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Abstract

This particle physics thesis presents the first simultaneous analysis of the B → Dℓνℓ and
B → D∗ℓνℓ decays at the Belle II experiment, where ℓ denotes either an electron or a
muon. The analysis uses electron-positron collision data produced by the SuperKEKB
collider at the Υ(4S) resonance and collected by Belle II between 2019 and 2022. The
Belle II experiment is designed to reconstruct the decays of B and D mesons and τ leptons,
to provide high-precision measurements that test the heavy-flavour sector of the Standard
Model of particle physics.

The B → Dℓνℓ and B → D∗ℓνℓ decays are reconstructed from about 387 million BB
pairs. I analyse the dynamics of these decays using novel observables, defined for the first
time in this thesis, that enable a number of key results. The most significant of these is
a precise measurement of the weak coupling strength between beauty and charm quarks,
|Vcb|, a fundamental Standard Model parameter of the quark weak interactions. Additional
measurements include four signal decay branching fractions and, for the B → D∗ℓνℓ decay,
the lepton forward-backward asymmetry AFB, and the D∗ longitudinal polarisation FD∗

L .
The analysis is performed on simulated and control-data samples and will be applied to

the signal sample upon approval from the Belle II Collaboration following internal review.
At the time of this writing, the measurement values remain blinded. The anticipated
precisions are competitive with those of world’s best results, and the expected outcomes
are:

|Vcb| = (XXX ± 0.29± 0.64± 0.45)× 10−3 ,

B(B+ → D
0
ℓ+νℓ) = (XXX ± 0.01± 0.06)% ,

B(B+ → D
∗0
ℓ+νℓ) = (XXX ± 0.02± 0.13)% ,

B(B0 → D−ℓ+νℓ) = (XXX ± 0.01± 0.05± 0.02)% ,

B(B0 → D∗−ℓ+νℓ) = (XXX ± 0.02± 0.12± 0.05)% ,

AFB = (XXX ± 0.5± 0.4)% ,

FD∗
L = (XXX ± 0.7± 0.6)% ,

where the first uncertainty is statistical, the second systematic, and the third, when present,
is related to theoretical inputs or assumptions.

In addition, by assuming isospin symmetry, I obtain from the same analysis a new
measurement of f+−/f00, the ratio of the branching fractions of Υ(4S) decays into charged
and neutral B-meson pairs. The expected result,

f+−/f00 = XXX ± 0.007± 0.025± 0.024 ,

is also competitive with the best measurements of this quantity. Improving the precision
on f+−/f00 enhances the accuracy of all measurements of B branching fractions at Belle II.
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Introduction

The Standard Model (SM) of elementary particles and their interactions is the currently
accepted theory of particle physics. It is widely recognised as the ultimate success of the
reductionist paradigm for describing physics at its most fundamental level. Using about
twenty parameters, the SM accurately describes thousands of measurements involving pro-
cesses mediated by the electromagnetic, weak, and strong interactions, covering more than
ten orders of magnitude in energy. However, theoretical considerations and, possibly, ex-
perimental evidence suggest that the SM may be an effective theory : one that is valid
at the energies tested thus far but embedded within a yet-unknown, more comprehensive
framework. Extending the SM is the principal goal of today’s particle physics.

Direct approaches, which broadly involve searching for decay products of non-SM par-
ticles produced in high-energy collisions, provide an unequivocal means of discovering and
characterising new particles. However, their current reach is limited by the collision energy
of today’s accelerators and by the large investments needed to advance it in the future.
Complementary approaches involve comparing precise measurements with equally precise
predictions of lower-energy processes where virtual non-SM particles could contribute. A
consistent pattern of deviations from SM predictions would reveal new phenomena. The
reach of these indirect approaches is not limited by collision energy but rather by the
precision achievable in both measurements and theoretical predictions.

Belle II is an experiment designed to test the SM indirectly by analysing billions of de-
cays of particles containing the quarks beauty and charm (heavier counterparts of the down
and up quarks, which make up atomic nuclei) and of the τ lepton (a heavier counterpart
of the electron) produced in electron-positron collisions at energies near 10.58 GeV. Since
the start of data taking in March 2019, Belle II collected a sample containing about 387
million of BB mesons (a B meson is a bound states of a beauty antiquark and either an
up or down quark). Run II started in March 2024, after a 1.5-year shutdown to upgrade
the detector and collider, and will continue until a second shutdown for a new upgrade,
expected around 2027, with the goal of collecting a sample significantly larger than that of
Run I.

This thesis presents a simultaneous analysis of two decays of the B mesons, B → Dℓνℓ
and B → D∗ℓνℓ, where ℓ can be either an electron or a muon, using Belle II Run I data.
I analyse their decay dynamics with a novel method that enables several key measurements,
the most significant being a precise determination of the weak-interaction coupling strength
between beauty and charm quarks, |Vcb|. This measurement is crucial as it provides one of
the SM fundamental parameters related to quark weak interactions.

Accurate knowledge of |Vcb| is essential for precisely predicting rates of processes highly
sensitive to physics beyond the SM, thereby enhancing the discovery potential of indirect
searches. Over the past two decades, measurements of |Vcb| have been conducted using two
main analysis categories based on theoretically distinct yet equally valid approaches: the
inclusive and exclusive methods. Both methods achieve a similar precision, approximately
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2%. However, the |Vcb| values obtained differ by approximately 5%, and this discrepancy
currently limits the knowledge of |Vcb|.

The primary decay modes used in the exclusive method are B → Dℓνℓ and B → D∗ℓνℓ,
precisely those studied in this thesis. The determination of |Vcb| with these decays follows
from measurements of their branching fractions and form factors—functions that encode
the strong-interaction effects binding beauty and charm quarks in mesons. To extract |Vcb|
theoretical calculations of the form factors are necessary, as well as a model to extrapolate
them to the entire phase space of the decay. Recent results from various collaborations
present some tensions regarding the B → D∗ℓνℓ form factors, further complicating the |Vcb|
extraction.

In this thesis, I propose a measurement of model-independent observables, defined here
for the first time, sensitive to the B → Dℓνℓ and B → D∗ℓνℓ decay dynamics, from which
|Vcb| can be determined a posteriori using any input calculation and model for the form
factors. These observables facilitate improved determinations of |Vcb| using any future
advancements on the theoretical side, and mark the first element of novelty of my work.
From the same observables, I also obtain the B → Dℓνℓ and B → D∗ℓνℓ branching fractions
and, for B → D∗ℓνℓ decays, the forward-backward asymmetry of the lepton AFB, and the
longitudinal polarisation of the D∗ meson FD∗

L . The latter encode information on the decay
dynamics that helps shedding light on the form-factor calculations.

My analysis targets both B → Dℓνℓ and B → D∗ℓνℓ decays simultaneously, accounting
for correlations between uncertainties in the extraction of |Vcb|. To this end, in B → D∗ℓνℓ
decays, the D∗ decay is partially reconstructed from Dℓ candidates. This global approach
represents the second novel aspect of my work, as the two decays have previously been
analysed separately at Belle II.

The partial reconstruction of the D∗ decay eliminates a major systematic uncertainty
affecting previous measurement of |Vcb| from B → D∗ℓνℓ decays, the uncertainty associ-
ated with the slow-pion reconstruction efficiency in D∗ → Dπslow. However, the analy-
sis becomes more sensitive to background modelling, with a dangerous background being
feed-down from semileptonic decays involving excited charm states, whose production rates
remain poorly known. I conduct a detailed study to constrain this background with data,
identifying a control region enriched of these decays that I analyse simultaneously with the
signal sample. This is another element of novelty of my work.

Finally, my analysis also provides an important byproduct. By assuming isospin sym-
metry, I also perform a new measurement of f+−/f00, the ratio of the branching fractions
of Υ(4S) decays into charged and neutral B-meson pairs, eliminating another significant
source of systematic uncertainty on |Vcb|. The value of f+−/f00 in use at Belle II comes
from an analysis of B → J/ψK decays, which is affected by a 5% theoretical uncertainty
to cover isospin-breaking in these decays. For semileptonic decays, isospin breaking should
contribute a smaller uncertainty, offering a more precise way to measure f+−/f00. The
improvement of the precision on f+−/f00 has a pivotal importance in Belle II, as its un-
certainty affects all measurements of B branching fractions.

The analysis, while fully completed on simulation and control data, is not yet applied
to the signal sample, because it is still under Belle II internal review. The full analysis will
be applied to the real data after the review and carefully defining an unblinding procedure.
Nevertheless this thesis fully demonstrates the potential of the novel method proposed.

The thesis is structured as follows. Chapter 1 introduces the parameters of the SM,
focusing on |Vcb|. In Chapter 2, I give an overview of the methods and challenges for the
exclusive |Vcb| determination from B → Dℓνℓ and B → D∗ℓνℓ decays, discussing also my
new analysis approach and defining the model-independent observables, the target of my
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measurement. Chapter 3 describes the Belle II experiment, reporting also an important
service work I conducted during my first Ph.D. year, the measurement of instrumental
asymmetries for kaons and pions. The reconstruction of the signal decays from Belle II
data and their selection is discussed in Chapter 4, where I also introduce the sample
composition. Chapter 5 focuses on a detailed description of the backgrounds and the
strategies to model and constrain them directly from data. The core of the analysis, a
global fit to the data, is detailed in Chapter 6, with the final measurements and their
associated uncertainties discussed in Chapter 7. Finally, |Vcb| and form-factors parameters
are determined in Chapter 8. A final summary concludes the document.

Charge-conjugate processes are implied throughout the document unless specified oth-
erwise. Generic particle symbols (B, D, ...) indicate either charged or neutral particles.
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Chapter 1

Beauty to charm: |Vcb| in the
Standard Model

The current theory of fundamental particles and interactions, the Standard Model of particle
physics, relies on about twenty parameters that determine the physics we observe. Their
values are not predicted by the model and must be measured experimentally. Knowledge
of one of these parameters is limited by the current uncertainty in the magnitude of the
bottom-to-charm quark coupling, |Vcb|. My thesis aims to improve its measurement. In this
chapter, I concisely review the Standard Model by discussing its fundamental parameters,
with a focus on quark-flavour mixing and its role in exploring physics beyond the Standard
Model. I conclude with a brief overview of the current knowledge of |Vcb|.

1.1 A model with eighteen free parameters

The Standard Model (SM) of particle physics is an effective quantum field theory that offers
the most fundamental description of nature known to date. It describes the fundamental
interactions between the elementary particles of matter, except for gravity [1–6]. The
model relies on about twenty free parameters, which are a priori arbitrary and must be
determined experimentally. Given the values of these parameters, the theory can explain,
in principle, all phenomena in our daily lives and all data observed in accelerator-based
experiments. In its minimal representation, the SM has eighteen free parameters: three
for the gauge couplings of the strong, electromagnetic and weak interactions; two for the
Higgs sector; and thirteen for the fermion masses and mixing.1

The first three parameters are related to the gauge groups. The SM is based on the
symmetry group

SU(3)C ⊗ SU(2)W ⊗ U(1)Y ,

where SU(3)C is the standard unitary group that describes the strong interactions (quan-
tum chromodynamics, QCD); the product SU(2)W ⊗ U(1)Y describes the combination
of the weak and electromagnetic interactions, with SU(2)W being the standard unitary
group of weak isospin doublets, and U(1)Y the unitary group of hypercharge. Three cou-
pling constants, g1, g2 and g3, are associated with these groups: g1 and g2 mix and give
the couplings of the weak and electromagnetic interactions; g3 is the coupling constant of
the strong interaction. They vary according to known functions with the energy scale due
to the effects of renormalisation [7] and are free parameters in the SM.

1Hereafter the minimal version of the SM, which assumes massless neutrinos and CP-conserving strong
interaction, is considered.
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CHAPTER 1. FLAVOUR PHYSICS

Spin-1 particles called gauge bosons mediate the interactions. Strong interactions are
mediated by gluons, eight massless particles corresponding to the generators of SU(3)C .
They carry a combination of two charges, called colour and anti-colour, which can be each
of three kinds (red, blue, and green). Weak interactions are mediated by two charged
massive bosons, W±, and a neutral massive boson, Z0. Electromagnetic interactions occur
between particles carrying electric charge and are mediated by a neutral massless boson,
the photon γ. The electroweak bosons W±, Z0, and γ, arise from linear combinations of
SU(2)W ⊗U(1)Y generators through the Weinberg angle θW , which is a function of g1 and
g2:

sin θW =
g1√
g21 + g22

, cos θW =
g2√
g21 + g22

.

The W± mass depends on the Z0 mass via θW , as mZ = mW / cos θW . The electromagnetic
coupling constant e is given in terms of the weak coupling constant g2 as

e = g2 sin θW ,

and the Fermi constant of weak interactions is given by

GF =
πα√

2(MZ cos θW sin θW )2
,

where α = e2/4π. Measuring the electromagnetic and weak couplings, the Weinberg angle,
and the masses of the Z0 and W± bosons provides a test of this sector of the SM. Any
deviation from the predicted values could indicate the presence of new physics beyond it,
making precision measurements crucial. Such tests also probe the internal consistency of
the electroweak theory, offering a stringent check on radiative corrections and potential
contributions from unknown particles or forces.

The SU(2)W ⊗ U(1)Y symmetry of the electroweak interactions does not manifest
itself at low energies and it is spontaneously broken by the vacuum expectation value of
a field, mediated by a spin-0 particle. The simplest implementation of this spontaneous
symmetry-breaking is given by an Higgs doublet

H =

(
H+

H0

)
with a potential

V (H) =
λ

4

(
H†H − v2

2

)2

,

where v is the vacuum expectation value and λ denotes the scalar Higgs-Higgs cou-
pling strength. These are other two free parameters of the model. Assigning a vac-
uum expectation value to the Higgs field results in the desired spontaneous breakdown
of SU(2)W ⊗ U(1)Y , which produces the gauge-invariant mass terms in the SM. For in-
stance, the Z0 mass is related to v through MZ0 = (

√
g21 + g22/2)v. The value of v can

thus be inferred to be about 246GeV, as
√
2GF = 1/v2. The Higgs mass is related to the

vacuum expectation value by
mH =

√
2λv .

The observation of the Higgs boson with a mass of about 125 GeV/c2 at LHC in 2012 [8]
made the last missing step for the completion of the measurement of all SM parameters.

The remaining thirteen free parameters of the model are related to matter particles,
which also acquire mass via the interaction with the Higgs field. Most of the richness and
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complexity of the model, allowing for chemistry and life itself, resides in the values of these
parameters. Matter particles correspond to excitations of spin-12 fields, the fermions. Their
masses are generated through their Yukawa couplings to the Higgs field,

mf = yf
v

2

where mf is the mass of the fermion and yf is the Yukawa coupling. The masses (or the
couplings) are free parameters to be measured.

Fermions are classified into two classes: quarks, which are the fundamental constituents
of nuclear matter, and leptons. Each fermion is also associated with an antiparticle. Quarks
are massive and organised in three families, each composed of an up-type quark with charge
2
3e, and a down-type quark with charge −1

3e,(
u

d

)(
c

s

)(
t

b

)
.

They couple with both the strong and electroweak interactions. Each quark has colour and
a flavour quantum number, which comes in six varieties and is conserved in the electromag-
netic and strong interactions, but not in the weak interactions. Due to colour confinement
free quarks are not observable2. They are only observed in their colourless bound states,
which include mesons, typically composed of a quark and an anti-quark, and baryons, com-
posed of three quarks. Baryons are assigned a quantum number, called baryon number,
found to be conserved.

Leptons are also grouped in three families, composed each by a neutral massless neutrino
and a massive particle with electric charge -e,(

νe

e

)(
νµ

µ

)(
ντ

τ

)
.

They couple only with the electroweak interaction. Each lepton has a lepton-family quan-
tum number; their sum in a process, called global lepton number, is found to be conserved
in all interactions, although no symmetry of the dynamics prescribes that. Individual lep-
ton numbers are not conserved in neutrino oscillations (this fact also leads to neutrino
masses).

