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We measure the B° lifetime and flavor-oscillation frequency using B 0 pWgt decays collected
by the Belle II experiment in asymmetric-energy et e collisions produced by the SuperKEKB
collider operating at the Y(4S) resonance. We fit the decay-time distribution of signal decays,
where the initial flavor is determined by identifying the flavor of the other B meson in the event.
The results, based on 33000 signal decays reconstructed in a data sample corresponding to 190 fb717
are

7,0 = (1.499 £ 0.013 & 0.008) ps

Amy = (0.516 4 0.008 + 0.005) ps ™,

where the first uncertainties are statistical and the second are systematic. These results are consis-

tent with the world-average values.

Knowledge of the BY lifetime 7.0, and the flavor-

B%
oscillation frequency Amy, allows us to test both the
QCD theory of strong interactions at low energy and
the Cabibbo-Kobayashi-Maskawa (CKM) theory of weak
interactions [I, 2]. The Belle, Babar, and LHCb col-

laborations have measured 7,0 and Amy to comparable

precision [3H6]. Additionally, the CMS, ATLAS, D0 and
CDF collaborations have measured 7,0 to similar preci-

sion [THI0]. LHCb’s measurements, 7,0 = (1.524+0.006+

0.004) ps and Am, = (0.505040.0021+0.0010) ps ™', are
the most precise to-date [B [6].[T1] When two uncertain-
ties are given, the first is statistical and the second is
systematic.

Here we report a new measurement of 7,0 and Amy

using hadronic decays of B mesons reconstructed in a
190fb~" data set collected by the Belle IT experiment at
the SuperKEKB asymmetric-energy e e collider. The
data were collected between 2019 and 2021. The B°
mesons are produced in the e"e” — Y(4S) — BB pro-
cess, where B indicates a B° or a BT, Our data set con-
tains approximately 200 million such events. Our mea-
surement tests the ability of Belle II to precisely measure
B° meson decay times and also identify the initial fla-
vor of the decaying BO; such capabilities are crucial for
measuring decay-time-dependent CP violation and de-
termining ¢; and ¢, two of the three angles of the B°
CKM unitarity triangle.[I2] Examples of measurements
of ¢; and ¢, are found in Refs. [13] [14].

The flavor of a neutral B® or B” meson oscillates with
frequency Amy before it decays. The probability density
of a B initially being in a particular flavor state and
decaying after time At in the same flavor state (¢; = +1)

or in the opposite flavor state (¢, = —1) is

—lAt|/ 10

e
P(At, qf‘TBO’ Amd) = ? [1 + qu COS(AmdAt)] .
)
By measuring the distribution of At and ¢, we determine
both 7,0 and Am,. In each event, we fully reconstruct

the “signal-side” B (Bg,) via B = DW= xT decays,
identifying its flavor via the pion charge, as the contri-
bution from B° — D™~ gt decays is of the order of
10~* [I5118] and hence can be neglected here. Through-
out this paper, charge-conjugate modes are implicitly in-
cluded unless stated otherwise.

We use a flavor-tagging algorithm to determine the fla-
vor of the other, or “tag-side”, B meson (B,,) when it
decays [I9]. As the B mesouns are produced in a quantum-
entangled state, the flavor of By,, when it decays iden-
tifies (or tags) the flavor of B, at that instant [20} 21].
From that time onwards, the signal-side B freely oscil-
lates in flavor. The variable At is the difference between
the proper decay times of the B, and B,,,. Equation
also applies when B, decays first, i.e., for negative At.

At SuperKEKB [22], the Y(4S) is produced with a
Lorentz boost in the laboratory frame of gy = 0.28.
Since the B mesons are nearly at rest in the Y(4S)
rest frame, their momenta are mostly determined by the
T(4S) boost, resulting in a mean displacement between
the B, and By,, decay positions of the order of 100 pm
along the boost direction. By measuring the relative dis-
placement, and knowing the Y (4S) boost, we determine
At. To measure 7,0 and Amg, we fit Eq. |) modified
to account for the By,, decay probability and detection
effects, to the background-subtracted At distribution.

