

Charm and quarkonium at Belle and Belle II

Bianca Scavino (she/her)

on behalf of the Belle II collaboration

Uppsala Universitet

bianca.scavino@physics.uu.se

Moriond QCD

La Thuile, March 30th / April 6th, 2025

Introduction

Belle and Belle II.

Charm

- A_{CP} in $D^0 \rightarrow \Pi^0\Pi^0$
- A_{CP} in $D^0 \rightarrow K_s K_s$ NEW!
- Ξ_c^+ branching fraction **NEW!**

Quarkonium

• Energy dependence of $\sigma(e^+e^- \rightarrow \omega X_{bJ}$ (1P))

Bianca Scavino (she/her)

on behalf of the Belle II collaboration

Uppsala Universitet

bianca.scavino@physics.uu.se

Moriond QCD

La Thuile, March 30th / April 6th, 2025

Belle and Belle II Experiments

Belle and Belle II collect(ed) data at asymmetric e^+e^- colliders at or near the Y(4S) resonance

- KEKB (1999-2010), peak lumi = $2x10^{34}$ cm⁻² s⁻¹, $L_{int} = 1/ab$
- SuperKEKB, peak lumi = 5.1x10³⁴ cm⁻² s⁻¹
 Run1 (2019-2022), L_{int} = 0.42/ab
 Run2 (2024 present), L_{int} = 0.15/ab

Belle & Belle II are now synergic experiments

- Belle data can be analyzed with the Belle II software
- Analyses with combined data samples
 - → Common review procedures in place

BELLE @ KEKB

Belle II @ SuperKEKB

Belle II: Physics Potential

Belle II operates mainly at \sqrt{s} = 10.58 GeV:

•
$$\sigma(e^+e^- \to b\overline{b}) \sim 1.1 \text{ nb}$$

 $L_{peak} = 2.7 \ 10^{34} \text{cm}^{-2} \text{ s}^{-1} \to 30 \ B\overline{B}/\text{s}$

•
$$\sigma(e^+e^- \rightarrow \tau\tau) \sim 0.9 \text{ nb}$$

•
$$\sigma(e^+e^- \rightarrow c\bar{c}) \sim 1.3 \text{ nb}$$

$$\rightarrow$$
 B & τ & c factory

Belle II: Physics Potential

Belle II operates mainly at \sqrt{s} = 10.58 GeV:

•
$$\sigma(e^+e^- \to b\overline{b}) \sim 1.1 \text{ nb}$$

 $L_{peak} = 2.7 \ 10^{34} \text{cm}^{-2} \text{ s}^{-1} \to 30 \ B\overline{B}/\text{s}$

•
$$\sigma(e^+e^- \rightarrow \tau\tau) \sim 0.9 \text{ nb}$$

•
$$\sigma(e^+e^- \rightarrow c\bar{c}) \sim 1.3 \text{ nb}$$

$$\rightarrow B \& \tau \& c$$
 factory

B-Factories can extend their physics programs with non-Y(4S) data

Belle II: 2019 unique energy scan at ~10.75 GeV

Belle II: Physics Program

[See: BIITIP, Snowmass Whitepaper]

Belle II: Physics Program

[See: BIITIP, Snowmass Whitepaper]

Charm

Charm physics at B-Factories

Two ways of producing charm at B-Factories

- Two charmed hadrons produced from continuum
- One or more charmed hadrons produced in B decays

Rich physics program

• Mesons: Precise measurement in Cabibbo-suppressed decays, non-SM physics can contribute at a detectible level Most interesting probes: CPV measurements expect low values in charm sector (O(10-3))

5

Today
• A_{CP} in $D^0 \rightarrow \pi^0 \pi^0$ • A_{CP} in $D^0 \rightarrow K_S K_S$

Baryons: Conflicting or missing predictions for BF and lifetimes
 → results to verify models

Today
• Ξ_c+ branching fraction

A_{CP} in $D^0 \rightarrow \pi^0 \pi^0$

Currently limiting precision on isospin-related $D \to \pi\pi$ sum rule

$$R = \frac{A_{CP}^{\text{dir}}(D^{0} \to \pi^{+}\pi^{-})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)} + \frac{A_{CP}^{\text{dir}}(D^{+} \to \pi^{+}\pi^{0})}{1 - \frac{3}{2}\frac{\tau_{D^{+}}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} + \frac{\mathcal{B}_{+-}}{\tau_{D^{0}}}\right)} + \frac{A_{CP}^{\text{dir}}(D^{0} \to \pi^{0}\pi^{0})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)}$$

- Expected R ~ 0 in SM
- Measured $(0.9 \pm 3.1) \times 10^{-3}$

Strategy:

- Measure observed asymmetry in D $\rightarrow \pi^0\pi^0$ channel
- Correct instrumental effects subtracting asymmetries measured in D → K⁻π⁺

