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Measurement of CP violation in B® — K27° decays at Belle II
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We report a measurement of the CP-violating parameters A and S in B® — K70 decays at
Belle II using a sample of 387 x 10° BB events recorded in ete™ collisions at a center-of-mass

energy corresponding to the T(4S5) resonance.

These parameters are determined by fitting the

proper decay-time distribution of a sample of 415 signal events. We obtain A = —0.04731% £0.05

and S = 0.7570 29 +0.04, where the first uncertainties are statistical and the second are systematic.

The B® — K7 decay proceeds mainly via the b —
sdd loop amplitude, involving emission and reabsorption
of a virtual W boson and a top quark, that carries a
weak phase arg(V;,Vi%). Throughout this paper, charge-
conjugate modes are implicitly included. Here, V;; de-
notes Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments [Il [2]. The decay is suppressed in the Standard
Model (SM) due to the smallness of |Vi|. As non-SM
particles can potentially propagate in the loop, studies of
this decay provide sensitivity to physics beyond the SM.
Such non-SM physics can manifest itself as an asymmetry
in the rates of CP-conjugate decays, i.e., CP violation [3].

In the BY — K70 channel, CP violation results from
either interference between two B° decay amplitudes, or
interference between a B decay amplitude and that of
a BY following B°-B° mixing. These two phenomena
are quantified by the parameters A and S, respectively.
The parameter A is also denoted as —A in the litera-
ture. Neglecting subleading amplitudes with a differ-
ent weak phase and CP violation in mixing, we expect
A =0and S =sin2¢;, where ¢ = arg(—Vchc’g/Wth’g).
The parameter sin 2¢; is measured to be 0.70 £ 0.02 [4]
in decays mediated by b — c¢¢s transitions such as
BY — J/¢K?. However, the contribution from a color-
and CKM-suppressed b — uus tree amplitude, involv-
ing the bottom-to-up-quark transition via a W boson
emission, introduces an extra weak phase [5HI|; this
shifts the S value from sin 2¢;. The resulting difference,

J
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P(At, q) =

4TBO

where At = tcp — tiag is the difference in proper times
between the two decays, ¢ is the flavor of the tag-side B

{1 + q [Ssin(AmgAt) — Acos(AmgAt)] }7

AS = § — sin2¢;, is estimated in a number of theo-
retical approaches. Predictions of AS based on QCD
factorization range between 0.01 and 0.12 [5, [10], while
those based on SU(3) symmetry provide a less stringent
lower bound of —0.06 [6] 9] [TT]. Similarly, the predicted
value of A due to the color-suppressed tree amplitude
ranges from —0.01 to 0.07 [5 [6]. Deviations of AS and
A from their expected values would indicate either large
subleading amplitudes or non-SM physics [12].

The parameters A and S are determined from the dif-
ference between the decay-time distributions of B% —
K97% and B® — K970 decays. The BABAR and Belle
experiments have measured these CP asymmetries using
467 x 105 and 657 x 10° BB (B = B° or B") events,
respectively [I3] [14]. The corresponding A (S) values are
0.134+0.13 (0.55 4 0.20) and —0.14 + 0.14 (0.67 4 0.32).

In this Letter, we report the first measurement of A
and S in the B® — K{7% decay from the Belle II exper-
iment. We use a sample of (387 & 6) x 10 BB events
collected in ete™ collisions at a center-of-mass (c.m.) en-
ergy corresponding to the T(4S5) resonance.

At eTe™ experiments operating near the YT (4S) reso-
nance, pairs of neutral B mesons are coherently produced
in the process ete™ — T(4S) — B°B°. When one of
these B mesons decays to a CP eigenstate fcp such as
K97, and the other to a flavor-specific final state fiag,
the time-dependent decay rate is given by

(1)

(

meson (+1 for B° and —1 for B%), 7o is the BY lifetime,
and Amg is the B’~BY mixing frequency. This study
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employs a time-dependent CP analysis method similar
to previous measurements [I3, [I4]. The important chal-
lenge is determining the location of the B — K270 de-
cay vertex, which is essential for the At determination, in
the absence of any charged particle originating from the
vertex. The analysis is developed and tested with simula-
tion and validated with a control sample of B® — J/¢ K?
decays before examining the B — K%7° candidates in
the data.

