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ABSTRACT: We present the results of a search for the charged-lepton-flavor violating decays
BY — K*07%¢F where (¥ is either an electron or a muon. The results are based on 365
fb~! and 711 fb~! datasets collected with the Belle IT and Belle detectors, respectively. We
use an exclusive hadronic B-tagging technique, and search for the signal decay in the system
recoiling against the fully reconstructed B meson. We find no evidence for B? — K*0r+/F
decays and set upper limits on the branching fractions in the range of (2.9-6.4)x107° at
90% confidence level.
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1 Introduction

In the standard model (SM) of particle physics charged lepton flavor violating (LFV)
processes are highly suppressed. They can occur only via neutrino-mixing with rates far
below the current and foreseen experimental reach [1]. However, in many extensions beyond
the standard model (BSM), LF'V decays are enhanced since they are not protected by any
fundamental symmetry (see Ref. [2] for a recent review). An observation of such decays
would thus provide indisputable evidence of physics beyond the SM. In addition, in the SM,
lepton flavor universality (LFU) holds, meaning that the interaction of the three generations
of leptons with the gauge bosons is identical, except for differences arising from their
masses [3, 4]. The recent anomalies observed in b — c7v transitions [5, 6] may nevertheless
suggest deviation from LFU, which also imply LFV in many BSM scenarios. For instance,
a heavy Z' boson mediator or a leptoquark-mediated transition would produce LFV [7-
9]. Measurements of b — s transitions can also be used to investigate LFU deviation and
LFV [10-13]. In particular, the recent excess observed by Belle IT in b — svi transitions [14]
can be described by allowing LFV [15], which could give an enhancement of the branching
fractions of B — K7+ up to 3 x 1075, where ¢ stands for e or . This is close to the
current experimental limits and motivates further searches.

The LHCD experiment searched for B® — K*07=p+ (BY — K*97% ;™) decays using a
9 fb~! dataset [16] and obtained upper limits of 0.82 (1.0) x 10~° at the 90% confidence level
(C.L.). Searches for B* — K*7%(T have been also performed by the BaBar [17] and Belle
[18] experiments, setting the best upper limits in these modes between 0.6 and 2.5x107° at
90% C.L. Here, we present the first search for B — K*07%eT decays and the first search
for B — K*07% ;¥ decays at a B factory, using the combined dataset of the Belle and
Belle II experiments, with integrated luminosities of 711 fb~! and 365 fb™!, respectively
adding up to a total of 1076 fb~!. Four different final states are distinguished according
to the flavor of the final state lepton ¢, and to the sign of its charge with respect to that of
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the kaon from the K**: same-sign SS¢ for B® — K*(— K7~ )7~ ¢* and opposite-sign
0S¢ for B — K*(— K+n~)rt¢~. Charge conjugated final states are implied through
this paper.

We use a B-tagging technique to reconstruct one B meson decaying into hadronic
modes and search for the signal in the system recoiling against the K*°¢ from the other B
meson of the pair and the fully reconstructed tagged B. Combinatorial and some targeted
backgrounds are rejected using a cut-based approach followed by a Boosted Decision Tree
(BDT). Finally the signal is extracted from a simultaneous fit to the 7 lepton recoil mass
in the Belle and Belle II datasets.

2 The Belle and Belle II detectors, simulation and data samples

The Belle II experiment is located at SuperKEKB [19, 20], an accelerator colliding elec-
trons and positrons with center-of-mass energies near the Y(45) resonance. The Belle II
detector [21] has a cylindrical geometry surrounding the interaction point and includes
a two-layer silicon-pixel detector (PXD) surrounded by a four-layer double-sided silicon-
strip detector (SVD) [22] and a 56-layer central drift chamber (CDC). These detectors
reconstruct the trajectories (tracks) of charged particles and measure energy loss due
to ionization in the material of the detector. Only one sixth of the second layer of the
PXD had been installed for the data analyzed here. Surrounding the CDC are a time-of-
propagation detecter (TOP) [23] in the central region and an aerogel-based ring-imaging
Cherenkov detector (ARICH) in the forward region. These detectors provide information
used to identify charged particles. Surrounding the TOP and ARICH is an electromagnetic
calorimeter (ECL) based on CsI(T1) crystals providing energy and timing measurements,
primarily for photons and electrons. Outside the ECL is a superconducting solenoid mag-
net that provides a 1.5 T axial magnetic field. The magnetic flux is returned via an iron
yoke, which serves the dual purpose of also being instrumented with resistive-plate cham-
bers and plastic scintillator modules (KLM) to detect muons, K9 mesons, and neutrons.
The symmetry axis of the magnet, which almost coincides with the direction of the electron
beam, defines the z axis.