Only left-chiral fermions (and right-chiral antifermions) engage in the charged weak
interaction. Interactions involving right-handed or opposite-handed fermions do not occur.
This implies that weak interactions, in contrast to strong and electroweak interactions,
violates parity (P ), the transformation that inverts all spatial coordinates. In the SM, this
feature is implemented through left- and right-handed fields of quark and lepton trans-
forming differently under SU(2)W : right-handed fields are singlet; left-handed field are
doublets. Weak interaction also violates CP , the combined transformation of parity and
charge-conjugation (C, which inverts all quantum numbers of a particle); CP violation is
established only in the quark sector. While the electromagnetic interaction is CP symmet-
ric, the strong interaction could violate CP symmetry too, but no experimental evidence
of that has ever been observed. All interactions are symmetric under the combined CPT
transformation, where T inverts the time axis. This is prescribed by foundational axioms

2To a good approximation, the attractive force between quarks grows linearly with distance. As two
quarks are separated, putting energy into the bounded system, it becomes energetically favourable for a
new quark–antiquark pair to appear, rather than extending the distance further. As a consequence new
bound states are generated instead of separated and free quarks.

7
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of field theory [9], and results in particles and antiparticles having the same mass and
lifetime.

Along with six parameters for the quark masses and three parameters for the lepton
masses, there are four additional free parameters. They concern the mixing between the
quark flavours, governed by the Cabibbo-Kobayashi-Maskawa matrix, which I present in
detail in the next section.

1.2 The remaining four parameters

The role of flavour in shaping the SM has been central since the early days of particle
physics. In the early 1960s, during the crucial years for the theoretical development of
the SM, there was an apparent inconsistency between weak coupling constants measured
in muon decay, neutron decay, and strange-particle decays. Such inconsistency was first
addressed by Gell-Mann and Levy [10] and then Cabibbo [11], who postulated differing
mass and weak eigenstates for down-type quarks. This was achieved by introducing a
mixing angle between the s quark and d quark, the only two down-type quarks known at
the time.

While Cabibbo’s theory efficiently addressed the difference in weak coupling constants,
it also predicted a rate for kaon decays involving neutral-current transition inconsistent
with the experimental limits at the time. Glashow, Iliopoulos, and Maiani addressed the
conundrum by postulating the existence of a fourth quark, the charm, of about 2 GeV/c2

mass, whose contribution to the decay amplitude suppresses the branching fraction down
to values consistent with experimental limits [12].3 The charm quark was then discovered
four years after its prediction.

In 1973, when only three quarks were known, Kobayashi and Maskawa generalised
Cabibbo’s theory from a four-quark model to a six-quark model to accommodate the phe-
nomenon of CP violation observed in 1964 [13]. They introduced a complex unitary matrix
to describe the relations between mass (unprimed) and weak (primed) interaction eigen-
states of quarks as seen by W± bosons. This is known as the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix denoted as VCKM,d

′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 .

Each Vij matrix element encapsulates the weak-interaction coupling between an up-type i
and down-type j quarks; for instance, the Vcb matrix element governs the weak-interaction
coupling between the beauty and charm quarks. A general quark-mixing matrix has di-
mension N×N and (N−1)2 free parameters, where N is the number of quark families 4. If
N = 2, the only free parameter is a single angle (the Cabibbo angle θC), whereas if N = 3,
the free parameters are three Euler angles and a complex phase; the latter allows for CP -
violating couplings [14]. There are three families of quarks in the SM, thus four parameters
making up the CKM matrix: these complete the set of the eighteen free parameters of the
SM.

3Nowadays we know that also the top quark contributes to the amplitude, with a GIM factor which is
proportional to the squared ratio of the top and W masses m2

t/m
2
W ; this contribution is suppressed by the

smallness of the quark-mixing couplings involved.
4A generic N×N complex matrix U is defined with 2N2 free parameters. The unitary condition UU† = 1

eliminates N2 degrees of freedom. We can then redefine (N − 1) quark fields to absorb 2N − 1 free
parameters. We end up with 2N2 −N2 − (2N − 1) = (N − 1)2 free parameters.

8



CHAPTER 1. FLAVOUR PHYSICS

Figure 1.1: Examples of leading FCNC diagrams.

The CKM matrix is most conveniently written in the so-called Wolfenstein parametri-
sation, which is an expansion in the small parameter λ = sin θC ≈ 0.23 that makes explicit
the observed hierarchy between its elements [15],

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) .

The four free SM parameters of the quark-mixing sector are thus λ, A, ρ and η. The
parameter λ expresses the mixing between the first and second quark generations, A and ρ
are real parameters, and η is the parameter that introduces CP violation. The parameter
A enters at both λ2 and λ3 levels, with the λ3 contribution being more suppressed. Con-
sequently, A is primarily determined by the contributions at λ2, specifically from the |Vcb|
and |Vts| elements. However, the measurement of |Vcb| is favoured over |Vts| because it is
obtained at tree-level rather than at loop-level. Thus, a precise measurement of the matrix
element |Vcb| directly leads to an accurate determination of the Wolfenstein parameter A,
given that the Cabibbo angle is known with an uncertainty of only 0.2%. In this context,
the measurement of |Vcb| yields a fundamental SM parameter.

With the Wolfenstein parametrisation, a clear hierarchy of the matrix elements becomes
evident. Transitions within the same family are favoured; then, those to the nearest family;
finally, transitions that skip a family are the most suppressed. The origin of hierarchy of
the CKM-matrix elements is unknown and remains an open conundrum to this day.

Quark-mixing occurs through the emission of a W± boson; therefore, a change of quark
charge by one unit. This process is called flavour-changing charge current. In contrast,
flavour-changing neutral currents (FCNC) are processes in which the quark flavour changes,
but the electric charge remains the same. Such kind of processes are suppressed in the SM,
because they occur only through second-order amplitudes involving the internal exchange
of a W± bosons (“loop amplitudes”), as shown in Fig. 1.1. Such amplitudes are naturally

9
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Figure 1.2: Leading order Feynman diagrams contributing to neutral B0 −B
0 mixing.

sensitive to non-SM contributions, since any particle with proper quantum numbers and
nearly arbitrary mass can replace the SM-quark closed-line in these diagrams thus altering
the rate. FCNC are therefore powerful in identifying contributions from non-SM particles
if rate enhancements or suppressions with respect to SM expectations are observed.

A peculiar FCNC process which enriches significantly the phenomenology of neutral
mesons is the phenomenon of flavour oscillations. Flavour quantum numbers are conserved
in strong interactions and thus flavour eigenstates are eigenstates of strong interactions.
Weak interactions do not conserve flavour, allowing a neutral meson to undergo a transition
into its own antiparticle (or vice versa), which changes flavour by two units. Because
the full Hamiltonian contains strong and weak interactions, its eigenstates (which are
the particles we observe, with definite masses and lifetimes) are linear superposition of
flavour eigenstates. As an example, Fig. 1.2 shows the leading-order Feynman diagrams
contributing to neutral B0B

0 mixing. Flavour oscillations are suppressed in the SM, and
provide strong constraints on model building for SM extensions.

1.3 Constraining the CKM matrix

The unitarity condition of the CKM matrix, VCKMV
†
CKM = 1, yields nine relations, which

are sums of three complex numbers each. Six equations sum to zero prompting a convenient
geometric representation in the complex plane in terms of the so-called unitarity triangles.
A notable triangle, referred to as “the unitarity triangle” (UT) and shown in Fig. 1.3, comes
from the equation that has all elements of similar magnitudes,

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 . (1.1)

Conventionally, side sizes are normalised to the length of the base, V ∗
cbVcd, and the three

angles are labelled α (or ϕ2), β(̇or ϕ1), and γ (or ϕ3).

Figure 1.3: Graphical representation of the Unitarity Triangle.
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By measuring the size of the sides and angles, the triangle can be overconstrained to
test the consistency of the CKM mechanism. This can reveal effects beyond the SM if a
disagreement between lengths of the sides of the UT and its angles is found.

The sides are constrained by the magnitudes of CKM matrix elements, which are usu-
ally measured with semileptonic or fully leptonic decays, including charged current quark
transitions. The measured decay rates of the respective flavour-changing transitions are
proportional to the coupling strength |Vij |2. This is the case for the matrix element |Vcb|,
the focus of this thesis, which is extracted by analysing B → Xcℓνℓ transitions, where
Xc is a hadron containing a c quark and ℓ is either an electron or a muon (this will be
expanded in Chapter 2). Similarly, the smallest CKM matrix element |Vub| is determined
from B → Xuℓνℓ processes; |Vus| from K → πℓνℓ decays, and |Vcd| from D → πℓνℓ, while
the best way to measure |Vcs| is through the fully leptonic decay Ds → ℓνℓ. The element
|Vud| is measured from nuclear β decays.

Not all magnitudes are best measured with semileptonic decays. The combination
|VtdV ∗

tb| can be extracted precisely by measuring the difference of neutral B mass eigen-
states, ∆md, which is proportional to |VtdV ∗

tb|2. This quantity gives the frequency of B0B
0

oscillations. Due to significantly reduced theory uncertainties, the ratio of mass differences
for neutral B and Bs meson ∆md/∆ms (proportional to |VtdV ∗

tb|2/|VtsV ∗
tb|) is often used as

a better constraint.
All measurements of |Vij | elements require input from theoretical calculations to factor

out the strong interaction from the decay rate as the quarks involved are bound in hadrons.
Therefore, improvements on the determination of the matrix-element strengths require
advancements both on the experimental measurements and QCD calculations. The current
status confirms the almost diagonal hierarchical structure of the CKM matrix:

VCKM =

 0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012

0.22438± 0.00044 0.97359+0.00010
−0.00011 0.04214± 0.00076

0.00896+0.00024
−0.00023 0.04133± 0.00074 0.999105± 0.000032

 .

The UT angles can be determined by measurements of CP-violating observables. The
angle β = arg(−VcdV ∗

cb/VtdV
∗
tb) can be determined from time dependent decay rates of B0

and B
0 to the same final state f , here the B0/B

0 meson can either directly decay to the
final state f or first oscillate into its antiparticle B0

/B0, and then decay to f . Since the two
paths have a phase difference (weak and strong phase difference), interference can occur
and results in a time dependent asymmetry. If f is a CP eigenstate and amplitudes with
one CKM phase dominate the decay, the time-dependent CP symmetry is given by:

ACP =
Γ(B

0
(t) → f)− Γ(B0(t) → f)

Γ(B
0
(t) → f) + Γ(B0(t) → f)

= ηf sin(2β) sin(∆mdt) , (1.2)

where ηf is the CP eigenvalue of f . A measurement of sin(2β) can be obtained from
b → ccs transitions, such as B0 → J/ψK0

S/L, b → ccd transitions like B0 → J/ψπ0 and

b→ cud transitions as B0 → D
0
h0. The angle α = arg(−VtdV ∗

tb/VudV
∗
ub) is measured using

time-dependent CP asymmetries from b → uud decay dominated modes such as B → ππ,
ρπ and ρρ decays. Unlike α and β, the angle γ = arg(−VudV ∗

ub/VcdV
∗
cb) does not depend on

CKM elements involving the top quark and can therefore directly be measured in tree-level
decays using B → Dπ and B → DK decays.

Measurements of parameters associated with quark-flavour physics have been performed
in many dedicated, or general-purpose, experiments in the last three decades. All measure-
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Figure 1.4: Global fits to the CKM parameters ρ, η, A and λ from the CKMfitter and
UTfit collaborations as of Summer 2023.

ments can be combined in a global fit imposing SM constraints. There are two collabora-
tions that combine experimental data with theory predictions for hadronic matrix elements
using different approaches: the CKMfitter and UTfit collaborations [16,17]. Both of them
provide similar results and the constraints implied by unitarity significantly reduce the
allowed range for some of the CKM elements. A comparison of the apex of the unitarity
triangle from the global fits obtained by both collaborations is shown in Fig 1.4. Their
results of the global fits are in excellent agreement with each other.

The resulting global picture is that the CKM interpretation of quark-flavour phe-
nomenology is the dominant mechanism at play in the dynamics. Despite this remark-
able consistency, possible deviations of up to 20% are still unconstrained, especially those
associated to FCNC processes. It is especially promising that most of the relevant mea-
surements are currently dominated by statistical uncertainties, offering therefore fruitful
opportunities for future experiments.

The LHCb experiment started taking data in its Upgrade I incarnation in 2023 and is
expected to accumulate 50 times more data than what collected so far. Belle II should also
enlarge the Belle data set by an order of magnitude or more within a similar timescale.
Furthermore, a second upgrade of LHCb has been proposed [18], as well as an upgrade
of Belle II [19]. Further in the future, beyond 2040, the FCC-ee phase of a future cir-
cular collider [20] is generating much interest in the flavour community: unprecedented
statistics could be attainable at the Z pole (O(5× 1012) Z decays) which can be used for
flavour physics measurements, exploiting both a clean experimental environment (similar
to Belle II) and the production of all species of heavy flavours with a large boost (similar
to LHCb).

1.4 The need to go beyond

The SM framework was completed in the 1970s and has been successfully tested since in
thousands of measurements, some of which have reached fractional uncertainties of one
part per trillion [14]. A minimal extension of the model can accommodate the evidence
for neutrino masses and mixing angles from the observation of their oscillations. This
necessitates introducing new physics, such as right-handed neutrinos or mechanisms such
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as the Seesaw model [21], to explain the small but non-zero masses of neutrinos and their
oscillatory behaviour. Even with this extension, observations and theoretical considera-
tions suggest that the SM is likely to be an effective field theory, valid at the eV-TeV
energies probed so far, which should be completed by a more general full theory valid over
a broader range of high energies. Clear phenomenological evidences come from cosmology
and astrophysics. For instance, the SM lacks an explanation for a dynamical origin of the
observed asymmetry between matter and antimatter in the universe, and has no candidate
for the postulated large amounts of non-interacting matter (dark matter) introduced to
justify cosmological observations. In addition, gravity must be eventually included.

Besides these unresolved questions, there are fundamental puzzles that reside within the
SM itself. We currently have no clue about the origin of the free fundamental parameters.
There is no explanation for why there are three families of quarks and leptons, or why they
have the specific masses and mixing couplings that they do. This is known as the flavour
puzzle. Solving the puzzle requires a more general theory, manifesting at some high energy
scale, which can explain the observed patterns and hierarchies in the flavour sector. The
flavour puzzle remains one of the central challenges in theoretical physics, driving ongoing
research and experimentation.

Extending the SM in an attempt to address these and other open issues is the main
goal of today’s particle physics. Current strategies can broadly be classified into two syn-
ergetic approaches. The energy-frontier, a direct approach that aims at using high-energy
collisions to produce new particles not included in the SM, and detect directly their decay
products, thus gaining direct evidence of their existence. This offers striking experimental
evidence of new phenomena, when energetically accessible, but its reach is limited by the
maximum energy available at colliders. The intensity-frontier, an indirect approach that
broadly consists in searching for significant differences between precise measurements and
equally precise SM predictions in lower-energy processes sensitive to non-SM contributions.
Experimental evidence is typically harder to establish, but the reach is not bounded by the
maximum collision energy reachable by experiments.

Precision tests of forbidden or suppressed processes in the SM are powerful probes for
the indirect search of physics beyond the SM. The structure of the SM implies several
accidental features (i.e., properties that are not postulated but arise automatically) which
can be challenged to look for new phenomena. Among these, there is the baryon number
conservation, the universality of the gauge couplings for the three charged leptons, and the
absence of FCNC at tree level. Quark flavour physics offers a rich phenomenology to probe
these (and other) accidental SM properties. Considering the experimental opportunities
ahead, assessing the factors that will limit the sensitivity of golden quark-flavour probes is
critical. It turns out that, in several FCNC processes, a major limitation of the theoretical
predictions is due to the current knowledge of the |Vcb| matrix element.

1.5 The matrix element |Vcb|
In phenomenological analyses where flavour measurements bound physics beyond the SM,
a precise determination of CKM parameters from tree-level measurements, where new
contribution is very unlikely, is essential. Several studies identify the uncertainty on |Vcb|,
together with that on hadronic matrix elements, as the bottleneck for the comparison of SM
predictions with future high-precision measurements. The experimental uncertainties in the
rates of several rare processes, which are sensitive to potential beyond-SM contributions,
are expected to decrease to below a few percent (or at most 10% in the next decade). See
for instance Refs. [22–24]. These rates, such as the one for K → πνν [25], are proportional
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to A4; an uncertainty as small as 5% on A would lead to a 20% uncertainty on the SM
prediction for the rate of these processes.

The current precision on |Vcb|, which directly affects that on A, is indeed around 5%
due to a long-standing discrepancy between two measurement methods that needs to be
resolved. The measurements exploit semileptonic decays of B mesons that proceed through
the electroweak transition b → cℓνℓ: these are governed by |Vcb|, since the intermediate
W boson decays leptonically and does not involve any other CKM matrix elements. The
decay amplitudes of these processes can be factorised into hadronic and leptonic currents,
as explained in more detail in the next chapter. The primary challenge in extracting
|Vcb| lies in determining the matrix element of the hadronic current. To address this, two
different theoretical approaches have been developed: the inclusive and exclusive methods.