The Belle II detector [I5, [I6] operates at the Su-
perKEKB asymmetric-energy (4GeV et on 7GeV e™)
collider [I7]. The detector consists of several subdetec-
tors surrounding the interaction region in a cylindrical ge-
ometry and is divided into two sections depending on the
coverage in polar angle §. The two sections are the bar-
rel (32.2° < 0 < 128.7°) and endcap (12.4° < 6 < 31.4°
or 130.7° < 6 < 155.1°). The subdetectors most rel-
evant for our study are a silicon-based vertex detector
(VXD), a gas-based central drift chamber (CDC), and an
electromagnetic calorimeter (ECL) made of CsI(T1) crys-
tals. The VXD is the innermost component, comprising
two layers of pixel sensors surrounded by four layers of
double-sided strip sensors [I8]. The second pixel layer
was incomplete, covering one-sixth of the azimuthal ac-
ceptance, for the data analyzed here. The VXD samples
the trajectories of charged particles (“tracks”) near the in-
teraction region to determine the decay positions of their
parent particles. The CDC is the main device for track
reconstruction and measurements of particle momenta
and charges. The ECL measures photon energies.

We analyze collision data recorded at the Y(45) res-
onance, corresponding to an integrated luminosity of
362fb~'. We use large samples of simulated Y(4S) —
BB and ete™ — ¢q (¢ = u,d, s,c) events to optimize the
event selection and study background distributions. Sim-
ulated B® — KJ70 events are used to model signal decays
and calculate the reconstruction efficiency. We use EvT-
GEN [19] to generate Y (4S) — BB with the subsequent
B-meson decays and PHOTOS [20] to incorporate final-
state radiation from charged particles. The simulation of
qq background relies on the KKMC generator [2I] inter-
faced to PyTHIA [22]. The detector response for final-
state particles is simulated with GEANT4 [23]. Events
are reconstructed using the Belle 1T software [24] [25].

Candidate K mesons are reconstructed from pairs of
oppositely charged tracks, which are assumed to be pions
and fit to a common vertex. The resulting invariant mass
is required to lie between 489 MeV and 507 MeV, corre-
sponding to a +30 range around the known K9 mass [26],
with ¢ being the resolution. We suppress contamina-
tion from prompt K? candidates and A decays using two
boosted-decision-tree (BDT) classifiers [27]. These BDTs
rely mostly on kinematic information from the K? and
its decay products.

Photons are identified as isolated energy deposits in the
ECL that are not matched to any track in the CDC. We

reconstruct 7° candidates from pairs of photons that have
energies greater than 35 (153) MeV if reconstructed in
the barrel (endcap) ECL. The different energy thresholds
are used to suppress beam background, which is higher
in the endcap than in the barrel section. We require the
diphoton mass to lie between 116 MeV and 150 MeV (+3c0
range in resolution around the 7° mass [26]). The abso-
lute cosine of the angle between the higher-energy pho-
ton’s direction in the 7° rest frame and the 7° direction
in the lab frame must also be less than 0.972. These crite-
ria reduce contributions from misreconstructed 7° candi-
dates. To improve the momentum resolution, we perform
a kinematic fit with the diphoton mass constrained to the
known 7¥ mass [26].

A neutral B-meson candidate is reconstructed by com-
bining a K? candidate with a 7% candidate. Two kine-
matic variables are used to select signal B candidates:
the beam-energy-constrained mass (My,) and the energy
difference (AE). These are calculated as

My = \V El%eam - |ﬁB|27 (2)

AE = EB - Ebeama

where Fheam is the beam energy, and pp and Ep are the
momentum and energy, respectively, of the B meson. All
quantities are calculated in the c.m. frame. Correctly re-
constructed signal candidates peak in My, at the known
B® mass |26], and peak in AE at zero.

For B® — K{7% the higher-energy photon from the 7°
decay causes a significant correlation between My, and
AFE due to leakage of energy deposited in the ECL. To
reduce this correlation, when calculating pp in Eq. (2)
we replace the magnitude of the 7° momentum with

\/(Ebeam — EKg)2 — mfrg, where EK(SJ is the K momen-
tum in the c.m. frame. Simulation shows that the mod-
ified My. (M].) reduces the linear correlation coeffi-
cient from 19% to —1% and has an improved resolution
over that of My.. We retain candidate events satisfying
5.24 < M} < 5.29 GeV and |AE| < 0.30 GeV.

