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Abstract 

Bridging the gap between diffuse x-ray or neutron scattering measurements and predicted structures derived from atom-atom 

pair potentials in disordered materials, has been a longstanding challenge in condensed matter physics. This perspective gives 

a brief overview of the traditional approaches employed over the past several decades. Namely, the use of approximate 

interatomic pair potentials that relate 3-dimensional structural models to the measured structure factor and its’ associated pair 

distribution function. The use of machine learned interatomic potentials has grown in the past few years, and has been 

particularly successful in the cases of ionic and oxide systems. Recent advances in large scale sampling, along with a direct 

integration of scattering measurements into the model development, has provided improved agreement between experiments 

and large-scale models calculated with quantum mechanical accuracy. However, details of local polyhedral bonding and 

connectivity in meta-stable disordered systems still require improvement. Here we leverage MACE-MP-0; a newly 

introduced equivariant foundation model and validate the results against high-quality experimental scattering data for the case 

of molten iron(II) oxide (FeO). These preliminary results suggest that the emerging foundation model has the potential to 

surpass the traditional limitations of classical interatomic potentials.  
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1. Understanding disordered structures. 

Finding the link between the measured static structure 

factor from a disordered material, and the predicted structure 

derived from individual atom-atom interatomic pair 

potentials, is a long-standing problem in condensed matter 

physics [1, 2]. The suitability of classical interatomic 

potentials in accurately predicting structure are typically 

assessed by comparing the Sine Fourier transform of the 

measured diffraction data, the total pair distribution function 

(PDF), to the appropriately weighted sum of the partial atom-

atom PDF’s. This comparison is straight forward in the case 

of neutron scattering where the coherent scattering lengths 

are constant with momentum transfer, Q, but requires 

consideration of the Q-dependent electronic form factors in 

the case of x-rays. Nevertheless, both neutron and x-ray 

diffraction data typically serve as rigorous tests of model 

structures predicted by simulation methods [3]. 

 

Ornstein-Zerneike have argued that the total correlation 

function is a direct effect of molecule 1 on molecule 2, plus 

an indirect effect of all other molecules [4]. The Ornstein-
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Zerneike equation can be extended using angular dependent 

pair distribution functions, from equations such as 

Hypernetted Chain Theory [5] or Percus Yevik theory [6] for 

hard spheres. Solving the angular dependent pair correlation 

function can be achieved by a series expansion of spherical 

harmonics, whereby the potential energy is the sum of pair 

interactions between atoms within different molecules. 

Alternatively, the use of approximate pair potentials in 

molecular dynamics or Monte Carlo simulations can offer 

approximate model structures that capture the underlying 

physics and chemical bonding in crystals, liquids and 

glasses.  

 

A notoriously difficult example of a binary liquid x-ray 

PDF to measure experimentally as well as model, is shown in 

figure 1. The experimental data are those previously reported 

by Shi et al. [7] for molten Fe49O51 at 1673K containing 

91%Fe2+. Here the qualitative local polyhedral bonding and 

connectivity in molten FeO is reproduced by several classical 

Molecular Dynamics (MD) interatomic potentials, including 

Born-Mayer [8-10], Buckingham [11], Interionic [12] and 

Morse potentials [13]. However, none of these interatomic 

potentials are in quantitative agreement with predicting the 

dominant interactions associated between Fe2+ and O2-. The 

multivalent nature of Fe bonding depends several factors, 

including oxygen partial pressure, temperature and 

composition. Fe-O interactions are of fundamental 

importance in iron and steelmaking, where oxidation states 

and coordination numbers can have a direct effect on phase 

stability, melt viscosity, density and heat capacity. 

 
Figure 1. The measured x-ray differential pair distribution 

function, D(r), of liquid FeO (circles) compared to classical 

molecular dynamics simulations using six different 

interatomic potentials. The model partial structure factors 

were weighted by the Q-dependent x-ray form factors and 

the total S(Q) truncated at a Qmax=20Å-1. The MD models 

were calculated using the potentials of (a) [9] (b) [11] (c) 

[12] (d) [13] (e) [10] (f) [8]. The R-factor for each MD 

model is calculated with respect to the experimental data in 

T(r) between rmin=1Å and Rmax=10Å, where a lower R-

factor indicates better agreement with experiment. Here the 

D(r) representation is shown rather than T(r) to highlight the 

structural differences. 

