

Measurements of hadronic, leptonic, and semi-leptonic ${\it B}$ decays

at Belle and Belle II

59th Rencontres de Moriond | QCD & High Energy Interactions

La Thuile, Italy

30th March - 6th April 2025

Jyotirmoi Borah jborah.ehep@gmail.com

Jožef Stefan Institute, Ljubljana, Slovenia

On behalf of the Belle and Belle II collaborations

Results for Moriond QCD 2025

All results are new since Moriond 2024

Hadronic decays of B mesons

$$\bullet B^0 \to \rho^+ \rho^-$$

$$\bullet B^0 \to \bar{\Lambda}^0 \Omega^{(*)0}$$

Missing energies leptonic decays of B mesons

$$\bullet B o au
u_{ au}$$

Missing energies semi-leptonic decays of B mesons

$$\bullet R(D^+), R(D^{*+})$$

•
$$|V_{cb}|$$
 from $B \to D\ell\nu$

Datasets for these measurements

Belle
$$\mathcal{L}_{i}^{2}$$

$$\mathcal{L}_{\rm intg}^{\Upsilon(4S)} = 711 \text{ fb}^{-1}$$

(1999 - 2010)

Belle II

$$\mathcal{L}_{intg}^{\Upsilon(4S)} = 365 \text{ fb}^{-1} \text{ (Run 1)}$$
 (2019-2022)

All Belle (II) analyses are performed using opensourced

Belle II software framework [Comput Softw Big Sci 3, 1 (2019)]

Other interesting results from Belle II:

Bianca Scavino, Debjit Ghosh,

Zuzana Gruberova (tomorrow, morning session)

Kinematics at B factories

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

Flavor Tagging

CP analyses

[Eur. Phys. J.C 82, 283 (2022)]

Jet-like topology

$$e^+e^- \rightarrow q\bar{q}, q = u, d, s, c$$

Aid to missing energy B decays

Full Event Interpretation (FEI)

Image from L. Cao

efficienc)

Hadronic B decays at Belle and Belle II

$$-B^0 \to \rho^+ \rho^-$$

$$-B^0 \to \bar{\Lambda}^0 \Omega_c^{(*)0}$$

Prologue: $B^0 \rightarrow \rho^+ \rho^-$

Theoretical motivation

- $B^0 o
 ho^+
 ho^-$ provides stringent constraint on ϕ_2 due to small contribution from the "loop" amplitude
- Angle $\phi_2/\alpha=\arg(-V_{td}V_{th}^*/V_{ud}V_{ub}^*)$ is the least known angle of the UT

Leading amplitude

Sub-leading amp. (small cont.)

Probability distribution

$$P(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \Big\{ 1 + q \big[S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t) \big] \Big\},$$

Helicity angle distribution

$$egin{array}{c} rac{1}{\Gamma} rac{d^2 \Gamma}{d\cos heta_{
ho^+} d\cos heta_{
ho^-}} = & rac{9}{4} \Big[rac{1}{4} (1-f_L) \sin^2 heta_{
ho^+} \sin^2 heta_{
ho^-} \Big] , & \stackrel{\circ}{=} rac{0.7}{0.6} & \stackrel{\circ}{=} rac{\alpha}{eta_{
ho}} \\ + f_L \cos^2 heta_{
ho^+} \cos^2 heta_{
ho^-} \Big] , & \stackrel{\circ}{=} 0.7 &$$

Longitudinal polarisation fraction

Experiment

Direct CPV param.

- Measurements dominated by BaBar and Belle (BF, CP, polarisation)
- Challenging due to presence of 4 photons in the final state; peaking bkgs and

combinatorics

$$\phi_1 \equiv \beta = (22.6^{+0.5}_{-0.4})^{\circ} \quad \phi_3 \equiv \gamma = (66.4^{+2.8}_{-3.0})^{\circ} \quad \phi_2 \equiv \alpha = (84.1^{+4.5}_{-3.8})^{\circ}$$

Long. signal

--- Trans. signal

Self-crossfeed

Peaking backgrounds

Goal: Branching fraction (BF), polarisation, CP asymmetry, ϕ_2 measurement

STEP I: Reconstruction (
$$B^0 \to \rho^+ [\to \pi^+ \pi^0 [\to \gamma \gamma]] \ \rho^-$$
)

- Boosted Decision Tree (BDT) based separation of photons from hadronic clusters $m_{bc} > 5.275~{\rm GeV/c^2}$
- ullet Signals are discriminated from backgrounds via $M_{
 m bc}$ and ΔE

$$M_{\rm bc} = \sqrt{E_{\rm beam}^{*2}/c^4 - p_B^{*2}/c^2}$$
 $\Delta E = E_B^* - E_{\rm beam}^*$

- $B_{
 m tag}$ flavor is identified using a GNN-based flavor tagger [PRD 110 012001 (2024)]
 - 18% improvement over category-based Belle II FT algorithm

[Eur. Phys. J.C 82, 283 (2022)]

Backgrounds

- Continuum backgrounds are suppressed using a TabNet classifier
- Other irreducible backgrounds: combinatorial and peaking BB, $\tau^+\tau^-$, and signal "cross-feeds" are modelled with PDFs

arXiv:2412.19624 | Submitted to Phys. Rev. D

STEP II: Signal extraction fit (2 stage fit)