The Belle II detector consists of subsystems arranged
cylindrically around the interaction region [23]. The z
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axis of the laboratory frame is defined as the symmetry
axis of the cylinder, and the positive direction is approx-
imately given by the electron-beam direction, which is
the beam with higher energy. The polar angle 6, as well
as the longitudinal and transverse directions, are defined
with respect to the +z axis. Charged-particle trajec-
tories (tracks) are reconstructed by a two-layer silicon-
pixel detector (PXD) surrounded by a four-layer double-
sided silicon-strip detector (SVD) and a 56-layer central
drift chamber (CDC). When the data analyzed here were
collected, only one sixth of the second PXD layer was
installed. A quartz-based Cherenkov counter measur-
ing the Cherenkov photon time-of-propagation is used
to identify hadrons in the central region, and an aerogel-
based ring-imaging Cherenkov counter is used to identify
hadrons in the forward end-cap region. An electromag-
netic calorimeter (ECL) is used to reconstruct photons
and to provide information for particle identification, in
particular, to distinguish electrons from other charged
particles. All subsystems up to the ECL are located
within an axially uniform 1.5T magnetic field provided
by a superconducting solenoid. A subsystem dedicated
to identifying Kg mesons and muons is the outermost
part of the detector.

The data is processed with the Belle IT analysis soft-
ware framework [24] using the track reconstruction al-
gorithm described in Ref. [25]. We use Monte Carlo
(MC) simulation to optimize selection criteria, deter-
mine shapes of probability density functions (PDFs), and
study sources of background. We use KKMC [20] to gener-
ate eTe” — ¢g, where ¢ indicates a u, d, ¢, or s quark,
PYTHIA8 [27] to simulate hadronization, EVIGEN [2§8] to
simulate decays of hadrons, and GEANT4 [29] to model de-
tector response. Our simulation includes beam-induced
backgrounds [30]. We optimize and fix our selection cri-
teria using simulated data before examining the experi-
mental data.

We reconstruct B — D* 7" and B —» D™t decays
by first reconstructing D mesons via D~ — KTn 7,
D’ — Ktn, D’ — K+7r77r0, and D° > K nnln
decays. We then reconstruct D*~ mesons in their decay
to a D7 final state, where the pion is referred to as
the “slow pion”—one with low momentum in the Y (4S)
rest frame. Finally, we combine a D~ or D™~ candidate
with a charged particle identified as a pion to form the
B° candidate.

We require that tracks originate from the interaction
region and have at least six measurement points (hits) in
the SVD or twenty hits in the CDC. Each track must have
a distance-of-closest-approach to the interaction point of
less than 3 cm along the z axis and less than 0.5 cm in the
plane transverse to it, and have a polar angle in the CDC
acceptance range [17°,150°]. These requirements reduce
backgrounds with poorly reconstructed tracks and tracks
from beam background.

Photon candidates are identified as localized energy de-
posits in the ECL not associated with any track. To sup-
press beam-induced photons, which have different energy

spectra depending on their momentum direction, each
photon is required to have an energy greater than 30 MeV
if reconstructed in the central region of the calorimeter,
greater than 80 MeV if reconstructed in the backward re-
gion, and greater than 120 MeV if reconstructed in the
forward region. Neutral pions are reconstructed from
pairs of photon candidates that have an angular sepa-
ration of less than 52° in the lab frame and an invariant
mass in the range [121 MeV, 142 MeV].

We reconstruct D mesons by combining two to
four particles, one of them being identified as a K.
The mass of D° candidates must be in the range
[1.845MeV,1.885 MeV] for D° — K't7~ and D° —
K n vz~ and in the range [1.810 MeV,1.895MeV]
for D° — K7 7°. The mass of D~ candidates is re-
quired to be in the range [1.860 MeV,1.880 MeV]. The
mass range is looser for D° candidates, as the selection
requirements placed on the D™ are sufficient to suppress
background events containing a fake D"

We identify negatively charged pions with momenta
below 300 MeV in the center-of-mass frame as slow pion
candidates. Each of these candidates is combined with
a D" candidate to form a D* candidate. The energy
released in the D~ decay, m(D"") fm(DO)fmTﬁ, must
be in the range [4.6 MeV, 7.0 MeV].