Control channels

A_{CP} in $D^0 \rightarrow \pi^0 \pi^0$

Reconstruct $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow \pi^0 \pi^0)$ 4 \forall final state, large background

Train BDT to suppress background w/ information on \(\) kinematics and calorimeter clusters

- Fit D*+-D0 mass difference (Δm) and $m(\pi\pi)$ in forward and backward calorimeter regions
- Subtract detection asymmetries with $D^*\text{-tag}$ and null-tagged $D^0 \to K^-\pi^+$

$$A_{CP} = (0.30 \pm 0.72 \pm 0.20) \%$$

 $R = (1.5 \pm 2.5) \times 10^{-3}$

20% improvement in sum-rule precision

A_{CP} in $D^0 \rightarrow K_S K_S$

 $D^0 \rightarrow K_s K_s$: Singly Cabibbo-suppressed decays

- Involves interference between $c \rightarrow us\bar{s}$ and $c \rightarrow ud\bar{d}$
- Expect A_{CP}~1% PRD 92, 054036
- → Larger values would indicate non-SM physics

$$A_{CP} \equiv \frac{\Gamma(D^0 \to K_S^0 K_S^0) - \Gamma(\overline{D}^0 \to K_S^0 K_S^0)}{\Gamma(D^0 \to K_S^0 K_S^0) + \Gamma(\overline{D}^0 \to K_S^0 K_S^0)}$$

World average value of the A_{CP} symmetry is limited by statistics $A_{CP}(D^0 \rightarrow K_SK_S) = (-1.9 \pm 1.0)\%$

$$A_{CP}(D^0 \rightarrow K_S K_S) = -0.02 \pm 1.53(stat) \pm 0.02(sys) \pm 0.17 \text{ (cont.mode)}$$
 PRL 119, 171801 (2017)

$$A_{CP}(D^0 \to K_S K_S) = -3.1 \pm 1.2(stat) \pm 0.4(sys) \pm 0.2 \text{ (cont.mode)}$$
 PRD 104, L031102(2021)

Nuisance asymmetries induced by production and detection mechanisms Take $D^0 \to K^+K^-$ as control channel to calibrate A_{CP}

A_{CP} in $D^0 \rightarrow K_S K_S$: D^* -tagged D^0

BELLE Belle II

Reconstruct $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow K_S K_S)$

• Main background: same-final-state $D^0 \to K_S \pi^+\pi^-$ decays

Separate with K_S flight distance significance L/σ :

$$S_{min} = log[min(L1/\sigma 1, L2/\sigma 2)]$$

Fit Δm and S_{min} , subtract detection asymmetries using $D^0 \to K^+ K^-$ decays

Combine Belle and Belle II data:

$$A_{CP}$$
 = (-1.4 ± 1.3 ± 0.1) %

UNIVERSITET

A_{CP} in $D^0 \rightarrow K_S K_S$: Charm-flavor-tag D^0

Charm favor tagger: novel method to tag flavor of D^o meson PRD107, 112010 from other collision products

→ new CFT-tag independent sample

Larger bkg wrt D*-tag: i) train BDT with kinematic information, ii) cut on BDT output and S_{min}

Fit $m(K_sK_s)$ and q (tagged flavor) x r (tag quality) Calibrate r with data (to correct any detection asymmetry)

Method	A _{CP} [%]
D*-tag [PRD 111, 012015]	$-1.4 \pm 1.3 \pm 0.1$
CFT-tag	$1.3 \pm 2.0 \pm 0.3$
Combination	$-0.6 \pm 1.1 \pm 0.1$

Worlds' best determination

 Ξ^{+}_{c} decay channels: (many) not yet measured

Currently many predictions

→ need measurement to rule out some of them

Reconstruct

• (CF)
$$\Xi_c^+ \to \Sigma_c^+ K_S, \Xi_c^+ \to \Xi_c^0 \pi^+$$

• (SCS)
$$\Xi_c^+ \to \Xi_c^0 K, \Xi_c^+ \to pK_S, \Xi_c^+ \to \Lambda\pi, \Xi_c^+ \to \Sigma\pi$$

Analysis strategy:

- Reconstruct intermediate baryons Λ , Σ , Ξ , optimize selection ranges on each invariant mass
- Signal yields: fitting the invariant mass
- Branching fractions: $\Xi^+_{c} \to \Xi^-\pi^+\pi^+$ as normalization mode

Ξ_c⁺ branching fractions

Quarkonium

Quarkonium physics at B-Factories

Multiple production mechanisms

- Nominal \sqrt{s} = 10.58 GeV = m(Y(4S)), potential to reach ~11 GeV
- Full event reconstruction, decays with neutral/soft particles

Quarkonium: above Y(4S) energy scan

Above Y(4S) energy scan (Nov 2021)

- Belle II collected 19 fb⁻¹ of unique data
- → 4 energy scan points around 10.75 GeV

Main motivation

- Confirm and study the Y(10753)
- Improve the precision of exclusive cross-section below the Y(5S)