To measure the decay-time difference At, we must de-
termine the positions of the signal and tag-side B decay
vertices. These vertices are obtained using information
from the position and spread of the eTe™ interaction re-
gion, which is modeled as a three-dimensional Gaussian
distribution. The signal B vertex position is obtained
by projecting the K? flight direction, determined from
its decay vertex and momentum, back to the interaction
region. The intersection of the K flight projection with
the interaction region provides a good estimate of the
signal B decay vertex, since both the transverse flight-
length of the B® meson (~ 40 pum) and the transverse
size of the interaction region (= 10 pm) are small as com-
pared to the B° flight length along the boost direction
(= 140 pm). The tag-side vertex is reconstructed with
tracks that are not associated with the B® — K{7% can-
didate. Such tracks must have a minimum momentum



of 50 MeV and at least one hit in each of the PXD,
SVD, and CDC subdetectors. We also apply a similar
interaction-region constraint as that used for tracks on
the signal side. We approximate At to be Afl/Bvyy*,
where Af is the distance between signal and tag-side
vertices along the e~ beam direction, By (= 0.28) is
the Lorentz boost of the 7°(4S) in the lab frame, and
v* (= 1.002) is the Lorentz factor of the B® meson in the
c.m. frame.

We employ a BDT classifier that uses 32 event-
topology variables to distinguish the ¢g background
from B-meson decays. The following variables provide
the most discrimination: modified Fox—Wolfram mo-
ments [28], CLEO cones [29], the thrust value [30] of
the rest of the event, and the cosine of the angle be-
tween the thrust axis of the signal B and that of the rest
of the event. The BDT is trained on samples of simu-
lated ete™ — ¢q and signal events, each equivalent to
about three times the size of the dataset. The BDT out-
puts a single variable (Cgpr) that ranges from zero for
background-like events to one for signal-like events. We
require Cgpr to be greater than 0.6, which rejects about
93% of the qgq background while preserving 80% of the
signal. The remainder of the Cgpr distribution strongly
peaks near 1.0 for signal, leading to difficulty in modeling
it with an analytic function. We thus transform it into a
new variable, Cipt = In[(Cepr — 0.6)/(1.0 — Cep7)],
where 0.6 (1.0) is the minimum (maximum) possible
value of the remaining Cppr distribution. The Chpr
distribution can be parametrized with a sum of Gaussian
functions, and Cfpy is later used as a fit variable.

After applying all selection criteria, 3% of the events
have more than one B candidate. Such multiple can-
didates come from random combinations of final-state
particles. In events with multiple candidates, we choose
that with the largest p-value resulting from the 7%-mass-
constrained fit; if that criterion is ambiguous, we select
the candidate with the largest p-value from the K?-vertex
fit. This selection retains the correct B candidate in
87% of simulated events that have multiple candidates.
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where w, is the fraction of wrongly tagged events; Aw,
is the difference in w, between BY and BY; PANCHpS
the asymmetry in their tagging efficiencies, which are the
fractions of B® or B signal candidates to which a flavor
tag is assigned; and R, is the At resolution function.

The signal efficiency after all selection criteria are ap-
plied (erec) is 20%. Simulation studies show that 1.7%
of signal candidates are incorrectly reconstructed by in-
cluding a final-state particle from the tag-side B meson.
We consider this small component, arising mostly due to
misreconstructed 7°, as part of the signal.

The flavor of the tag-side B® meson, ¢, is determined
from the properties of final-state particles that are not
associated with the reconstructed B® — K270 decay.
We use a category-based multivariate flavor-tagging al-
gorithm for this purpose [3I]. The algorithm outputs
two parameters, the b-flavor charge ¢ and r, which is an
event-by-event tagging quality factor ranging from zero
for no flavor discrimination to one for unambiguous fla-
vor assignment. The dataset is divided into seven r bins
that contain similar numbers of events, but have different
signal-to-background ratios.

We select events in which At is well-measured by re-
quiring |At| < 10.0ps and o, < 2.5ps, where o4, is
the uncertainty on At, estimated event-by-event. The
At distribution of these events is fitted to determine A
and S. For the remaining events, about 40%, the At dis-
tribution is not included in the fit. However, these events
are still useful to constrain A, which is sensitive to the
relative yields of B® and B° decays. We thus perform
a simultaneous extended maximum-likelihood fit to both
subsamples in seven r bins [13]. For each subsample, the
likelihood function includes one-dimensional probability
density functions (PDFs) for M| ., AE, and Cfpy; for
the first subsample, the likelihood also includes a PDF
for At that depends on the flavor tag q. The PDFs for
M{., AE, and Cfpyp are taken to be the same for both
subsamples, as found in simulation.