 

Typically, a -squared analysis between the computed and 

measured structure factor, S(Q), [14, 15] or R-factor 

analysis [3, 16] between the model and experimental PDF’s, 

is used to assess the validity of any structural model. Here 

the differential distribution function D(r) is related to S(Q) 

through a Sine Fourier transform using the Hannon-Howells-

Soper formalism [17], 

 

  and, 

 

where  

where  is the average x-ray scattering form 

factor squared and the total distribution function T(r) 

includes the radial bulk density term. Comparisons of the 

R-factor in real space are made between the minimum and 

maximum atom-atom interaction distances T(rmin<r<rmax). At 

distances shorter than rmin, oscillations in the experimental 

data can arise for number reasons, including systematic 

errors in the measurement, Fourier transform artifacts due to 

the finite maximum Q, and in the case of x-ray diffraction, 

approximations in the electron cloud distribution used to 

analyze the scattering data. Nonetheless these unphysical 

oscillations below rmin should oscillate about the density line 

 (see figure 1). For these reasons, Reverse Monte 

Carlo fits are typically refined against the S(Q) reciprocal 

space data [18], which has the added benefit of a straight 

forward comparison with statistical experimental errors. 

2. Standard methods for modelling scattering data. 

The development of parametrized classical interatomic 

potentials routinely used in Molecular Dynamics  (MD) and 

Monte Carlo simulations are often based on crystalline 

properties, lattices and bond lengths. Popular potential types 

include Lennard-Jones [19], Stillinger-Weber [20], 
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embedded-atom method [21], CHARMM [22] and AMBER 

[23] force fields, among many others. Although the large 

system sizes of these simulations enable the calculation of a 

systems bulk properties, a main aim of fitting potential 

functions is to make the potential transferable, such that it 

can be used to describe a different materials’ structure and 

properties other than the one it was designed for. However, 

there is an inconsistency in the use of the effective pair 

potential approximation, since it may not effectively capture 

quantum mechanical phenomenon such as polarizability or 

many body effects, etc. While pair-theory or fixed functional 

form approximations greatly simplify and speed-up the 

computational calculations, such quantum effects are 

typically accounted for by using approximations to create 

effective pair potentials. For more accurate quantum 

mechanical modeling, and the prediction of both the 

electronic and atomic structures, the interactions between 

electrons needs to be considered explicitly. Density 

functional theory (DFT) with systematic advancements in the 

exchange-correlation approximations [24] has provided an 

effective approach for quantum mechanical treatment of 

materials. DFT based MD simulations have played an 

important in accurate modeling of condensed phases [25]. 

However, even the DFT based MD simulations are often 

limited to short simulation times (~ 10’s of ps), and only a 

small number of atoms (100’s of atoms) can be treated.  

 

By approaching the problem from a tangential direction, 

Monte Carlo fits can provide a 3-dimensional structures 

perfectly consistent with the measured data. Methods such as 

Reverse Monte Carlo (RMC) [18] and Empirical Potential 

Structure Refinement (EPSR) [15] iteratively move atoms 

and/or molecules, with a given probability to avoid local 

minima, that ultimately improve agreement with the 

scattering pattern. However, these methods often lack 

knowledge of the underlying physics, restricting them to 

structure and density refinements alone. These Monte Carlo 

approaches are also subject to ambiguities caused by 

uniqueness, whereby vastly different structural models can 

be made to adequately fit the diffraction data with the correct 

density [26, 27]. The empirical potentials used in EPSR in 

particular are a means to drive the fitting procedure based on 

the difference between the model and experiment, and not 

meaningful in the sense of predicting the thermodynamic 

properties or atomic dynamics of a material. Nonetheless, 

EPSR has inspired our current efforts described in this 

perspective to try and complete the link; using modern 

computing tools to create and guide realistic interatomic 

potentials that agree with experiment while maintaining 

quantum mechanical level accuracy. An overly simplistic 

overview of the correlation between experimental accuracy 

and theoretical accuracy of existing methods and the 

objective of developing machine learned interatomic 

potentials is illustrated in figure 2. 

 
Figure 2. Simplistic overview of scattering model 

methodologies. 

3. A new perspective on understanding disorder. 

An alternative to addressing the accuracy limitations of 

effective pair potentials while also improving the spatio-

temporal limitation of DFT-MD simulation is to directly 

machine learn the potential energy surfaces from ab initio 

datasets. Unlike the empirical interatomic potentials, these 

machines learning interatomic potentials are inherently high 

dimensional, which allows them to achieve accuracy as 

afforded by their training reference method. Many machine 

learning interatomic potential (MLIP) architectures have 

been developed since the past decade, with some of the most 

relevant being the Behler-Parrinello neural network [28], the 

Gaussian approximation potential (GAP) [29], the Spectral 

Neighbor Analysis Potential (SNAP) [30], the moment 

tensor potential (MTP) [31], ANI [32, 33], SchNet [34], 

DeepMD [35], NequIP [36], MACE [37] and Allegro [38]. 