- Stage 1: Extended ML fit to 6 obs: $\Delta E, m_{\pi^{\pm}\pi^{0}}, T_{C}, \cos\theta_{\rho^{\pm}}$
 - Extract \mathcal{B}, f_L (longitudinal polarisation)

tag quality

• Stage 2: Extended ML fit to 3 obs: Δt , q, r

• Extract S, C

Events / \rightarrow Flavor $B(\bar{B}) \equiv 1(-1)$

Results

$$\mathcal{B}(B^0 \to \rho^+ \rho^-) = (2.88^{+0.23}_{-0.22} + {}^{0.29}_{-0.27}) \times 10^{-5}$$

$$f_L = 0.921^{+0.024}_{-0.025} + {}^{0.017}_{-0.025}$$

$$S = -0.26 \pm 0.19 \pm 0.08$$

$$C = -0.02 \pm 0.12 \pm 0.05$$

First uncertainty is statistical, second is systematics

Good agreement with previous BaBar (2007) and Belle (2016) expt. with equivalent BaBar and ~ 50% of Belle equivalent luminosity!

STEP III: Constraining ϕ_2

- ullet Perform isospin analysis based on longitudinal amplitudes, A_{ij}
- Constrain using this measurement + World Averages (BaBar, Belle, LHCb)
- Correct \mathscr{B} due to inclusion of f_{+-}/f_{00} systematics HFLAV24 (NEW)
 - Inclusion shifts the ϕ_2 value by -0.4°

Result (from this measurement) (Preliminary)

$$\phi_2 = (91.5^{+4.8}_{-5.2})^{\circ}$$

$$\Delta \phi_2 = (2.4^{+4.2}_{-3.8})^{\circ}$$

$$\Delta \phi_2 = (2.4^{+4.2}_{-3.8})^{\circ}$$

Agrees with WA, HFLAV24

- Belle II result improves the ϕ_2 value by ~8%
- Dominant systematics (this measurement) from S [backup]

Second solution of ϕ_2 excluded by ϕ_1 and ϕ_3 measurements

Prologue: $B^0 \to \bar{\Lambda}^0 \Omega_c^{(*)0}$

Theoretical motivation

• Probe low-energy mechanism for baryon number violation [Phys. Rev. D 96, 075009 (2017)]

Poorly understood due to large hadronic uncertainties

Experiment

- No previous experimental measurements exist
- Searched for the first time using Belle dataset
- Consider two Ω_c^0 states: Ω_c^0 and $\Omega_c(2700)^0$, collectively referred to as $\Omega_c^{(*)0}$

Goal: Search for the decays $ar{B}^0 o ar{\Lambda}^0 \Omega_c^0$ and $ar{B}^0 o ar{\Lambda}^0 ar{\Omega}_c^0$

Dataset: 711 fb⁻¹ of Belle data collected at $\Upsilon(4S)$ resonance

STEP I: Reconstruction

• Signal B^0 's are reconstructed from:

$$\Lambda^0 \to p\pi^-, \Omega^- \to K^-\Lambda^0, \Omega_c^0 \to \pi^+\Omega^-, \Omega(2770)_c^0 \to \Omega_c^0\gamma$$
 (partially reco.)

- Two signal categories: $\bar{\Lambda}^0\Omega_c^{(*)0}, \bar{\Lambda}^0\bar{\Omega}_c^{(*)0}$
- PID selections, mass / vertex-constraint fits, selection on the decay lengths performed to reduce combinatorics
- ullet Signals are discriminated from the backgrounds using the kinematic variables: $M_{
 m bc}, \Delta E$

$$M_{\rm bc} = \sqrt{E_{\rm beam}^{*2}/c^4 - p_B^{*2}/c^2}$$
 $\Delta E = E_B^* - E_{\rm beam}^*$

STEP II: Signal extraction

- Use counting method due to low background statistics
- Simulations confer that events outside the signal (blinded) region are dominated by $q\bar{q}$ and non-signal $B\bar{B}$ events

Numbers of events	Total	Blinded region	$ar{\Lambda}^0\Omega^0_c$ signal region	$\bar{\Lambda}^0\Omega_c(2770)^0$ signal region
$\bar{\Lambda}^0 \Omega_c^0$ data) Background	21 N/A	$5 \\ 1.6 \pm 0.7$	$0 \\ 0.44 \pm 0.45$	$3 \\ 0.44 \pm 0.45$
$ar{\Lambda}^0ar{\Omega}_c^0$ data Background	2 N/A	$0\\0.18\pm0.17$	$\begin{array}{c} 0 \\ 0.00 \pm 0.12 \end{array}$	$0\\0.12\pm0.15$

Results

First upper limits on 2-body BNV decays

Quantity $(\times \mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+))$	Upper limit (at 95% CL)
$\mathcal{B}(B \to \bar{\Lambda}^0 \Omega_c^0)$	9.7×10^{-8}
$\mathcal{B}(B \to \bar{\Lambda}^0 \Omega_c(2770)^0)$	31.2×10^{-8}
$\mathcal{B}(B o ar{\Lambda}^0ar{\Omega}_c^0)$	9.5×10^{-8}
$\mathcal{B}(B \to \bar{\Lambda}^0 \bar{\Omega}_c(2770)^0)$	10.0×10^{-8}