The PDFs for the signal component are as follows: M
is modeled with the sum of a Crystal Ball function [32]
and a Gaussian function with a common mean; AF with
the sum of a Crystal Ball and two Gaussian functions, all
three with a common mean; and Cp with the sum of
asymmetric and symmetric Gaussian functions. The At
PDF is given by

{ [1 — qAw, + qAc,, (1 — 2wr)} + [q(l = 2w;) + Ay, (1 — qur)] [S sin(AmgAt) —

3)

The resolution function is described by a double Gaussian
convolved with an exponential function; the Gaussian
means and widths are scaled by o,,. The At resolution
is dominated by the signal-side K. Simulation shows
that the o5, distributions for signal and background are



the same. We fix 750 and Amgy to the world averages of
1.519+0.004 ps and 0.5065+0.0019 ps~*, respectively [4].
The tagging parameters (w;, Aw,, and Ae,, ,.) are fixed

to values obtained from B® — D)~ 7+ decays [31]. The
effective tagging efficiency e = >, €tag,r(1 — 2w,)? is
(30.0 £ 1.2)%, where &ag,, is the tagging efficiency for
the r-th bin. The w, and Aey,, , values are in the ranges
2%-48% and 0.8%-3.6%, respectively. All signal shape
parameters are fixed to values obtained from simulation
and calibrated with control samples as described below.

For the ¢g background, an ARGUS function [33] is used
for M ., a straight line for AE, and the sum of asymmet-
ric and symmetric Gaussian functions for Cjpp. The At
distribution is modeled with the signal resolution func-
tion Rsig, as this background is dominated by prompt K
decays. We float the ¢g background yield, ARGUS curva-
ture parameter, and AFE slope, but fix the ARGUS end-
point, Chpr and At shape parameters to the values ob-
tained from the data sideband 5.24 < M{ < 5.27 GeV.
All ¢qg shape parameters are taken to be identical for all
r bins.

For the BB background, a two-dimensional kernel den-
sity estimation PDF [34] is used to model the (M| ., AFE)
distribution, and the sum of asymmetric and symmetric
Gaussian functions is used for Cjpp. The At distribu-
tion is modeled with an exponential function convolved
with Rsig. We float the yield of BB background and fix
its shape parameters from a fit to the simulated sample.

We correct the common mean and core width of the
signal M{_, AE, and Cjpr PDF shapes for possible dif-
ferences between data and simulation according to values
obtained from a control sample of B* — D°(— K%7%)7+
decays. To select these events, we apply the same K9 and
70 criteria as used for the signal channel. To ensure the
similar 7° momentum range for signal and control chan-
nels, we require a minimum 7% momentum of 1.5 GeV.
We perform an unbinned maximum-likelihood fit to the
distributions of M _, AE, and Cfp, using PDF shapes
similar to those employed to describe the signal decay.

To validate the fitting procedure, we use a control sam-
ple of BY — Jip(— ptpu™)K? decays. To mimic the
signal decay, we do not use information from the two
muon tracks to reconstruct the signal B decay-vertex.
We perform an unbinned maximum-likelihood fit to the
distributions of My, and At, using PDF shapes and res-
olution functions similar to those employed in the fit to
the signal sample. The measured B° lifetime, A, and S
are 1.46 4+ 0.05ps, 0.10 = 0.07, and 0.76 =+ 0.12, respec-
tively, where the uncertainties are statistical only. These
results are consistent with their world-average values [4],
thus validating our B — K970 fitting procedure. The
above sample is also used to correct the common mean
and core width of the resolution function for possible dif-
ferences between data and simulation.

Figure [1| shows the M{ ., AE, Chpr, and At distribu-
tions in the data along with the fit projections overlaid.

For these plots, the seven r bins have been combined,
and for all plots except At, both data subsamples (de-
scribed earlier) are included. In addition, for each plot
the signal-enhancing criteria 5.27 < M| . < 5.29GeV,
—0.15 < AE < 0.10GeV, |At| < 10.0ps, and Cpp > 0.0
have been applied except for the variable displayed. Dis-
tributions of At with fit projections overlaid are shown
in the Supplementary Material [36]. The resulting sig-
nal yield Nyg, A, and S are 415738 —0.04701%, and
0.7570-29 respectively. The correlation coefficient be-
tween two asymmetries is —0.17%. From the signal yield,
we determine the branching fraction as B(B? — K%7°) =
Niig/ (2N 5 0ec) = (11.1570:52) x 1076, which is con-
sistent with the world average [4]. Here, f7° is the frac-
tion of B°BY or BT B~ production at the Y(4S) reso-
nance [37] and all quoted uncertainties are statistical.