The inclusive method considers all possible hadronic final states with charm into which
the B meson can decay. In this method, the partonic level of the B → Xcℓνℓ decays
is the only relevant process to consider, thanks to the quark-hadron duality [26]. This
approach eliminates any long-distance dependence (i.e., non-perturbative QCD) of the
decay amplitude for the final state, while the short-distance correction (i.e., perturbative
QCD) can be computed in terms of an expansion of the strong coupling constant at the
b quark mass scale, αs(mb) ∼ 0.2. The remaining long-distance corrections related to the
initial B meson can be expanded in powers of ΛQCD/mb ∼ 0.1, where ΛQCD is the hadronic
scale of order mB−mb ∼ 0.5 GeV/c2. This approximation is called heavy quark expansion:
it systematically expresses the decay rate in terms of non-perturbative parameters that
describe universal properties of the B meson.

The exclusive method considers the decay of the B meson into a final state with a
specific charm meson. Two decay channels are considered B → Dℓνℓ and B → D∗ℓνℓ,
with the latter providing the best sensitivity. In this method, the hadronic matrix ele-
ment is parametrised in terms of form factors, which are non-perturbative functions of
the recoil energy of the charm meson in the B rest frame. Form factors encapsulate the
non-perturbative dynamics of the transition between the initial and final states, providing
essential insights into the underlying strong interactions. So, in B → Dℓνℓ decays, they
describe the transition between the B and the D; similarly, in B → D∗ℓνℓ decays, that
from the B to the D∗ state. Precise theoretical calculations using lattice QCD methods,
and experimental information on the dependence of the form factors on the recoil energy,
are crucial for extracting |Vcb|.

These two methods rely on different experimental techniques as well, complementing
each other and providing largely independent determinations (of comparable accuracy) of
|Vcb|. This feature would provide a crucial cross-check on our understanding of semileptonic
B decays. Unfortunately, it turned out to be the major limitation in the determination
of |Vcb|. The two methods, although reaching individually high precision (about 2% un-
certainty), provide values of |Vcb| that differ by about 5% as shown in Fig.1.5, completely
spoiling the knowledge of this CKM element.

The discrepancy must be resolved to obtain the ultimate precision on |Vcb|. My work
aims to provide new inputs to improve the exclusive determination by performing the first
simultaneous analysis of B → Dℓνℓ and B → D∗ℓνℓ decays at Belle II. In the next chapter,
I provide more details on the theoretical description of these decays and present my novel
approach for their experimental analysis.
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Figure 1.5: Measurements of |Vcb| over the last two decades. Blue points are the averages
of the inclusive measurements, orange points are those of the exclusive measurements. The
bands are the latest averages. The red points are measurements done with B0

s decays,
while all the others are done with B+ and B0 decays. The grey band is the indirect deter-
mination from all other constraints on the unitarity triangle provided by the CKMFitter
Collaboration. The plot is taken from Ref. [27].
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Chapter 2

A novel approach

The primary decay modes used in the exclusive determination of |Vcb| are B → Dℓνℓ and
B → D∗ℓνℓ. In this chapter, I introduce the phenomenology of these decays and review
the current status of measurements regarding their branching fractions, form factors and
|Vcb|. After discussing the open challenges associated with their study, I present my analysis
method and the definition of the model-independent observables, the target of my measure-
ment, and all derived quantities. The chapter concludes with an overview of the analysis.

2.1 Exclusive semileptonic B decays: generalities

Semileptonic decays of a bottom meson B into a charm meson, a lepton ℓ, and a neutrino
νℓ proceed through the electroweak decay b→ c ℓ−νℓ (Fig. 2.1). The CKM matrix element
|Vcb| is the only quark-mixing coupling at play. The other quark making the B meson (a d
quark for the B0 and u quark for B+) does not engage in the electroweak transition and
it is usually referred to as the spectator quark.

The decay width dΓ in a phase-space interval can be decomposed as the product of
two currents, Lµ and Hµ, by integrating out the contribution of the W boson at tree level,
since mb ≪ mW ; the decay width takes the form

dΓ ∝ G2
F|Vcb|2|LµHµ|2 , (2.1)

where GF = 1.16637 × 10−5 GeV−2 is the Fermi constant, Lµ is the leptonic current and
Hµ the hadronic current, and µ are Lorentz indexes. The leptonic current can be exactly
calculated at the elementary-particle level, as it involves only leptons. On the other hand,
the hadronic current cannot be, as the quarks are bounded in mesons. Indeed, the spectator

Figure 2.1: Feynman diagram of semileptonic B → Dℓνℓ decays. A decay involving a D∗

meson has the same diagram. The green curly lines represent the exchange of soft gluons
between the heavy (b and c) and the light spectator quark (q).
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Figure 2.2: Photonic terms contributing to the leading order electroweak correction.

quark can be consider as such only for the weak interaction; it interacts strongly with the
other quark exchanging soft gluons in the B and D mesons.

While the leptonic and hadronic current do not interact at tree level, higher orders can
add terms with exchange of a photon, W , Z, or Higgs bosons. The largest impact at the
leading order is due to the electromagnetic interactions depicted in Fig. 2.2, the so-called
radiative corrections. The leading-order correction gives

|LµHµ|2 → |LµHµ|2 ηEW (2.2)

where ηEW = (1 + (α/π) ln(mZ/µ)), and α = e2/4π is the fine-structure constant, mZ

is the mass of Z boson, µ is the mass scale characterising the process at hand. Using
the calculations from Ref. [28] one gets ηEW ≈ 1.0066. This value only encapsulates the
leading-order correction and is often termed as “Sirlin factor”. Contributions outside this
factor are more difficult to calculate and subject of debate within the phenomenological
community.1 An approach is to inflate the uncertainty on the Sirlin factor to conservatively
account for higher-order corrections (see for instance Chapter 3 of Ref. [30]).

In the exclusive approach, the hadronic current is parametrised in terms of form factors,
non-perturbative functions of the squared transferred momentum q2

D(∗) between the B and
D(∗) mesons. This momentum is related to the recoil variable wD(∗) , the scalar product of
four-velocities of the two mesons:

wD(∗) = vB · vD(∗) =
m2

B +m2
D(∗) − q2

D(∗)

2mBmD(∗)
, (2.3)

where mB and mD(∗) are the masses of the two mesons. The minimum value, wD(∗) = 1,
corresponds to zero recoil of the D(∗) meson in the B rest frame, i.e., the largest kinemat-
ically allowed value of q2

D(∗),max . In the following, I use the notation w to denote both wD

and wD∗ when the intended variable is clear from context; similarly with q2 for q2D and
q2
D(∗) . The form factors can be computed by employing lattice QCD, a non-perturbative

method that adapts continuous equations derived from the original QCD Lagrangian in a
discrete space, and then solves them numerically. However, these numerical calculations
require intense CPU power and time, which limit the accessible phase-space region and
achievable precision.

The form factors can be calculated only for a few q2 values close to q2max, and usually
have 1-2% uncertainty only at q2max [31–33]. Approximated analytical methods (light cone
sum rules) are also used [34], but they yield much less precise results; their advantage
consists in providing values of the form factors at low q2, to complement lattice-QCD
calculations.

Form factors can also be measured experimentally by analysing the differential decay
rate as a function of q2. However only the “shape” of the function can be accessed, i.e.,
only the relative variations of the form factors are measurable. As the decay rate is the

1For instance, see Ref. [29] for a recent work on QED contributions for inclusive measurements.
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product of |Vcb| and the form factor (both squared), to disentangle them, the value of the
form factor must be known at least for one q2 value. Although any q2 point could work,
usually that with maximum precision is used (i.e., the value of the form factors at q2max

from lattice QCD).
Parametrisations of the form factors are used to extrapolate them at any q2 value,

allowing to obtain precise predictions for decay rates. There are different parametrisations,
named after the physicists who proposed them. The two most commonly used are:2

• The Boyd-Grinstein-Lebed (BGL) parametrisation [37]. The form factors are
expanded in a power series of a variable z, a function of q2, which takes values much
smaller than 1, such that the series converges within a few terms. The series are
constructed to satisfy basic constraints imposed by unitarity and flavour symmetries.
The free parameters are the coefficients of the powers of z of the series (see Eq. A.21
and Eqs. A.8-A.10 in Appendix A). This is the most generic functional description
of the form factors and has an arbitrary number of parameters depending on the
truncation order of the series [38,39].

• The Caprini-Lellouch-Neubert (CLN) parametrisation [40]. The form fac-
tors are also expanded in z, but imposing more restrictive theoretical constraints to
reduce the number of free parameters. For this reason, it has been the preferred
parametrisation used in experimental analyses until few years ago. Phenomenolo-
gists have strongly criticised its used [41, 42], as the assumptions made do not allow
for enough flexibility to fit the data; resulting uncertainties associated with the form
factor parameters and |Vcb| are also considered to be underestimated in this approach.

Once the form factors of the decay are known, the value of |Vcb| can be determined by a
measurement of its branching fraction. This measurement can be differential as a function
of the kinematic variables which characterise the decay rate, in order to gain experimental
sensitivity from the form factor shape and its knowledge over the phase space. In the next
section I will discuss the differential decay rate of the B → Dℓνℓ and B → D∗ℓνℓ decays.

2.2 The B → D(∗)ℓνℓ decays

In the limit of negligible lepton masses (i.e., for an electron or a muon), the differential
decay rate of the B → Dℓνℓ decay as a function of w can be written as3

dΓ(B → Dℓνℓ)

dw
=
G2

Fm
3
D

48π3
(mB +mD)

2η2EW|Vcb|2(w2 − 1)3/2|G(w)|2 , (2.4)

and it depends only on one form factor, encoded in the function G(w) [43]. The form factor
is f+(w) and its relation to G(w) is

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (2.5)

where r = mD/mB is the ratio of the D and B masses, and the conformal variable z is
defined as

z ≡
√
w + 1−

√
2

√
w + 1 +

√
2
. (2.6)

2The list is not exhaustive as there are also other parametrisations available, such as BCL or BSW
parametrisations [35,36].

3Here I focus solely on wD for the B → Dℓνℓ decay, although the lepton helicity angle can also be
defined for this process.
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Figure 2.3: Graphical representation of the helicity angles in the B → D∗ℓνℓ decay. The
definitions are provided in the text.

The BGL and CLN parametrisations of f+(w) are discussed in Appendix A. The main
goal of my analysis is to measure the product of |Vcb| and G(w) in bins of w, as I explain
in more detail in Sect. 2.5.

The differential decay rate of the B → D∗ℓνℓ decay is more complex than that of
B → Dℓνℓ, due to the spin-1 D∗ meson which results in a richer phenomenology that
manifests in the angular distributions of the decay products. The lepton pair in the decay
originates from the virtual W decay: the B decay can be described as the transition of a
spin-0 particle (the B meson) into two spin-1 particles (the D∗ and the W ). The decay
amplitude A can be expressed in terms of three helicity amplitudes, H+(w), H−(w), and
H0(w), which correspond to the three polarisation states of the D∗ meson, two transverse
and one longitudinal, allowed by angular-momentum conservation. The helicity states are
characterised by different angular distributions of the final-state particles, which depend
on the D∗ decay (different for D∗ → Dπ and D∗ → Dγ).

The kinematics of the full decay can be described by four variables, the recoil energy
w and three helicity angles, displayed in Fig. 2.3. These angles are: θℓ, the angle between
the direction of the lepton in the virtual W rest frame and the direction of the W in the B
rest frame; θD, the angle between the direction of the D meson in the D∗ rest frame and
the direction of the D∗ meson in the B rest frame; χ, the angle between the decay planes
formed by the W and the D∗ meson in the B rest frame.

In the massless lepton limit, the four-dimensional differential decay rate is [44]

d4Γ(B → D∗ℓνℓ)

dw d cos θℓ d cos θD dχ
=

3

16π
Γ0(w)|Vcb|2|A(w, θℓ, θD, χ)|2 , (2.7)

where Γ0(w) = η2EWmBm
2
D∗G2

F

√
w2 − 1(1−2rw+r2)/(4π3), with r = mD∗/mB. The decay

amplitude A can be expressed in terms of the helicity amplitudesH+(w), H−(w), and H0(w)
as

|A(w, θℓ, θD, χ)|2 =
6∑

i=1

Hi(w)ki(θℓ, θD, χ) , (2.8)

where Hi and ki terms are defined in the Table 2.1.
Since in my analysis theD∗ decay is not completely reconstructed, I can solely access the

θℓ angle and the two-dimensional decay rate as a function of w and cos θℓ. In this case, the
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i Hi(w)
ki(θℓ, θD, χ)

D∗ → Dγ D∗ → Dπ

1 H2
+

1
2(1 + cos2 θD)(1− cos θℓ)

2 sin2 θD(1− cos θℓ)
2

2 H2
−

1
2(1 + cos2 θD)(1 + cos θℓ)

2 sin2 θD(1 + cos θℓ)
2

3 H2
0 2 sin2 θD sin2 θℓ 4 cos2 θD sin2 θℓ

4 H+H− 4 sin2 θD sin2 θℓ cos 2χ −2 sin 2θD sin2 θℓ cos 2χ

5 H+H0 sin 2θD sin θℓ(1− cos θℓ) cosχ −2 sin 2θD sin θℓ(1− cos θℓ) cosχ

6 H−H0 − sin 2θD sin θℓ(1 + cos θℓ) cosχ 2 sin 2θD sin θℓ(1 + cos θℓ) cosχ

Table 2.1: Functions describing the differential decay rate of B → D∗ℓνℓ decays, separately
for the cases in which the D∗ meson decays to Dγ or Dπ.

mixed terms (i = 4, 5, 6) of the decay rate listed in Tab. 2.1 are zero for both D∗ → Dγ and
D∗ → Dπ. Furthermore, by integrating over cos θD, the terms with i = 1, 2, 3 are identical
for the two transitions, and the two-dimensional decay rates the same for D∗ → Dγ and
D∗ → Dπ decays.

The helicity amplitudes encode the form factors, which are expressed as functions of w.
Depending on the assumed parametrisation, there are different functions related to them.
For example, a common basis used for the BGL expansion defines the following “helicity”
form factors:

g(w) =
H−(w)−H+(w)

2m2
Br

√
w2 − 1

, (2.9)

f(w) =
H+(w) +H−(w)

2
, (2.10)

F1(w) = mBH0(w)
√
1− 2rw + r2 . (2.11)

The important point to make is that form factors are functions of the helicity ampli-
tudes. A measurement of the helicity amplitudes as functions of w gives access to the
form factors. The three form factors can be expressed using either the BGL or CLN
parametrisations; details are given in Appendix A. In my analysis, I target a measure-
ment of model-independent observables that are combinations of |Vcb|2 and the helicity
amplitudes squared, in bins of w. This is explained in Sect. 2.5.

2.3 Current status

From the knowledge of the branching fractions and the form factors, |Vcb| can be deter-
mined. I will briefly review the current experimental status of these ingredients for both
B → Dℓνℓ and B → D∗ℓνℓ decays.

2.3.1 Branching fractions measurements

Measurements of the B → Dℓνℓ properties have been reported by various experiments,
with the most recent results coming from the Belle [45]. The Heavy Flavour Averaging
Group (HFLAV) [46] performs a comprehensive combination of all available measurements
for the B → Dℓνℓ decays. Table. 2.2 shows these measurements for B0 → D−ℓ+νℓ and

21



CHAPTER 2. A NOVEL APPROACH

Experiment B(B0 → D−ℓ+νℓ)[%] B(B+ → D
0
ℓ+νℓ)[%]

ALEPH [47] 2.17± 0.18± 0.35 −
CLEO [48] 2.10± 0.13± 0.15 2.14± 0.13± 0.17

BABAR [49] 2.15± 0.11± 0.14 2.16± 0.08± 0.12

Belle [45] 2.33± 0.04± 0.11 2.46± 0.04± 0.12

Average 2.24± 0.04± 0.08 2.30± 0.03± 0.08

Table 2.2: Measurements of various experiments and the averages of B0 → D−ℓ+νℓ and
B+ → D

0
ℓ+νℓ branching fractions. The first uncertainty is statistical and the second is

systematic. The measurements are rescaled to the latest values of the input parameters
(mainly branching fractions of charmed mesons). Taken from Ref. [50].

