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Abstract—Neural network approaches are machine learning 

methods that are widely used in various domains, such as 
healthcare and cybersecurity. Neural networks are especially 
renowned for their ability to deal with image datasets. During the 
training process with images, various fundamental mathematical 
operations are performed in the neural network. These operations 
include several algebraic and mathematical functions, such as 
derivatives, convolutions, and matrix inversions and transposi- 
tions. Such operations demand higher processing power than what 
is typically required for regular computer usage. Since CPUs 
are built with serial processing, they are not appropriate for 
handling large image datasets. On the other hand, GPUs have 
parallel processing capabilities and can provide higher speed. 
This paper utilizes advanced neural network techniques, such as 
VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, 
XGBOOST-VGG16, and our proposed models, to compare CPU 
and GPU resources. We implemented a system for classifying 
Autism disease using face images of autistic and non-autistic 
children to compare performance during testing. We used evalu- 
ation matrices such as Accuracy, F1 score, Precision, Recall, and 
Execution time. It was observed that GPU outperformed CPU 
in all tests conducted. Moreover, the performance of the neural 
network models in terms of accuracy increased on GPU compared 
to CPU. 
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I. INTRODUCTION 

Nowadays, GPU technology efficiently trains and tests deep 

learning architectures through parallelizable mathematical pro- 

cedures. GPUs consist of multiple cores that accelerate com- 

plex computational operations [1]. The number of processing 

units (cores) that can operate independently is crucial in 

determining the level of parallelization possible. There is a 

substantial difference between GPUs with thousands of cores 

and CPUs with only four or eight cores [2]. More cores 

available means an increase in the amount of parallelization 

possible. When GPUs have a lot of cores, CPU cores operate 

at a higher frequency. For mathematical procedures in Neural 

Networks, GPUs are vital [3]. Neural Networks have proven 

to be very successful in solving several real-life problems. 

Ensuring high accuracy while working with diseases, such as 

Autism Spectrum Disorder (ASD), is crucial [4]. ASD brings 

developmental disability to the brain and is also associated 

with genetic conditions. Some causes of ASD are known, 

while others are still unknown [5]. Patients with ASD exhibit 

 
different behavior, communication, interaction, and learning 

styles compared to ordinary people [6]. While some patients 

can live and work like ordinary people without any support, 

many patients require assistance from others to live their life. 

Some patients may have advanced conversation skills, while 

others may be nonverbal. Usually, ASD starts to develop before 

the age of three, but some children may show symptoms 

early in the 12-month period. In the first 12 or 24 months 

period, they gain knowledge and skills, but later stop learning, 

making it difficult to communicate with peers and adults, make 

new friends, and understand complex concepts. People with 

ASD are also more likely to experience serious issues such as 

anxiety, depression, and attention-deficit/hyperactivity disorder 

compared to those without ASD [7]. Early detection of ASD is 

crucial as it significantly decreases symptoms and has a high 

chance of improving the quality of life. Medical tests such 

as blood tests and symptom checkings are the most common 

ways of detecting ASD. The symptoms are usually checked 

by parents or teachers, and healthcare providers evaluate the 

similarity score between possible signs and symptoms provided 

by the parents. 

This study compares the performance of CPU and GPU on 

different devices analyzed for autism disease using face im- 

ages. We evaluate well-known deep learning frameworks such 

as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mo- 

bilenet, XGBOOST-VGG16, and our proposed models using 

energy-related metrics and offer precise power measurements 

for each of these frameworks using a collection of carefully 

chosen networks and layers. We assess various processor 

architectures, including a Dell Gaming Laptop with an 11th 

Gen Intel Core i7 operating at 2.30GHz, 16.0 GB of RAM, 

and 512 GB of SSD storage, as well as a cloud-based service 

(Google Colab) for testing. We also investigate the impact of 

various hardware configurations on performance and energy 

efficiency. 

Our contributions can be summarized as follows: 

1. We classify Autism disease using advanced Neural Net- 

work models such as VGG16, Resnet50, Densenet, Incep- 

tionv3, Xception, Mobilenet, and XGBOOST-VGG16, and 

show which model performs better on this dataset. 