The Belle detector was located at the interaction point of the KEKB collider [24,
25]. It shares a similar structure to Belle II, but lacks a silicon pixel detector and plastic
scintillators in the KLM, uses aerogel threshold Cherenkov counters (ACC) and a barrel-
like arrangement of time-of-flight scintillation counters (TOF') for particle identification.
Vertexing and tracking are performed using the Belle SVD and CDC. A detailed description
of the Belle detector can be found in Ref. [26, 27].

This analysis uses the 711fb~! Belle dataset corresponding to (771.6 + 10.6) x 10°
Y (4S) events, and the dataset collected by Belle II during the first data taking period,
corresponding to 365 fb™1 or (387.1 4+ 5.6) x 10% T(4S5) events.

Monte Carlo (MC) simulated events are used to optimize the signal selection, to im-
prove background rejection, to model the signal and measure its efficiency as well as to
estimate the systematic uncertainties. The signal B® — K*07%¢F channels are modeled
using a uniform three-body phase space model; 20 million events are produced for each de-
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cay mode. Simulated samples that reproduce the composition of Belle and Belle II events,
including BB and ete™ — ¢g continuum (where ¢ indicates an u, d, s or ¢ quark) back-
grounds, and equivalent to approximately four times the data luminosity are used to inves-
tigate the sample composition and validate the analysis before examining the signal region
in data. Simulated events are generated using the KKMC generator for quark-antiquark pro-
duction from e*e™ collisions [28], the PYTHIAS (PYTHIAS6 for Belle) generator for hadroniza-
tion [29, 30], the EvtGen software package and the PYTHIA generator for the decay of the
generated hadrons [31], the PHOTOS package for the final state radiation (FSR) [32] and
the Geant4 (Geant3 for Belle) software package for the detector response [33, 34]. The
simulation includes beam-induced background data overlay [35]. The data and the MC
simulations are processed using the Belle II analysis software (basf2) [36, 37] and Belle
data and MC are converted from the Belle analysis software (basf) [38] format into the
Belle II format for basf2 compatibility using the B2BII framework [39].

3 Event selection and background rejection

Events are selected by a hardware trigger targeting Y(4S) — B°B° events, based on the
charged-particle multiplicity and total energy, in order to suppress low-multiplicity events
and beam-related background. We reconstruct the selected events using a B-tagging ap-
proach. We reconstruct one of the B meson in the pair, called By,g, in exclusive hadronic
decays, using the hadronic Full Event Interpretation (FEI) B-tagging algorithm [40]. FEI is
a machine-learning based algorithm developed for B-tagged analyses at Belle and Belle II.
It reconstructs B meson candidates from exclusive decays, using a hierarchical approach
starting from reconstructed charged and neutral particles in the detector. We then recon-
struct the second B meson of the event, called B, in our signal channel BO — K 0r%¢F
from the tracks left after Bi,s reconstruction. Since the Bgg final state contains at least
one neutrino coming from the 7 decay, its kinematics cannot be fully determined. How-
ever, the By can be constrained by exploiting the knowledge of the T(4S) initial state
and information on the fully-reconstructed By,g.

The Bi,g candidates are selected by requiring at least three tracks, three ECL energy
deposits (clusters) in the event, and a visible energy in the center-of-mass frame of at least
4 GeV. These tracks are required to have a transverse impact parameter dg < 0.5 cm, a
longitudinal impact parameter |zg| < 2 cm and a transverse momentum pr > 0.1 GeV/c.
The clusters are required to be in the angular acceptance of the CDC (polar angle from 17°
to 150°) with energies larger than 0.1 GeV. The By,, must have a beam-energy-constrained