Each D™~ is combined with a remaining positive par-
ticle to form a By, candidate. To remove background
from B® — D(*)_Kﬂ/z decays, we require the particle to
be identified as a pion. A small number of Cabibbo-
suppressed B® - pW—k* decays pass this require-
ment. Their yield is 2.7% of that of B® — D™~ 7"
decays. These decays have the same At distribution as
B® - D™~7", and we treat them as signal.

We identify By, candidates using two quantities, the
beam-constrained mass M, and the energy difference
AE. These quantities are defined as

2 2
Ebeam - |ﬁ| ) AE=F — Ebeam7 (2)
where Ey g, 1S the beam energy, and p'and E are the re-
constructed momentum and energy, respectively, of the

By, candidate. All quantities are calculated in the the

e"e” center-of-mass frame. We calculate E assuming
that the track directly from B, is a pion. We require
that My, be greater than 5.27 GeV and that AE be in the
range [—0.10 GeV, 0.25 GeV]. The AFE range is asymmet-
ric, .e., shorter on the lower side, to reduce backgrounds
from B decays with missing daughters.

We determine the B,,, vertex and flavor using the re-
maining tracks in the event. Such tracks are required
to have at least one hit in each of the PXD, SVD, and
CDC and have a reconstructed momentum greater than
50 MeV. Each track must also originate from the e’ e”
interaction point according to the same criteria as used
to select B, candidates. We require that the By,, decay
includes at least one charged particle. The B,,, momen-
tum is taken to be opposite that of the B, candidate in

Mb(: =



the center-of-mass frame.

To determine the By, decay vertex, we fit its decay
chain with the TreeFit algorithm [31}82]. To determine
the By,, decay vertex, we fit its decay products with the
Rave adaptive algorithm [33], which accounts for our lack
of knowledge of the decay chain by reducing the impact
of tracks displaced by potential intermediate D decays.
The decay vertex position is adjusted such that the di-
rection of each BO, as determined from its decay vertex
and the e e interaction point [34], is parallel to its mo-
mentum vector. The IR is measured from e"e™ — ptp”
events. Charged D candidates must have positive flight
distances. We require that both vertex fits converge, and
that the uncertainty on the decay time, op4,, as calcu-
lated from the fitted vertex positions, be less than 2 ps.
These vertex quality requirements retain approximately
90% of signal events.

The efficiency to reconstruct a Bg,B,, pair with
By, — D™ is 34%. TFor By, — D" r' with
D’ — K7, it is 35%; with D° — K7 77, it is 15%;
and with D' — K n n' 7, it is 25%. In 2.2% of se-
lected events, there is more than one Bg;, candidate. We
retain all such candidates for further analysis.

The main sources of background are misreconstructed
Y(4S) — BB events and nonresonant ¢ e~ — ¢g events.
To distinguish between signal and ¢q, we train two mul-
tivariate classifiers [35]: one for B — D™ 7" decays and
one for B — D* decays. The classifiers exploit
the difference in event topologies and use as input the
following quantities: Fox-Wolfram moments [36] and an
extension thereof [37]; “cone” variables developed by the
CLEO collaboration [38]; the angle between the thrust
axes of the two B mesons [39]; and the event spheric-
ity [40]. The classifiers are trained and tested using sim-
ulated data. In addition to determining the flavor of each
B, g, the flavor-tagging algorithms return a tag-quality
variable r, which ranges from 0 for no flavor information
to +1 for unambiguous flavor assignment. From the By,
and By, flavors, we determine the relative flavor ;. The
data is divided into seven subsamples, depending on the
r value: [0.0,0.10], [0.10,0.25], [0.25,0.45], [0.45,0.60],
[0.60,0.725], [0.725,0.875], and [0.875,1.0]. This division
enhances the statistical precision of the Am; measure-
ment.

We determine the signal yield by performing an un-
binned, extended maximum-likelihood fit to the distri-
butions of AE and the multivariate-classifier output C.
The fit is performed separately for each r interval and
determines the yield of signal events and BB and qq
background events. As the fit observables AE and C
are found to have negligible correlation, the PDFs (P)
for these variables are taken to factorize: P(AE,C) =
P(AE) - P(C). All PDFs are determined separately for
each r interval; however, some of the parameters (as
noted below) are taken to be common among the r in-
tervals.