2. We propose our Stacking Neural Network model using 

the aforementioned six transfer learning models and provide a 

comparative analysis with traditional models. 
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3. We conduct a comparison study on the power usage of 

well-known pre-trained CNN frameworks on various hardware 

(i.e., Dell Gaming laptop and Google Colab). Our findings 

provide insights into how the application’s 

II. BACKGROUND AND LITERATURE REVIEW 

Limited work has been done in analyzing the performance of 

CPU and GPU on various devices using a Neural Network ap- 

proach. To gain insight into this, we reviewed various research 

papers in the field of machine learning and deep learning. In 

addition, Autism Spectrum Disorder (ASD) is a crucial topic 

in healthcare, and many researchers have investigated it using 

various approaches with up-to-date models. We summarize 

some of the relevant research papers below: 

Raj and Masood [8] proposed machine learning techniques 

for the analysis and detection of autism spectrum disorder. 

They focused on three age groups: children, adolescents, 

and adults, using classifiers such as Support Vector Machine 

(SVM), KNN, Naive Bayes, Logistic Regression, Neural Net- 

works, and Convolutional Neural Networks. Their dataset in- 

cludes parameters such as nationality, problems at birth, any 

family member suffering from pervasive development disor- 

ders, sex, screening application used by the user before or not, 

and screening test type. They achieved 99.53%, 98.30%, and 

96.88% accuracy for adults, children, and adolescents, respec- 

tively. Al-diabat [9] proposed a fuzzy data mining approach 

for the autism classification of children using the ASDtest 

app dataset. They compared the performance of fuzzy data 

mining algorithms (FURIA), JRIP, RIDOR, and PRISM. The 

accuracy of their proposed models was less than 90 percent. 

Xie et al. [10] proposed a deep learning model for detecting 

atypical visual attention in ASD using a two-stream end-to- 

end network. They used the VGG16 model, including 13 

Conv layers, five max-pooling layers, and two fully connected 

layers, and their proposed model achieved an accuracy of 95%. 

Liu et al. [11] created a benchmark dataset and proposed 

multimodal machine learning for ASD detection. The dataset 

included the spontaneous interaction of adults and children, 

and the experimental work was carried out using machine 

learning models such as SVM and RF, achieving 70% accuracy. 

Duan et al. [12] proposed a system for predicting ASD using 

human faces and analyzed the visual attention of 300 human 

faces and their corresponding eye movement images using 

the CASNET model. De Campos Souza and Guimaraes [13] 

proposed a fuzzy neural network to predict children with 

autism and developed a mobile application that uses question 

and answer-based inputs to generate predictions. Xu et al. 

[14] proposed child vocalization composition as discriminant 

information for automatic autism detection, achieving 85% 

to 90% accuracy using speech datasets. Tao and Shyu et al. 

[15] proposed a CNN-LSTM-based ASD classification model 

using observer scan paths, achieving 74.22% accuracy with 

300 eye movement datasets for ASD children. Akter et al. 

[16] proposed a machine learning-based model for early- 

stage ASD detection for children, adolescents, and adults 

using SVM, AdaBoost, and GLMboost models. The Adaboost 

model showed the best performance for children, Glmboost for 

 

 

Fig. 1: Proposed Architecture for Autism Disease classification. 

 
 

adolescents, and Adaboost for the adult dataset. Hangun and 

Eyecioglu [17] analyzed the performance between CPU and 

GPU resources for image processing operations using Otsu’s 

method and edge detection, finding that GPU resources provide 

better performance than CPU. Similarly, Buber and Banu [18] 

compared the performance of CPU and GPU for deep learning 

techniques using the Recurrent Neural Network (RNN), word 

embedding, and transfer learning models. They adjusted some 

hyperparameters to ensure that the models were optimized for 

each device. The experimental work was carried out on a Tesla 

k80 GPU and an Intel Xeon Gold 6126 CPU. They found that 

the GPU was generally faster than the CPU for all three models, 

with speedup ranging from 1.9x to 3.3x for the RNN and trans- 

fer learning models, respectively. The word embedding model 

showed the highest speedup, with the GPU being 4.2x faster 

than the CPU. Asano et al. [19] compared the performance of 

FPGA, GPU, and CPU for image processing tasks. They used 

three different techniques, including two-dimensional filters, 

stereo-vision, and k-means clustering, to evaluate the perfor- 

mance of the different devices. They found that while FPGA 

had a lower operational frequency than CPU and GPU, it could 

still achieve extremely high performance for image processing 

tasks. Baykal et al. [20] compared the performance of CPU 

and GPU on big data using deep learning models, including 

artificial neural networks (ANN) with a multi-layered structure, 

deep learning, and convolutional neural networks (CNN). They 

found that the TensorFlow platform allowed for an extremely 

effective parallel execution environment on GPUs, reducing 

execution time by 4 times compared to CPU execution. These 

studies demonstrate the importance of considering hardware 

configurations when developing and implementing deep learn- 

ing models. Understanding the performance of different devices 

can help researchers and practitioners optimize their models 

and improve their accuracy, efficiency, and speed. 