mass My, = \/ (Eneam/c?)? — (DB, /c)? larger than 5.27 GeV/c? and an energy difference
AFE = Ep,,, — Epeam in the range —0.15 < AFE < 0.1 GeV. Here, Fyeam, Fp,,, and pp,,, are
the beam energy, and the energy and momentum of the By,g candidate in the eTe™ center
of mass frame. Each reconstructed Bi,g is assigned a multivariate classifier output, Prg,
ranging from zero to one and corresponding to candidates identified as background-like and
signal-like respectively. We require the By,, candidate to have Prgr > 0.001. If multiple
Biag candidates are reconstructed in an event, the one with the highest Prg; is retained.
After this selection, the By,e purity is approximately 45% (40%) for Belle II (Belle).
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The Bg;, candidates are selected by combining three tracks, corresponding to a recon-
structed K*(K*7~) with a charged lepton (e, ). The 7 lepton is not explicitly recon-
structed, but up to three additional tracks are permitted to be present in the event. The
kaon, pion and lepton candidates are identified as tracks not used in the By, reconstruc-
tion, with dy < 0.5 cm, |z9] < 5 c¢m, in the CDC angular acceptance, and for hadrons only,
to have at least 20 hits in the CDC (in the following we refer to tracks satisfying these
requirements as “good tracks”). For both Belle and Belle II, kaons and pions are identified
requiring an identification likelihood ratio Pk, Pr > 0.6 while electrons and muons can-
didates must satisfy P, P, > 0.9. The hadron identification likelihood uses information
from the ACC, CDC, and TOF for Belle. For Belle II, information from all subdetectors
except the PXD and SVD is used, resulting in a kaon identification efficiency of 85% (88%
for Belle) for a pion fake rate of 5% (8% for Belle) and a pion identification efficiency of
90% (91% for Belle) for a kaon fake rate of 7% (6% for Belle) at the particle identification
working points Py, Pr > 0.6. For Belle, electrons are identified using the information from
the ECL, CDC and ACC, and information from the KLM only is used for muon identifi-
cation. Using the likelihood ratio requirement P.(P,) > 0.9, the lepton identification has
an efficiency of 92% (89%) and a pion fake rate of 0.3% (1.4%) for electrons (muons with
momentum larger than 0.6 GeV/c). For Belle II, the electron identification uses a boosted-
decision-tree (BDT) classifier trained with information from all sub-detectors except the
PXD and SVD and the muon identification uses information from all sub-detectors except
the PXD and SVD. At the particle identification working point P.(P,) > 0.9, the electron
(muon) identification has an efficiency of 86% (89%) and a pion mis-identification rate of
0.4% (7%).

To recover electron candidates with bremsstrahlung, we accept photons having min-
imum energies of 50 MeV within a 50 mrad angle of an electron track. We reconstruct
K*0 — K*7~ candidates combining a kaon and a pion of opposite charge. The kaon,
pion and lepton are fitted to a common vertex, and their kinematic information is updated
according to the fit result. The K** candidate should have an invariant mass in the range
0.842 < M(K*n~) < 0.942 GeV/c®. The presence of a T lepton is inferred from the
presence of a single good track ¢, with a charge opposite to that of the primary lepton.
This track is not used in the signal kinematic reconstruction and is only used to reduce the
background contamination.

After the event is properly reconstructed we can proceed to the signal selection. In
order to reject background, we use properties of the rest-of-event (ROE) that correspond
to good tracks and photons not used in the reconstruction of the By (i.e. K *0¢ system)
candidate, the By,e and the ¢, track. Photons are reconstructed from ECL clusters within
the CDC acceptance and not associated with any tracks. Photon candidates must satisfy
additional requirements, described in Ref. [41], to reduce photons from beam background.
We select events with at most two tracks in the ROE, in order to retain 3-prong decays of
the 7 lepton, or potential signal candidate in which the B,g is not correctly reconstructed,
leading to partner-B daughters tracks falling in the ROE. For Belle, we also require the
total charge of the ROE to be zero. This requirement is not applied to Belle I due to its
smaller data sample, to preserve enough events for a BDT training and the fit. At this
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stage, multiple candidates due to the different possible combinations of tracks reconstructed
as t, or ROE tracks are kept. Finally, to reduce contamination from eTe™ — ¢ events,
we require an event sphericity larger than 0.2 [42] and the absolute value of cosine of the
angle between the thrust axis of Biae and that of particles not used in Biag to be less than
0.9.