B flavor blind measurements

Source	Uncertainty (%)
Track reconstruction (overall)	2.9
π^+ PID (for $\Omega_c^0 \to \pi^+ \Omega^-$)	0.8
K^- PID (for $\Omega^- \to K^- \Lambda^0$)	1.4
p PID (for Λ^0 decays)	2×1.0
Decay length (Ω^{-})	2.0
Reconstructed masses	4×0.5
Vertex fits (χ^2)	1.5
$M_{\rm bc}$ and ΔE	0.5
$\mathcal{B}(\Omega^- \to \Lambda^0 K^-)$	1.0
$\mathcal{B}(\Lambda^0 o p\pi^-)$	2×0.7
$N_{B^0ar{B}^0}$	2.9
Detector charge asymmetry	0.8
Polarization of baryons	0.5
MC statistics	0.7
Overall (σ_r)	6.2

Missing energies leptonic B decays at Belle II

$$-B^+ \to au^+
u_{ au}$$

Prologue: $B^+ \to \tau^+ \nu$

Theory

• Precise BF value is important to check consistency with SM predictions / constrain new physics

$$\mathcal{B}(B \to \tau \nu) > \mathcal{B}(B \to \mu \nu) > \mathcal{B}(B \to e\nu)$$

 \bar{b} W^+

SM Feynman diagram

BF decreases with decrease in m_{ℓ} and increase in helicity suppression

- Potential modes to precisely measure $\mid V_{ub} \mid$

$$\mathcal{B}(B^+ \to \ell^+ \nu_{\ell}) = \frac{G_F^2 m_B m_{\ell}^2}{8\pi} \left(1 - \frac{m_{\ell}^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

Experiment

- Challenging (particularly, τ mode) due to undetected neutrinos in the final state
- At present, the measurements are statistically limited

Experiment	Tag	$\mathcal{B}(10^{-4})$
Belle	Hadronic	$0.72^{+0.27}_{-0.25} \pm 0.11$
$B\!A\!B\!A\!R$	$\operatorname{Hadronic}$	$1.83^{+0.53}_{-0.49} \pm 0.24$
\mathbf{Belle}	Semileptonic	$1.25 \pm 0.28 \pm 0.27$
BABAR	Semileptonic	$1.8\pm0.8\pm0.2$
PDG		1.09 ± 0.24

encodes $b \rightarrow u$ annihilation info. (theory input)

arXiv: 2502.04885 | Submitted to Phys. Rev. D

Goal: BF measurement using hadronic tagging (First from Belle II)

STEP I: Reconstruction

- ullet Use hadronic FEI to reconstruct the companion B, the $B_{
 m tag}$
- ullet Reconstruct $B_{
 m sig}$ from the remaining tracks and clusters
- Use both leptonic (e, μ) and hadronic channels (π, ρ) of τ 's (~70% BF coverage)
- Use two most discriminating variables, $M_{
 m miss}^2$, $E_{
 m ECL}^{
 m extra}$:

$$M_{\text{miss}}^2 = (p_{\text{beam}}^* - p_{\text{tag}}^* - p_{\text{sig}}^* - p_{\text{ROE}}^*)^2$$

 $E_{\rm ECL}^{\rm extra} \equiv {
m Total\ residual\ energy\ from\ neutral\ clusters\ }^{\dagger}$ use of BDTs to clean the neutral clusters $\notin B_{\rm tag}, B_{\rm sig}$

Signal signature: high $M_{
m miss}^2$ and low $E_{
m ECL}^{
m extra}$

arXiv: 2502.04885 | Submitted to Phys. Rev. D

STEP II: Background suppression

 $\mathcal{L}_{\mathrm{intg}}^{\mathrm{OffRes}} = 42 \; \mathrm{fb}^{-1}$

- 2-stage BDTs
 - Continuum backgrounds ($e^+e^- \to q\bar{q}/\tau\bar{\tau}$) (dominant)
 - ullet Non-signal $Bar{B}$ backgrounds

STEP III: Calibration and validation

- Calibration:
 - FEI efficiency correction using data-driven methods (off-resonance data)
 - 2 control channels: $B \to X\ell\nu$, $B \to D^{(*)}\pi^+$
 - Cluster multiplicity corrections between data simulation
 - Additional corrections include: misID, photon eff., continuum re-weighting
- Validation:
 - Validated using $B^+ \to D^{*0} \ell^+ \nu_\ell$ control mode

arXiv: 2502.04885 | Submitted to Phys. Rev. D

STEP IV: Signal extraction

- Simultaneous **binned** ML 2D fit to $M_{
m miss}^2, E_{
m ECL}^{
m extra}$

Results (Preliminary)

 3σ significance

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.24 \pm 0.41 \pm 0.19) \times 10^{-4}$$

First uncertainty is statistical, second is systematics

Assuming SM and $f_B = (190.0 \pm 1.3)$ MeV from FLAG24

$$|V_{ub}|_{B^+ \to \tau^+ \nu} = (4.41^{+0.74}_{-0.89}) \times 10^{-3}$$

Consistent with world average and SM predictions

• Dominant systematics from limited statistics of simulations [backup]