 
III. MATERIALS AND METHODS 

This paper proposes the generalized Neural Network archi- 

tectures for classifying ASD, shown in Figure 1. 

Images are preprocessed using popular techniques by calling 

the Keras and TensorFlow library and fetched into the classi- 

cal neural networks such as VGG16, Resnet-50, Mobilenet, 

Densenet, Inceptionv3, Xception, XGBOOST-VGG16 and our 

proposed model. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Sample of Dataset 

The pooling layer, the second component of the CNN model, 

aids in reducing computational complexity by excluding some 

parameters. Lastly, the Softmax function of the fully connected 

layers provides the probability of input belonging to a particular 

class. 

1) Inceptionv3: Szegedy et al. [22] first released Inceptionv3 

in 2015. It is a Convolutional Neural Network used to an- 

alyze image datasets for tasks such as segmentation, object 

localization, and image classification [23]. Inceptionv3 is an 

expanded form of the GoogleNet paradigm. This model reduces 

the number of parameters that must be trained by concatenating 

several convolutional filters of varying sizes into a single filter, 

which eliminates computational complexity. Therefore, classi- 

fication performance remains good even with fewer parameters. 

Inceptionv3 has gained popularity among researchers as it can 

be trained well over large datasets. To fine-tune the model 

on our dataset, we downloaded the base model and added 

a GlobalAveragePooling2D layer and a dropout (0.5) model. 

We also included a dense layer with a “sigmoid” activation, 

Dropout, and Softmax layers with outputs at the bottom of the 

architecture. Finally, we fine-tuned the model on 2936 sample 

images for 30 epochs using the Stochastic gradient descent 

(SGD) optimizer and a learning rate of 0.0001. The trainable 

parameters of the Inceptionv3 model are 21,770,401. 

This paper utilizes a publicly available dataset from a popu- 

lar Kaggle website, consisting of 2936 facial images accurately 

divided between ASD and TD children. The contributor col- 

lected the dataset through an internet search, stating that they 

could not obtain ASD images from clinics or verified sources 

[21]. The original dataset contained more than 3000 images, 

including incorrect ASD images. Therefore, the data used in 

this study mainly comprise appropriate data for experimental 

work [21]. The dataset includes 89% white children and 11% 

brown/black children, and the purpose of using these images 

is to efficiently detect ASD disease using facial features. 

B. Preprocessing 

Most image datasets come with improper shapes, which 

are inappropriate for inputting into Neural Networks. Transfer 

learning algorithms follow size consistency for each input, 

which is 224x224 pixels or less. Therefore, we prepared the 

dataset by transforming it from random sizes to 224x224 pixels, 

while keeping the channel as 3, and not lowering it below 

224x224, as it can negatively impact the model’s performance. 

We retained the noises as they allow the model to learn along 

with the noises, which helps to accurately recognize real-life 

ASD. 

C. Classification Models and Fine Tuning 

Convolutional Neural Network (CNN) is a subfield of con- 

ventional Neural Network, which comprises three elements: 

one or more convolutional layers, a pooling layer, and one 

fully connected layer. The first element is the fundamental 

building block of the CNN model and calculates the dot product 

between the kernel and a portion of the input image. The kernel 

size is relatively smaller than the size of the input image, 

while the kernel dimension is similar to the input image size. 

2) Xception: The Xception model was created by Chollet 

[24], a Google researcher. Xception is a deep convolutional 

neural network that uses a linear combination of residual 

connections and depth-wise separable convolution. The Incep- 

tion model was used as a foundation for this unique deep 

neural network design, which substitutes depth-wise separable 

convolution for the Inception model’s inception layers. The 

architecture is less complex and more effective than existing 

deep convolutional neural networks due to the idea of develop- 

ing it with fully depth-wise separable convolution. To further 

optimize the model, we included the Flatten() layer, Batch- 

Normalization(), a Dense layer with 128 neurons and Relu 

function, followed by BatchNormalization(), and a final Dense 

layer with one neuron and sigmoid function, after downloading 

the base model. Finally, using the Stochastic gradient descent 

(SGD) optimizer and a learning rate of 0.0001 on 2936 sample 

images for 30 epochs, we fine-tuned the model. The trainable 

parameters of the Xception model are 33,853,225. 