The By, momentum is equal in magnitude and opposite in direction to that of By,g,
DBag, and the Bgg energy is equal to Epeam in the center-of-mass frame. Therefore the 7
momentum and energy are given by:

ﬁT = _ﬁBtag - ﬁK*O - ﬁﬁ» E: = Fyeam — EK*O — k. (3'1)
The 7 mass is then reconstructed as
M, = [m% + M*(K*°0) — 2(Eneam Exc-op + |PBuag |[Frcoe| cos 0)]/2. (3.2)

Here, mp is the known B mass [43]; M (K*0f), Eg«o;, pi-o, are the mass, energy, and
momentum of the system composed of the K*° and ¢, respectively; 6 is the angle between
PBrag and pProp. All the above quantities are defined with respect to the center-of-mass
frame. Candidates having a reconstructed M, outside the range [1.0,2.5] GeV/c? are dis-
carded and the signal region is defined as [1.65,1.90] GeV/c?. To avoid biases, we do not
examine the signal region until the analysis strategy is fixed.

Background can arise from B® — K*Y.J/1 decays when the .J/1 products are recon-
structed as the £t pair. They are removed requiring the ¢t, invariant mass to be outside
the range [3.05,3.15] GeV/c?. The background for SS¢ modes (B — K*°77¢*) is mainly
due to semileptonic B decays such as B — D/lv, with D — Knw. These events are vetoed
by removing candidates with M (K*%¢.) in the range [1.83,1.90] GeV/c?. The main back-
grounds in OS¢ modes (B® — K*7%¢~) are from B — DX decays where the D meson
decays semileptonically as D — K*%¢y. Hadronic B — DX decays with D — K77 can be
reconstructed as OSpu signal if a pion is misreconstructed as a muon. A veto is thus applied
for candidates with M (K*9¢) in the range [1.83,1.90] GeV/c?. In addition, according to the
simulation, ¢ processes amount for 7 to 24% of the background in SS¢ modes and 24 to
56% of the background in OS¢ modes after applying the above selection criteria. For each
mode, there is a slightly larger gg contribution in Belle IT than in Belle.

To reduce the remaining background, eight BDTs are trained separately for each signal
mode, and for Belle and Belle II data using the fastBDT library [40]. The training is
performed using simulated signal and ¢g and BB processes for the background. For each
BDT, between twelve and fourteen input variables are chosen from a common set of fifteen
variables, removing the ones that do not improve the performance. The variables comprise
quantities related to the signal B, with the M (K*9¢,) and M (K*Y¢) invariant masses, the
energy of the lepton and track from 7, the x? probability of the K*°¢ vertex and its distance
with respect to the interaction point in the transverse plane. The BDT's also use event shape
variables such as the sphericity and the modified Fox-Wolfram moments [44] to suppress
the ¢g background. In addition, quantities characterizing the ROE are also considered:
the number of tracks and clusters, the total cluster energy and the ROE momentum. The
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requirements applied to the BDT outputs are optimized using the figure of merit defined
€

a/24+vV N

evaluated in the M, range [1.70,1.85] GeV/c?, which corresponds to approximately 90%

as [45], where € is the signal efficiency and N is the number of background events

signal coverage. We set a to 3, corresponding to 3¢ signal significance.
After the BDT selection the average multiplicity is 1.1 in both MC and data samples.
In events with more than one candidate, one is selected randomly.

The final reconstruction and selection signal efficiencies are given in Table 1, while the
two-dimensional final efficiencies as function of the squared invariant masses M?2(K*0t,)
and M?(K*°¢) are shown in Fig. 1. A uniform Dalitz distribution of the K*°7¢ system is
assumed in signal generation. The efficiencies are determined on simulated samples taking
into account known mismodeling affecting the particle identification and By,e reconstruc-
tion, detailed in Sec. 5. The efficiency difference between Belle and Belle II is mainly due
to the BDT selection. In average, the optimal cut leads to a higher background rejection
and thus a lower efficiency for Belle compared to Belle II. The differences in the efficiency
maps between OS¢ and SS¢ modes are due to the different background composition. In
particular, OS¢ modes are polluted by B — DX background where the D decays semilep-
tonically, which peaks at low values of M (K*°¢). Those events are thus suppressed by the
BDT, giving a lower efficiency in that region for OS¢ final states.