Furthermore, addition of long-range interactions has also 

been proposed in recent studies using MLIP’s, which would 

allow them to model multiply charged systems or interfaces, 

etc. [39, 40]. 

The early development of the MLIP’s (except for ANI) 

were predominantly focused on simulations of specific 

chemical systems or materials under different conditions. A 

bottleneck to training these MLIP’s was related to efficient 

sampling of the training configurations, as labelling these 

configurations still required expensive DFT calculations. To 

solve this challenge, active learning strategies were devised 

to enable efficient sampling of the most relevant minimum 

training configurations that would lead to optimal coverage 

of MLIP for the chemical space of interest. Active learning 

methods were devised [41] to construct quantum 
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mechanically accurate and transferable machine learning-

based models of the potential energy surface for the 

molecular modelling of materials. The method consists of 

three main steps: phase exploration, then query a small 

subset of that explored region for labelling, and training of 

the interatomic potential.  These active learners have been 

shown to dramatically lower the number of labels needs to 

train the MLIPs by improving the diversity of training space. 

Machine learning interatomic potentials (MLIP) can maintain 

near ab initio accuracy, and enable larger system sizes 

through linear scaling, together with time scales comparable 

to classical interatomic potentials. MLIP’s based on the 

Gaussian Approximation Potential (GAP) have been 

successfully trained to model liquids [42], crystals [43], 

defects [44], amorphous [45], multi-component materials 

[46], and molecules [47]. 

Sivaraman et al. [48] have extended the MLIP methodology 

by using experimental scattering data measured over a wide 

range of phase space to drive the procedure. An active 

learning scheme, initialized by model structures, iteratively 

improves a MLIP until agreement is obtained with 

experiment within a specified quantum mechanical accuracy 

(see next section). Using the experimental data to guide the 

DFT calculations is particularly important for metastable 

materials such as supercooled, liquid, amorphous or glassy 

materials, where the system is not in the lowest energy state. 

A critical pre-requisite of this approach is that the scattering 

data are of the highest quality. The appropriate experimental 

corrections and normalization procedures have been well 

documented for both neutron [49, 50] and x-ray diffraction 

[51, 52]. However, disordered materials, unlike crystals, do 

not have a periodic lattice to verify the underlying structural 

order. Rather, consistency checks are used verify the 

accuracy of the data, including that the low-r data in the PDF 

oscillates around the density line and the (dis-)agreement 

with the measured S(Q) and the Fourier back-transform gives 

an assessment of the level of systematic error [49, 52]. A 

primary goal of this methodology is to develop interatomic 

potentials that encompass all condensed matter phases, both 

solid and liquid, that are transferrable. The workflow for 

mapping MLIP’s is shown in figure 3. 

 

Figure 3. Workflow for mapping machine learned 

interatomic potentials across phase space. (a) Sample the 

configuration space. (b) Perform single point DFT for the AL 

samples and fit the ML model. (c) Enrich the configuration 

space by using meta-dynamics on the ML based MD. (d) 

Diffraction experiments (e) Perform rigorous validation of 

ML driven MD simulation using pair distribution functions. 

4. Experimentally driven MLIP’s. 

Experimentally, carefully analysed x-ray and neutron 

diffraction data can provide rigorous benchmarks for 

discerning between different structural models of disordered 

materials. Progress toward the automated fitting of MLIP’s 

using experimental PDFs and active learning have been made 

in this regard using two approaches. Firstly, reproducing the 

high temperature phases of the refractory oxide HfO2 [48], 

has been made using an automated closed loop via an active 

learner. Crystal phases based on x-ray and neutron 

diffraction data are used to initialize and sequentially 

improve an unsupervised machine-learning model over a 

predetermined range of phase space. The resulting MD 

simulations were able to reproduce all the experimental 

phases with near ab initio precision [48]. Particularly, the 

experiment driven MLIP work provided clarity on the 

ambiguous high-temperature phase behaviour of hafnia 

immediately preceding melting, demonstrating agreement 

between simulations and experiments on the mixed cubic and 

tetragonal phases near the melting point. In the second 

approach, the initial structure of ionic liquids has been 

created using classical MD simulations, and down-sampled 

by using an active learning algorithm. Subsequently, iterative 

DFT calculations are performed, and a MLIP potential 

developed until a specified energy threshold is reached. 