B+ → D
0
ℓ+νℓ decays. The averages read:

B(B0 → D−ℓ+νℓ) = (2.24± 0.04± 0.08)% , (2.12)

B(B+ → D
0
ℓ+νℓ) = (2.30± 0.03± 0.08)% , (2.13)

where the first uncertainty is statistical and the second is systematic. The main system-
atic uncertainties on these measurements are the lepton-identification efficiency and the
modelling of the backgrounds; these affect also the |Vcb| determination from these decays.

The first observation of the B → D∗ℓνℓ decay was reported in 1997 by ALEPH [47],
while the most recent measurement comes from Belle II [51].

Experiment B(B0 → D∗−ℓ+νℓ)[%] B(B+ → D
∗0
ℓ+νℓ)[%]

ALEPH [47] 5.45± 0.26± 0.33 −
OPAL [52] 6.13± 0.28± 0.57 −
OPAL [52] 5.12± 0.20± 0.36 −
DELPHI [53] 4.95± 0.14± 0.35 −
DELPHI [54] 5.08± 0.20± 0.42 −
CLEO [55] 6.09± 0.19± 0.37 6.20± 0.20± 0.26

Belle [56] 4.83± 0.02± 0.15 −
BABAR [57,58] 4.41± 0.04± 0.32 5.30± 0.15± 0.33

BABAR [59] 5.17± 0.16± 0.31 5.00± 0.08± 0.31

Belle II [60] 4.60± 0.05± 0.48 −
Belle II [51] 4.51± 0.41± 0.52 −

Average 4.97± 0.02± 0.12 5.58± 0.07± 0.21

Table 2.3: Measurements of various experiments and the averages of B0 → D∗−ℓ+νℓ and
B+ → D

∗0
ℓ+νℓ branching fractions. The first error is statistical and the second one is

systematic. The measurements are rescaled to the latest values of the input parameters
(mainly branching fractions of charmed mesons). Taken from Ref. [50]
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The averages of the branching fractions (see Tab. 2.3) for B0 → D∗−ℓ+νℓ and B+ →
D

∗0
ℓ+νℓ are [50]:

B(B0 → D∗−ℓ+νℓ) = (4.97± 0.02± 0.12)% , (2.14)

B(B+ → D
∗0
ℓ+νℓ) = (5.58± 0.07± 0.21)% , (2.15)

where also in this case, the first uncertainty is statistical and the second is systematic. The
measurements are all limited by the systematic uncertainties, whose principal sources are
the lepton-identification efficiency [56] and the track-reconstruction efficiency. The greatest
contribution is given by that for the soft pion in the D∗ decay [51,56]. These very sources
of systematic uncertainty affect also |Vcb|.

2.3.2 |Vcb| and form factors

Measurements of |Vcb| are obtained by assuming a parametrisation of the form factors.
Due to its reduced set of parameters, the CLN has been the parametrisation used in all
measurements till about 2017. For the B → Dℓνℓ decays, the form-factor parameter ρ2D
(see Appendix A for more details) is measured and then the rate at zero recoil (w = 1)
is extracted to determine ηEWG(1)|Vcb|, where G(1) is the value of G(w) at w = 1. These
measurements are obtained from both B0 → D−ℓ+νℓ and B+ → D

0
ℓ+νℓ decays, assuming

isospin symmetry, i.e., the equality of the semileptonic decay width for B0 and B+ decays.
A summary of the measurements of these parameters are shown in Tab. 2.4.

HFLAV performs a fit on all these measurements taking into account correlated statis-
tical and systematic uncertainties [50]. The result of the fit is

ηEWG(1)|Vcb| = (41.53± 0.98)× 10−3 , (2.16)

ρ2D = 1.129± 0.033, (2.17)

where the uncertainties include both the statistical and systematic contributions. To obtain
|Vcb|, the input value for the form factor normalisation is required. The best known value
from averages of lattice-QCD calculations is [61]

G(1) = 1.0541± 0.0083, (2.18)

and with ηEW = 1.0066± 0.0050, HFLAV obtains

|Vcb| = (39.14± 0.92± 0.36)× 10−3 , (2.19)

where the first error combines the statistical and systematic uncertainties from the exper-
imental measurements and the second is theoretical (lattice-QCD calculations and elec-
troweak correction).

When experimental data on the w spectrum are available, a fit allows to use a differ-
ent parametrisation and to include available lattice-QCD data at w > 1 to improve the
extrapolation to w = 1. Spectra of w have been published by BaBar [49] and Belle [45].
However, the BaBar result does not include the full covariance matrix of the measured
data, preventing a combined fit.

Similarly, for the B → D∗ℓνℓ decays the CLN parameter ρ2D∗ (and in some cases also
R1(1) and R2(1), see Appendix A for more details) is measured and then the rate at zero
recoil (w = 1) is extracted to determine ηEWhA1(1)|Vcb|, where hA1(1) is the value of the
form factor at w = 1. HFLAV performs a four-dimensional fit of ηEWhA1(1)|Vcb|, ρ2D∗ ,
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Experiment ηEWG(1)|Vcb|[10−3] ρ2D

ALEPH [47] 36.19± 9.38± 6.83 0.814± 0.821± 0.419

CLEO [48] 44.17± 5.68± 3.46 1.270± 0.214± 0.121

Belle [45] 41.83± 0.60± 1.20 1.090± 0.036± 0.019

BABAR [62] 42.55± 0.71± 2.06 1.194± 0.034± 0.060

BABAR [49] 42.54± 1.71± 1.26 1.200± 0.088± 0.043

Average 41.53± 0.44± 0.88 1.129± 0.024± 0.023

Table 2.4: Measurements of ηEWG(1)|Vcb|[10−3] and the CLN parameter ρ2D in the B →
Dℓνℓ decays. The first error is statistical and the second is systematic. Taken from Ref. [50].

R1(1) and R2(1) with the measurements shown in Tab. 2.5, assuming isospin symmetry
between B0 and B+ decays.

The results of the fit are [50]:

ηEWhA1(1)|Vcb| = (35.00± 0.36)× 10−3 , (2.20)

ρ2D∗ = 1.121± 0.024 , (2.21)
R1(1) = 1.269± 0.026 , (2.22)
R2(1) = 0.853± 0.017. (2.23)

The uncertainties include both the statistical and systematic contributions.
To convert this result into |Vcb|, theory input for the form-factor normalisation is re-

quired. The recent lattice-QCD result from Ref. [63,64] is

ηEWhA1(1) = 0.910± 0.013 , (2.24)

from which |Vcb| can be extracted using ηEW = 1.0066± 0.0050,

|Vcb| = (38.46± 0.40± 0.55)× 10−3 , (2.25)

where the first uncertainty combines the statistical and systematic uncertainties from the
experimental measurements and the second is theoretical (lattice-QCD calculations and
electroweak correction). This number is in agreement with |Vcb| obtained from B → Dℓνℓ
decays given in Eq. 2.19.

Similar combinations can be done using recent results with the BGL parametrisation.
Both Belle [56] and BaBar [65] have recently published analyses of B → D∗ℓνℓ decays that
employ the BGL parametrisation. However, while Belle performs an extraction of |Vcb|, the
BaBar analysis only fits the BGL parameters taking the normalisation as an external input.
Due to the limited set measurements, HFLAV currently does not perform a combination of
the BGL parameters and |Vcb|. However, the result of |Vcb| from Belle and Babar analyses
using BGL is in agreement with that obtained by HFLAV with the CLN parametrisation.
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Experiment ηEWhA1(1)|Vcb|[10−3] ρ2D∗

ALEPH [47] 31.38± 1.80± 1.24 0.488± 0.226± 0.146

CLEO [55] 40.16± 1.24± 1.54 1.363± 0.084± 0.087

OPAL [52] 36.20± 1.58± 1.47 1.198± 0.206± 0.153

OPAL [52] 37.44± 1.20± 2.32 1.090± 0.137± 0.297

DELPHI [53] 35.52± 1.41± 2.29 1.139± 0.123± 0.382

DELPHI [54] 35.87± 1.69± 1.95 1.070± 0.141± 0.153

Belle [56] 34.82± 0.15± 0.55 1.106± 0.031± 0.008

BABAR [57] 33.37± 0.29± 0.97 1.182± 0.048± 0.029

BABAR [58] 34.55± 0.58± 1.06 1.124± 0.058± 0.053

BABAR [49] 35.45± 0.20± 1.08 1.171± 0.019± 0.060

Average 35.00± 0.11± 0.34 1.121± 0.014± 0.019

Table 2.5: Measurements of ηEWhA1(1)|Vcb|[10−3] and the CLN parameter ρ2D∗ in B →
D∗ℓνℓ decays. The first error is statistical and the second is systematic. Since most analyses
does not measure R1(1) and R2(1), only ηEWhA1(1)|Vcb| and ρ2D∗ are shown. Taken from
Ref. [50].

2.3.3 Production rates of charged versus neutral B-meson pairs

The ratio f+−/f00 measures the production rates of charged (B+B−) versus neutral (B0B̄0)
B-meson pairs in Υ(4S) decays. Precise measurements of this ratio are essential as the
production rates directly affect the knowledge of the branching-fractions of all B decays
(and also |Vcb|) measured at B-factories.

Experimentally, f+−/f00 is determined by reconstructing B-meson decays in specific
final states and correcting for detection efficiencies and reconstruction biases. The challenge
lies in designing a measurement strategy that minimises reliance on strong assumptions,
such as the equality of decay widths between charged and neutral B mesons, used to
cancel the dependence on the branching fractions of the B decays employed. For instance,
B+ → J/ψK+ and B0 → J/ψK∗(892)0 are used to count the relative yields of B+ and B0

in the same amount of data: to determine f+−/f00, one would need the ratio of branching
fractions of these decays as external inputs. By considering isospin symmetry, instead, one
can impose an equality between the ratio of branching fractions and that of the B lifetimes,
B(B0 → J/ψK∗(892)0)/B(B+ → J/ψK+) = τ(B0)/τ(B+). The major challenge of this
approach is to correctly assign a systematic uncertainties for possible isospin-breaking
effects. In addition, these approaches assume a negligible fraction of Υ(4S) decaying into
a different final state than BB, i.e., f+− + f00 = 1.

A precise measurement of f+−/f00 using these assumptions has been performed by
BABAR. The measured value of f+−/f00 is 1.06 ± 0.02(stat) ± 0.03(syst) [66]. Values
reported from earlier measurements feature uncertainties of approximately 10%. These
results initially suggested only minor deviations from the isospin-symmetric expectation of
unity. However, these studies neglected or underestimated uncertainties related to isospin-
breaking effects, such as differences in electromagnetic corrections and phase space be-
tween charged and neutral B-mesons. A significant advance was achieved very recently
by the Belle experiment, which provided a detailed measurement of f+−/f00, yielding
1.065± 0.012(stat)± 0.019(syst)± 0.047(th) [67]. This analysis was the first to rigorously
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Experiment Measurement

f+−/f00

CLEO [72] 1.04± 0.07± 0.04

BABAR [66] 1.06± 0.02± 0.03

Belle [67] 1.065± 0.012± 0.019± 0.047

CLEO [73] 1.058± 0.084± 0.136

Belle [74] 1.01± 0.03± 0.09

f00

BABAR [70] 0.487± 0.010± 0.008

f�B
CLEO [75] −0.0011± 0.0143± 0.0107

BABAR, Belle [76–78] ≥ 0.00264± 0.00021

Average f+−/f00 = 1.052± 0.031

Table 2.6: Measurements of f+−/f00, f00 and f�B = 1 − f+− − f00 used in the HFLAV
combination. The first uncertainty is statistical, the second systematic, and the third,
when present, arises from isospin-breaking assumptions. Taken from Ref. [71].

incorporate the impact of isospin breaking (the uncertainty denotes as “th”), considering
both electromagnetic and hadronic effects. These corrections must be taken into account
and depend on the specific decays used to measure f+−/f00. By addressing these limita-
tions, the Belle measurement set a new standard in the field, providing a value that aligns
well with theoretical expectations [68, 69] and improving the reliability of f+−/f00 as a
benchmark for B-factory experiments. From now on, I consider the Belle measurement the
best accurate determination of f+−/f00 from a single experiment, as it correctly accounts
the systematic effect due to isospin-breaking assumptions.

A different and promising approach is the double-tagging method, which avoids both the
isospin symmetry assumption and that of f+− + f00 = 1, by simultaneously reconstruct-
ing both the signal-side and tag-side B mesons in the same decay channel, to measure
f00 [70]. This method provides a direct and assumption-free measurement, although with
the drawback of significantly reduced reconstruction efficiency, hence the need for large data
samples. By using this method, BaBar obtained f00 = 0.487± 0.010(stat)± 0.008(syst).

HFLAV [46] has recently performed an average of all results, taking into account cor-
relations of the systematic uncertainties due to the common input of τ(B+)/τ(B0) and
due to the isospin-symmetry assumption. They also include the measurment of f00 and
the constraints on the fraction of Υ(4S) decays to a non BB final state (f�B). They ob-
tain a value f+−/f00 = 1.052 ± 0.031(stat + syst) [71]. The measurements used in the
combination are shown in Tab. 2.6.

It is important to note that the ratio f+−/f00 varies with centre-of-mass energy due
to the different phase space of B+B− and B0B̄0 pairs. This may introduce an additional
uncertainty, which is not included in the combination provided by HFLAV, due to potential
variation during data-taking of the centre-of-mass energies in the different experiments. For
this reason, an independent measurement of f+−/f00 at Belle II is crucial to account for this
effect, thus providing a more reliable value for Belle II branching-fraction measurements.
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Figure 2.4: (Left) Measured differential decay rate as a function of w and (right) form
factors of the decay B → Dℓνℓ and result of the combined fit to experimental and lattice
QCD (FNAL/MILC and HPQCD) data [45]. The BGL series is truncated after the cubic
term. The points with error bars are Belle and lattice-QCD data. For Belle data, the
uncertainties are represented by the vertical error bars and the bin widths by the horizontal
bars. The solid curve is the f+ form factor and the dashed curve represents f0. The shaded
areas around these curves indicate the uncertainty in the coefficients of the BGL expansion.

The ratio f+−/f00 will be one of the key observables in my analysis, which will be
explained in more detail in Sect. 2.5.1.

2.4 Open challenges

The results reported in Tab. 2.4 and 2.5 are extracted by combining measurements that
assume the CLN parametrisation, which has been criticised by several phenomenological
papers in recent years [41, 42], due to restrictive theoretical assumptions used to decrease
the number of free parameters. The general prejudice is that measurement uncertainties us-
ing this parametrisation are underestimated. For this reason, recent experimental analyses
consider a different paradigm. First, the more general model given by the BGL parametri-
sation should be employed. Second and more important, whenever possible, the outcome
of the measurement should be model-independent observables that can be reanalysed using
any model for the form factors.

Regarding the BGL parametrisation, although it provides a more general model, its
results may depend on an arbitrary choice either—specifically, the truncation order [38,39,
43, 79, 80]. The form factors are indeed expressed as a series expansion in the conformal
variable z (see Eq. 2.6). However, since this series is infinite, it must be truncated after
a finite number of terms for practical applications. This truncation typically occurs after
a few terms, such as z2 or z3, to maintain a balance between accuracy and simplicity.
The truncation introduces approximations, as omitting higher-order terms assumes their
contribution is minimal within the relevant kinematic range. On the other hand, going
at high orders introduce a larger number of parameters with the risk of overfitting. The
truncation choice directly affects the precision of the form factor description, and ultimately
that on |Vcb|, making careful consideration essential.

Regarding model-independent observables, an example is the measurement of the w
spectrum reported in Fig. 2.4. The first analysis to use this approach for B → Dℓνℓ decays
has been Ref. [45]. In this paper, a BGL analysis is carried out using lattice-QCD data
at that time, but a different parametrisation (or a BGL with a different truncation order)
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and new lattice data could be employed to fit the provided spectrum and extract the form
factor f+(w) along with |Vcb|.

A main challenge associated with model-independent variables, such as the w spec-
trum, is unfolding. This technique consists in correcting for the distortions introduced
by the measurement resolution and selection inefficiency, allowing to reconstruct the true
physical distributions from the observed experimental data, to enable direct phenomeno-
logical analyses. Unfolding is based on an accurate simulation of the experimental ap-
paratus and techniques. By comparing the observed distributions with simulated models
reproducing experimental data, one can quantify the distortions introduced by the detec-
tor resolution and selection efficiency, and apply corrections using dedicated algorithms.
These algorithms, which may include matrix inversion techniques [81], aim to reverse the
the experimental effects to recover the underlying true distributions. Once the data is
corrected, physical parameters can be extracted.