The AFE PDF for signal is modeled as the sum of

4

two double-sided Crystal Ball functions [4I]: one for
B® — D®™x" decays and one for B® — DYTKT de-
cays. The shape parameters of these functions, as well
as the ratio between their normalizations, are fixed to
values obtained from simulation. To account for differ-
ences between data and simulation, we introduce two ad-
ditional free parameters: a shift of the mean values of
the functions, and a scale factor for their widths. These
parameters are taken to be common among the r inter-
vals. The AE PDF for BB background is a fourth-order
polynomial, and the AE PDF for qq background is an
exponential function. All parameters of the polynomial
are fixed to values obtained from simulation, while the
slope of the exponential function is free to vary.

The C' PDFs for signal and background are taken to
be Johnson Sy functions [42]. The Johnson functions
across different r intervals have independent mode, stan-
dard deviation, skewness, and kurtosis parameters, all
determined from simulation. We introduce four free pa-
rameters to account for differences between data and sim-
ulation that are common across all 7 intervals: one offset
for the modes and one scale for the widths for all ¢g-
background distributions; and similarly one offset and
one scale common to all signal and B B-background dis-
tributions.

We simultaneously fit to data in all seven r inter-
vals. The fit has a total of 28 free parameters: three
yields for each of the r intervals, six scale or shift fac-
tors, and the slope of the exponential function used
for the AE PDF of the gq background. The distribu-
tions of AF and C summed over all r intervals, along
with projections of the fit results, are shown in Fig.
The resulting yields are 33317 £ 203 signal events,
2814 + 150 B B-background events, and 5594 + 125 qg-
background events.

Using sWeights [43] [44] computed with the per-
candidate signal fractions obtained from the fit to AF
and C, we statistically subtract background contribu-
tions to the At and op,, distributions. In this manner,
we need not parametrize background distributions when
fitting for 7,0 and Amy.

We measure the lifetime 7,0 and oscillation frequency

Amy by fitting the background-subtracted At and op,,
distributions. The probability density to observe both
By, and By,, decays is obtained from eq. (1)) by including
the probability for B,,, to decay and the probability of
mistagging its flavor,

tag

725/7‘ )
e B
< {1+
TBO

qr[l —2w(r)] cos(AmyAt)}, (3)

P(At,t,qp, 7|10, Amy) =

where t is the average of the B, and By,, proper decay
times, and w(r) is the probability of the By, flavor be-
ing incorrectly assigned. The latter is parametrized with
a single value for each r interval and is assumed to be

independent of the B, flavor.
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FIG. 1. Distributions of AE (top) and C (bottom) in
data (points) and the fit model (curves and stacked shaded
regions).

The decay-time difference At can be expressed as

At = At ZB; tcos#, (4)

where At, = ¢/(8yyg). In this expression, ¢ is the
displacement of the B, vertex from that of By,,, £
is the velocity of the Y(4S) in the lab frame (with
vy=(1- B2)7%), Bp is the velocity of a B in the Y (45)
rest frame, and ¢ is the polar angle of the B, direction in
the Y (4S) rest frame. We integrate out the dependence of
eq. on t and 6, accounting for the angular distribution
in ete” — T(4S) — BB, Py(cosh) = (3/4)(1 — cos” ).

To account for resolution and bias in measuring /¢,
we convolve eq. with an empirical response function,

J

which is modeled as a linear combination of three com-
ponents:

R(6tlops,) = (1 = fy — for)G(0t|maony,, SGoat,)
+ ft(UAt@)Rt(aﬂmtO’At[astUAt[akj/UAt@>f>a f<)
+ foLG(6t[0, o9),

(5)
where 6t = (¢ — liue)/(ByyB) and £y is the true value
of /. The first component is a Gaussian distribution
with mean and standard deviation proportional to the
per-candidate oa4,; this component accounts for 70% of
candidates. The second component is a weighted sum
of a Gaussian distribution and two exponentially mod-
ified Gaussian functions, corresponding to a Gaussian
convolved with an exponential distribution,