Table 1. Final signal efficiencies after all selection described in sec. 3 for each signal mode and
experiment. The values contain the corrections developed to take into account known data mismod-
eling that affect the particle identification and the Biag reconstruction. All values are in percent.

OSe SSe OSu SSu
Belle | 0.046 0.038 0.052 0.024
Belle IT | 0.075 0.056 0.060 0.051

4 Branching fraction measurement

The signal branching fractions are obtained from unbinned extended maximum likelihood
fits to the recoil M, distributions in the defined fit range [1.3,2.3] GeV/c?, simultaneously
for Belle and Belle II data. For each channel, the likelihood is expressed as

ef(nsig+nbg) N

L(M;) = N H(nsig - Paig(ML) + npg - Pog(ML)) - H Gauss(s, o), (4.1)
i=1 s

where ngig(nbg) and Psig(Phg) are the number of events and probability density function
(PDF) for the signal (background) and N is the total number of events. The Gaussian
terms account for the systematic uncertainties o5 on the sources s detailed in sec. 5. One
likelihood is defined per data sample Belle and Belle II. We express the number of signal
events in the dataset exp = Belle, Belle II as:

nge = B(BY = K*70) x 2 x P x fO x NYlo x B(K*™ = K*77),  (4.2)



Belle simulation preliminary — x 1()~3 Belle IT simulation preliminary % 1()—5

B K*'rte~ 1.4 B K" e~ 14
15.0 F 15.0 F
EN 1.2 N 1.2
= 2sf = 12s5f
1.0 1.0
E 10.0 - & % 10.0 | )
= 08§ = 08 8
5 osk 06 L.é) EU S 0.6 “u:‘g
3 S| 3 |
< osof < 5ok
g : 0.4 § 5 04
0.0 L L L 0.0 0.0 L L L 0.0
0 5 10 15 0 5 10 15
MA(E0) [GeV2/cl] M2(EK0) [GeV2/cl]
Belle simulation preliminary — x1(0—6 7 Belle IT simulation preliminary — x 1(0—6 7
B Kt e* BY 5 K71~ e®
15.0 15.0
. 6 . 6
) o
~ 125 5 ~ 125F 5
« ™
> 5 % &
o 10.0F 4 2 o 10.0F 4 2
£ g = 2
FON 1= 3 é FON #13 3 %’
S 50F 2 S 5.0F 2
E 5
251 1 25 1
0.0 L L L 0 0.0 L L L 0
0 5 10 15 0 5 10 15
M?(K*0) [GeV2/cY M?(K*00) [GeV?/c!]
Belle simulation preliminary  x ()~ Belle II simulation preliminary  x 1()~5
0 *0_+ = 1.4 0 0+ — 1.4
150?3 — K1 p 1507B — K%
N 1.2 N 1.2
= 12s5f = 125f
1.0 1.0
E 10.0 - Q:; E 10.0 | §
— 08 3 — 08 @
™ RS o o=
Eels 0wl & w5 0.6 5
< o0 < Lok
g 5. 0.4 E’ ks 0.4
0.0 L L L 0.0 0.0 L L L 0.0
0 5 10 15 0 5 10 15
M2(E0) [GeV?2/cl] M2(E0) [GeV2/cl]
Belle simulation preliminary — x1()—6 7 Belle IT simulation preliminary — x 1(0)—6 7
BO —)K*U -t BO = K*O TR
15.0F "o 6 150 F it p
% 5
~ 125 5 ~ 125F 5
™ ™
> 5 % 5
o 10.0F 4 2 o 10.0F 4 2
— g = 2
515k 3¢ 5 T5F 3
S =k =
= 50F 2 — 50 2
= 5
251 1 25 1
0.0 L L L 0 0.0 L L L 0
0 5 10 15 0 5 10 15
M?*(K*00) [GeV2/cY] M?(K*00) [GeV?/ct]

Figure 1. Final signal efficiencies after all selection described in sec. 3 as a function of the kinematic
variables M2(K*°¢) and M?(K*°t,) for Belle (left) and Belle II (right). From top to bottom: OSe,
SSe, OSu, SSu.