 $\sigma(\Upsilon(2S)\pi^{+}\pi^{-})$ (pb)

Energy dependence of $\sigma(e^+e^- \rightarrow \omega X_{bJ} (1P))$

$$\frac{\sigma(\ Y(10753)\ \rightarrow\ \omega X_{b1}\)}{\sigma(\ Y(10753)\ \rightarrow\ \omega X_{b2}\)} \ \ \text{Predictions:}$$

- Pure Y(3D) state: ~15 PLB 738, 172 (2014)
- 4S-3D mixed state: ~0.2 PRD 104, 034036 (2021)

Dataset: Belle + Belle II scan data (10.73-11.02 GeV)

- Full reconstruction of $e^+e^- \rightarrow \omega X_{bJ}$ (1P), $\omega \rightarrow \pi^+\pi^-\pi^0$, X_{bJ} (1P) $\rightarrow \gamma Y(1S)$, $Y(1S) \rightarrow I^+I^-$ (I=e, μ)
- Search for $e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega} X_{bJ}$ (1P), same final state

Energy dependence of σ ($e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega} X_{bJ}$ (1P))

- Decays of Y(5S) and Y(6S) into $(\pi^+\pi^-\pi^0)_{non-\omega} X_{bJ}$ (1P)
 - ightarrow Possible explanation: cascade decay of Y(10860, 11020) ightarrow $Z_b\pi$ ightarrow X_{bJ} $\rho\pi$

Energy dependence of $\sigma(e^+e^- \rightarrow \omega X_{bJ} (1P))$

• Mass and width consistent with $e^+e^- \rightarrow Y(nS) \pi \pi$

$$M = 10756.1 \pm 3.4 \pm 2.7 \text{ MeV}$$

 $\Gamma = 32.2 \pm 11.3 \pm 14.9 \text{ MeV}$

• $\frac{\sigma(\Upsilon(10753) \rightarrow \omega X_{b1})}{\sigma(\Upsilon(10753) \rightarrow \omega X_{b2})}$ = 1.5 ± 0.6 \rightarrow no support 3D, 2.2 σ discrepancy from S-D mixing

•
$$\frac{\Gamma(Y(nS) \pi^+ \pi^-)}{\Gamma(\omega X_{bj})} = \begin{cases} < 0.9 \text{ at } Y(10753) \\ > 28.1 \text{ at } Y(5S) \end{cases}$$
 \rightarrow Different structure?

Summary

The Belle II physics program has strong potential both in charm and bottomonium physics

- Charm physics: CPV measurements, baryon decays, ...
- Quarkonium: unique potential above Y(4S)

Today showed:

- First observation and best measurement of Ξ_{c}^{+} branching fractions
- World's best measurements of A_{CP} in $D^0 \to \pi^0$ (final state unique for Belle II)
- World's best measurements of A_{CP} in $D^0 \rightarrow K_S K_S$
- Energy dependence of $\sigma(e^+e^- \rightarrow \omega X_{bJ}(1P))$

Only 1% of target luminosity collected so far

- Run2 ongoing, with record-breaking instantaneous luminosity
- Rich and extensive physics program, goal of further testing the Standard Model

BACKUP

D⁰→ π⁰π⁰, Full set of fits

CFT-tag $D^0 \rightarrow K_s K_s$, Full set of fits

D*-tag D°→K_SK_S, Full set of fits

Ξ_{c}^{+} invariant mass fits

Ξ_c⁺ invariant mass fits

Energy dependence of $\sigma(e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega}X_{bJ}$ (1P)), $\sigma(e^+e^- \rightarrow \omega X_{bJ}$ (1P))

$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b1})$	$(0.00 \pm 0.05 \pm 0.02) \text{ eV} (< 0.08 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b2})$	$(0.00 \pm 0.03 \pm 0.02) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b1})$	$(0.26 \pm 0.08 \pm 0.12) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b2})$	$(0.17 \pm 0.05 \pm 0.04) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b1})$	$(0.48 \pm 0.19 \pm 0.18) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b2})$	$(0.14 \pm 0.12 \pm 0.10) \text{ eV}$

$M(\Upsilon(10753))$	$(10756.1 \pm 3.4 \pm 2.7) \text{ MeV}/c^2$
$\Gamma(\Upsilon(10753))$	$(32.2 \pm 11.3 \pm 14.9) \text{ MeV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})$	$(1.46 \pm 0.25 \pm 0.17) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})$	$(1.29 \pm 0.38 \pm 0.30) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b1})$	$(0.02 \pm 0.04 \pm 0.04) \text{ eV} (< 0.09 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b2})$	$(0.00 \pm 0.04 \pm 0.02) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to \omega \chi_{b1})$	$(0.01 \pm 0.02 \pm 0.03) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to \omega \chi_{b2})$	$(0.17 \pm 0.16 \pm 0.05) \text{ eV } (< 0.43 \text{ eV})$

