

Tau and dark sector measurements at Belle and Belle II

Zuzana Mediankin Gruberová (on behalf of the Belle 11 collaboration)

58th Rencontres de Moriond 2025, QCD & High Energy Interactions March 30th – April 6th, 2025, La Thuile

1

Belle and Belle II experiments

B-factories with broad physics program

- » Asymmetric e^+e^- colliders at KEK (Tsukuba, Japan)
- collision energy at 10.58 GeV ($\Upsilon(4S)$ mass)

$$\sigma(e^+e^- \rightarrow B\bar{B}) = 1.05 \text{ nb}$$

$$\sigma(\mathrm{\,e^{+}\,e^{-}}
ightarrow\, au^{+} au^{-})=0.92$$
 nb

- ightarrow B-factories are also au-factories!
- well-defined kinematics of initial state, hermetic detector
- → key features for good missing energy reconstruction
- good particle identification (leptonID, K/π separation)
- » Belle @ KEKB accelerator (1998-2010)
- recorded luminosity $\approx 1 \text{ ab}^{-1}$
- » Belle II @ SuperKEKB accelerator (2019-)
- major upgrade of both accelerator and detector
- special triggers for low-multiplicity events
- → allows for the selection of signals that were not possible to trigger at Belle
- excellent tracking efficiency and improved vertex resolution
- → enables new measurement approaches
- recorded luminosity = 575 fb $^{-1}$ Run 1 = 428 fb $^{-1}$ (365 @ Υ (4S) + 62 off-resonance)

world record inst. luminosity of

 $5.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ @ Belle II

Light dark sector

B-factories can access mass range favored by light dark sectors

- » Existence of dark matter had been established in astrophysics
- e.g. rotation curves of galaxies, gravitational lensing
- » No dark matter candidate in Standard Model
- searches for dark matter is one of the main goals of particle physics [arXiv:2209.04671]

- » Searches at Belle & Belle II
- → Sub-GeV scale dark sector scenario
 - dark sector weakly coupled to Standard Model through a light mediator particle
 - favoured by lack of results from direct searches
 - [J. Monroe, Granada ES, 2019]

» Mediator portals

- scalar portal: Dark Higgs, Dark Scalar
- pseudo-scalar portal: Axion Like Particle (ALP)
- vector portal: Dark photon
- fermion portal: Sterile neutrinos

Tau physics

B-factories provide a great environment for tau lepton studies

» 3rd generation particle

tau

- the heaviest known lepton
- can decay to lighter leptons but also hadrons
- » The τ properties are known with much worse precision compared to e and $\mu!$

- » Searches for forbidden au decays
- lepton flavour/number violation
- » Possible au physics probes
- lepton universality, CKM unitarity, new sources of CPV,
- some NP scenarios predict enhanced au couplings to NP

- » Taus at Belle & Belle II
- $au^+ au^-$ produced back-to-back and boosted in the CM frame
- each au is reconstructed via one (1-prong) or three (3-prong) charged tracks
- splitting the event into two hemispheres using thrust axis

$$T = \max_{\hat{n}_T} \left(\frac{\sum_i |p_i \cdot \hat{n}_T|}{\sum_i |p_i|} \right)$$

→ use one τ to tag the event and reconstruct signal in the other hemisphere

Dark sector at Belle II

Ę

Inelastic dark matter with a dark Higgs

- » Probing a non-minimal DS model predicting 4 new particles [JHEP04(2021)146]
- dark photon A', dark Higgs h' and two DM states χ_1, χ_2
- 7 free parameters:
 - 3 masses, 2 mixings, 2 couplings

- » Looking for simultaneous production of ${\it A}^{\prime}$ and ${\it h}^{\prime}$
- 4 tracks in the final state:
- 2 forming a pointing displaced vertex
- other 2 forming a non-pointing displaced vertex
- · missing energy

- → challenging for tracking and trigger
- » Exploring 3 final states: $h' \to x^+ x^-, x = \mu, \pi, K$