21 where €*P is the signal efficiency given in Table 1, f% = 0.4861 4 0.0080 the fraction of
2 Y(45) decaying into B°BO pairs [6] and Nf;;is) is the number of produced Y (4S) mesons,
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NS = (T71.6£10.6) x 10° and NY{J§)" = (387.1£5.6) x 10° and B(K** — K¥77) = 2/3
assuming isospin conservation. The signal branching fraction B(B? — K*°7/) is a common
parameter of the simultaneous fit.

The signal PDF is modeled using a Johnson function [46], defined as

5 1 1 (M= )\ \?
PSi MT7 7A7 7(5 = - = 5 i h 1 Ti 43
a( 1 A7, 6) W L+ (Mf/\—u)Q €xp [ B <7—|— sin ( \ )) ] (4.3)

where p is the mean of the Gaussian component, A its width, v the distortion of the
distribution to the left/right, and ¢ the strength of the Gaussian-like component. The
parameters describing the signal shape are fixed to the values obtained from the fit to the
simulated samples. Background events have a smooth distribution in the M, fit region and
are analytically modeled using a second-order polynomial whose coefficients are left free
to vary. To validate the fit before the unblinding of the signal region, pseudo-experiments
generated from the data sidebands M, €[1.30,1.65]U[1.90,2.30] GeV/c? are used. Signal
is injected with various branching fraction values and the dataset is fitted with the PDF's
described above. No biases are found in these studies.

5 Systematic uncertainties

There are systematic uncertainties in the branching fraction measurements due to the
determination of the signal efficiencies, the PDF modeling and the external inputs.

The efficiency of the requirement on Ppgy is calibrated using the control channel B® —
D~nt. After reconstructing the Biag and the charged pion, we search for the D meson
resonance in the recoil mass of the Bi,em system. Calibration factors, defined as weights
to account for data/MC differences, are obtained by comparing the yields in data and
simulation, for each Bi,s decay mode. In Belle II, the inclusive semileptonic decay B —
X/v is also used, and the calibration factors are combined with those from the hadronic
control channel [47]. The signal efficiencies are corrected using those calibration factors
and their associated uncertainties are taken into account as systematic uncertainties.

We take into account the systematic uncertainty associated with the corrections to the
simulated lepton-identification efficiencies, derived from auxiliary measurements in data
using Jip — ptpu~, ete™ — 07477, and ete” — ete utu~ events. These corrections
are obtained as functions of track momentum, polar angle and charge, and applied to
events reconstructed from simulation. The systematic uncertainty is obtained by varying
the correction within their uncertainties and estimating the impact of these variations on
the selection efficiency. A similar method is employed for systematic uncertainty due to
hadron identification, using the D** — D°%(— K~ 7)7x " decays.

The efficiency of the requirements on the BDT outputs is evaluated using the B? —
D™D} (— K*K*/¢rT) control sample, with K*© — K+*7~ and ¢ — KTK~. Here,
the Biag is reconstructed in a hadronic channel using the FEI algorithm and the D is
used as a proxy for the K*9¢ system. The t, track is obtained by selecting a random
track from the D~ with the correct charge, while other D~ decay products are treated
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as the missing energy. The selection criteria applied to the control channel are identical
to the signal channels when relevant (By,g, hadron identification, K *0 mass window, ROE
selection). In addition, the K**K/¢m system is selected to be within 20 MeV/c? of the
Dy mass, and in case of Dy — ¢, the ¢(— KK) invariant mass should be within 20
MeV/c? around the ¢ mass. The recoil mass of the D~ meson is evaluated in the same
way as M., for the signal channels. The D~ recoil mass distributions are shown in Fig. 2
for simulation and data for the two datasets. A component corresponding to the D*~ is
also clearly visible. The uncertainty related to the BDT requirements is obtained by fitting
the D™ and D*~ yields using a Johnson PDF for the signal and a second-order polynomial
for the background, before and after applying the BDT requirement. The parameters of
the Johnson function are fixed to values from fits to the simulation while the background
parameters are allowed to float. Since the control sample has different properties than
the signal LFV channels, especially for the ROE, the BDT distributions are expected to
differ. The BDT corresponding to each signal channel is applied to the simulated control
channel, and the requirement on the BDT output is set such that its efficiency be the same
as the efficiency of the optimized BDT requirement on the nominal channel. The BDT is
also applied on a data control sample and events are selected according to the requirement
on the BDT score determined for the control channel. The data to MC efficiency ratio