Measurement resolution is not trivial in semileptonic B decays, as the undetected neu-
trino in the final state prevents fully reconstructing the decay kinematics. At e+e− ma-
chines operating at the Υ(4S)-mass energy, information from the Υ(4S) → BB decay
is used to recover the missing quadrimomentum of the neutrino. The full decay of the
B meson accompanying the B signal can be reconstructed (so-called B tagging), i.e., by
using hadronic B decays [82]. The neutrino reconstruction is accurate in this case, pro-
viding good resolution on the measurement of the signal kinematics variables. However,
this approach features low efficiency (generally smaller than 1%) and requires large data
sets for obtaining impactful measurements. In addition, the efficiency of B-tagging algo-
rithms must be calibrated on data, and the associated uncertainty is usually too large for
a precision measurement such that of |Vcb|.

Untagged analyses, instead, approximate the kinematics of the signal decay by using
the information of the rest of the event in an inclusive way, i.e., estimating the other
B momentum by the sum of the other visible particles in the event other than those of
the signal. Other constraints can be imposed, i.e., from the angular distribution of the B
mesons produced in Υ(4S) decays [83]. Untagged methods are very efficient, although they
provide lower resolution on the measurement of the signal kinematics. In this case, the
analysis must rely on a good description of the rest-of-event particles to properly compute
resolutions through the migration matrices used to unfold experimental effects from the
data.

Differential decay rates can be provided as one-dimensional or multidimensional dis-
tributions. One-dimensional distributions are simpler to obtain but may miss important
correlations between different kinematic variables, diluting the information on the decay
dynamic. In contrast, multi-dimensional distributions allows for a more comprehensive
analysis. This is particular important for B → D∗ℓνℓ decays. However, binning in more
dimensions requires, again, large data sets, and it has not been attempted yet. The first
analysis reporting model-independent observables for B → D∗ℓνℓ is that in Ref. [84] from
2017, which was updated in 2019 [56]. In this analysis, Belle obtains one-dimensional
distributions of w and the helicity angles θℓ, θD, and χ. This is also done in a refined
analysis from Belle using B tagging in Ref. [85] (see Fig. 2.5). Despite the approximation
of marginalising the four-dimensional decay rate, the four independent one-dimensional
distributions enable reanalysis of the data a posteriori assuming a different form-factor
model for describing the differential decay rate compared to that used by Belle.

A different approach to provide model-independent observables that encodes the full
four-dimensional information has been also pursued very recently [85]. In this approach,
angular coefficients of the decay rate as functions of w are measured: from those coefficients
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Figure 2.5: Unfolded distributions of w, cos θℓ, cos θD and χ from Ref. [85]. Black point are
the measured data, which are fitted with both BGL (blue) and CLN (orange) parametri-
sations.

the full four-dimensional decay rate can be recovered. This type of analysis requires large
data samples though, as B-tagging is used to achieve best resolution for unfolding the data
to measure the coefficients.

My work explores yet another method to access the information on the differential decay
rates, for both B → Dℓνℓ and B → D∗ℓνℓ decays, through the definition of other model-
independent observables presented in Sect. 2.5, which are conceptually similar to the w
spectrum for B → Dℓνℓ and to the angular coefficients for B → D∗ℓνℓ. Before addressing
these new observables, I provide an overview of the current theoretical challenges on the
form factors, focusing on lattice QCD.

2.4.1 Challenges in lattice calculations

Theoretical challenges involve calculating the hadronic matrix element governed by the
dynamics of strong interactions between quarks at low energies (see Sect. 2.1). This is where
lattice QCD [86] becomes essential, offering a first-principles approach to calculating these
matrix elements. Nonetheless, lattice-QCD calculations themselves carry uncertainties.
These stem from discretisation errors due to the finite lattice spacing, statistical noise
from the Monte Carlo simulations, and systematic errors in the tuning of quark masses.
These uncertainties are particularly significant at large recoil, where lattice results for
B → D(∗)ℓνℓ decays become less precise.

In recent years, there has been significant progress on lattice-QCD calculations of the
form factors for both B → Dℓνℓ and B → D∗ℓνℓ decays. The calculations for the B → Dℓνℓ
decays are now fairly established, with different collaborations providing consistent results
for the form factors over a range of q2 [63]. Those calculations, along with the experimental
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Figure 2.6: Comparison of recent lattice calculations of B → D∗ℓνℓ form factors with
experiments (figure from Ref. [87]). The differential decay rate without some kinematical
factors, |ηEWVcbF(w)|2 , is plotted as a function of the recoil parameter w. The orange, ma-
genta and red bands show results from JLQCD [31], HPQCD [32] and Fermilab/MILC [33],
respectively, whereas experimental data from Belle (BaBar) are plotted by the green (grey)
band.

data, have allowed for a solid extraction of |Vcb| from B → Dℓνℓ decays.
For B → D∗ℓνℓ, the situation is more fluid. The leading form-factor is calculated

precisely at q2max [63]; however, due to the additional complexity of this channel, calcu-
lations over a range of q2 have lagged behind those for B → Dℓνℓ. The gap has been
recently filled, with results now available from three collaborations, JLQCD, HPQCD and
Fermilab/MILC [31–33].

Some of these results are puzzling though, yielding form factors that have different
shapes for the three calculations, which differ also with respect to those extracted from
experimental data. This is represented in Fig. 2.6, which shows a function of w propor-
tional to the B → D∗ℓνℓ differential decay rate, comparing recent lattice calculations with
results from experimental data. Data from Fermilab/MILC shows a steeper slope than
that observed in experimental data from Belle and BaBar; HPQCD calculations indicate
an even steeper slope, creating tension with data on the calculated longitudinally-polarised
fraction. In contrast, results from JLQCD demonstrate good consistency with experimen-
tal findings. Specific combinations of form-factors enhance some of these differences, as
reported in Ref. [88]. The source of these tensions is not yet clarified. As experimental
precision improves, the differences between lattice results and data have become more evi-
dent, underscoring the need for refined methods on both the theoretical and experimental
fronts to achieve a more consistent description.
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2.5 A novel approach: model-independent observables for a
global analysis

In this thesis, to address some of the experimental challenges presented in the previous
chapter, I present model-independent observables for both B → Dℓνℓ and B → D∗ℓνℓ
decays, which enable an a posteriori determination of |Vcb| using any form-factor model
and lattice-QCD inputs. The approach combines the benefits of unfolded distributions—
without the approximations introduced by one-dimensional projections for B → D∗ℓνℓ
decays—and the angular coefficients of B → D∗ℓνℓ decays, while avoiding B-tagging to
enhance efficiency. The analysis targets both decays simultaneously, reconstructing them
together from Belle II data, to leverage correlations that offer a more comprehensive un-
derstanding of the underlying dynamics and reduce uncertainties in extracting |Vcb|. To
this extend, in B → D∗ℓνℓ, the D∗ decay is partially reconstructed from Dℓ candidates.

For B → D∗ℓνℓ decays, the idea is to measure a combination of the helicity amplitudes
Hi(w). Since the D∗ decay is partially reconstructed, I can only access the two-dimensional
decay rate

d2Γ

dw dcos θℓ
=

1

2
Γ0(w)|Vcb|2{a(w) + b(w) cos θℓ + c(w) cos2 θℓ}, (2.26)

where

a(w) = H2
+(w) +H2

−(w) + 2H2
0 (w), (2.27)

b(w) = 2[H2
−(w)−H2

+(w)], (2.28)

c(w) = H2
+(w) +H2

−(w)− 2H2
0 (w). (2.29)

and Γ0(w) = η2EWmBm
2
D∗G2

F

√
w2 − 1(1− 2rw + r2)/(4π)3.

A measurement of the coefficients a(w), b(w) and c(w) yields the three helicity ampli-
tudes squared: the form factors g(w), f(w), and F1(w) can be measured through Eqs. 2.9–
2.11.4 Considering N bins of w, I define 3N model-independent observables:

a′n = |Vcb|2 a′n ≡ |Vcb|2 a(wn), (2.30)

b′n = |Vcb|2 b′n ≡ |Vcb|2 b(wn), (2.31)

c′n = |Vcb|2 c′n ≡ |Vcb|2 c(wn), (2.32)

where wi is the average value of w in the bin n, with n = 1, . . . , N .
Similarly, for the B → Dℓνℓ decay the idea is to measure the form factor G(w). In this

case, the one-dimensional decay rate reads

dΓ

dw
= Γ

′
0(w)|Vcb|2|G(w)|2 , (2.33)

where Γ′
0(w) = G2

F η
2
EWm

3
D(mB+mD)

2(w2−1)3/2/(4π)3. I define theM model-independent
observables as

G′
m = |Vcb|Gm ≡ |Vcb| G(wm) , (2.34)

4Note that the helicity amplitudes can be determined from the angular coefficients a(w), b(w), and
c(w), up to an ambiguity in their signs, resulting in multiple solutions for the helicity form factors. Based
on previous experimental and theoretical information, I can resolve the ambiguity and choose all positive
helicity amplitudes to obtain the form factors. This choice will be implemented in the fit to the measured
model-independent observables explained in Chapter 8 to extract |Vcb|.
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for the bin m = 1, . . . ,M .
I target a measurement of the model-independent observables a′n, b′n, c′n and G′

m from a
global analysis of B → Dℓνℓ and B → D∗ℓνℓ decays. From these measurements, assuming
a form-factor parametrisation and also using lattice-QCD data, I can obtain a novel mea-
surement of |Vcb|, which combines information from both decays accounting for correlations
and common systematic uncertainties. This is the first of such an analysis at Belle II.

From the model-independent observables, I can also obtain several key measurements:
the branching fractions of B → Dℓνℓ and B → D∗ℓνℓ decays and their ratio, and, for
B → D∗ℓνℓ decays, the lepton forward-backward asymmetry (AFB) and theD∗ longitudinal
polarisation (FD∗

L ), both in bins of w. The latter are derived from the following relations:

AFB(wn) ≡
∫ 1
0

d2Γ
dw dcos θℓ

dcos θℓ −
∫ 0
−1

d2Γ
dw dcos θℓ

dcos θℓ∫ 1
−1

d2Γ
dw dcos θℓ

dcos θℓ
=

3b′n
6a′n + 2c′n

, (2.35)

FD∗
L (wn) ≡

H2
0 (w)

H2
0 (w) +H2

+(w) +H2
−(w)

=
a′n − c′n
3a′n + c′n

. (2.36)

The asymmetry AFB gives the difference in the probability that the lepton ℓ is emitted
in the direction of the D∗ meson (forward) versus the opposite direction (backward) in
the B rest frame. The polarisation fraction FD∗

L gives the probability that the D∗ meson
is emitted with the spin aligned with its momentum, in the B rest frame. Branching
fractions, AFB and FD∗

L values can also be measured separately for the electron and muons
decays. Their comparison enables tests of the universality of the weak coupling for light
charged leptons, and accidental SM symmetry that could be violated in several new-physics
models [89,90].

2.5.1 Analysis overview

Current measurements of |Vcb| are dominated by systematic uncertainties, and the analysis
presented in this thesis is no exception. However, there are original aspects considered
in this work to suppress important sources of systematic uncertainties. Experimentally, a
simultaneous analysis of B → Dℓνℓ and B → D∗ℓνℓ decays is complementary to separate
analyses of each decay, offering several advantages.

The partial reconstruction of the D∗ decay eliminates a major systematic uncertainty
affecting the measurement of |Vcb| from B → D∗ℓνℓ decays: the uncertainty associated with
the slow-pion reconstruction efficiency in D∗ → Dπslow. At Belle II, this contributes a 1.5%
uncertainty on |Vcb| [91]. In addition, partial D∗ reconstruction allows access to the decay
rate at values closer to w = 1; however, the analysis becomes more sensitive to background
modelling in this kinematic region. A dangerous background is given by feed-down from
semileptonic decays with excited charm states whose rates are still poorly known. I conduct
a detailed study to constrain with data the modelling of this background. Specifically, I
identify a control region enriched of these decays that I analyse simultaneously with the
signal sample (see Sect. 5.4).

Another dominant uncertainty on |Vcb| determinations is cancelled in the global anal-
ysis: that from f+−/f00, the ratio of the branching fractions of Υ(4S) decays into charged
and neutral B-meson pairs. At Belle II, this contributes a systematic uncertainty of about
1.3% on |Vcb| [91]. By assuming isospin symmetry, I can also measure f+−/f00 directly
from my analysis, both eliminating a significant source of systematic uncertainty on |Vcb|
and potentially improving the current knowledge of f+−/f00. The Belle determination of
this ratio, which properly accounts for the isospin-breaking effect between B+ and B0,
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uses B → J/ψK decays and is affected by approximately 5% theoretical uncertainty due
to the isospin assumption for these decays [67]. For semileptonic decays, isospin breaking
should contribute a smaller uncertainty, offering a more precise way to measure f+−/f00.
The improvement of the precision on f+−/f00 has a pivotal importance in Belle II, as its
uncertainty affects all measurements of B-decay branching fractions.

The global analysis is performed using the Run I data set collected by Belle II, which
comprises about 387 million BB pairs. The data are selected through requirements op-
timised on simulation to favour purity over signal significance, as to limit the impact of
uncertainties associated with the background modelling. Simulation is corrected for known
discrepancies with data, such as those related to particle-identification and tracking effi-
ciencies.

Instead of attempting a reconstruction of kinematic variables such as w and cos θℓ, I
use proxy variables, fully reconstructed from the visible particles of the signal final state,
that preserve information on the decay dynamics and give access to the model-independent
observables. The core of the analysis is a least-square fit to the three-dimensional distribu-
tion of the proxy variables, using histograms obtained from simulation (templates) to model
the data. The dependence of signal templates on the model-independent observables is im-
plemented through a weighting technique that enables to obtain templates independently
from the model used in the simulation (see Chapter 6).

The analysis, while fully completed on simulation and control data, is not yet applied to
the signal sample, because it is still under Belle II internal review. The full analysis will be
applied to the real data data after carefully defining an unblinding procedure. Nevertheless
this thesis fully demonstrates the potential of the novel method proposed.
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Chapter 3

The Belle II experiment at the
SuperKEKB collider

The data used in this work are collected by the Belle II experiment operating at the Su-
perKEKB collider. This chapter outlines SuperKEKB and the Belle II detector. In ad-
dition, in the second part of this chapter, I report a service work for the Collaboration
that I carried out during the first year of my Ph.D. course: the measurement of the detec-
tion asymmetries of kaons and pions, which provides important inputs for high-precision
measurements of CP-violating asymmetries at Belle II.

3.1 The SuperKEKB collider

SuperKEKB is an electron-positron (e+e−) energy-asymmetric collider, designed to pro-
duce more than 600 BB pairs per second via decays of Υ(4S) mesons produced at thresh-
old [92] (B0B

0 and B+B− in approximately equal proportions). Such colliders are called
‘B-factories’, and were proposed in the 1990s for the dedicated exploration of CP -violation
in B mesons. The main goal of B-factories is to produce low-background quantum-
correlated BB pairs at high rates.

Intense beams of electrons and positrons are brought to collision at the energy cor-
responding to the Υ(4S) meson mass, 10.58GeV, which is just above the BB produc-
tion kinematic threshold. The great majority of collisions yield electroweak processes
(e+e− → e+e−, e+e− → γγ, etc.) that are scarcely interesting and straightforwardly dis-
carded using global event quantities (see Fig. 3.1). More interesting for flavour physics are
the collisions that produce hadrons (hadronic events). In these, the finely tuned collision
energy is key. The production of Υ(4S) mesons, which decay in BB pairs more than 96%
of the time with little available energy to produce additional particles, suppresses back-
grounds from competing nonresonant hadron production. In addition, colliding beams of
point-like particles allow for knowing precisely the collision energy, which sets stringent con-
straints on the collision’s kinematic properties, thus offering means of further background
suppression. Since bottom mesons are produced in a strong-interaction decay, flavour is
conserved, and the null net bottom content of the initial state implies production of a
flavourless BB pair. Even though B0 and B0 undergo flavour oscillations before decaying,
their time-evolution is quantum-correlated in such a way that no B0B0 or B0

B
0 pairs are

present at any time. Angular-momentum conservation implies that the decay of a spin-1
particle in two spin-0 particles yields total angular momentum J = 1. Because the simul-
taneous presence of two identical particles in an antisymmetric state would violate Bose
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σ[e+e− → e+e−(γ)] = 300 nb

σ[e+e− → μ+μ−(γ)] = 1.15 nb

σ[e+e− → τ+τ−(γ)] = 0.92 nb
σ[e+e− → νν̄(γ)] = 0.25 ⋅ 10−3 nb

σ[e+e− → γγ(γ)] = 4.99 nb
σ[e+e− → Υ(4S)] = 1.11 nb

σ[e+e− → cc̄] = 1.30 nb

σ[e+e− → uū] = 1.61 nb

σ[e+e− → dd̄] = 0.40 nb

σ[e+e− → ss̄] = 0.38 nb

Figure 3.1: Cross sections of the main final states produced in e+e− collision at the Υ(4S)
centre-of-mass energy.

statistics, the system evolves coherently as an oscillating B0B
0 particle-antiparticle pair

until either one decays. This allows identification of the bottom (or antibottom) content of
one meson at the time of decay of the other, if the latter decays in a final state accessible
only by either bottom or antibottom states. This important capability is called ‘flavour
tagging’ and allows measurements of flavour-dependent decay rates, as needed in many
determinations of CP -violating quantities.