3) Densenet: Gao Huang, Zhuang Liu, and their colleagues 

introduced the Densely Connected Convolutional Network 

(Densenet) in 2017 [25]. This deep convolutional neural net- 

work connects each layer to every other layer in a feed-forward 

fashion, taking advantage of dense connections between the 

layers. Densenet requires fewer parameters for training the 

model and mitigates the vanishing gradient problem, which 

makes it ideal for use in computer vision. After downloading 

the base model, we added the GlobalAveragePooling2D layer 

and a dropout model (with a rate of 0.5). Additionally, we 

included a dense layer with ”sigmoid” activation, Dropout, and 

Softmax layers with outputs at the bottom of the architecture to 

fine-tune the model on the dataset. Finally, using the Stochastic 

gradient descent (SGD) optimizer and a learning rate of 0.0001 

on 2936 sample images for 30 epochs, we fine-tuned the model. 



The Densenet model has 6,954,881 trainable parameters. 

4) Mobilenet: The MobileNet architecture was first intro- 

duced by Andrew G. Howard et al. [26]. It is a shallow 

deep neural network model that is good for reducing computa- 

tion time and cost. MobileNet substitutes depthwise separable 

convolutions for conventional convolutions to minimize the 

model size and processing. Using a factorization technique 

called depthwise separable convolution, a normal convolution 

is split into two convolutions: a depthwise convolution and 

a pointwise convolution. A 1x1-dimensional convolution is a 

pointwise convolution. While pointwise convolution attempts 

to integrate, depthwise convolution aims to filter. The process 

of depthwise separable convolution is the result of adding 

depthwise and pointwise convolution. Except for the top layer, 

MobileNet’s architecture is composed of separable convolu- 

tions. After downloading the base model, we included the 

GlobalAveragePooling2D layer and a dropout (0.5) model. To 

further fine-tune the model on the dataset, we included a dense 

layer with “sigmoid” activation, Dropout, and Softmax layers 

with outputs at the bottom of the architecture. Finally, we fine- 

tuned the model using the Stochastic gradient descent (SGD) 

optimizer and a learning rate of 0.0001 on 2936 sample images 

for 30 epochs. The trainable parameters of the MobileNet 

model are 3,208,001. 

5) Resnet-50: Residual Neural Networks (ResNet) are a 

type of Artificial Neural Network (ANN) that stack leftover 

blocks to create a network. The ResNet-34, ResNet-50, and 

ResNet-101 are the most well-known ResNet networks, with 

variations distinguished by the number of layers. ResNet-50, 

for instance, employs 50 layers of neural networks. Using 

many layers to address complex issues is beneficial because 

each layer can be trained for a variety of activities. However, 

the deeper the network, the more likely it is to encounter a 

degradation issue, which is problematic. The initialization of 

the network, an optimization algorithm, or a problem with 

vanishing or exploding gradients typically causes this problem. 

The ResNet model seeks to prevent these problems by using 

skip connections, which are at the center of the residual blocks. 

Skip connections are the strength of the ResNet model, and two 

methods are used. First, they create a different route around the 

gradient to mitigate the vanishing gradient problem. Second, 

they give the model the opportunity to learn an identity function 

that ensures that the upper levels function nearly identically 

to the lower layers. The model can successfully classify the 

limited dataset since it has been trained on more than a million 

images. After downloading the base model, we included the 

Flatten() layer, BatchNormalization(), a Dense layer with 128 

neurons and Relu function, again BatchNormalization(), and 

a final Dense layer with one neuron and sigmoid function. 

Lastly, using the Stochastic gradient descent (SGD) optimizer 

and a learning rate of 0.0001 on 2936 sample images for 30 

epochs, we fine-tuned the model. The trainable parameters of 

the ResNet-50 model are 23,796,993. 

6) VGG-16: VGG-16 is the most advanced deep neural 

network for interpreting visual input. It is considered one of the 

best architectures for vision models to date, and it won the 2014 

ILSVR (Imagenet) competition. The network has a whopping 

138 million parameters, and its name comes from the fact that 

it has 16 weighted layers. VGG16’s distinctive feature is that 

it retains a convolution layer of 3x3 filters with a stride 1 and 

the same padding and a max pool layer of 2x2 filters with a 

stride 2 throughout the entire architecture. The model’s final 

two layers consist of two FC (fully connected) layers, followed 

by a softmax as the output. After downloading the base model, 

we included the GlobalMaxPooling2D(), a Dense layer with 

512 neurons followed by a Relu function, a Dropout(0.5) layer, 

and a final Dense layer with one neuron and sigmoid function. 