Rﬁgg""{ M is measured and the assigned uncertainty is symmetrized so that it covers 68.3%

of the area of a Gaussian function with mean 1 — Rggf;/ M and standard deviation equal to
the statistical uncertainty on the ratio. The corresponding uncertainties on the efficiencies
are within 18% and 34%. Since the data/MC efficiency ratios are compatible with one, no
correction is applied to the efficiency and only the systematic uncertainty is considered.

The difference between data and simulation in the track-reconstruction efficiency in
Belle II is measured in ete™ — 777~ events with 7= — e v, and 7~ — 7 777 v, to
yield a 0.24% uncertainty per track. For Belle, a 0.35% per-track uncertainty is assigned
using a control sample of D** — 7+ DY DO — 7+7~ K9 decays. The uncertainty coming
from the limited size of the simulated signal samples is negligible.

The systematic uncertainties related to the signal PDF are obtained from the control
sample B — D™Df(— K*°K*/¢nt), with K* — KTn~ and ¢ -+ KTK~. The data
are fitted with the nominal PDF, allowing a shift of the mean value p' = p+ dm where p is
fixed to the value fitted in the control channel signal MC and ém is free to vary. The largest
value between dm and its error is taken as uncertainty on the signal mean, leading to 0.1%
(0.2%) uncertainty for Belle (Belle II). For the parameter A, corresponding to the width of
the signal distribution, we define A = Af where A is fixed to the value fitted in the control
channel signal MC and f is a free scaling factor. The maximum of 1 — f and the error on
f is taken as the systematic error on this parameter, leading to 21% (59%) uncertainty for
Belle (Belle IT). The relatively large resulting uncertainty on A is mainly due to the limited
size of the control sample. The uncertainties on the signal PDF parameters then translate
into a variation of the branching fraction, as given in Table 2. The tail parameters v and
& are very sensitive to the background shape. Since no signal is expected, we do not assign
any systematic uncertainty on these parameters, and only a dedicated systematic on the
background description is estimated.
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Figure 2. Fits to the recoil mass of the By, and D} system in the control channel B® — D~ D}
for simulation (left) and data (right). The top plots correspond to Belle data, while the bottom
ones are for Belle II data.

To assign an uncertainty due to the choice of the background PDF, we fit the data
with a third-order polynomial. The variation on the fitted branching fraction with respect
to the nominal PDF is taken as a systematic uncertainty.

External inputs to the signal branching fractions determination also introduce system-

atic uncertainties. Those are related to the number of produced Y (4S5) mesons, NTBF}llg) =
(771.6+£10.6) x 105 and N@gi{g)ﬂ = (387.145.6) x 105, and the fraction of YT (4S) decaying

into BYBO pairs, % = (48.61 + 0.80)% [6]. The uncertainties on the branching fraction
B(K*® — K*7~) and the branching fraction of 7 to one and three prongs are negligible.

A summary of the systematic uncertainties is given in Table 2.

Systematic uncertainties are taken into account in the upper limit measurement by
applying a Gaussian constraint to each of the parameters of the branching fraction. The
Gaussian constraint uses the nominal value of the parameter as the mean and for the
standard deviation the corresponding systematic uncertainty from Table 2. The systematic
uncertainty on the background PDF is estimated directly from the branching fraction,
which is a free parameter of the fit and thus cannot be Gaussian constrained. For that
reason, the corresponding systematic uncertainty is added to the final upper limit value.
For the fit parameters that have a common uncertainty for Belle and Belle 1T (%, B(K*? —
K*r7)), a single parameter with the appropriate uncertainty is used in the simultaneous
fit. The other systematic uncertainty sources are assumed to be uncorrelated between Belle
and Belle II.
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Table 2. Summary of the systematic uncertainties. The upper part of the table are systematic
uncertainties applied to the efficiency, which are combined in the “Total efficiency” line. The un-
certainties expressed as percentages are multiplicative and applied to the corresponding parameter
via a Gaussian constraint in the fit. The background PDF uncertainties are additive and directly

applied to the branching fraction and upper limit.