Figure 3.2 shows the hadron-production cross-section in e+e− collisions as functions of
the final-state mass.

Figure 3.2: Hadron production cross section from e+e− collisions as a function of the final-
state mass. The vertical red line indicates the BB production threshold.
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Figure 3.3: Illustration of the SuperKEKB collider.

The various peaks are radial excitations of the Υ meson overlapping the nearly uniform
background at about 4 nb which represents the so-called continuum of lighter-quark pair-
production, e+e− → qq, where q identifies a u, d, c, or s quark.

Because the Υ(4S) mesons are produced at threshold, they would be nearly at rest
in the laboratory frame in an energy-symmetric collider. The resulting B mesons too
would be produced with low momentum (≈ 10MeV/c) in the laboratory, because of the
21MeV/c2 difference between the Υ(4S) mass and the BB pair mass. With such low
momenta they would only travel approximately 1µm before decaying rendering the 10 µm
typical spatial resolution of vertex detectors insufficient to separate B-decay vertices and
enable the study of the decay-time evolution. Asymmetric beam energies are used to
circumvent this limitation. By boosting the collision centre-of-mass along the beam in
the laboratory frame, they achieve B-decay vertex separations resolvable with current
vertex detectors [93]. SuperKEKB (Fig. 3.3) implements a 7–on–4 GeV energy-asymmetric
double-ring design, which achieves a vertex displacement of about 130µm.

Electrons are produced in a thermionic gun with a barium-impregnated tungsten cath-
ode, then accelerated to 7 GeV with a linear accelerator (linac) and injected in the high-
energy ring (HER). Positrons are produced by colliding electrons on a tungsten target,
then isolated by a magnetic field, accelerated to 4 GeV with the linac and injected in the
low-energy ring (LER).

The electrons and positrons continuously collide at a single interaction point, around
which the Belle II detector is installed. To achieve high luminosities, a nano-beam, large
crossing-angle collision scheme is implemented [94]. This is an innovative configuration
based on keeping small horizontal and vertical emittance and large crossing angle, as shown
in Figure 3.4. This is obtained with a final-focus superconducting-quadrupole-magnet sys-
tem (QCS), made of magnets, corrector coils, and compensation solenoids; a QCS magnet
is installed at each longitudinal end of the interaction region. Conceptually the nano-beam
scheme mimics a collision with many short micro-bunches, allowing great advantages in
luminosity with respect to previous standard schemes. The reduction of the luminous vol-
ume size to about 5% with respect to the predecessor KEKB, combined with doubling of
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Figure 3.4: Two-dimensional sketch of the nano-beam mechanism implemented in Su-
perKEKB (right) compared with the previous KEKB collision scheme (left).

beam currents, is expected to yield a factor 40 gain in intensity.
The performance of the SuperKEKB collider is characterised in terms of the luminosity

L, which is a measure of collision intensity. The rate of any given process

rate [events s−1] = L [cm−2 s−1] × σ [cm2],

is the product of its cross-section, σ, and the instantaneous luminosity L,

L = γ±
2ere

(
1 +

σ∗
y

σ∗
x

)
I±ξy±
β∗
y±

· RL
Rξy

,

where γ is the relativistic Lorentz factor, e is the absolute value of the electron charge, re
is the classical radius of electron, σ∗x and σ∗y are the widths of the bunch at the interaction
point (IP) on the plane orthogonal to the beam direction (transverse plane), I is the current
of the beam, β∗y is the vertical betatron function at the IP, ξy is the vertical beam-beam
parameter, RL and Rξy are the reduction factors of luminosity and the vertical beam-beam
parameter due to non-vanishing crossing angle. The ratio of these reduction factors is close
to unity, while the design values for the other parameters are reported in Tab. 3.1.

The integral of instantaneous luminosity over time T , called integrated luminosity,

Lint =
∫ T
0 L(t′)dt′

is a direct measure of the number of produced events of interest N = Lint × σ.

Design Achieved

Energy [GeV] 4.0/7.0 4.0/7.0
ξy 0.090/0.088 0.0407/0.0279
β∗y [mm] 0.27/0.41 1.0/1.0
I [A] 3.6/2.62 1.321/1.099

Table 3.1: Design and achieved values for SuperKEKB fundamental parameters
(LER/HER).

Physics data-taking started in March 2019, and Belle II to date has integrated 567 fb−1

of luminosity. In 2022, SuperKEKB also broke the instantaneous-luminosity world record,
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achieving 4.7×1034 cm−2s−1. In spite of these achievements, a number of technological
and scientific challenges have significantly reduced SuperKEKB performance compared to
design. A number of issues associated with beam injection, collimation, and the capability
to reduce the transverse dimensions of the beam without generating uncontrollable beam
backgrounds limited the capability to deliver the expected samples of data in its first five
years. Consolidation, improvement and development work have been made to overcome
these difficulties.

3.2 The Belle II detector

Belle II (Fig. 3.6) is a large-solid-angle, multipurpose magnetic spectrometer surrounded by
a calorimeter and particle-identification systems, installed around the SuperKEKB inter-
action point. It is designed to determine energy, momentum, and identity of a broad range
of particles produced in 10.58 GeV e+e− collisions. Belle II is approximately a cylinder of
about 7 m in length and 7 m in diameter. It employs a right-handed Cartesian coordinate
system with origin in the interaction point. The z axis corresponds to the principal axis of
the solenoid, which is approximately parallel to the electron beam direction at the inter-
action point; the y axis points vertically upward, and the x axis is horizontal and pointing
outward of the accelerator tunnel. The polar angle, θ, is referred to the positive z axis.
The azimuthal angle, ϕ, is referred to the positive x axis in the xy plane. The radius, r
=
√
x2 + y2, is defined in cylindrical coordinates and measured from the origin in the xy

plane. Throughout this thesis, longitudinal means parallel to the electron beam direction
(to the z axis), and transverse means perpendicular to the electron beam direction, i.e.,
in the xy plane.

Belle II comprises several subsystems, each dedicated to a specific aspect of event recon-
struction. From the interaction point outward, a particle would traverse the beam pipe,
a two-layer silicon-pixel vertex-detector (PXD), a four-layer silicon-strip vertex-detector
(SVD), a central wire drift-chamber (CDC), a time-of-propagation central Cherenkov counter
(TOP) or an aerogel threshold forward Cherenkov counter (ARICH), an array of CsI(Tl)
crystals (ECL), a superconducting solenoidal magnet, and multiple layers of resistive plate
counters (KLM).

The principal experimental strengths are hermetic coverage, which allows for recon-
struction of final states involving neutrinos; efficient and precise reconstruction of charged-
particle trajectories (tracks), which provide accurately reconstructed decay-vertices and
good momentum resolution; high-purity charged-particle identification and neutral-particle
reconstruction. A summary of the technological specifications of the Belle II subsystems
is in Tab. 3.2. A detailed description of Belle II and its performance is given in Ref. [95].

In June 2022, both SuperKEKB and Belle II ended operations to enter a long shutdown
period (LS1). During LS1, the PXD detector was extracted and replaced with a new PXD
that has a complete outer layer of pixels. At the same time the TOP photomultipliers
were upgraded. Other minor updates, regarding both the detector and the collider, were
performed. In the recent Run II, the PXD was turned off to prevent further damages until
more stable data-taking conditions are reached. Run II will go on collecting data until a
second long shutdown (LS2), expected in 2027. The complete data sample available today
corresponds to an integrated luminosity of 567 fb−1, combining both Run I (428 fb−1) and
the initial period of Run II (139 fb−1), from March to December 2024. This corresponds to
a data set that lies between the one collected by the BaBar experiment during its lifetime
(9 years) and the one collected by the Belle experiment over approximately 11 years. Of
the total Belle II sample, about 85% has been collected at the Υ(4S) resonance, while the
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Figure 3.5: Weekly (blue histogram) and total (red line) integrated luminosity recorded
using the Belle II detector during 2019-2022 operations of Run I and Run II after the long
shutdown [97].

rest with collision energy below or above the Υ(4S) . The total integrated luminosity as a
function of time from January 2019 to June 2024 is shown in Fig. 3.5. To achieve the goal
of collecting 50 ab−1, SuperKEKB needs to be upgraded during the LS2 in order to reach
a peak luminosity of ∼ 6.5×1035 cm−2s−1. An international task force has been formed to
provide advice to SuperKEKB on the possible upgrade options, which include a redesign
of the interaction region and of the final focusing system. LS2 provides the possibility to
upgrade parts of the Belle II detector as well. A new vertex detector might be required
to accommodate the new interaction-region design, and other sub-detectors might require
improved robustness against increasing machine background [96].

In the following, I focus on the reconstruction and identification of stable particles,
which are more relevant for the analysis reported in this thesis.
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Figure 3.6: Top view of Belle II, the beam pipe at IP and final-focus magnets.
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3.2.1 Tracking system

At Belle II, reconstruction of charged particles and ensuing measurement of their momenta
and charges is achieved through an integrated system consisting of six layers of silicon and
a drift chamber, surrounding the beam pipe and immersed in a 1.5 T axial magnetic field
maintained in a cylindrical volume 3.4 m in diameter and 4.4 m in length. The field is
oriented along the z direction and provided by an aluminum-stabilised superconducting
solenoid made of NbTi/Cu alloy.

The solenoid surrounds all the subdetectors up to the KLM. The iron yoke of the
detector serves as the return path of the magnetic flux. The beam pipe is a 3 km-long
vacuum enclosure to allow beams circulating inside the detector. In the following, I refer
only to the straight section of the beam pipe surrounding the interaction point. Multiple
Coulomb scattering in the beam-pipe wall of the final-state charged particles would spoil
the vertex-position resolution; this dictates a thin beam-pipe wall made of a low-Z material.
Moreover, since the vertex resolution is inversely proportional to the distance between the
interaction point and the first track sampling, the beam pipe has to be narrow. The
possibility for beam-halo to interact with the beam pipe, thus inducing beam backgrounds,
and heating of the pipe wall due to charge induction complicates the design. Hence, the
beam pipe is constantly cooled and shielded from the vertex detector. The Belle II beam
pipe is made of two beryllium cylinders, 0.6 mm thick at radius of 10 mm, and 0.4 mm
thick at radius of 12 mm, respectively. A 1.0 mm gap between the inner and outer walls
of the pipe is filled with paraffin for cooling. The beam pipe is coated with a 10 µm gold
sheet that absorbs low-energy photons, which could damage the silicon detector.

3.2.1.1 Silicon-pixel vertexing detector

The innermost detector is a pixel vertex detector (PXD). Its goal is to sample the trajec-
tories of final-state charged particles in the vicinity of the decay position (vertex) of their
long lived ancestors, so that the decay point can be inferred by extrapolation inward.

PXD sensors are based on depleted field-effect transistor technology [98]. They are
made of p-channel MOSFET integrated on a silicon substrate, which is fully depleted by
applying an appropriate voltage. Incident particles generate electron-hole pairs in the
depleted region, and thus induce a current passing through the MOSFET. Sensors are
75 µm thick, which allows on-pixel integration of most of the electronics.

The PXD has two layers at 14 mm and 22 mm radius, respectively, and a full length of
174 mm at the radius of the outer layer. It comprises around 8 million pixels, 50× (50−
55)µm2 (inner layer) and 50×(70−85)µm2 (outer layer) each. The polar acceptance ranges
from 17◦ to 150◦. The design impact-parameter resolution is 12 µm, achieved by weighting
the charge deposited in neighbouring pixels. To simplify pattern recognition, tracks are
first reconstructed in the outer tracking volume, where lower occupancy aids track finding,
and extrapolated to the PXD radius, to define regions of interest around their expected
intersection points. If a firing pixel is found inside this region, it is kept in the pattern
recognition algorithm, otherwise it is discarded. For the data used in this thesis, the full
first pixel layer is used, along with 1/6 of the second layer.

3.2.1.2 Silicon-strip vertexing detector

Around the PXD is SVD [99], a silicon detector aimed at reconstructing decay vertices and
low-momentum charged-particle tracks at high resolution.
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Figure 3.7: (Left) scheme of the PXD detector. (Right) exploded view of a SVD detector
half.

SVD uses a double-sided silicon strip technology. Each sensor is made of a silicon n-
doped bulk with an highly p-doped implant on one side. A voltage is applied to enhance
the depletion region at the p-n junction, and removes intrinsic charge-carriers from the
region. Traversing charged particles ionise the silicon, freeing electron-hole pairs that drift
due to the electric field, inducing a signal in highly granular strip electrodes implanted at
both ends of the depletion region. The fine segmentation of SVD sensors reduces latency,
in order to deal with the high rates.

SVD is structured into four concentric layers at radii of 39, 80, 104 and 135 mm,
composed by, respectively, 7, 10, 12, and 16 independently-readout modules called ladders,
arranged in a cylindrical geometry. As shown in Figure 3.7, SVD has a polar-asymmetric
geometry that mirrors the asymmetry in particle density resulting from the centre-of-mass
boost. The polar acceptance ranges from 17◦ to 150◦.

Sensors are 300 µm thick, and the separation between adjacent strips (dpitch) ranges
from 50 µm to 240 µm. Hence, the spatial resolution dpitch/

√
12 varies with the polar

angle. Since the charge associated with an incident particle is usually distributed among
several strips, position resolution is improved by interpolation.

3.2.1.3 Central drift chamber

The CDC [100] is a drift chamber. It samples charged-particle trajectories at large radii,
thus providing accurate measurements of momentum and electric charge, trigger signals for
events containing charged particles, and information on identification of charged-particle
species by measuring their specific-ionisation energy-loss (dE/dx).

When a charged particle traverses the CDC volume, it ionises the gas, freeing electrons
and positive ions from gas atoms. An applied electric field then moves these charges until
they approach the sense wires, where high field gradients cause an abrupt acceleration with
secondary ionisations that induce an electric signal whose time is digitised. The particle
trajectory is inferred from the time between the collision and the signal.

The CDC inner radius is 16 cm and outer radius is 113 cm. The chamber is com-
posed of 14336 30-µm-diameter sense wires, divided in 56 layers, immersed in a gaseous
mixture of 50% He and 50% C2H6, while 42240 126-µm-diameter aluminum wires shape
the electric field. Layers of wires are installed with either “axial” orientation, i.e., aligned
with the solenoidal magnetic field, or skewed with respect to the axial wires with a “stereo”
orientation. The azimuthal acceptance ranges from 17◦ to 180◦.

The spatial resolution is about 100µm and the dE/dx resolution is 11.9% for an in-
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Figure 3.8: A quadrant of a slice of the transverse projection of the drift chamber (left); wire
orientation for axial (top right) and stereo (bottom right) layers. The skew is exaggerated
for visualization purposes

cident angle of 90◦. Figure 3.8 shows a sliced view of the CDC and the possible wires
configurations.

3.2.2 Electromagnetic calorimeter

The electromagnetic calorimeter (ECL) measures the energy of photons and electrons [101].
High energy photons and electrons entering the calorimeter initiate an electromagnetic
shower through bremsstrahlung and electron-positron pair production. The energy is
mostly converted to photons, which are collected by the photodiodes. In contrast to
hadrons, which pass through the calorimeter with minimal energy loss, most photons and
electrons dissipate their entire energy.

The configuration, mechanical structure, and crystals of Belle II ECL are those of
the Belle’s calorimeter. The readout electronic boards have been upgraded to cope with
SuperKEKB’s higher luminosity. The layout is shown in Fig. 3.9. The ECL consists of three
polar compartments: the barrel, the forward endcap, and the backward endcap section.
The barrel section is 3.0 m long with 1.25 m of inner radius; the endcaps are located at z =
+2.0 m (forward) and −1.0 m (backward) from the interaction point. Tab. 3.3 summarises
the geometrical parameters of each section.

