

Searches for dark sector particles at Belle and Belle II

KINDO Haruki
On behalf of the Belle II collaboration

2025/5/19-21 PHENO2025

The Belle II experiment at SuperKEKB accelerator

- Belle II is a luminosity frontier experiment looking for physics beyond the Standard Model. Continued from Belle experiment (1999-2010) that recorded about 1 ab⁻¹.
- **SuperKEKB** is an asymmetrical e^+e^- collider operating at the $\Upsilon(4S)$ resonance. Upgraded from **KEKB** accelerator for the **Belle** experiment.
- Run 1 finished successfully with 427 fb⁻¹ data. Run 2 started in 2024 and 575 fb⁻¹ is recorded. A new luminosity world record of $5.1 \times 10^{-34} \, \mathrm{cm}^{-2} \, \mathrm{sec}^{-1}$ was achieved.

Dark sector search at Belle II

- Signature-based search in **clean environment** at lepton colliders and **hermetic detector**.
- Multipurpose detector with cylindrical symmetry that provides efficient reconstruction of neutral particles (π^0 , η) and good particle identification for charged particles.
- Specific low-multiplicity triggers for dark sector searches; single track, muons, or photons. It was not available at Belle and BaBar experiments.

Electromagnetic calorimeter (ECL):

CsI(Tl) crystals

Waveform sampling (energy, Tim, pulse shape)

Vertex Detectors (VXD):

2 layer DEPFET pixel detectors (PXD)

4 layer double-sided silicon strip detector (SVD)

Central Drift Chamber (CDC):

He (50%): C₂H₆ (50%), 8-15 mm pitch,

fast readout electronics

Details: Belle II Technical Design Report

K_L and Muon Detector (KLM):

Resistive Plate Chamber (RPC) for outer barrel Scintillator + WLSF + MPPC for endcap and inner barrel

Solenoid Magnet:

1.5 T superconducting magnet

Particle Identification detectors:

Time-Of-Propagation Counter (TOP) for barrel Aerogel Ring-Imaging Cherenkov Counter (ARICH) for forward endcap

Overview of recent searches

■
$$\mathbf{L}_{\mu} - \mathbf{L}_{\tau}$$

▶ $Z' \rightarrow \text{invisible}$

▶ $Z' \rightarrow \mu\mu$

▶ $Z' \rightarrow \tau\tau$

- Axion like particles

$$\begin{array}{c} \bullet \quad a \rightarrow \tau\tau \\ \bullet \quad B \rightarrow Ka(a \rightarrow \gamma\gamma) \end{array}$$

- Dark Higgsstrahlung

$$A'h': A' \rightarrow \mu\mu, h'$$
 invisible

- LLP Dark Higgsstrahlung with IDM

$$A'h': A' \rightarrow \chi_1 \chi_2, h' \rightarrow \mu \mu, \pi \pi, KK$$

- LLP dark scalar in B decays

▶
$$B \rightarrow KS, S \rightarrow ee, \mu\mu, \pi\pi, KK$$

Recent highlights

- Search for dark Higgs with inelastic dark matter Recently submitted to PRL (arXiv: 2505.09705)

- Search for Axion-like particle in $B \to K^{(*)}a'(\to \gamma\gamma)$ Preliminary

- Search for a $\mu^+\mu^-$ resonance in four-muon final states Recently published in Phys. Rev. D. 109, 112015 (2024)

- Searching for simultaneously produced dark Higgs (h') with dark photon (A'). Use 365 fb⁻¹ of Belle II data.
- Two dark matter states χ_1 and χ_2 with small mass difference $\Delta m = m(\chi_2) m(\chi_1)$.
- χ_1 is stable and a candidate of relic dark matter, while χ_2 is a long-lived state.
- h' is generally long-lived. It mixes SM Higgs through mixing angle θ and decays into a pair of SM particles.
- ▶ Small Δm makes χ_2 long-lived.
- Assuming $m(A') > m(\chi_1) + m(\chi_2)$, the decay $A' \to \chi_1 \chi_2$ is favored.
- Two displaced vertices.One is pointing to IP and the other is non-pointing.
- Missing energy.

- Strategy: Search for two displaced vertices with missing energy.
- Challenges for tracking and triggering. Aiming for a zero-background analysis.
 - ▶ 4 (charged) tracks are required.
 - ▶ 2 for a pointing displaced vertex. And, 2 for a non-pointing displaced vertex.
 - Missing energies corresponding to χ_1 and χ_2 .

- Results: No evidence for a signal. Set upper limits on four different cross sections.

- Backgrounds are estimated in data from sidebands not to rely on MC.

- Results: No evidence for a signal. Set upper limits on four different cross sections.

- Backgrounds are estimated in data from sidebands not to rely on MC.
- Dependent on the parameter configuration the existing limits are improved by up to two orders of magnitude.

2025/5/19-21 @ U. Pittsburgh

Examples of parameter changes: Keeping the lifetime of χ_2 at $c\tau(\chi_2)=1.0$ cm, ϵ and Δm are changed.