Source Belle Belle 11
OSe SSe OSu SSu OSe SSe OSu SSu
FEI efficiency [%)] 49 49 4.9 4.9 6.2 6.1 6.1 6.2
Lepton ID efficiency [%] 20 24 22 22 07 11 07 06
Hadron ID efficiency [%] 19 20 19 20 37 37 36 37
BDT efficiency [%)] 27 21 18 23 29 31 34 31
Tracking efficiency [%] 1.4 1.1
 Total efficiency (%] | 27.6 21.8 189 237 298 318 347 317
Signal PDF p [%)] 0.1 0.2
Signal PDF \ [%] 21 59
Ny sy [%)] 1.4 1.6
f°° [%) 0.8
Background PDF (x107?) 0.11 0.28 0.09 0.02 0.11 0.28 0.09 0.02
Total impact on UL (x107°) ‘ 03 09 04 05 03 09 04 05

6 Results and conclusion

The fit results are shown in Fig. 3 with the corresponding branching fractions (Bft) given
in Table 4, where the uncertainties on the fitted branching fractions contain both the
statistical and the systematic components. The fitted number of signal and background
in Belle and Belle II are shown in Table 3. The values for the number of signal are
extracted according to expression (4.2) from the efficiencies displayed in Table 1 and the
fitted branching fractions shown in Table 4. All fits are validated with pseudo-experiments
and no bias is observed. Since no signal is observed, we set upper limits on the branching

The observed upper limits (BUL)

obs

fraction using the CLs asymptotic method [48, 49].
90% C.L. are given in Table 4 together with the expected ones (B ).

The expected limits are computed from a fit to the data sidebands, assuming a number
of observed events in the signal region equal to that extrapolated from the sidebands.

The upper limits on the branching fraction at 90% C.L. are:

B(B? — K*7Fe™) < 2.9 x 1075,
B(BY - K*7~eT) < 6.4 x 1077,
B(B® — K*7%u7) < 4.2 x 1079,
B(B® — K*%7~pt) < 5.6 x 1075.

These results are the most stringent upper limits to date for the electron modes. We also

report the first search for B — K*07¢ LFV decays at eTe™ B factories.

- 11 -
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Table 3. Fitted values of the number of signal (Ng,) and background (Npkg) in the Belle and Belle
II datasets. The value for Ng, is extracted from the efficiency and fitted branching fraction.

OSe SSe OSu SSu
Nsig | —0.6£3.3 22452 2.8 £4.7 0.6 3.2
Npkg | 99.5+10.4 140.0 £12.7 207.4+15.0 76.4 £+ 9.3
Ngg | —0.5£2.8 1.7+£3.9 1.6 +2.7 0.6 +3.3
Npkg | 86.5£9.8 120.1£11.8 109.14+10.9 198.4+14.5

Belle

Belle 11

Table 4. Measured branching fractions and observed (expected) upper limits at 90% CL on the
four B® — K*0r%¢*% decays.

Decay Bt (x1079) nglg(exp) (x1079)
OSe: B — K*7Fe™ | —0.24 £1.46 2.9 (2.8)
SSe: B — K*97r=et | 1.17+£2.77 6.4 (4.4)
OSp: B® — K*t+u= | 1.07+1.80 4.2 (3.0)
SSu: BY — K*0r—pt | 0.48 £2.61 5.6 (5.5)
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Additional Material

The BDT score distributions of MC simulations, signal MC and sidebands data (M, €
[1.0,1.65[U]1.9, 2.5] GeV/c?) of the four modes for Belle and Belle IT are shown in Figure 4.
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Figure 4. BDT distributions in generic MC simulations (stacked histograms), data sidebands
M, € [1.0,1.65[U]1.9,2.5] GeV/c? (black points) and signal MC (red histogram) for Belle (left) and
Belle IT (right) datasets. The generic MC are corrected for known data/MC mismodelling and
scaled to the data luminosity, and signal MC is scaled to the same area as data. The dashed line
indicates the value of the BDT cut applied. From top to bottom: OSe, SSe, OSu, SSu.
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