Atomistic models developed using this method have been 

applied to molten LiCl [53], NaCl [44] and LiCl-KCl [54]. 

Such approaches provide new physical insights into the 

temperature-dependent coordination environment of liquids, 

together with property information including density, self-

diffusion constants, thermal conductivity, and ionic 

conductivity [55]. 

In the example of liquid NaCl, a GAP model developed by 

Tovey et al. [44] was trained with 1000 atomic 

configurations and obtained a DFT accuracy of within 1.5 

meV/atom. The MLIP enabled the analysis of the high-

temperature molten salt properties on large systems (~10,000 

atoms) and longer time scales (>1 ns), currently inaccessible 

to ab initio simulations. Here, the GAP model reciprocal and 

real space functions are compared to subsequently measured 

partial S(Q) and PDF’s obtained from Neutron Diffraction 

Isotopic Substitution (NDIS) measurements, essentially a 

double difference method [56], see figure 4. An R-factor 

analysis yields 3-4% at the partial PDF level, well within the 
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experimental errors, and a considerably more rigorous test of 

any model than that provided by the total neutron or x-ray 

pair distribution functions. In addition, the GAP model is in 

very good agreement with previously published experimental 

diffusion constants, with a root-mean-square deviation of 

<0.05×10−8 m2s−1 [44]. Consequently, these results 

demonstrate that GAP models are able to accurately capture 

the many-body interactions necessary to model both the 

structure and dynamics ionic systems. 

0 4 8 12

-4

0

4

S
a
b
(Q

)

Q (Å-1)

Na-Na

Na-Cl

Cl-Cl

X-ray

NDIS

(a)

(b)

0 4 8 12 16
0

1

S
X
(Q

)

 

0 5 10 15

0

4

8

D
if
fe

re
n

ti
a

l 
P

D
F

 (
a

to
m

s
Å

-2
)

r (Å)

Cl-Cl

Na-Na

Na-Cl

(c)

 

Figure 4. Liquid NaCl GAP model compared to the 

measured (a) x-ray structure factor and (b) partial pair 

structure factors determined from neutron diffraction isotopic 

substitution (NDIS) [56] (c) associated partial differential 

pair distribution functions and their associated R-factors 

calculated between rmin=2Å and rmax=10Å. 

However, limitations in DFT reference dataset or the 

approximation can lead to MLIP’s to predict overstructured 

liquid structures [57], leading to a deviation with respected to 

experimentally measured melt structures. Matin et al. [58] 

introduced a novel method to refine machine learning 

potentials by incorporating experimental observations, 

specifically focusing on the melt phase of pure aluminium. 

This method leverages iterative Boltzmann inversion, 

allowing for the integration of experimental radial 

distribution function data at specific temperatures to act as a 

correction to DFT trained MLIP’s. The addition of this pair 

correction fixed over-structuring issues seen in melt 

structures predicted by MLIP’s without correction. Their 

results [58] also showed an enhancement in the prediction of 

diffusion constants with the added correction. However, the 

authors left the fitting of RDF’s from different temperatures 

simultaneously for providing continuous corrections to DFT-

trained MLIPs for future work. 

4.1 High performance computing workflow for MLIP 

fitting over combinatorial chemical spaces. 

The discussion so far has centred on the development and 

fitting of MLIPs for specific chemical systems. We now shift 

our focus to recent advancements in modelling or the rapid 

generation of MLIPs for arbitrary chemical systems, with a 

particular emphasis on disordered melts. In recent work, Guo 

et al. [59] introduced a high-performance active learning 

workflow termed AL4GAP. This workflow is designed to 

generate compositionally transferable MLIPs over charge-

neutral mixtures of arbitrary molten mixtures, spanning 11 

cations (Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Nd, and Th) and 

4 anions (F, Cl, Br, I). The authors demonstrate the efficacy 

of this workflow by generating and validating GAP-based 

MLIP models with DFT-SCAN level accuracy for five 

systems of increasing complexity: LiCl–KCl, NaCl–CaCl2, 

KCl–NdCl3, CaCl2–NdCl3, and KCl–ThCl4. These high-

temperature melts pose significant characterization 

challenges due to corrosion and radiation, complex sample 

environments. The emergence of such a powerful framework 

will aid challenging x-ray synchrotron and neutron 

experiments in focusing their resources on the most 

promising melt compositions and conditions, informed by 

feedback from MLIP-driven MD simulations. 

