode, the π0 vari-156

ables are replaced with the correspondingK0
S variables.) The transverse impact parameter157

provides the best discrimination, with signal decays having significantly more displaced158

charged pions compared to background because of the relatively long D+ lifetime. This159

parameter also provides discrimination against background from D+
s decays.160

In the tagged sample, a requirement on the neural network suppresses the background161

in the m(π+π0) range [1.7, 2.0]GeV/c2 by 78%, while retaining 81% of the signal. In162

the null-tag case, a tighter requirement on the neural network response, corresponding163

to 50% signal efficiency for a background rejection of 98%, is used. Backgrounds from164

D+
s → K+π0 and D+

s → K+K0
S (→ π0π0) decays, where the charged kaon is misidentified165

as a pion and one π0 from theK0
S decay is not reconstructed, are suppressed to a negligible166

level by tightening the particle-identification requirement on the charged pions from null-167

tag D+ candidates. The requirement has a pion-identification efficiency of 76.4% for a168

kaon-to-pion misidentification rate of about 2.8%. About 1.5% of events contain more169

than one D+ candidate in both the tagged and null-tag samples. When this happens,170

only the candidate having the π0 candidate with the largest χ2 probability is kept.171

Control mode D+ → π+K0
S decays are formed by combining charged-pion and K0

S172

candidates. TheK0
S candidates are reconstructed from combinations of oppositely charged173

particles, which are assumed to be pions and are constrained to originate from a common174

vertex. The dipion mass is required to be in the range [0.45, 0.55]GeV/c2. The K0
S flight175

length divided by its uncertainty should be larger than 10.0. Its c.m.s. momentum should176

be larger than 0.9GeV/c. The D+ → π+K0
S candidates are subject to the same kinematic-177

vertex fit and selected using the same requirements as for signal decays. They are similarly178
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split into tagged and null-tag decays by combining with soft neutral pions. In the null-179

tag sample, dedicated vetoes remove background from D∗+ → D0(→ K−π+)π+ and180

Λ+
c → Λ0(→ pπ−)π+, which occur through misidentification of kaons and protons as pions181

and are negligible in the tagged sample. The requirements on the particle-identification182

and background-suppression neural network outputs, both inherited from the selection183

of the signal mode, are sufficient to reduce to a negligible level the contamination of184

D+
s → K+K0

S decays, where the kaon is misidentified as a pion.185

The raw asymmetries are determined from unbinned maximum-likelihood fits to the186

m(π+π0) and m(π+K0
S ) distributions of the selected D+ → π+π0 and D+ → π+K0

S187

candidates, split according to the D meson charge. For D+ → π+π0 candidates, the fit188

considers three components: signal decays, physics background from misreconstructed189

charm decays, and combinatorial background. The signal probability density function190

(PDF) is modeled by the convolution of a Johnson’s SU distribution [62] and a Gaussian191

distribution. The parameters of the Johnson’s SU distribution are fixed to values obtained192

from simulation. The parameters of the Gaussian distribution are floated to account193

for possible data-simulation differences in peak position and resolution. The physics194

background is mainly composed of D0 → π+π−π0 decays where one of the charged pions195

is not reconstructed; D+ → π+π0π0 decays with a missing neutral pion; semileptonic196

decays such as D+ → π0µ+ν, where the muon is misidentified as a pion and the neutrino197

is not reconstructed; and D+ → K0
S (→ π0π0)π+ decays, where one neutral pion from the198

K0
S decay is not reconstructed. The physics background populates the m(π+π0) region199

below 1.8GeV/c2 and is modeled using a Gaussian function in the null-tag sample and200

two Gaussian functions in the tagged sample. The combinatorial background arises from201

accidental combinations of charged and neutral pion candidates. It has a smoothly falling202

distribution in m(π+π0), which is modeled using the sum of an exponential PDF and203

a uniform distribution. All background parameters are floated in the fit. The other fit204

parameters are the yields and asymmetries of each component. The same models are used205

for D+ and D− decays. The m(π+π0) distributions of the D+ → π+π0 candidates are206

shown in Figure 1, with fit projections overlaid. The fit describes the data fairly well.207

The signal yields are determined to be 5 130 ± 110 and 18 510 ± 240 in the tagged and208

null-tag samples, respectively. The raw asymmetries are (−2.9±1.8)% and (−0.4±1.0)%,209

respectively. The uncertainties are statistical only.210

The fit to the m(π+K0
S ) distributions of the control sample considers the D+ → π+K0

S211

component, modeled as a Johnson’s SU distribution convolved with a Gaussian function,212

and a background component, modeled by an exponential distribution. The width and213

the mean of the Johnson’s SU distribution are allowed to differ between D+ and D−
214

candidates, to account for small differences in momentum scale and resolution of positively215

and negatively charged particles. (Differences in D+ and D− shapes are diluted in the216

signal mode because the mass scale and resolution are dominated by the energy scale and217

resolution of the neutral pion.) All parameters are floated in the fit. The fit describes the218

data well, as shown in Figure 2. The D+ → π+K0
S yields are determined to be 39 630±300219

and 123 560± 500 in the tagged and null-tag samples, respectively. The raw asymmetries220

are (0.54±0.53)% and (0.33±0.30)%, respectively. The uncertainties are statistical only.221

The AK0
contributions to the D+ → π+K0

S raw asymmetries are computed following222

Ref. [63]. The computation uses the K0
S candidate flight lengths and directions, the223
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Figure 1: Distributions of m(π+π0) for (left) tagged and (right) null-tag D+ → π+π0

candidates, with fit projections overlaid. The bottom panels show the asymmetry as a
function of mass, with fit projections overlaid.