 $|V_{ub}|_{\text{excl.}} = (3.75 \pm 0.6_{\text{expt.}} \pm 0.19_{\text{theo.}}) \times 10^{-3}$

More precise than BaBar (had. tag), with eqivalent dataset

First had-tagged results from Belle II

Missing energies semi-leptonic decays at Belle II

- $R(D^{(*)})$ semi-leptonic tag
- Untagged $B \to D\ell\nu$ and $|V_{cb}|$

Prologue: $R(D^{(*)})$

Theory

- Lepton Flavor Universality (LFU) is an "accidental symmetry"
 within the SM broken only by charged lepton masses
- Highly sensitive to non-SM physics and can be probed by precise LFU ratios

Experiment

- Observe $~\sim 3\sigma$ excess by BaBar, Belle (II), and LHCb experiments
- HFLAV24 average hints at potential new physics

$$\mathcal{R}(D^{(*)+}) = \frac{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\ell^-\bar{\nu}_{\ell})}$$

Combined deviation from SM stands at 3.3σ

 $-\overline{P}_{ROE}$

 $B\overline{B}$ and Continuum Bkg. in $D^{*+}\ell$

 $\overline{B}^0 \rightarrow D^{**} + \ell \overline{\nu}_{\ell} + \overline{B}^0 \rightarrow D^{**}_{gap} + \ell \overline{\nu}_{\ell} \text{ in } D^{*+} \ell$

 $\overline{B}^0 \rightarrow D^{*+} \ell \bar{\nu}_{\ell}$

Goal: $R(D^+)$ and $R(D^{*+})$ measurement using semi-leptonic tagged approach (First results)

 θ_{BY}

STEP I: Reconstruction

- ullet Use semi-leptonic FEI to reconstruct the $B_{
 m tag}$
- $B_{
 m sig}$ (B^0) is reconstructed from $D^{(*)}$, light leptons, and leptonic au decays

STEP II: MVA-based event classification

- BDT trained to classify semi-leptonic, semi-tauonic, background
- Input BDT variables: angular (2), momenta of ℓ , D (2), and $E_{ ext{ECL}}^{ ext{extra}}$

$$\cos heta_{BY} = rac{2 E_{
m beam} E_{
m Y} - m_B^2 - m_{
m Y}^2}{2 \left| ec{p}_B
ight| \left| ec{p}_{
m Y}
ight|}$$
 (Most discriminating)

• Output scores: Z_{ℓ} , $Z_{\tau'}$ and Z_{bkg}

(Normalisation)

To be submitted to Phys. Rev. D

STEP III: Signal extraction

• 2D binned log-likelihood fit to z_{τ} and $z_{\rm diff} = z_{\ell} - z_{\rm bkg}$

Signal yields across different fit categories

Sample	D^+e	$D^+\mu$	$D^{*+}e$	$D^{*+}\mu$
$\overline{B}^0 \to D^+ \ell \bar{\nu}_{\ell}$	2519 ± 68	2233 ± 61		
$\overline{B}^0 o D^{*+} \ell \bar{\nu}_\ell$	2486 ± 63	2323 ± 58	2344 ± 51	1961 ± 44
$\overline{B}^0 \to D^+ au \bar{ u}_{ au}$	191 ± 41	155 ± 65		
$\overline{B}^0 \to D^{*+} au u$	106 ± 14	84 ± 11	155 ± 19	111 ± 14
$\overline{B} \to D^{**} \ell \overline{\nu}_{\ell} / \overline{B} \to D^{**}_{\mathrm{gap}} \ell \overline{\nu}_{\ell}$	653 ± 112	586 ± 102	87 ± 55	75 ± 46
$B\overline{B}$ and Continuum Bkg.	2177 ± 145	1582 ± 149	611 ± 95	497 ± 83
Data	8219	6854	3241	2621

Stability checks agree with the nominal values [backup]

- Redetermine $R(D^{(*+)})$ using different sample splits: lepton flavor, charge, lepton polar angle, # tracks, $D^{(*+)}$ channels
- Simultaneous fit to account for correlations in common syst.

To be submitted to Phys. Rev. D

Results (Preliminary)

$$\mathcal{R}(D^+) = 0.418 \pm 0.074 \text{ (stat)} \pm 0.051 \text{ (syst)}$$

$$\mathcal{R}(D^{*+}) = 0.306 \pm 0.034 \text{ (stat)} \pm 0.018 \text{ (syst)}$$

with a correlation of $\rho = -0.24$

- Results are compatible with SM within 1.7σ
- Agrees with <u>HFLAV24</u> average *
- Measurements dominated by statistical uncertainty
- Systematics dominated by limited statistics of simulations,
 MVA training, and template shapes [backup]

First SL-tagged results on $R(D^{(*+)})$ from Belle II

HFLAV24

*
$$\mathcal{R}(D) = 0.342 \pm 0.026$$

 $\mathcal{R}(D^*) = 0.287 \pm 0.012$

Prologue: $|V_{ch}|$ measurement

|V |: global fit

Theory

- Method: Exclusive ($B o D^{(*)} \ell
 u$) and Inclusive ($B o X_c \ell
 u$)
- Limitations:
 - Exclusive: Knowledge of the FFs (CLN, BCL) | Systematics dominate (expt.)
 - Inclusive: Higher order terms in HQE | Theoretical uncertainties dominate