Lastly, using the Stochastic gradient descent (SGD) optimizer 

and a learning rate of 0.0001 on 2936 sample images for 30 

epochs, we fine-tuned the model. The trainable parameters of 

the VGG16 model are 14,977,857. 

7) Proposed model: We utilized the stacking ensemble 

learning approach to develop our proposed system, which 

involved logistic regression as the meta-learner and heteroge- 

neous weak learners as the base models. Inceptionv3, Xception, 

Densenet, Mobilenet, Resnet-50, and VGG-16 were used as the 

heterogeneous base models, which took in three-dimensional 

images as inputs. The data separation process differed from 

that of traditional models, with 60% of the data being used 

for training, 10% for validation, and 30% for testing. This 

modification was necessary to avoid overfitting during the 

meta-learner training phase. The predicted dataset from Level 0 

already contained a probability of expected values, enabling the 

meta-learner to provide accurate probabilities from Level 0. To 

prevent overfitting, the final model (meta-learner) was trained 

using both the validation dataset and the outputs. The level- 

1 prediction was the ultimate result. The stacking ensemble 

model produced a final model (meta-learner) by using the 

predicted results from several other models. The disadvantage 

of the typical stacking ensemble method is that it employs the 

same various models for the base model, which leads to similar 

estimates. If the basic model performs poorly on the dataset, 

there is a high possibility that the final output will be inferior. 

However, the single neural network model demonstrates bias 

and volatility toward the dataset. As a result, different models 

were chosen when constructing the base model. 

The architecture is divided into two levels: Level 0 and Level 

1, as shown in Figure 9. Inceptionv3, Xception, Densenet, Mo- 

bilenet, Resnet-50, and VGG-16 models are used to construct 

Level 0. The six submodels each make six predictions con- 

currently after learning the data pattern. Each model employed 

in Level 0 contributes equally to the overall model. Logistic 

regression is used to build Level 1, also known as the meta- 

learner. The meta-learner at Level 1 is fed the Level 0 projected 

outputs as input. Based on the anticipated Level 0 outputs, the 

meta-learner estimates the weighted outputs best. A model that 

can quickly learn a pattern or adjust to different datasets with a 

small amount of training data is referred to as a “meta learner.” 

It learns patterns of the outputs derived from the six models. 

As a result, the model can learn completely new data quite 

effectively and produce acceptable output. The parameter of 

this model is a combination of six transfer learnings’ learnable 

parameters. 



ical value [31], while classification is used when predicting 

a discrete value [32? , 33]. The error measure is used to 

evaluate regression models [29], while classification models 

are evaluated using the accuracy metric. In our study, we aim 

to classify ASD patterns of face shape [30], and therefore, 

we utilized accuracy, F1 score, precision, and recall as our 

evaluation metrics. 

Precision: Precision measures how accurately the model 

predicts a positive value when it is actually positive. It is used 

when False Positives are prevalent. If the model’s classification 

accuracy is low, many non-ASD images will be mistakenly 

identified as having ASD. Conversely, if the accuracy is high, 

the model will learn from false alarms and ignore the False 

Positive results. The following formula is used to calculate 

precision: 
 

Fig. 3: Proposed Architecture for Autism Disease classification. 
 

Precision =  
TP 

TP + FP 

 
(1) 

8) XGBOOST-VGG16: At the beginning of our process, 

we effectively extracted the desired features using the tra- 

ditional VGG16 model. We then used a popular classifier 

called XGBoost to classify the features. Extreme Gradient 

Boosting (XGBoost) is a distributed, scalable gradient-boosted 

decision tree (GBDT) machine learning framework. It offers 

parallel tree boosting for regression, classification, and ranking 

issues. In supervised machine learning, a model is trained 

using algorithms to discover patterns in a dataset of features 

and labels, and the model is then used to predict the labels 

on the features of a new dataset. Gradient boosting is a 

supervised learning approach that combines an ensemble of 

estimates from a variety of weaker models to anticipate a target 

variable appropriately. The XGBoost algorithm outperforms 

machine learning challenges because of its efficient handling 

of a wide range of data types, relationships, distributions, and 

adjustable hyperparameters. Regression, classification (binary 

and multiclass), and ranking issues can all be addressed using 

XGBoostIt is important to evaluate the performance of a model 

to understand how well the predicted results match the actual 

ones [27]. Evaluation metrics are used to measure a model’s 

performance, but the choice of metrics depends on the type 

Here, TP refers to True Positive values, and FP refers to 

False Positive values. 