Item θ coverage θ segmentation ϕ segmentation Number of crystals

Forward endcap 12.4◦–31.4◦ 13 48–144 1152
Barrel 32.2◦–128.7◦ 46 144 6624
Backward endcap 130.7◦–155.1◦ 10 64–144 960

Table 3.3: Summary of ECL parameters.

This requires a segmented calorimeter. The ECL is a highly segmented array of 8736
cesium iodide crystals doped with thallium (CsI(Tl)). Thallium shifts the energy of the
excitation light into the visible spectrum. The light is detected by a independent pair of
silicon PIN photodiodes [101] and charge-sensitive preamplifiers installed at the outer end
of each crystal.

A typical crystal in the barrel section has a 55×55 mm2 active surface on the front face
and 65×65 mm2 on the rear face; the dimensions of the crystals in the endcap sections
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Figure 3.9: ECL layout.

vary from 44.5 to 70.8 mm and from 54 to 82 mm for front and rear faces, respectively. A
diagram of an ECL crystal is shown in Fig. 3.10. The 30-cm crystal length, corresponding
to 16.1X0, reduces the fluctuations of shower leakages out of the outermost end of the
crystals, which spoils energy resolution. The crystals are designed in such a way that a
photon injected at the centre of the crystal would deposit 80% of its energy in the crystal on
average. The crystals principal axes do not point exactly to the nominal interaction point,
but they are inclined to prevent photons from escaping through gaps between crystals by
about 1.3◦ in the θ and ϕ directions in the barrel section, and by about 1.5◦ and about 4◦

in the θ direction in the forward and backward sections.
Considering the ECL structure—gaps, crystal wrapping, mechanical structure—the

fraction of photons that do not leave a detectable signal in the calorimeter is only 0.2%.

Figure 3.10: Schematic design of a CsI(Tl) crystal with attached readout electronic circuits.
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Signals from the photodiodes are sent to two preamplifiers mounted on the rear of the
crystal for charge integration.

The two resulting signals are sent to a readout board [101] located outside the Belle II
detector. The signal waveforms are analysed using pulse-shape discrimination to improve
particle identification, since the signal decay time in CsI(Tl) includes a fast component of
around 0.6 µs and a slow component at around 3.5 µs. The fast component is associated
with the scintillation response to electromagnetic interactions, while the slow component is
associated with the scintillation response to hadronic (i.e., proton or neutron) interactions.
This occurs because scintillation in CsI(Tl) for electromagnetic interactions involves the
excitation and deexcitation of Tl atoms, while scintillation for hadronic interactions involves
the excitation and deexcitation of both Tl and Cs atoms, leading to a longer decay time.
The ratio between the intensity of these two decay components varies as a function of the
ionising power of the absorbed particle.

The photon emission spectrum peaks at around 550 nm, which is convenient for photo-
diode readout. However, the time for the light in the crystals to decay is relatively long,
increasing considerably the overlap of pulses from neighbouring (background) events. This
means that scintillation light may be present when a particle from a later event arrives,
generating pile-up background.

The ECL also uses Bhabha scattering to measure luminosity. Because the Bhabha
cross section is predicted with high accuracy in QED, a precise inference of luminosity is
achieved from the measured rate of Bhabha events in a volume of known acceptance.

3.2.3 Particle identification

Belle II combines measurements of time-of-propagation, Cherenkov radiation, and ionisa-
tion energy loss in the tracker and drift chamber to identify charged particles.

3.2.3.1 Time-of-propagation detector

The time-of-propagation detector (TOP) measures the time of propagation of the Cherenkov
photons emitted from charged particles passing through its quartz bars and internally re-
flected within a radiator [102]. It is made of 16 quartz bars mounted at 1.2 m from the IP.
Each bar has three main components (Fig. 3.11): a long bar acts as Cherenkov radiator,
where photons are generated and propagated; a focusing mirror is mounted at the forward
end; and a prism mounted at the backward end collects photons and guides them to a pho-
tomultiplier. The polar coverage ranges from 31◦ to 128◦. On average, photons originated
from slower particles take more time to reach the photomultipliers, because of the inverse
proportionality between β and cos θC .
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Figure 3.11: Scheme of a TOP bar. A charged particle crossing the radiator and emitting
Cherenkov photons, which are collected at the photomultipliers, is also represented.

3.2.3.2 Aerogel ring-imaging Cherenkov counter

The aerogel ring-imaging Cherenkov counter detector (ARICH) identifies charged particles
by measuring the Cherenkov ring produced when passing through a radiator [103]. It con-
sists of 420 modules for photon detection in seven layers extending from 0.56 to 1.14 m
radius, and 248 aerogel tiles installed on the detector end-caps. The aerogel radiator pro-
duces Cherenkov photons when traversed by charged particles of a certain momentum
range. Next to the radiator is an expansion volume where photons are propagated, to form
rings on position-sensitive photodiodes. Photo-cathodes then convert photons into pho-
toelectrons and generate electric signals. Two adjacent radiators with different refraction
indexes generate enough photons for achieving sufficient resolution, as shown in Fig. 3.12.

Figure 3.12: Sketch of (left) the ARICH with its main components and (right) diagram of
the difference in the photon path for Cherenkov photons from kaons and pions.

3.2.3.3 K0
L and muon detection system

The K0
L and muon detection system (KLM) detects muons and neutral particles that do

not get absorbed in the inner detectors, such as K0
L mesons [104]. It is made of alternating

4.7-cm-thick iron plates and active detector elements. Iron elements act also as magnetic
flux returns for the tracking solenoid. In the inner layers, the active material is scintillator,
in the outer layers are glass-electrode resistive-plates chambers, with a gas mixture filling
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the space between electrodes. When particles traverse the KLM, they produce charges that
are collected by applying an appropriate voltage. The barrel section of the detector covers
45◦ to 125◦ in polar angle. The end-caps cover 20◦ to 45◦ and 125◦ to 155◦.

3.2.4 Trigger and data acquisition system

The e+e− collisions at the Υ(4S) resonance produce a variety of processes. As the events
of interest are only a fraction of the total cross section and it would be impossible to
record all collisions on permanent memory, an online event-selection system (trigger) is
used to distinguish them from background in real time, and to feed only the interesting
events to the data acquisition system (DAQ), compatibly with data processing resources.
The physics processes of interest include hadronic, µ/τ -pair, Bhabha, and two photon
events. Accept rates of Bhabha and γγ events, which have high cross section and can be
identified by their distinct signature, are artificially reduced by a factor of 100 to comply
with the data acquisition limitations. Preferably discarded events include beam-related
background resulting from synchrotron radiation, scattering of the beams on the residual
gas, interactions in the beam pipe, and cosmic-ray events.

The Belle II trigger is organised according to a two-level logic, with a level 1 (L1)
hardware trigger followed by a software-based, high-level trigger (HLT).

The L1 trigger, designed for a maximum rate of 30 kHz, uses input from four subde-
tectors: (i) the CDC, that provides three-dimensional track information to suppress tracks
not originating from the interaction point; (ii) the ECL, that gives information on total
energy deposit and cluster multiplicity; (iii) the TOP, that provides timing and hit topol-
ogy information; and (iv) the KLM, that gives high-efficiency trigger for muons. These
are used to achieve a low-level reconstruction that is fed to the global decision logic, which
sends the proper trigger signal if the event passes the selection requirements. The L1 logic
is implemented using field-programmable gate arrays that have a fixed latency of 5 µs, with
an uncertainty on the trigger timing (jitter) of approximately 10 ns.

Expected cross sections and trigger accept rates for physics processes of interest at the
design instantaneous luminosity of 8×1035cm−2s−1 are given in Tab. 3.4.

Process σ [nb] Rate [Hz]

e+e− → Υ(4S) 1.2 960
e+e− → qq (q = u, d, s, c) 2.8 2200
e+e− → µ+µ− 0.8 640
e+e− → τ+τ− 0.8 640
e+e− → e+e− (Bhabha scattering) θlab > 17◦ 44 350*
e+e− → γγ θlab > 17◦ 2.4 19*
Two photon events (θlab > 17◦ and pT ≥ 0.1 GeV/c) ≈ 80 ≈ 1500

Table 3.4: Expected cross sections and trigger rates of various physics processes at
8×1035cm−2s−1 luminosity [95]. Bhabha and γγ accept rates (*) are artificially reduced
by a factor of 100 to comply with the data acquisition limitations.

Events selected by the L1 trigger are input to the HLT, that makes a decision using
information from all the subdetectors except for PXD. The online software reconstruction
is similar to that used offline. A first selection, performed after the first step of the re-
construction and aimed at discarding about half of the events, is based on requirements
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on track multiplicity, vertex position, and total ECL energy deposit. After the remaining
steps of the standard reconstruction are completed, further physics-level selection are per-
formed. After this stage, the number of events is reduced to about 1/5 of those passing
the L1 trigger. The efficiency of the HLT for Υ(4S) → BB events is higher than 99%.

Data from the PXD for events that pass the L1 selection are stored in a dedicated
online data reduction system. Once an event passes the selection, HLT extrapolates the
tracks found by CDC and SVD to the PXD layers, defining regions of interest (ROIs).
These are passed to the data reduction system, and only hits matching with a ROI are
transmitted to the DAQ system. This keeps the PXD data size to about 100 kB/event.

Fully reconstructed events are stored in DST files. The size of a DST of a typical
hadronic event is 100 kB. The large amount of information stored in DST files is reduced
into mini-DST to isolate subsets of events of physics processes of interest like hadronic
events. The size of a mini-DST of an hadronic event is around 40 kB.

3.3 Reconstruction of stable particles

Reconstruction is the process through which raw data collected by the detectors are trans-
formed into manageable physics information, in terms of quantity, quality, and meaningful-
ness. Several algorithms use low-level objects (detector signals, alignment, and calibration
information) combined with our knowledge of relativistic kinematics to produce higher-
level objects (tracks, energy deposits, etc). An outline of the essential aspects of the
reconstruction of these, along with the associated performance quantities follows.

3.3.1 Charged-particle reconstruction

The ideal trajectories of charged particles in a solenoidal magnetic field are helical, with
radius proportional to their transverse momentum. This ideal configuration can be altered
by effects such as Coulomb scattering or other energy losses. When reconstructing a track,
that is, measuring its momentum and position of closest approach to the interaction point,
we need to take into account for these possible effects.

Track reconstruction, or “tracking”, in Belle II [105] consists in the combination of
sequences of hits (measurement space-points) into tracks (full trajectories) after a charged
particle crosses multiple active layers. The first step is called track finding; the second,
track fitting. Tracking relies on PXD, SVD, and CDC information. Due to the different
properties of these detectors, specific algorithms are used for each.

As a first step of track finding, hits in the outer tracking volume (CDC), where lower
occupancy aids track finding, are filtered and reconstructed by two independent algorithms.
One is a global track finding based on the Legendre algorithm [106], that transforms the
position of each hit into a (θ, ρ) pair, which represents all the circles traversing both the
IP and the considered hit. Another is a local algorithm that takes into account possible
non-circular trajectories. The global track finding searches for patterns of hits consistent
with helical trajectories, accounting for layer inefficiencies, while local track finding detects
extended patterns of nearby hits, to complement the global search and detect short tracks
and tracks displaced from the IP. The results of both algorithms are merged and the result-
ing CDC-only tracks are fitted by an iterative fitter based on the Kalman filter technique,
that accounts also for possible random perturbations on the trajectory due for example to
multiple scattering or energy losses [107].
Then, tracks are extrapolated inward making sure to avoid duplications, and SVD informa-
tion is added. They are fitted again, before being extrapolated further inward to the PXD
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to define regions of interest around their expected intersection points. If an excited pixel
is found inside this region, it is included in the pattern recognition algorithm, otherwise it
is discarded.

Finally, the parameters of the track are determined thanks to a fitting algorithm and
by assuming a mass hypothesis (Fig. 3.13):

• d0, the distance of the point of the closest approach to the z axis;

• ϕ0, the angle between the transverse momentum and the x axis at the point of the
closest approach;

• ω, the track curvature signed according to the particle charge;

• z0, the z coordinate at d0;

• tanλ, the tangent of the angle between track momentum and transverse momentum.

Figure 3.13: Three-dimensional representation of the helical trajectory of a track at the
point of closest approach (P ) to the IP (the origin O). Symbol p is the momentum of the
charged particle at the point P , pt its transverse momentum and λ is the angle between
the two vectors.

Track reconstruction is subjected to uncertainties and errors. A track might sometimes
be a fake track, if it includes hits from beam-induced background or combines hits from
two different particles, or a clone track, if other tracks are reconstructed from the same
particle.

Tracking efficiency, that is the efficiency in reconstructing the track of a particle pro-
duced after a collision in the detector acceptance, varies from 75% at low transverse mo-
menta (O(10) MeV) to 95% around 4GeV/c. It degrades the closer the track is to the
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beam axis (small or large polar angles), while it is mostly constant around 90% regardless
of the azimuthal angle.

The observed transverse momentum resolution is σ(pT )/pT = 0.0011pT [GeV/c]⊕0.0025/β
as shown in Fig. 3.14. The momentum- and angle-dependent impact parameter resolutions
are σxy = 10⊕ 25/(pβsin3/2θ)µm and σz = 15⊕ 27/(pβsin5/2θ)µm for the transverse and
longitudinal projections, respectively.

Figure 3.14: Transverse momentum resolution for collision and cosmic ray data.

3.3.2 Charged-particle identification

Particle identification is essential in flavour physics as most of the interesting channels
are suppressed and therefore affected by signal-like backgrounds that only differ by the
identity of some final-state hadrons. Particle identification (PID) at Belle II is achieved
by combining information from several subdetectors. The trajectories of charged particles
reconstructed by the tracking detectors, PXD, SVD, and CDC, are extrapolated outward
to the TOP, ARICH, ECL and KLM detectors, where geometric matching between the
tracks and observed signals is attempted. Offline reconstruction associates PID-detector
information sensitive to its identity to each matching track. For example, the drift chamber
output encodes information on the specific ionisation energy loss associated with each
track. The raw information is further processed to provide higher-level quantities that are
more convenient for usage in analysis. These are typically ‘likelihood’ values associated to
the track. For each of six possible mass hypotheses, kaon, pion, electron, muon, proton
and deuteron, the likelihood expresses the probability to observe the reconstructed PID
information if the mass hypothesis was true.

For each detector and particle-hypothesis, the likelihood is usually obtained by com-
paring the expected and the observed value of the raw information, taking into account
the uncertainties. For instance, in the CDC such information is dE/dxobs(h), the specific-
ionisation energy-loss observed for a charged particle h, averaged across the CDC wires.
The resulting (natural logarithm of) the likelihood is

lnLCDC
hyp (h) = −1

2

[
dE
dx obs

(h)− dE
dx exp−hyp

(h)

σobs(h)

]2
, (3.1)

where ‘hyp’ represents the particle hypothesis and σobs(h) is the observed uncertainty on
dE/dxobs(h), which mainly depends on the number of CDC hits associated to h. The
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Figure 3.15: Distribution of (points) observed ionisation-energy loss as a function of mo-
mentum for charged particles from hadronic events reconstructed in Belle II data, along
with average expected values (solid lines). Reproduced from Ref. [110].

expected value dE/dxexp−hyp(h) is the average ionisation-energy loss from a charged par-
ticle h that has the observed momentum, assuming the hypothesis ‘hyp’, calculated using
the Bethe-Bloch equation [108,109] modified according to minor empirical adjustments to
adapt to the details of the CDC response. Figure 3.15 shows the dE/dxobs(h) distribution
for various particle species in Belle II data and the expected energy loss for each of the six
mass hypotheses considered.

In the TOP, the likelihood is calculated by comparing the observed number of detected
photons associated to the charged particle with the photon yield expected from simula-
tion [111,112],

lnLTOP
hyp (h) = ΣN

i=1 ln

[
Shyp(xi, ti, h) +B(xi, ti)

Ne(h)

]
+ lnPN (Ne(h)), (3.2)

where xi and ti are, respectively, the positions and times of arrival of the N Cherenkov
photons excited by the charged hadron h. The term Shyp(x, t, h) is the signal distribution
for the hypothesis ‘hyp’; B(x, t) is the distribution of background; and Ne(h) = Nhyp(h)+
NB is the expected number of detected photons, which is the sum of the expected number
of signal photons Nhyp(h) for hypothesis ‘hyp’ and background photons NB. The second
term in Eq. (3.2) is a probability for a Poisson with mean Ne to generate N photons [111].
Figure 3.16 shows an example of the identification of a kaon in the TOP detector: the
positions and arrival times of Cherenkov photons are compared with the values expected
for a pion or a kaon.