Rt(m|:u’707 R, f<7f<) = (1 - f< - f>)G(£L"M,U)
+ f<G(z|p,0) @ Kexp (k) (6)
+ [ G(z|p, 0) ® kexps (—kT),

where exp. (—kz) = exp(—kz) if z > 0 and
exps (—kx) = 0 otherwise, and similarly for exp_(kx).
The exponential tails account for poorly determined By,
vertices due to intermediate charm mesons yielding dis-
placed secondary vertices. The fraction f; is zero at low
values of o5, and reaches a plateau of 0.2 at approxi-
mately oay, = 25 ps. This is modeled using three param-
eters: the maximal tail fraction f;"— at its plateau, a
threshold parameter describing the oa;, value at which
the tail fraction becomes nonzero, and a slope parameter
describing how fast the tail fraction reaches its plateau.
The third component has a large width, o, = 200 ps,
to account for the (9(1073) fraction of outlying poorly
reconstructed vertices.

Equation is the simplest model found to satisfacto-
rily describe the 4t distribution of simulated events. We
fix 0y, as well as k, f, f-, and the f; slope and threshold
parameters, to values determined from a fit to simulated
data. Figure [2| shows the 6t distribution of simulated
data and the distribution of the fitted model. The pa-
rameter f;, as well as the scaling factors relating the
modes and standard deviations of G' and R; to opny,—

mea, Sg, m; and s, — are free to vary in the fit to data.

After integrating over cos and t and convolving with
R(6t), the At, distribution of B meson pairs is

P(Aty,0p4,, 45,7750, Amy) = P(JAtz|qf,r)/P(At — 0t t,qp, 7|10, Amy) Py(cos ) R(dt|on,,) dot dcos O dt,  (7)

where P(0ay,|qs,7) is the probability to observe oy, for
a given value of ¢; and r, modelled using histogram tem-
plates: one for each r interval and value of g; (14 in

(

total), taken from the data. The sWeights computed us-
ing the fit to AE and C are used to statistically subtract
the background contribution to the oa,, histograms. We
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FIG. 2. Top: Distribution of 6t in simulated data (points)
and distribution modeled by the response function from the
fit to the simulated data (curves) and from the fit to the
experimental data (shaded). The shaded area accounts for
the statistical and systematic uncertainties on the parameters
of the response function. Bottom: distribution of the pull,
defined as the difference between the event count in each bin
and its value predicted by the fit, divided by the Poisson
uncertainty.

fit for 7,0 and Amy by maximizing
> s In P(Aty, oAy, g5, [Ty0, Amy), (®)
i

where the sum runs over all B;, B
s" is the sWeight of a pair. Fourteen parameters are free
in the fit: 7,0 and Amy; seven values of w, one for each

tag Candidate pairs and

r interval; and the five free parameters of the response
function.

We calculate the statistical uncertainties using 1000
bootstrapped [45] samples obtained from the data. For
each sample, we repeat the determination of the sWeights
and the fit for 7,0 and Amgy. In this way, the spread

of fitted 7,0 and Amy values account for the statisti-

cal fluctuations of the signal and background fractions.
We test this analysis method with independent simu-
lated data. When tested on simulated data, our fitting

procedure determines 7,0 with a small systematic bias

of (0.004 £ 0.002) ps and Amy with no significant bias,
(0.000 £ 0.001) ps~'. We assign the central value of the

bias on 7,0 as a systematic uncertainty. We assign the

uncertainty on the bias on Amy, arising from the size of
the simulated data, as a systematic uncertainty.

The At, distributions of both opposite-flavor and
same-flavor B-meson pairs are shown in Fig. [3| for all
r intervals combined, along with projections of the fit re-
sult. We also check that the fit quality is good in each in-
dividual r interval. The figure shows the At,-dependent
yield asymmetry between the two samples, defined as the

difference between the number of opposite-flavor pairs
and same-flavor pairs divided by their sum. The fit re-

sults and statistical uncertainties for 7,0 and Amy are

(1.499 + 0.013) ps and (0.516 + 0.008) ps~ ", with a —29%
statistical correlation factor between them.
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FIG. 3. Distribution of At, in data (points) and the fit
model (lines) for opposite-flavor candidate pairs (red) and
same-flavor pairs (blue) and their asymmetry (black).