Inelastic dark matter with a dark Higgs

» Signal selection

- using requirements on pointing angles and vertex distance from the interaction point
- → very low SM background
 - » Signal yield
 - cut-and-count strategy in $M_{h'}(x^+x^-)$ distributions
 - with background estimated from sidebands in data
- → not relying on MC simulation

- » No significant excess found in the individual final states or the combination
- 9 events observed (8 of 9 are $\pi^+\pi^-$) consistent with expected background
- search performed using 365 fb⁻¹ Belle II data analysis statistically limited

Inelastic dark matter with a dark Higgs

- » 95% CL upper limits on $\sigma(e^+e^- \to \chi_1\chi_2h') \times \mathcal{BR}(\chi_2 \to \chi_1e^+e^-)[\times \mathcal{BR}(h' \to x^+x^-)]$
- strong limits on θ and $\varepsilon \times \alpha_D$ (mixing angles of h' and A'), but depend on 5 other parameters
- provide interpretations for around 30 model parameter configurations

Search for $B o K^{(*)}$ a $'(o\gamma\gamma)$

- » NP searches in flavour changing neutral current B decays
- FCNC heavily suppressed in SM
- NP can appear at the same order as SM processes
- → production of an Axion-Like Particle (ALP) [arXiv:1407.0546]
 - » Search for an ALP emission by W boson in $B o \mathcal{K}^{(*)}a'$ decay
 - $\mathcal{BR}(\mathsf{a}' o \gamma \gamma) \simeq 100\%$ for $m_{\mathsf{a}'} << m_{\mathsf{W}^\pm}$
 - probing 0.16 4.50 GeV/c2 mass range
 - including 4 kaon modes: $K_{\boldsymbol{s}}^{\boldsymbol{0}}, K^{\pm}, K^{*\boldsymbol{0}}, K^{*\pm}$
- using full 711 fb⁻¹ Belle dataset
- similar search done at BaBar [PRL 128, 131802]

» Signal reconstruction

- B meson reconstructed from an ALP candidate (pair of photons) and a kaon candidate (charged or neutral)
- » Background suppression
- main background from continuum $e^+e^- o qar q$
- employ multiple BDTs exploiting event shape and kinematics variables, as well as energy cluster information to suppress π^0 backgrounds

Search for $B \to K^{(*)}a'(\to \gamma\gamma)$

- » Signal extracted from a scan over $M_{\gamma\gamma}$
- veto regions with peaking background (mass regions of π^0 , η , η' , η_c)

- No significant excess observed
- simultaneous fit in all 4 kaon modes
- \rightarrow 90% CL upper limits on $g_{a'W}$
- → world-leading result

Tau at Belle I

Lepton flavour in tau decays

» Probing the SM

- lepton flavour universality (LFU): $g_e = g_\mu = g_ au$
- » R_{μ} measurement at Belle II:
- test of $e \mu$ universality: $R_{\mu} = \frac{\mathcal{BR}(\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})}{\mathcal{BR}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})} \stackrel{\mathrm{SM}}{=} 0.9726$
- world's most precise measurement in au decays from a single measurement

» Direct searches for NP

- lepton flavour violation (LFV) expected in SM due to neutrino masses and oscillations at rates 10^{-5t}
 → beyond any current sensitivity
- several models (new Z', charged Higgs boson) could enhance rates up to $10^{-10}-10^{-8}$

ightarrow any observation would be unambiguous sign of NP

» Belle II already set world-leading limits:

- $\tau \rightarrow 3\mu$: experimentally most accessible [JHEP09(2024)062]
- $\tau \to \Lambda(\bar{\Lambda})\pi$: baryon number violation \to condition for matter/antimatter asymmetry [PRD 110, 112003]
- $au o \ell lpha$: new boson candidate for dark matter [PRD 107, 072002]
- → Belle II is expected to push forward the existing limits by at least 1 order of magnitude