Search for Axion-like particle in $B \to K^{(*)}a(\to \gamma\gamma)$

- Searching for axion-like particle (ALP, a) in $B \to K^{(*)}a$ decay. Use 711 fb⁻¹ of Belle data.
- One of Flavor Changing Neutral Current (FCNC) B decays, extremely suppressed in SM.
- Searching for an ALP coupling to W^{\pm} bosons in mass region 0.16 4.50 GeV/ c^2 . BR($a \rightarrow \gamma \gamma$) $\simeq 100 \%$ for $m_a \ll m_{W^{\pm}}$.
- There is a previous search by BaBar experiment using 424 fb⁻¹. Use more integrated luminosity and additional kaon modes.

 $K = K_S^0, K^+, K^{*0}, K^{*+}$

Search for Axion-like particle in $B \to K^{(*)}a(\to \gamma\gamma)$

- Strategy: Reconstruct the signal B by combining two photons and kaon.
- Challenges for suppressing background events of $e^+e^- \rightarrow q\bar{q}$ (called continuum events).
 - ▶ Event shape parameters can suppress background events.
 - ▶ B mesons are at rest in CM frame, while $q\bar{q}$ pair has significant momenta.
- The kinematic variables of reconstructed B meson are used for cuts.
 - In the CM frame, the beam constraint mass: $M_{bc} = \sqrt{(E_{\rm beam}/2)^2 - (\vec{p_B})^2}$ and the energy difference: $\Delta E = E_{\rm beam}/2 - E_B$.
- Boosted Decision Trees (BDTs) trained by Fox-Wolfram moment 2 and cosine of thrust axes are used for signal extraction.
 - ▶ To reject π^0 and $B \to X_s \gamma$ backgrounds, additional BDTs are trained by calorimeter cluster variables.

Search for Axion-like particle in $B \to K^{(*)}a(\to \gamma\gamma)$

- Results: No evidence for a signal. Set upper limits on g_{aW} .
- Simultaneous fits on the four kaon modes vetoing peaking SM backgrounds.
 - ▶ Scan over $M_{\gamma\gamma}$ with steps ~ 8 18 MeV.
 - Three peaking backgrounds corresponding π^0 , η , and η' are excluded.

Search for a $\mu^+\mu^-$ resonance in four-muon final state

- Searching for dark **Z** boson (Z') and muonphilic scalar in $e^+e^- \rightarrow \mu^+\mu^- X$ decay. Use 178 fb⁻¹ of Belle II data.
- The L_{μ} L_{τ} extension of SM gives rise to a new massive and neutral vector boson, Z'.
 - ▶ The Z' couples only to μ , τ , ν_{μ} , and ν_{τ} .
 - It also can be a mediator between SM and dark matter.
- The muonphilic scalar S couples exclusively to muons through a Yukawa-like interaction.
 - ▶ It is primarily proposed as a solution of $(g-2)_{\mu}$ anomaly.
 - ▶ The interaction is not gauge-invariant under the SM gauge symmetry and requires a high-energy completion.

Search for a $\mu^+\mu^-$ resonance in four-muon final state

- **Strategy:** Search for 4 tracks combination at a mass $\sim \sqrt{s}$
- Challenge for reducing the SM background $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$.
 - ▶ The other background can be rejected by particle identification.
 - Only in low mass region, $e^+e^- \to \mu^+\mu^-\gamma(\to e^+e^-)$ can be a problem.
- Multilayer Perceptron (MLP) NN for background suppression based on kinematics variables.
 - ▶ Each muon momentum of signal pair, momenta of the signal pair and the "recoil" pair etc... in total, 16 variables.

Search for a $\mu^+\mu^-$ resonance in four-muon final state

- Results: No evidence for a signal. Set upper limits on the cross sections and branching fractions.
- Limits on g' similar to Belle and BaBar experiments with much lower statistics.
 - ▶ Scan over $M_{\mu\mu}$ with steps ~ 2 5 MeV.
 - The largest local significance is 3.4 σ at $M_{\mu\mu} = 5.307$ GeV.

Summary

- Belle II experiment has a unique sensitivity to MeV-GeV dark matter.
 - ▶ Clean environment in a hermetic detector with specific trigger system.
 - ▶ Complimentary to higher energy experiments and beam dump experiments.
 - ▶ World leading results are published with partial Run 1 dataset.
- Many frontiers of improvements.
 - ▶ Run 1 and 2 datasets are being processed.
 - ▶ Optimize and improve the analysis techniques.
 - ▶ Reduce systematic uncertainties.
- And more...
 - ▶ The next run will start this Autumn and more data will be delivered.
 - ▶ Along with more integrated luminosity, more results are expected; Axions (incl. ALPs), dark photons, IDMs, and dark scalars...
 - ▶ Find more details in the Snowmass White paper: <u>arXiv:2207.06307</u>