well-known mixing and CP -violation parameters of the K0-K0 system, the well-known224

interaction cross-sections, and the detector material density. We estimate AK0
to be225

(−0.422± 0.007)% and (−0.418± 0.007)% for tagged and null-tag samples, respectively.226

The uncertainties are mainly systematic and due to the detector material density, which227

is known with a relative 5% uncertainty.228

Using Equation (5), we compute the values of ACP (D
+ → π+π0) in the tagged and null-229

tag samples to be (−3.9± 1.8)% and (−1.1± 1.0)%, respectively, where the uncertainties230

are statistical only. The results are consistent with each other. The analysis is validated231

using sets of pseudoexperiments generated by sampling from the fit PDFs and using fully232

simulated events, which confirm that we estimate ACP (D
+ → π+π0), and its uncertainty,233

without bias. Performing the measurement in independent subsets of the data, selected234

according to varying data-taking conditions, and varying D+ momentum, polar, and235

azimuthal angle ranges, returns consistent ACP (D
+ → π+π0) results.236

Three sources of systematic uncertainties are considered: modeling of the mass dis-237

tributions in the fits (for both signal and control modes), neglected differences between238

the kinematic distributions of the signal and the control modes, and uncertainty in the239

neutral kaon asymmetry.240

To estimate the systematic uncertainty due to the fit models, we repeat the fits to the241

data using alternative models that give an equally good description of the data. In the242

D+ → π+π0 fit, the signal PDF is modified to a Johnson’s SU distribution (i.e., without243

convolving with a Gaussian function as in the default model) with floated parameters;244

the combinatorial background model is changed to a single exponential distribution; and245
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Figure 2: Distributions of m(π+K0
S ) for (left) tagged and (right) null-tag D+ → π+K0

S

candidates, with fit projections overlaid. The bottom panels show the asymmetry as a
function of mass, with fit projections overlaid.

the physics background model is modified by adding a Gaussian distribution in the null-246

tag sample, and by using a Johnson’s SU distribution in the tagged sample. For each247

variation, the shifts in the measured values of Aπ+π0
with respect to the default results248

are computed. The sums in quadrature of these shifts, 0.119% for the tagged sample249

and 0.044% for the null-tag sample, are assigned as systematic uncertainties due to the250

D+ → π+π0 fit model. In the control-mode fit, we replace the D+ → π+K0
S PDF with a251

sum of a Johnson’s SU distribution and a Gaussian function, and the background PDF252

with a straight line or with the sum of an exponential and a constant. In the latter253

case, the fit range is also extended to 2.3GeV/c2, to better constrain the background. For254

the null-tag case, extending the fit range requires the inclusion of a fit component for255

D+
s → π+K0

S decays, which is modeled using the same shape as for D+ → π+K0
S decays256

except for an overall mass shift. The sums in quadrature of the shifts in Aπ+K0
S with257

respect to the default results, 0.122% for the tagged sample and 0.048% for the null-tag258

sample, are assigned as systematic uncertainties. The default fit models assume that most259

shape parameters are charge-independent. To verify this assumption, we refit to the data260

by replacing individual shape parameters with charge-dependent ones. In all cases, the261

parameter asymmetries are consistent with zero and statistically insignificant shifts are262

observed in the measured raw asymmetries.263

The subtraction of raw asymmetries between signal and control decays precisely can-264

cels the contributions from production and detection asymmetries only if signal and con-265

trol decays have similar kinematic distributions. In particular, the D+ polar angle dis-266

tributions in the c.m.s. must agree between the signal and control modes to cancel the267
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production asymmetry; and the kinematic distributions of the charged pion must agree268

to cancel the charged-pion detection asymmetry. The control samples are weighted to269

correct for observed small differences in these kinematic distributions. The weighting270

reduces the effective sizes of the tagged and null-tag D+ → π+K0
S samples by 1.2% and271

2.0%, respectively. The weighted control-sample data are then fit and the absolute shifts272

in the measured values of Aπ+K0
S , 0.096% in the tagged sample and 0.053% in the null-tag273

sample, are assigned as systematic uncertainties.274

The uncertainties in AK0
, 0.007% for both samples, are assigned as systematic uncer-275

tainties in ACP (D
+ → π+π0). The total systematic uncertainties, 0.196% for the tagged276

sample and 0.084% for the null-tag sample, are the sums in quadrature of the individual277

components.278

In conclusion, we measure the CP asymmetry in D+ → π+π0 decays using a sample279

of e+e− → cc data collected by Belle II, which has an integrated luminosity of 428 fb−1.280

The sample is split according to whether the D+ meson arises from a reconstructed281

D∗+ → D+π0 decay or not. The CP asymmetries in the two samples are measured to be282

(−3.9 ± 1.8 ± 0.2)% and (−1.1 ± 1.0 ± 0.1)%, respectively, where the first uncertainties283

are statistical and the second systematic. They agree with each other and are combined284

to obtain285

ACP (D
+ → π+π0) = (−1.8± 0.9± 0.1)% . (6)286

In the combination, we assumed uncorrelated systematic uncertainties due to the fit287

models and fully correlated uncertainties due to the kinematic weighting and neutral288

kaon asymmetry. The result agrees with CP symmetry and with previous measure-289

ments [36–38]. The 30% improved precision compared to Belle’s result, based on twice as290

much integrated luminosity [37], is due to the substantially better sample purity achieved291

through an improved event selection, which exploits Belle II’s superior performance in the292

reconstruction of neutral pions and displaced charged particles. The result is the most293

precise measurement to date.294
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