Recall: Recall is the inverse of Precision. It measures how 

well the model correctly identifies a positive value when it is 

actually positive. It is used when the False Negatives (FN) 

are high. If the model provides limited recall, many ASD 

images will be classified as non-ASD in the ASD classification 

problem. Conversely, if it provides high recall, the model will 

learn from false alarms and disregard the false negative results. 

The following formula is used to calculate recall: 

 

Recall = 
TP 

(2) 
TP + FN 

 

F1 score: The F1 score combines Precision and Recall to 

determine the model’s overall accuracy. The F1 score ranges 

from 0 to 1. The F1 score returns 1 if the predicted value agrees 

with the expected value and 0 if none of the values agree with 

the expected value. The following formula is used to calculate 

the F1 score: 

 
2 · precision · recall 

of model [28]. There are two types of models: classification 

and regression. Regression is used when predicting a numerical 

F1 score = 
precision + recall 

(3)
 

value, while classification is used when predicting a discrete 

value. The error measure is used to evaluate regression models 

[29], while classification models are evaluated using the accu- 
racy metric. In our study, we aim to classify ASD patterns of 

Accuracy: Accuracy measures how well the predicted output 

matches the actual value. 

face shape [30], and therefore, we utilized accuracy, F1 score, 

precision, and recall as our evaluation metrics. 

Accuracy = 
TP + TN

 
TP + TN + FP + FN 

(4) 

 

D. Evaluation Metrics 

It is important to evaluate the performance of a model to 

understand how well the predicted results match the actual 

ones [27]. Evaluation metrics are used to measure a model’s 

performance, but the choice of metrics depends on the type 

of model [28]. There are two types of models: classification 

and regression. Regression is used when predicting a numer- 

Here, TN refers to True Negative, and FN refers to False 

Negative. 

 
E. Experimental settings 

This paper uses two devices: physical device and online 

device. We referred physical device as device 1, and online 

device as device 2. 



1) Device 1: Device Specification details: Device name: 

Dell - G15 15.6” FHD 120Hz Gaming Laptop Processor: 

11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz 2.30 GHz 

Installed RAM: 16.0 GB (15.7 GB usable) System type: 64-bit 

operating system, x64-based processor Memory: 512GB Solid 

State Drive GPU: NVIDIA GeForce RTX 3050 

GPU Configuration: NVIDIA released the GeForce RTX 

3050 8 GB on January 4, 2022, as a performance-segment 

graphics card [34]. The card supports DirectX 12 Ultimate and 

is based on the GA106 graphics processor in its GA106-150- 

KA-A1 variant. It is manufactured using an 8 nm process. This 

guarantees that GeForce RTX 3050 8 GB will be able to run 

all current games. Future video games will include hardware 

raytracing, variable-rate shading, and other features due to 

the DirectX 12 Ultimate capabilities. The GA106 graphics 

processor has a die area of 276 mm² and 12,000 million 

transistors, making it a chip of ordinary size [35]. NVIDIA has 

disabled some shading units on the GeForce RTX 3050 8 GB to 

reach the product’s target shader count, in contrast to the fully 

unlocked GeForce RTX 3060 8 GB, which uses the same GPU 

but has all 3584 shaders activated. It has 32 ROPs, 80 texture 

mapping units, and 2560 shading units. Eighty tensor cores 

are also present, which help machine learning applications run 

faster. Twenty acceleration cores for raytracing are included on 

the GPU. The GeForce RTX 3050 8 GB and 8 GB of GDDR6 

RAM from NVIDIA are connected via a 128-bit memory 

interface. Memory is running at 1750 MHz, and the GPU is 

functioning at 1552 MHz, with a boost to 1777 MHz (14 Gbps 

effective). The NVIDIA GeForce RTX 3050 8 GB is a dual- 

slot card that uses one 8-pin power connector with a maximum 

power draw of 130 W. 1x HDMI 2.1 and 3x DisplayPort 1.4a 

are available as display outputs. A PCI-Express 4.0 x8 interface 

links the GeForce RTX 3050 8 GB to the rest of the hardware. 

The card has a dual-slot cooling system and measures 242 mm 

long by 112 mm wide [35]. 