Experiment

- Consistently observe $\,\sim 3\sigma$ difference between exclusive and inclusive $|\,V_{cb}\,|\,, |\,V_{ub}\,|$ measurements
- Exclusive $|V_{cb}|$ from $B\to D\mathcal{E}\nu$ can be advantageous: less theory unc. then $B\to D^*$ and do not suffer from slow-pion systematics

 $|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$

 $|V_{cb}| = (39.8 \pm 0.6) \times 10^{-3}$

(inclusive)

(exclusive)

$|V_{cb}|$ from $B o D*{\ell} u$

38

HFLAV Average

$|V_{ch}|$ from $B \to D\ell\nu$

To be submitted to Phys. Rev. D

Goal: $|V_{cb}|$ from $B \to D\ell\nu$ using untagged approach (First results)

STEP I: Reconstruction

- Candidate $B \to D\ell\nu$'s are formed from ℓ (e, μ) and a D ($D \to K\pi, K\pi\pi$)
- $p_{\ell,D}^*$ selections are applied to select primary leptons and reject hadronic bkg.
- $p_R^{\rm miss}$ is estimated based on Diamond Frame (BaBar's) and ROE method (Belle's)

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - M_B^2 - M_Y^2}{2|p_B^*||p_Y^*|}$$

- Finally, w ($\equiv v_B \cdot v_D$, 4-vel.) is accessed from $p_B^{\rm miss}$
- "Feed-downs" from $B\to D^*\ell\nu$ are vetoed while continuum bkg. are suppressed using several kinematic selections

Good data / MC agreement

[backup]

STEP II: Signal extraction

• Signal yield is extracted from a ML fit to a 10 **bin** dist. of $\cos \theta_{RY}$ and

is performed simultaneously in 10 bins of w

7th $\cos \theta_{\rm BY}$ bin,

HFLAV

 $B^+ o ar{D}^0 \ell^+
u_\ell$ 2.21 ± 0.06 %

 $B^0 o D^- \ell^+ \nu_\ell$ 2.12 ± 0.06 %

 2.11 ± 0.05 % $B \to D\ell\nu$

Fit templates

$$\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu_\ell) = (2.31 \pm 0.10)\%$$

$$\mathcal{B}(B^0 \to D^- \ell^+ \nu_\ell) = (2.06 \pm 0.12)\%$$

$|V_{cb}|$ from $B \to D\ell\nu$

To be submitted to Phys. Rev. D

STEP III: $|V_{ch}|$ extraction

$$|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$$
 (inclusive)
 $|V_{cb}| = (39.8 \pm 0.6) \times 10^{-3}$ (exclusive)

 $|V_{cb}|$ is extracted using χ^2 fits to the measured w spectra

Parameters (5) of BCL parametrisation from fit

Values

0.8959(92)

-8.03(15)

49.3(31)

0.7813(73)

-3.38(15)

0.860.160.47

Electroweak correction: 1.0066 ± 0.0002 [Nucl. Phys. B 196, 83 (1982)]

$$\eta_{\rm EW} |V_{cb}| = 39.4 \pm 0.8$$
 Result (Preliminary)

$$|V_{cb}|_{\mathrm{BCL}} = (39.2 \pm 0.4_{\mathrm{stat.}} \pm 0.6_{\mathrm{sys.}} \pm 0.5_{\mathrm{th.}}) \times 10^{-3}$$

Among the dominant systematics include: limited simulation stats.,

Correlation coefficients

 $0.26 - 0.38 \ 0.95$

estimation of N_{bb} , vertex fit corrections, background w modelling [backup]

0.33

-0.31

Most precise till date using $B \to D\ell\nu$

Epilogue

All results are new since Moriond 2024

Hadronic decays of B mesons

arXiv:2412.19624 | Submitted to Phys. Rev. D

$$\mathcal{B}(B^0 \to \rho^+ \rho^-) = \left(2.88^{+0.23}_{-0.22}^{+0.29}\right) \times 10^{-5}$$

$$f_L = 0.921^{+0.024}_{-0.025}^{+0.024}^{+0.017},$$

$$S = -0.26 \pm 0.19 \pm 0.08,$$

$$C = -0.02 \pm 0.12^{+0.06}_{-0.05},$$

Belle II result improves ϕ_2 precision by ~8%! Consistent with WA values!

Missing energies leptonic decays of B mesons

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = [1.24 \pm 0.41(\text{stat.}) \pm 0.19(\text{syst.})] \times 10^{-4}$$

Missing energies semi-leptonic decays of B mesons

To be submitted to Phys. Rev. D

Consistent with WA values! First leptonic results from Belle II with hadronic tagging approach

$$\mathcal{R}(D^+) = 0.418 \pm 0.074 \text{ (stat)} \pm 0.051 \text{ (syst)}$$

 $\mathcal{R}(D^{*+}) = 0.306 \pm 0.034 \text{ (stat)} \pm 0.018 \text{ (syst)}$

Compatible with SM within 1.7σ !