5. Emergence of foundational models in materials 

and chemistry. 

The materials project based [60], encompassing ~1.5 

million configurations across 89 chemical elements, has set 

the stage for the next generation of foundational models in 

materials science, including M3GNet [61], CHGNet [62], 

and MACE-MP-0 [63]. These foundation models hold the 

promise of development of single large models that can learn 

from increasingly large chemical spaces and elements. 

Notably, the MACE-MP-0 model demonstrated its versatility 

in modelling across various chemistries in solid, liquid, and 

gaseous states. 
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In the Figure 1, we showed that FeO melt in a challenging 

system for many classical interatomic potentials. Here we 

have performed the original simulation for melting of 800 

atoms of FeO using MACE-MP-0 foundation model using 

[64]. The starting structure is created using PACKMOL [65] 

consisting of 100 atoms of FeO using the starting density 

consistent with the experimental x-ray PDF [7]. The starting 

structure is melted at 2500K and cooled to a target 

temperature of 2000K. The final structure is replicated to 800 

atoms and simulations are performed in NVT ensemble. The 

simulations are performed using atomic simulation 

environment [66].  The production simulations are performed 

for 150ps and the PDF’s are computed from the last 125 ps. 

Additionally, we have also computed the PDF’s using the 

MACE-MP-0 model with dispersion correction (labelled as 

MACE-MP-0+D3) [67]. This simulation of molten FeO was 

not aimed at comprehensiveness, but to offer insights into 

emerging opportunities such as foundation model through 

original simulation results. The results are visualized in 

Figure. 5. The R-factor analysis show that MACE-MP-0 

simulation shows an improved agreement with experiment in 

comparison to every other empirical forcefield reported in 

Figure 1. We should note that the simulations performed in 

the figure 1 using the empirical forcefield were carried out 

using a large simulation cell of ~6000 atoms and we would 

presume that a larger simulation cell could only further 

improve the agreement for MACE-MP-0 predicted structure 

with experiments. In addition, it was observed that inclusion 

of dispersion interactions did not lead to any improvement in 

the predicted structure.  
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Figure 5. The measured x-ray differential pair distribution 

function, D(r), of liquid FeO at 1673K (circles) compared to 

the MACE-MP-0+D3 model with dispersion interactions 

(dashed blue line) and MACE-MP without (solid red line) at 

2000K. 

6. MLIP prospects and difficulties. 

The development of accurate transferrable interatomic 

potentials has been a longstanding challenge in condensed 

matter physics. Using scattering experiments to help 

construct interatomic potentials is not a new idea [2], but 

with the advent of supercomputers, machine learning, and 

active learning methods, it is becoming an achievable goal. 

The results described in this perspective relate primarily to 

ionic and oxide systems, but they already indicate that MLIP 

models can capture the many-body interactions required to 

develop large scale models with quantum mechanical 

accuracy. Already, experimentally driven active learning 

methods in the field of molten salts can significantly lower 

the barrier to the understanding and design of materials 

across the periodic table. Similar active learning approaches 

using MLIP’s applied to more complex and multi-component 

materials are expected to uncover new physics, particularly 

in disordered phases. In this regard, we argue that using 

experimental scattering data to drive the MLIP testing and 

training is essential, as the system under investigation may 

not necessarily be in the lowest energy state. 

By scaling up the number of atoms in the simulation box, 

not only can material properties be more accurately 

predicted, but much slower quench rates of the system can 

also be attained. This is particularly useful in the study of 

metastable states such as supercooled liquids and glasses. 

Nonetheless, specific challenges arise when modelling 

metastable amorphous and glassy forms, that can cause the 

active learning scheme to fail. The limited sampling of 

configuration space in high dimensionality systems with 

significant free energy barriers could inhibit access to the 

necessary atomic arrangements. Initial attempts to widen 

range of possible configurations using meta-dynamics 

approaches [68] in the case of amorphous hafnia have not 

proved successful [69]. However, such schemes to increase 

the diversity of the local chemical environments on which 

the model is trained is the likely key to future progress. 

For stable systems, based on the promising results for liquid 

FeO shown here, combining a AL4GAP type approach (to 

sample a vast range of targeted but diverse chemical space) 

to fine tune the foundation model at a higher accurate density 

functional theory approximation, along with direct infusion 

of input from experimental scattering data is a powerful tool. 

Moreover, this methodology could pave the way in 

understanding the underlying physics of structure-property 

relations in a multiplicity of disordered materials. 
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