2) Device2: Google Colaboratory (CoLab) is an open- 

source platform provided by Google Research. Colab is par- 

ticularly well-suited to machine learning, data analysis, and 

education. It enables anyone to create and execute arbitrary 

Python code through the browser [36]. Moreover, Colab is a 

hosted Jupyter notebook service that requires no installation 

and offers free access to computer resources such as GPUs 

[37]. 

Device Specification details: 

Device name: Google Colab CPU: Intel (R) Xeon (R) CPU 

@ 2.20GHz Memory: 12 GB Storage: 86GB GPU: Tesla T4 

GPU Configuration: 

NVIDIA introduced the Tesla T4 professional graphics card 

on September 13, 2018. The card supports DirectX 12 Ultimate 

and is based on the TU104 graphics processor in its TU104- 

895-A1 model. It was manufactured using a 12 nm processor 

with 13,600 million transistors and a die area of 545 mm². The 

TU104 graphics engine is a large chip. NVIDIA has disabled 

some shading units on the Tesla T4 to reach the product’s 

target shader count, in contrast to the fully unlocked GeForce 

RTX 2080 SUPER, which utilizes the same GPU but has all 

3072 shaders enabled. The Tesla T4 has 64 ROPs, 160 texture 

mapping units, and 2560 shading units. It also includes 320 

tensor cores, which accelerate machine learning applications, 

and forty acceleration cores for raytracing. The Tesla T4 is 

coupled with 16 GB of GDDR6 memory from NVIDIA using 

a 256-bit memory interface. The memory runs at 1250 MHz, 

while the GPU operates at 585 MHz and can be clocked up 

to 1590 MHz (10 Gbps effective) [38]. The NVIDIA Tesla 

T4 is a single-slot card that does not require a separate power 

connector, and its maximum power usage is 70 W. As it is not 

intended to have monitors connected to it, this device lacks 

display connectivity. The Tesla T4 is linked to the rest of 

the hardware through a PCI-Express 3.0 x16 interface. The 

card has a single-slot cooling system and measures 168 mm in 

length [39]. 

 
IV. RESULTS AND DISCUSSIONS 

 

We have shown results derived from Neural Network models, 

such as Inceptionv3, Xception, Densenet, Mobilenet, Resnet- 

50, VGG-16, XGBoost-VGG-16, and our proposed model with 

parameters 21,770,401, 6,954,881, 3,208,001, 23,796,993, and 

14,977,857, respectively. Since the trainable parameters of each 

model are different, the accuracy and execution time differ 

from model to model. We used evaluation metrics such as 

Accuracy, Precision, Recall, and F1 Score. All the experiments 

have been carried out on two devices with and without GPU. 

The two devices are: Dell - G15 15.6” FHD 120Hz Gaming 

Laptop and Google Colab. We referred to the Dell - G15 15.6” 

FHD 120Hz Gaming Laptop as Device 1 and Google Colab 

as Device 2. Moreover, we denoted Device 1 with GPU as 
D1, Device 1 without GPU as D1

′, Device 2 with GPU as 

D2, and Device 2 without GPU as D2
′. Table 1, Table 2, 

Table 3, and Table 4 show classification results derived from 

different Neural Network models for the two devices with 

and without GPU. From the experiments, we found that while 

running the Neural Networks on Device 1, the execution time is 

comparatively lesser than on Device 2, both in the case of GPU 

support and without GPU support. Moreover, GPU accelerates 

the execution time significantly for both devices. For Device 

1 without GPU, VGG16, Resnet50, Densenet, Inceptionv3, 

Xception, Mobilenet, XGBOOST-VGG16, and our proposed 

model took 5h 27min, 3h 2min, 4h 42min, 2h 9min, 3h 

20min, 24min 29s, 31min 23s, and 6h 55min, respectively. 

While on Device 1 with GPU, VGG16, Resnet50, Densenet, 

Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and 

our proposed model took 33min 42s, 25min 9s, 23min 5s, 

18min 30s, 25min 33s, 5min 58s, 8min 49s, and 45min 22s, 

respectively. Therefore, Device 1 with GPU support takes 4h 

54min, 2h 6min, 4h 19min, 1h 51min, 2h 55min, 19min, 

and 6h 10min less time than VGG16, Resnet50, Densenet, 

Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and 

our proposed model. Moreover, the accuracy also increases 

when training the Neural Networks with GPU. For Device 

1 without GPU, VGG16, Resnet50, Densenet, Inceptionv3, 

Xception, Mobilenet, XGBOOST-VGG16, and our proposed 

model provide an accuracy of 0.87, 0.90, 0.89, 0.92, 0.90, 0.89, 

0.95, and 0.93, respectively. 