Phys. Rev. D 110, L031102 (2024)

Quantity $(\times \mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+))$	Upper limit (at 95% CL)
$\mathcal{B}(B \to \bar{\Lambda}^0 \Omega_c^0)$	9.7×10^{-8}
$\mathcal{B}(B \to \bar{\Lambda}^0 \Omega_c(2770)^0)$	31.2×10^{-8}
${\cal B}(B oar\Lambda^0ar\Omega^0_c)$	9.5×10^{-8}
$\mathcal{B}(B \to \bar{\Lambda}^0 \bar{\Omega}_c(2770)^0)$	10.0×10^{-8}

First upper limit set for BNV decays from Belle

arXiv: 2502.04885 | Submitted to Phys. Rev. D

$$|V_{ub}|_{B^+ \to \tau^+ \nu_{\tau}} = [4.41^{+0.74}_{-0.89}] \times 10^{-3}$$

To be submitted to Phys. Rev. D

$$|V_{cb}|_{\rm BCL} = (39.2 \pm 0.4_{\rm stat.} \pm 0.6_{\rm sys.} \pm 0.5_{\rm th.}) \times 10^{-3}$$

Most precise $|V_{cb}|$ value from $B \to D\ell\nu$

First results from Belle II with untagged approach

First results from Belle II with semi-leptonic tagging approach

Thank You

Additional slides

The SuperKEKB and the Belle II detector

Belle II Performances

- VXD, $\sigma \sim 15 \ \mu \mathrm{m}$
- CDC, $\sigma(p_{\rm T})/p_{\rm T}\sim 0.4\,\%$
- ECL, $\sigma(E)/E \sim 5\%$
- PID (SVD, ARICH, TOP, KLM)
 - *K* eff. $\sim 90\% (\pi \text{ mis} \text{ID} \sim 5\%)$
 - μ ID eff. ~ 90 % (π mis ID ~ 5%)

Luminosity records

World Record Luminosity of 2.11 x 10³⁴ cm⁻² s⁻¹ achieved (June 2009) with crab cavities at KEKB

5.105 x 10³⁴ cm⁻² s⁻¹

New record of peak luminosity

27-12-2024 at 13:40 hrs JST

Luminosity projection plot

Isospin triangle for $B \to \rho \rho$

Table of systematics on ${\mathscr B}$ and f_L

Source	$\mathcal{B}\ [\%]$	$f_L[10^{-2}]$
Tracking	± 0.54	_
π^0 efficiency	± 7.67	
PID	± 0.08	
\mathcal{T}_C	± 2.87	
MC sample size	± 0.24	± 0.2
Single candidate selection	± 0.55	± 0.3
SCF ratio	$^{+2.97}_{-2.45}$	$^{+0.2}_{-0.3}$
B's of peaking backgrounds	$^{+0.94}_{-0.98}$	± 0.1
$\tau^+\tau^-$ background yield	$^{+0.65}_{-0.69}$	± 0.0
Signal model	+1.14	± 0.2
$qar{q} model$	$-2.02 \\ +0.49 \\ 0.51$	+0.1
$Bar{B} model$	$-0.51 \\ +1.00 \\ 0.40$	$^{-0.2}_{+0.3}$
$\tau^+\tau^-$ model	$-0.40 \\ +0.17 \\ 0.26$	$-0.1 \\ +0.0 \\ 0.1$
Peaking model	$-0.26 \\ +1.37$	$^{-0.1}_{+0.3}$
Interference	$^{-1.01}_{\pm 1.20}$	$^{-0.5}_{\pm 0.5}$
Data-MC mis-modeling	+3.51	+0.8
Fit bias	$^{-1.70}_{\pm 1.03}$	$^{-0.3}_{\pm 1.2}$
f_{+-}/f_{00}	± 1.51	
N_{BB}	± 1.45	
	+10.07	+1.7
Total systematic uncertainty	$-9.51 \\ +7.93$	$-1.5 \\ +2.4$
Statistical uncertainty	-7.58	-2.5

Table of systematics on S and C

Source	$S[10^{-2}]$	$C[10^{-2}]$
\mathcal{B} 's of peaking backgrounds	$^{+0.6}_{-0.5}$	± 0.1
au au background yield	± 0.9	$^{+0.0}_{-0.1}$
Data-MC mis-modeling	$^{+0.6}_{-1.1}$	$^{+1.5}_{-0.6}$
Single candidate selection	± 1.3	± 1.9
SCF ratio	$^{+0.5}_{-0.4}$	$^{+0.7}_{-0.0}$
Signal model	$^{-0.4}_{+1.1}_{-1.4}$	$^{+0.3}_{-0.4}$
$qar{q} m{model}$	+2.2	± 0.2
$Bar{B} model$	$^{-1.0}_{\pm 0.9}$	$^{+0.7}_{-0.5}$
$ au^+ au^-$ model	± 0.1	± 0.0
Peaking model	$^{+0.8}_{-0.4}$	$^{+0.2}_{-0.4}$
Fit bias	± 2.0	± 0.6
Interference	± 2.8	± 1.7
Resolution	$^{+3.4}_{-4.4}$	$^{+1.9}_{-1.4}$
Δt PDF for $q \bar q$ and $B \bar B$	$+3.8 \\ -1.8$	$^{+0.7}_{-0.1}$
Tag side interference	± 0.5	± 2.1
Wrong tag fraction	$^{+0.2}_{-0.3}$	± 0.5
Background CP violation	$^{+3.8}_{-3.6}$	$^{+4.2}_{-3.7}$
CP violation in TP signal	$^{+0.8}_{-0.2}$	$^{+0.2}_{-0.4}$
Tracking detector misalignment	± 1.4	± 0.5
$ au_{B^0} ext{and} \Delta m_d$	$^{+1.4}_{-1.6}$	± 0.3
Total systematic uncertainty	$+8.2 \\ -7.8$	$+6.1 \\ -5.3$
Statistical uncertainty	± 18.8	± 12.1