There are several sources of systematic uncertainty;
these are listed in Tab.[[land described below. The dom-
inant systematic uncertainty is due to potential discrep-
ancies between the assumed values (fixed in the fit) of the
response-function parameters and the true values in the
data. For each fixed parameter, we repeat the fit with
the parameter allowed to vary. We add all the resulting
changes in the result in quadrature and include this value
as a systematic uncertainty.

TABLE I. Systematic uncertainties.

Source 70 [ps] Amy [ps™ ]

Fixed response-function parameters  0.006 0.003
Analysis bias 0.004 0.001
Detector alignment 0.003 0.002
Interaction-region precision 0.002 0.001
C-Distribution modeling 0.000 0.001
oat,-Distribution modeling 0.001 0.001
Correlations of AE or C and At, 0.001 0.000
Total systematic uncertainty 0.008 0.005
Statistical uncertainty 0.013 0.008

Possible misalignment of the tracking detector can bias
our results [46]. To estimate this effect, we reconstruct
simulated signal events with several misalignment scenar-
ios. T'wo scenarios are extracted from collision data using



day-by-day variations of the detector alignment. Two ad-
ditional scenarios correspond to misalignments remaining
after applying the alignment procedure to dedicated sim-
ulated data. We repeat the analysis for each scenario and
assign the largest changes in the results as systematic un-
certainties.

Because we adjust the B, decay vertex position so
that the vector connecting the IR and decay vertex is
parallel to the B;, momentum, the precision to which we
know the IR affects our determination of £. We repeat
our analysis on simulated data in which we shift, rotate,
and rescale the IR within its measured uncertainties and
assign the changes in the results as systematic uncertain-
ties. We perform an analogous check with changes to /s
and the magnitude and direction of the boost vector and
find that the results change negligibly.

We estimate systematic uncertainties due to mismod-
eling the C distribution, including possible correlation
with AFE, from the changes in the results observed when
fitting to the AF distribution only. In that case, the
B B-background fraction is fixed to the value in simu-
lated data. The result for 7,0 changes negligibly, but a
systematic uncertainty is included for Amy,. To check for
dependence of the results on the AE model for the gq
and BB backgrounds, we repeat the analysis with each
model replaced by a second-order polynomial with all pa-
rameters free in the fit. The polynomial parameters are
common to all r intervals. The results change negligibly.

To check for dependence of the results on the o,
model, we repeat the fit with several alternative binning
choices for their templates, and also replacing templates
with analytical functions. We assign the largest changes
in the results as systematic uncertainties.

We investigate the impact of fixing the yield of B’ -
DY~ K* decays relative to B° — D™~ xt by repeat-
ing the analysis with alternative choices of the B’ —
DY K+ fraction, corresponding to varying the branch-
ing fractions and relevant hadron identification efficien-
cies by their known uncertainties [47]. The results change
negligibly.

To check if potential correlations of AE or C with At,
affect our results, we repeat the analysis with sWeights
calculated independently for two subgroups of candidate
pairs, defined by the sign of At,. Likewise, we repeat
the analysis for two subgroups defined by whether |At,|
is greater or less than 1.150ps. In both cases, the re-
sults change mildly and we assign the larger of these two
changes as systematic uncertainties.

The global momentum scale of the Belle II tracking
detector is calibrated to a relative precision of better than
0.1%, and the global length scale to a precision of better
than 0.01%. Neither significantly impacts our results.

We further check our analysis by repeating it on sub-
sets of the data divided by data-taking period or by
whether the charm meson in the B, decay is D~ or

D*™. The results are all statistically consistent with each
other and with our overall results.
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In summary, we measure the B lifetime and flavor-
oscillation frequency using B® - pWgt decays re-
constructed in data collected from e’ e collisions at the
Y (4S) resonance and corresponding to an integrated lu-
minosity of 190fb™". The results are

70 = (1.499 % 0.013 £ 0.008) ps (9)
Amg = (0.516 & 0.008 & 0.005) ps ™. (10)

The results agree with previous measurements and have
very similar systematic uncertainties as compared to re-
sults from the Belle and Babar collaborations [3,[4]. They
demonstrate a good understanding of the Belle II de-
tector and provide a strong foundation for future time-
dependent measurements.
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