The systematic uncertainties contributing to A and S
are listed in Table [l We estimate the systematic uncer-
tainty due to flavor tagging by individually varying the
(wy, Awy, Ay, ) parameters by their uncertainties for
each r bin, while considering correlations. The maximum
deviations with respect to the nominal results are taken
as systematic uncertainties. The uncertainty due to the
At resolution function is estimated in a similar fashion.
In the nominal fit, we assume the BB background to be
CP symmetric. To account for a potential CP asymme-
try in the BB background, we perform a series of fits
with the At PDF formed by varying the A and S values
for that background from —1 to 41 while fixing the ef-
fective lifetime value to that determined from simulation.
We then calculate the deviations in signal A and S from
their nominal values; the largest deviation is assigned as
the systematic uncertainty. To evaluate the uncertainty
due to a possible asymmetry in the gg background, we
perform an alternative fit by fixing the asymmetry to that
obtained from the data sideband defined earlier. The un-
certainty due to the signal PDF shape is estimated using
an alternative model based on kernel-density estimation.
Similarly, the uncertainty due to the background PDF
shape is calculated by varying all fixed parameters by
their uncertainties and taking the maximum deviation
from nominal results as the uncertainty.

A potential fit bias is checked for by performing an
ensemble test comprising 1000 simulated experiments in
which signal and BB background events are drawn from
simulated samples and gq background events are gener-
ated according to their PDF shapes. We calculate the
mean shifts of the fitted values of A and S from their in-
put values and assign them as systematic uncertainties.
The systematic uncertainty due to multiple candidate se-
lection is evaluated by performing an alternative fit with
all candidates and taking the difference with respect to
the nominal value. The impact of misreconstructed signal
candidates on A and S is negligible. Uncertainties due to
fixed 750 and Amyg values are calculated by varying these
quantities by their uncertainties and repeating the fit; the
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FIG. 1: Distributions of (a) My, (b) AE, and (c¢) Chpr with fit projections overlaid for both B® and B° candidates satisfying
the criteria 5.27 < M. < 5.29GeV, —0.15 < AE < 0.10GeV, |At| < 10.0ps, and Cipr > 0.0 (except for the variable
displayed). The solid curve shows the fit projection, while various fit components are explained in the legends. Distribution of
(d) At for tagged B° and B° candidates after subtracting background with the sPlot method [35]. The asymmetry, defined as
[N(Bfhg) — N(Blag)l/[N(Blg) + N(BY,)], is displayed underneath along with the fit projection.

resulting maximum variations in A and S are assigned as
systematic uncertainties. Tag-side interference can arise
due to the presence of both CKM-favored and CKM-
suppressed tree amplitudes contributing to the tag-side
decay [38]. The resulting impact is conservatively esti-
mated by positing that all events are tagged with such
hadronic decays. The uncertainty due to VXD misalign-
ment is evaluated by reconstructing events with various
misalignment hypotheses as done in Ref. [39]. Assuming

all systematic sources to be independent, we add their
contributions in quadrature to obtain the total system-
atic uncertainty of +0.047 for A and 40.040 for S.

In summary, we measure the CP-violating parameters
Aand S in B — K{7" decays using a sample of 387 x
108 BB events recorded by Belle II in ete™ collisions at
the Y (4S5) resonance. Based on a signal yield of 41573
events, we obtain

A= —0.041072 £0.05 (4)



TABLE I: Systematic uncertainties (absolute) contributing to the time-dependent CP asymmetries.

Source

Flavor tagging

At resolution function

BB background asymmetry
qq background asymmetry
Signal modeling
Background modeling

Fit bias

Multiple candidate selection
7o and Amyg

Tag-side interference

VXD misalignment

Total

0A 68
0.013 0.011
0.014 0.022
0.030 0.018
0.028 < 0.001
0.004 0.003
0.006 0.018
0.005 0.011
0.005 0.010

< 0.001 < 0.001
0.006 0.011
0.004 0.005
0.047 0.040

and

S = 0.75733 £ 0.04, (5)
where the first uncertainties are statistical and the sec-
ond are systematic. This constitutes the first Belle II
measurement of CP asymmetries in the decay. Our re-
sults agree with previous determinations [13,[14], and the
precision obtained for S is better than (similar to) that
achieved at Belle (BABAR), despite using a data sample
only 60-80% the size of the samples used in those exper-
iments. The results are consistent with SM predictions
and can provide useful constraints on non-SM physics.
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