- Validation:
 - Signal embedding procedure using $B^+ \to K^+ J/\psi$ sample

Signal embedded control channels

TAB. V. Observed values of the signal yields and branching fractions, obtained from single fits for each τ^+ decay mode and the simultaneous fit.

Decay mode	n_s	$\mathcal{B}(10^{-4})$
Simultaneous	94 ± 31	1.24 ± 0.41
$e^+ u_e \overline{ u}_{ au}$	13 ± 16	0.51 ± 0.63
$\mu^+ \ u_\mu \ \overline{ u}_ au$ $\pi^+ \ \overline{ u}_ au$	40 ± 20 31 ± 13	1.67 ± 0.83 2.28 ± 0.93
$\rho^+ \overline{ u}_{ au}$	6 ± 25	0.42 ± 1.82

True	e ⁺ (%)	μ ⁺ (%)	π^{+} (%)	$ ho^+$ (%)	other(%)
e^+	97	0.1	0.1	0	2.8
μ^+	0	87	0.9	0.1	12
π^+	0.1	3.3	55.7	16	24.9
$ ho^+$	0.4	4.5	27.8	61.2	6.1

Table of systematics

Source	Syst.
Simulation statistics	13.3%
Fit variables PDF corrections	5.5%
Decays branching fractions in MC	4.1%
Tag B^- reconstruction efficiency	2.2%
Continuum reweighting	1.9%
π^0 reconstruction efficiency	0.9%
Continuum normalization	0.7%
Particle identification	0.6%
Number of produced $\Upsilon(4S)$	1.5%
Fraction of B^+B^- pairs	2.1%
Tracking efficiency	0.2%
Total	15.5%

To be submitted to Phys. Rev. D

Diamond Frame (BaBar), [PRD 74 (Nov, 2006) 092004]

- $\cos \theta_{
 m BY}$ determined from energy-momentum conservation principle and assuming the missing particle is ν ($m_{
 u} \sim 0$)
- Tha azimuthal angle (ϕ) is unknown
- ullet ϕ can be determined with the constraint that B lies on the cone with an opening angle, $heta_{
 m BY}$ and :
 - Weighted average of 4 possible B-directions about the cone (BaBar)

New

Belle II simulation

$$\cos^2 \Phi_B = \frac{\cos^2 \theta_{BY}^{\text{sig}} + \cos^2 \theta_{BY}^{\text{tag}} + 2\cos \theta_{BY}^{\text{sig}} \cos \theta_{BY}^{\text{tag}} \cos \gamma}{\sin^2 \gamma}$$

$$\mathcal{R}(D^{(*)})$$
 with light leptons

$$\mathcal{R}(D_{e/\mu}^+) = 1.07 \pm 0.05(\text{stat}) \pm 0.03(\text{syst})$$

 $\mathcal{R}(D_{e/\mu}^{+*}) = 1.08 \pm 0.04(\text{stat}) \pm 0.03(\text{syst})$

• Results are consistent with LFU expectations within 1.3σ and 2.0σ , respectively

To be submitted to Phys. Rev. D

 $\mathscr{R}(D^{(*)+})$ determined independently for e/μ

 $\mathscr{R}(D^{*+})$ from D^+ are due to limited "feed-downs", showing large anti-correlation

Split the sample into approx. two equal halves

 D^+ has more $N_{\mathrm{tracks}} < 4$, then D^{*+}

To be submitted to Phys. Rev. D

$|V_{cb}|$ from $B \to D\ell\nu$

To be submitted to Phys. Rev. D

Signal extraction

$|V_{ch}|$ from $B \to D\ell\nu$

To be submitted to Phys. Rev. D

	Signal Yield	B [%]
$\begin{array}{c} B^{+} \to \bar{D}^{0} e^{+} \nu_{e} \\ B^{+} \to \bar{D}^{0} \mu^{+} \nu_{\mu} \\ B^{0} \to D^{-} e^{+} \nu_{e} \\ B^{0} \to D^{-} \mu^{+} \nu_{\mu} \end{array}$	75, 186 $61, 259$ $47, 617$ $39, 648$	2.34 ± 0.11 2.27 ± 0.11 2.07 ± 0.13 2.05 ± 0.13
$B^{0} \to D^{-} \ell^{+} \nu_{\ell}$ $B^{+} \to \bar{D}^{0} \ell^{+} \nu_{\ell}$ $B \to D \ell \nu$		2.06 ± 0.12 2.31 ± 0.10 2.10 ± 0.08