Search for $\tau \to e2\ell$

- » Extending the $\tau \to 3\mu$ study (reminder)
- clean channel, low SM background
- signal yield from 2D plane $(M_{3\mu} \Delta E_{3\mu})$
- 90% CL upper limit: $\mathcal{BR}(\tau \to 3\mu) < 1.9 \times 10^{-8}$ \to world-leading result set by Belle II
- the inclusive tag and BDT-based background rejection give $\sim 3 \times$ the Belle signal efficiency at similar purity

- ightarrow Search for $au
 ightarrow e 2\ell$ (new)
- studying 5 more channels $e^-e^+e^-, e^-e^+\mu^-, e^-\mu^+e^-, \mu^-\mu^+e^-, \mu^-e^+\mu^-$
- higher background contamination
- untagged reconstruction, data-driven BDT classifier trained on sideband data
 → reject main 4ℓ background relying on ROE and kinematic variables
- signal from Mell fit
- » No significant excess was observed in 424 fb⁻¹
- 90% CL upper limit on \mathcal{BR} : $1.4 2.4 \times 10^{-8}$
- → new world-leading results for all 5 modes

Search for $au o \ell K_S^0$

- » Belle + Belle II search for $\tau \to \ell K_s^0(\ell = e, \mu)$
- require 4 charged particles with 0 net charge in 3×1-prong topology
- reconstruct $K_{\mathbf{s}}^{\mathbf{0}}$ from $\pi^{+}\pi^{-}$
- $au
 ightarrow \ell ar{
 u_\ell}
 u_ au / \pi
 u_ au (\ell=e,\mu)$ on the tag side
- » Cut-based preselection, BDT classifier trained using track kinematics, event shape and neutral variables
- resulting efficiency: 10%
- signal yield from 2D plane $(M_{ au}-\Delta E)$ $(\Delta E=E_{ au}-E_{
 m b\,eam})$

- » No significant signal was observed in 424 fb $^{-1}$ + 980 fb $^{-1}$ (Belle + Belle II)
- combined 90% CL upper limit on $\mathcal{BR}s$:

$$\mathcal{BR}(au
ightarrow extbf{K}_{m{S}}^{m{0}} e) < 0.8 imes 10^{-m{8}}$$

$$\mathcal{BR}(au o extbf{K}_{\mathbf{5}}^{\mathbf{0}}\mu) < 1.2 imes 10^{-\mathbf{8}}$$

→ new world-leading upper limits

Summary

- » Belle II has a unique sensitivity to new physics, setting world-leading limits in light dark sector and LFV searches in τ decays
- » New world-leading results presented today:
 - IDM with a dark Higgs

Belle II result presenting the first search for associated production of h' and IDM \rightarrow To be submitted to PRL

•
$$B \to K^{(*)}a'(\to \gamma\gamma)$$

Belle search for ALP employing several BDTs ightarrow To be submitted to JHEP

• $\tau \rightarrow e2\ell$

Belle II measurement setting world's most stringent limits in 5 channels \rightarrow To be submitted to JHEP

$$\bullet$$
 $\tau \rightarrow \ell K_{S}^{0}$

combined LFV search by Belle+Belle II ightarrow To be submitted to JHEP

- » Strive to improve further
- increasing the statistics with larger data sample at Belle II
- improving analysis techniques for reconstructing displaced vertices and reducing systematic uncertainties
- develop even more robust trigger selecting low-multiplicity processes against higher background conditions coming with higher instantaneous luminosity

Stay tuned for more exciting results from Belle & Belle II!

Backup

Belle II luminosity

Belle II at SuperKEKB accelerator (2019-)

- Goals
 - 50× Belle data-sample size by increasing luminosity
 - Renewed detector, trigger, analysis techniques, ...
- Run 1 (2019–2022)
 - Collected about

 $1/2 \times$ Belle data-sample size $1 \times$ BaBar data-sample size

- Run2 started in spring 2024
 - Upgraded detector
 - World-record luminosity:

 $5.1 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$

Special triggers – tau

List of output bits: τ

-CDC-KLM, ECL-KLM matching trigger

2021c

Physics target	bit name	condition	Raw rate (kHz)	Exclusive rate (kHz)
τ	stt	CDC #full track>=1, z <15cm, p>0.7GeV	1.74	0.96
	syo	CDC #full track>=1, $ z $ <15cm, #short track>=1, $\Delta \phi$ >90deg.	0.74	0.38
	yioiecl1	CDC #full track>=1, $ z $ <15cm, #inner track>=1, $\Delta \phi$ >90deg.	0.37	0.08
	lml12	NCL \geq 3, at least 1 CL \geq 500 MeV(Lab)) (with θ ID = 2 - 16)	0.17	0.03
	ecltaub2b3	under commissioning	-	-

Process	Event rate
e ⁺ e ⁻ bunch collision	~200MHz
$e^+e^- \rightarrow \tau^+\tau^-$	~0.6kHz

Special triggers – dark sector

List of output bits: lowmulti/dark -Mainly ECL based photon trigger 2021c

Physics target	bit name	condition	Raw rate (kHz)	Exclusive rate (kHz)
Z'	fy30	CDC #full track>=2, $\Delta \varphi$ >30deg, # z <20cm >=1	1.59	0.14
ISR,π0 FF	lml2	ECL one CL \geq 2 GeV(CM) with θ ID = 2, 3, 15 or 16	0.18	0.01
single γ	lml6	ECL only one CL \geq 1 GeV(CM) with θ ID = 4 - 15 and no other CL \geq 300 MeV(Lab) anywhere	0.18	0.03
single γ	lml7	ECL only one CL \geq 1 GeV(CM) with θ ID = 2, 3, or 16 and no other CL \geq 300 MeV(Lab) anywhere	0.15	0.04
ALP	lml8	ECL 170 $^{\circ}$ $< \Delta \varphi CM < 190 ^{\circ}$, both CL > 250 MeV(Lab), no 2GeV(CM) CL in an event	0.08	0.05
ALP	lml9	ECL 170 $^{\circ}$ $< \Delta \varphi$ CM< 190 $^{\circ}$, one CL $<$ 250 MeV(Lab), one CL $>$ 250 MeV(Lab), no 2GeV(CM) CL in an event	0.34	0.28
dark photon	lml16	ECL only one CL \geq 0.5 GeV(CM) with θ ID = 6-11 and no other CL \geq 300 MeV(Lab) anywhere, #CDC full track==0	0.32	0.23

Parameters in the search for IDM with a dark Higgs

- Mass of the $\chi_1 m_{\chi_1}$
- $\bullet\,$ Mass of the dark photon $m_{{\mbox{\scriptsize A}}'}$
- \bullet Mass of the dark Higgs boson $m_{\mathbf{h}'}$
- Mixing angle of the dark photon ϵ
- Mixing angle of the dark Higgs θ
- Coupling between DM and dark photon $g_X = \sqrt{4\pi\alpha_D}$
- Coupling between DM and dark Higgs $f = \sqrt{4\pi\alpha_f}$

In addition, the mass of the χ_2 can be calculated via the mass splitting

$$\Delta m = m_{\chi_2} - m_{\chi_1}$$

LFU test in tau decays

» Testing $e-\mu$ universality

$$R_{\mu} = \frac{B(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{B(\tau^- \to e^- \bar{\nu}_{e} \nu_{\tau})} \overset{\text{SM}}{=} 0.9726 \qquad \left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto R_{\mu} \times \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \overset{\text{SM}}{=} 1$$

- R_{μ} measured in 1×1 prong topology with $au o \pi\pi^{0}
 u$ tag
- using 365 fb-1 Belle II data

» Signal selection

- cut-based preselection followed by a neural network training
- → 94% purity with 9.6% signal efficiency after NN selection
 - main systematics are from PID (0.32%) and trigger (0.1%)
 - » World's most precise result

$$R_{\mu} = 0.9675 \pm 0.0007 (\mathrm{stat.}) \pm 0.0036 (\mathrm{sys.})$$

- in agreement with SM
- » Analysis continuation
- ongoing study using events with 3×1 topology with inclusive tag
- improved trigger selection, reducing leading systematics

[JHEP08(2024)205]