TABLE I: Autism Disease Classification Results Training 

Different Neural Network Models Without GPU support for 

Device1 
 

Models Accuracy precision Recall F1 
Score 

Execution 
Time 

VGG16 0.87 0.90 0.91 0.92 5h 
27min 

Resnet50 0.90 0.98 1.00 0.92 3h 2min 

Densenet 0.89 0.91 0.92 0.90 4h 
42min 

Inceptionv3 0.92 0.99 0.94 0.91 2h 9min 

Xception 0.90 0.90 1.00 0.92 3h 
20min 

Mobilenet 0.89 0.90 0.91 0.87 24min 
29s 

XGBOOST- 
VGG16 

0.95 1.00 1.00 0.99 31min 
23s 

Proposed 
Model 

0.93 0.99 1.00 0.97 6h 
55min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

TABLE II: Autism Disease Classification Results Training Dif- 

ferent Neural Network Models With GPU support for Device1 
 

Models Accuracy precision Recall F1 
Score 

Execution 
time 

VGG16 0.89 0.90 0.91 0.93 33 min 
42s 

Resnet50 0.93 0.94 0.93 0.96 25min 
9s 

Densenet 0.92 0.91 0.95 0.90 23min 
5s 

Inceptionv3 0.94 0.92 0.95 0.92 18min 
30s 

Xception 0.90 0.90 0.99 0.95 25min 
33s 

Mobilenet 0.91 0.90 0.94 0.93 5min 
58s 

XGBOOST- 
VGG16 

0.94 0.98 0.97 0.99 8min 
49s 

Proposed 
Model 

0.97 0.99 1.00 0.99 45min 
22s 

TABLE III: Autism Disease Classification Results Training 

Different Neural Network Models Without GPU support for 

Device2 
 

Models Accuracy precision Recall F1 
Score 

Execution 
Time 

VGG16 0.82 0.87 0.80 0.80 8h 7min 

Resnet50 0.86 0.77 0.93 0.92 8h 
22min 

Densenet 0.79 0.78 0.82 0.90 7h 
19min 

Inceptionv3 0.90 0.89 0.98 0.98 7h 
27min 

Xception 0.88 0.80 0.92 0.93 8h 
29min 

Mobilenet 0.82 0.88 0.90 0.91 2h 
15min 

XGBOOST- 
VGG16 

0.93 0.91 0.92 0.93 52min 
1s 

Proposed 
Model 

0.92 0.94 0.97 0.97 9h 
18min 

 
TABLE IV: Autism Disease Classification Results Training 

Different Neural Network Models With GPU support for 

Device2 
 

Models Accuracy precision Recall F1 
Score 

Execution 
time 

VGG16 0.87 0.90 0.89 0.85 41 min 
38s 

Resnet50 0.89 0.92 0.90 0.92 35min 
19s 

Densenet 0.88 0.85 0.86 0.93 31min 
41s 

Inceptionv3 0.83 0.87 0.88 0.89 19min 
1s 

Xceptionv3 0.87 0.88 0.89 0.92 32min 
9s 

Mobilenet 0.83 0.86 0.88 0.88 12min 
2s 

XGBOOST- 
VGG16 

0.93 0.91 0.95 0.97 19min 
1s 

Proposed 
Model 

0.92 0.97 0.99 0.95 1hr 
3min 

 
V. CONCLUSION 

In this modern era, the concept of Neural Networks has 

become highly demanded for dealing with image datasets. It is 

also used for applications requiring text datasets, numerical 

values, etc. Neural Networks are known for their accurate 

prediction and classification, making them crucial for resolving 

many real-life issues. However, training Neural Networks on 

large datasets can be time-consuming. To address this issue, ac- 

celerating technologies such as parallel computation on multi- 

core platforms like GPUs are employed. In this study, we 

utilized CUDA-supported CPU and GPU functions to measure 

the time spent on widely used neural network techniques. We 

also focused on recognizing the autistic disease and demon- 

strated efficient results using a dataset consisting of images 



of autistic children’s faces. Furthermore, we investigated the 

impact of different CPU and GPU hardware configurations 

on the functionality and energy usage of CNNs. Our findings 

show that GPUs outperform CPUs in terms of accuracy and 

required time in all cases. These findings can be applied to the 

development of energy-efficient neural network designs and 

deep CNN frameworks. The measurements reveal improved 

performance due to the parallelized nature of GPU functions. 
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