 $|V_{cb}|$ is extracted using χ^2 fits to the measured w spectra

CLN parametrisation of the FF

$$\chi^{2} = \sum_{i,j} \left(\frac{\Delta \Gamma_{i}}{\Delta w} - \frac{\Delta \Gamma_{i,\text{CLN}}}{\Delta w} \right) C_{ij}^{-1} \left(\frac{\Delta \Gamma_{j}}{\Delta w} - \frac{\Delta \Gamma_{j,\text{CLN}}}{\Delta w} \right)$$

Result (Preliminary)

$$\eta_{\text{EW}}\mathcal{G}(1)|V_{cb}| = (40.9 \pm 1.4) \times 10^{-3}$$

$$\rho^2 = 1.09 \pm 0.06 ,$$

$$|V_{cb}|_{\text{CLN}} = (38.5 \pm 1.3) \times 10^{-3}$$

$$|V_{cb}|_{\rm CLN} = (38.5 \pm 1.3) \times 10^{-3}$$

	Source	Uncertainty [%]
Statistical		0.9
Systematic		1.5
	MC Stat. Error	0.5
	N_{bb}	0.5
	f_{00}/f_{+-}	0.1
\rightarrow	f_{B}	0.3
·	$\mathcal{B}(D \to K\pi(\pi))$	0.3
	Vertex fit χ^2 correction	0.5
	$\mathcal{B}(B o X_c\ell u_\ell)$	0.3
	Lepton identification	0.2
	Kaon identification	0.5
	Tracking efficiency	0.3
	Signal PDF	0.4
	$B \to D^* \ell \nu_{\ell}$ form factor	0.1
	Background w modelling	0.5
	$E_Y^* - m_Y$ reweighing	0.3
	$B^{0/-}$ lifetime	0.1
Theoretical	(FF fits)	1.3
	Lattice QCD inputs	1.2
	Long-distance QED	0.4
Total		2.1

New

				$ ho_{ij}$									
i	$w_{i, \mathrm{min}}$	$w_{i,\mathrm{max}}$	$\Delta\Gamma_i/\Delta w [10^{-15} \text{GeV}]$	1	2	3	4	5	6	7	8	9	10
1	1.00	1.06	0.22 ± 0.59	1.00	-0.06	0.15	0.08	0.07	0.04	0.03	0.02	0.00	-0.00
2	1.06	1.12	3.54 ± 0.56		1.00	0.13	0.33	0.26	0.24	0.22	0.19	0.13	0.07
3	1.12	1.18	6.46 ± 0.61			1.00	0.25	0.44	0.37	0.36	0.31	0.22	0.13
4	1.18	1.24	10.17 ± 0.68				1.00	0.37	0.59	0.52	0.48	0.34	0.20
5	1.24	1.30	14.27 ± 0.72					1.00	0.49	0.67	0.55	0.41	0.23
6	1.30	1.36	18.68 ± 0.84						1.00	0.58	0.71	0.49	0.30
7	1.36	1.42	21.41 ± 0.89							1.00	0.59	0.60	0.36
8	1.42	1.48	25.42 ± 0.96								1.00	0.49	0.48
9	1.48	1.54	28.11 ± 1.09									1.00	0.61
10	1.54	$w_{ m max}$	29.44 ± 1.41										1.00

$\Delta\Gamma_i/\Delta w$ for the 4 sub-samples

			$\Delta\Gamma_i/\Delta w \; [10^{-15} { m GeV}]$					
i	$w_{i, \mathrm{min}}$	$w_{i,\mathrm{max}}$	$B^0 o D^- e^+ \nu_e$	$B^0 o D^- \mu^+ u_\mu$	$B^+ o ar{ar{D}}{}^0 e^+ u_e$	$B^+ o ar{D}^0 \mu^+ u_\mu$		
1	1.00	1.06	-0.1 ± 0.7	0.6 ± 0.7	-0.5 ± 1.5	1.8 ± 1.7		
2	1.06	1.12	3.7 ± 0.8	3.2 ± 0.8	4.1 ± 1.3	3.7 ± 1.4		
3	1.12	1.18	6.2 ± 0.8	7.2 ± 0.9	5.5 ± 1.3	6.1 ± 1.2		
4	1.18	1.24	9.8 ± 0.9	11.0 ± 0.9	8.9 ± 1.3	10.3 ± 1.4		
5	1.24	1.30	13.9 ± 1.0	14.8 ± 1.0	14.0 ± 1.3	13.7 ± 1.3		
6	1.30	1.36	18.8 ± 1.2	18.0 ± 1.1	18.6 ± 1.4	18.6 ± 1.5		
7	1.36	1.42	21.9 ± 1.2	23.0 ± 1.3	19.6 ± 1.6	19.7 ± 1.6		
8	1.42	1.48	25.5 ± 1.4	25.0 ± 1.5	25.5 ± 1.7	25.5 ± 1.8		
9	1.48	1.54	29.1 ± 1.7	27.3 ± 1.9	28.1 ± 1.8	26.0 ± 1.9		
10	1.54	$w_{ m max}$	32.2 ± 2.5	25.3 ± 2.6	30.5 ± 2.3	27.2 ± 2.5		