Using the likelihoods for the various mass hypotheses, Belle II algorithms construct a
particle identification variable PIDdet

hyp for every detector,

PIDdet
π (h) =

Ldet
π (h)

Ldet
π (h) + Ldet

K (h) + Ldet
e (h) + Lµ(h) + Ldet

p (h) + Ldet
d (h)

, (3.3)

which is directly used in physics analyses. As an example, this was the PIDdet
hyp expression
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Figure 3.16: Example of kaon identification in the TOP detector. Arrival time of the
Cherenkov photons as a function of position is compared with the expectations for (left) a
pion and (right) a kaon passing in the TOP [110].

associated with the pion mass hypothesis1, but the PIDdet
hyp values for other mass hypotheses

are obtained by replacing the likelihood at the numerator Ldet
π (h) with the corresponding

hypothesis-specific value Ldet
hyp(h). The quantity PIDdet

hyp(h) is defined similarly to a like-
lihood ratio L0/L1, which is the best-performing quantity to test two alternative simple
statistical hypotheses [113]. The PIDdet

hyp variable assumes values from 0 to 1. The larger
the PIDdet

hyp, the higher the probability of observing the reconstructed track assuming true
the chosen mass hypothesis.

Information from individual detectors is combined to improve the identification perfor-
mance. The detector-specific likelihoods are combined together as a product,

Lhyp(h) = LTOP
hyp (h)LCDC

hyp (h)LSVD
hyp (h)LARICH

hyp (h)LECL
hyp (h)LKLM

hyp (h), (3.5)

and the result is used in Eq.(3.6) to obtain the detector-combined PID. If a particle does
not get reconstructed in a detector because, for instance, it escapes its acceptance, no PID
information from that detector is available and the corresponding individual likelihood is
set to one.

Of the two main PID detectors, TOP allows separating pions from kaons at 0.4 −
4GeV/c momenta with kaon identification efficiency of about 85% and pion misidentifi-
cation rate of about 10%, while the ARICH separates pions from kaons across all their
momentum spectrum and discriminates also pions, electrons, and muons below 1 GeV/c
with 4σ separation or more.

Combining information from all detectors, the electron and muon identification effi-
ciencies are respectively 86% and 88.5% after requiring the binary PID to be larger than
0.9, with pion misidentification rates of 0.4% and 7.3%, respectively. Binary PID is an

1In practice, the Belle II software expresses PIDhyp using only the natural logarithm of the likelihood
values,

PIDhyp =
elnLhyp−lnLMAX

Σi(elnLi−lnLMAX)
=

e∆ lnLhyp

Σi(e∆ lnLi)
(3.4)

where LMAX is the largest of the likelihood values over the six hypotheses.
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additional PID variable that compares only two mass hypotheses, for example

PIDdet
µ,π(h) =

Ldet
µ (h)

Ldet
µ (h) + Ldet

π (h)
. (3.6)

Data and simulation agree, except at low momenta where discrepancies within 20% are
observed. Performance of kaon identification for a threshold of 0.8 on the kaon-pion binary
PID is summarised in Fig. 3.17. Efficiency varies from 95% to around 60%, depending on
kaon momentum and polar angle. The pion misidentification varies from about 20% to less
than 5%.
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Figure 3.17: Kaon identification efficiencies and pion misidentification rates for events
having a binary PID larger than 0.8, in data and simulation (MC) as functions of (left)
kaon momentum, and (right) cosine of the polar angle in the laboratory frame.

3.4 Instrumental asymmetries

Measurements of charge-parity-violating decay-rate asymmetries, ACP , are a fundamental
goal of the Belle II physics programme. Decay-rate asymmetries are derived from charge-
dependent signal yields of reconstructed decay candidates. Such yield asymmetries, Araw,
may be affected by biases due to charge-dependent reconstruction efficiencies of final-state
particles. These biases are referred to as detection asymmetries, Adet, and they originate
from various sources. For instance, when charged kaons are reconstructed, a detection
asymmetry is expected due to the known difference in interaction probabilities between
K+ and K− with matter2. Other sources of Adet may arise from tracking or particle
identification algorithms.

Simulation might not model perfectly all these effects because of a approximated de-
scription of detector material budget or simplified modelling of processes related to tracking
and particle identification. It is pivotal to carry out auxiliary measurements on abundant
samples of control data to determine (or to bound) detection asymmetries, so that mea-
sured charge-yields asymmetries can be corrected for to measure genuine CP asymmetries.

I study the detection asymmetries of kaons and pions using control samples of D0 →
K−π+ and D− → K0

Sπ
− decays. For the first time at Belle II, I investigate the dependen-

cies of instrumental asymmetries on track variables. In addition, I develop a strategy for
2The u quark of a K− allows a wider variety of interaction processes, such as the production of strange

baryons (e.g. Σ∗(1385), Λ(1405), Σ(1660)), which is instead forbidden for K+.
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determining instrumental asymmetries for physics decays based on my measurements in D
control channels.

3.4.1 Adet from D control decays

To determine Adet from the D control decays, I measure the signal-yield asymmetries
Araw from the fit of the D-mass distribution of the reconstructed candidates. The yield
asymmetry can be decomposed into three contributions as:

Araw =
N −N

N +N
= ACP +Adet +AFB, (3.7)

where N is the measured signal yield for a charge-specific decay (i.e., number of D0 →
K−π+ or D− → K0

Sπ
− decays) and N for its CP conjugate. The term AFB is the forward-

backward asymmetry, a known asymmetry in the production of D and D mesons due to
the γ∗-Z0 interference in e+e− → cc processes [114].

I use these D control decays because they have null or very well-known values of ACP .
The D0 → K−π+ decays are governed solely by a Cabibbo-favoured tree amplitude to a
very good approximation. The expected ACP , if any, is smaller than 0.1%, as confirmed
by measurements, so I assume ACP (D

0 → K−π+) = 0. The D− → K0
Sπ

− decays are also
expected to exhibit a small CP asymmetry. The measured value, ACP (D

− → K0
Sπ

−) =
(0.41±0.09)% [14], differs from zero; therefore, this value is subtracted from the measured
Araw.

Knowing the values of ACP for these control decays, the contribution of AFB is needed
to determine Adet from Araw. The asymmetry AFB is known to be antisymmetric as
a function of cos θ∗D, i.e., the cosine of the D meson polar angle in the centre-of-mass
system [114]. Assuming that Adet is not antisymmetric in cos θ∗D, AFB can be cancelled by
measuring Araw in bins of cos θ∗D and averaging the values obtained in bins with opposite
signs of cos θ∗D:

Adet =
A′

raw(cos θ
∗
D) +A′

raw(− cos θ∗D)

2
, (3.8)

where A′
raw is the charge-yield asymmetry corrected for ACP . I perform the measurement

in four bins of cos θ∗D: [-1,-0.5],[-0.5,0],[0,0.5],[0.5,1] obtaining two values of Adet, which
are averaged to produce a single final result. In the following, the contribution of AFB is
subtracted using this method.

Using the D0 → K−π+ sample, I can measure the detection asymmetry Adet(K
−π+),

i.e., that for the particle pairK−π+. In contrast, with theD− → K0
Sπ

− decays, I determine
the asymmetry of the K0

Sπ
− pair. Assuming that the particle-pair detection asymmetry is

the sum of the individual detection asymmetries of each particle, the Adet values for pions
and kaons are derived as

Adet(π
−) ≃ Adet(D

− → K0
Sπ

−) (3.9)
Adet(K

−) ≃ Adet(D
0 → K−π+)−Adet(π

+). (3.10)

In this calculation the tiny contribution from CP violation in neutral kaons is neglected
(with an associated systematic uncertainty of O(0.2%)). The subtraction of Adet(π

+)
(= −Adet(π

−)) in Eq. 3.10 is valid as long as pion kinematic is similar in the D0 → K−π+

and D− → K0
Sπ

− samples, a fair assumption for these decays.
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3.4.2 Sample selection

For this study, I use a simulated data set based on the Monte Carlo (MC) approach, which
is produced using event generators according to theoretical models of particle kinematic
properties and interactions. The MC samples include B0B

0, B+B−, uu, dd, cc and ss
processes in adequate proportions and correspond to an integrated luminosity of 300 fb−1

at the Υ(4S) resonance. The experimental data set corresponds to an integrated luminosity
of 189.26 fb−1.

The D meson candidates are reconstructed by filling collections of candidate final-
state particles filtered through loose baseline selection criteria and then combine them in
kinematic fits consistent with the topologies of the desired decay. For pions and kaons, the
following requirements are applied:

• the polar angle between 17◦ - 150◦;

• at least 1 hits tracks in the central drift chamber (CDC);

• the p-value of the track fit is required to be greater than 0;

• the distance of the closest approach to the interaction point (IP) in the r-ϕ plane is
required to be less than 0.5 cm, and the absolute relative distance in the z direction
to be less than 3 cm.

For D0 → K−π+ candidates, the particle identification probability of the kaon candi-
date is required to exceed 0.25, I select the mass range of the Kπ system to be between
1.80–1.95GeV/c2 and the momentum of the D0 candidate in the centre-of-mass frame,
p∗(D0), to be greater than 2.5 GeV/c to select e+e− → cc events.

For D− → K0
Sπ

− candidates, the K0
S flight distance is required to be larger than

44.5 mm, and the mass range of K0
S is set to be between 0.4942–0.5014GeV/c2. These

values resulted from maximising the figure of merit S/
√
S +B for simulated candidates,

where S and B represent signal and background candidates, respectively. The invariant
mass of the K0

Sπ candidate must be in the range 1.82–1.93 GeV/c2. I also require for
the D− momentum in the centre-of-mass, p∗(D−), to be greater than 2.5 GeV/c to select
e+e− → cc events.

For 7.5% (1.5%) of the events, there are more than one D0 → K−π+ (D− → K0
Sπ

−)
candidate, with an average multiplicity of 1.08 (1.02). For those events, one random
candidate is chosen.

3.4.3 Asymmetry determination

To determine Araw defined in Eq. 3.7, a simultaneous binned fit of the D and D candidate
mass distributions is performed using the following probability density functions (PDFs):

P =
fsig
2

(1−Araw)Psig + (1− fsig
2

(1−Araw))Pbkg , (3.11)

P =
fsig
2

(1 +Araw)Psig + (1− fsig
2

(1 +Araw))Pbkg , (3.12)

where the D (D) candidates are fitted with P (P). Here, fsig is the total fraction of the
signal (summing the D and D samples), and Psig and Pbkg are the PDFs of the signal
and background components. I study the models for Psig and Pbkg separately in the
simulation, selecting samples of signal-only and background-only candidates, and I use
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Figure 3.18: Mass distributions for (top left) D0 → K−π+ candidates and (top right)
D

0 → K+π− candidates. Mass distributions for (bottom left) D+ → K0
Sπ

+ candidates
and (bottom right) D− → K0

Sπ
− candidates. Fit projections are overlaid.

the same model to fit the D and D samples. The mass distributions with fit projections
overlaid are presented in Fig. 3.18.

For the D0 → K−π+ decays, Psig is a sum of a Johnson and a Gaussian function,
while Pbkg is an exponential function. The parameters of Psig are fixed from the fit to the
simulation, and two free parameters are used: a shift on the mean and a scale factor for
the width of the peak. The slope parameter of Pbkg is also free. The sample is composed
of about 10.1 million candidates in the full (D0 and D0) sample, with a signal fraction of
(36.60± 0.02)%.

For the D− → K0
Sπ

− decays, Psig is a sum of a Johnson and a Gaussian function; Pbkg

is the sum of an exponential function, which models a smooth component dominated by
combinatorial background, and a Crystal-Ball function, which models the D−

s background
peaking around 1.89GeV/c2. The fraction of theD−

s peak found in simulation is about 4.3%
of the total background. The parameters of Psig and those of the Crystal-Ball component
of Pbkg are fixed from the fit to the simulation and two free parameters are used: a common
shift on the mean and a common scale factor for the width of the peaks. The slope of the
exponential and the fraction of the D−

s background in Pbkg are also free parameters. The
number of candidates in the full (D+ and D−) sample is about 2.5 million, with a signal
fraction of (12.72± 0.02)%.

I carry out the measurement of Araw in bins of cos θ∗D and determine the value of Adet

as explained in Sect. 3.4.1, obtaining:

Adata
det (K−π+) = (0.43± 0.06)% , (3.13)
Adata

det (π−) = (−0.10± 0.34)% , (3.14)
Adata

det (K−) = (0.33± 0.34)% . (3.15)
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Figure 3.19: (Left column) Measurement of Adet(K
−π+) as a function of (top) kaon mo-

mentum p(K), (middle) cosine of polar angle cos θ(K), (bottom) track CDC hits. (Right
column) Measurement of Adet(π

−) as a function of (top) pion momentum p(π), (middle)
cosine of polar angle cos θ(π), (bottom) track CDC hits. Blue markers show measured
values in data. The point are placed at the average of the values in the considered bin.
The distributions of the variables for signal decays in simulation (MC) are also drawn as
grey histograms.

3.4.4 Dependencies of Adet

In addition to determining Adet, I also investigate its possible dependencies on the particle
momentum (p), the cosine of the polar angle (cos θ), and the number of CDC hits. The
dependence of Adet on p and cos θ can be expected because interaction cross-sections depend
on particle momentum and because particles traverse different material budgets according
to their direction. In addition, asymmetries intrinsic to tracking algorithms might also
depend on particle kinematics. The average number of CDC hits varies for tracks of
opposite curvature, which might induce also a charge asymmetry as a function of CDC
hits. The three variables considered are not independent of each other. Since studying the
dependence of Adet in a three-dimensional space is practically difficult, I first investigate
the dependence on each individual variable while marginalising over the distributions of
the others.
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The dependencies are determined by binning the sample in one variable: for each
bin, the procedure described in Sect. 3.4.3 to obtain the value of Adet is repeated. The
dependencies of Adet as a function of the three variables are reported in Figs. 3.19 for both
D0 → K−π+ and D− → K0

Sπ
− decays. I notice a variation of Adet(K

−π+) of about 4%
and 2% as a function of p(K) and | cos θ(K)|, respectively. The largest dependence of
Adet(K

−π+) is observed as a function of CDC hits, where the asymmetry spans a range
of about 40%. I observe a uniform values of Adet(π

−), with deviations of about 1%, as a
function of p(π) or | cos θ(π)|. However, similarly to what is observed for D0 → K−π+, a
large dependence is observed as a function of CDC hits, where Adet(π

−) spans a range of
about 40%.

3.4.5 Weighting method

In this section, I explain the weighting method to determine Adet in order to correct the
raw asymmetries for ACP measurements for any given target decay. The instrumental
asymmetries can be derived from my control channels; however, target and control decays
might feature very different distributions of particle momentum, polar angle, and CDC hits.
Given the dependencies observed, the value of Adet changes according to the distributions
of those variables (when Adet is averaged over these distributions). To ensure a proper
value of Adet to be subtracted from Araw, the distributions of the control decay must
mirror those of the target. Thus, I propose a method based on a weighting procedure that
equalises the distributions between the control and the target decays. I then determine the
value of Adet from the weighted control sample, which corresponds to the value needed for
the target decay. I carry out the procedure in the following steps:

1. Split the control and target samples into N bins of the CDC hits distribution;

2. For each bin, weight the two-dimensional (p, cos θ) distributions of the control sample
to match those of the target decays;

3. In each bin, measure the value of Adet from the weighted control sample, using the
procedure outlined in Sect. 3.4.3;

4. Obtain the final value of Adet by taking a weighted average of the Adet measurements
in each bin, using the fractions of signal candidates from the target decays in each
bin as weights for the average.

This procedure is designed to provide better control over the weighting and is equiva-
lent to a full three-dimensional reweighting of the (p, cos θ,CDC hits) distributions of the
control sample, accounting for correlations between these variables.

3.4.6 Closure tests

To validate the procedure, I perform a closure test using simulation to verify whether the
desired value of Adet(K

−π+) is correctly reproduced for a target decay by using the control
D0 → K−π+ decay. In this test, I use only signal candidates for both the target and control
decays.

The simulated sample of B0 → K−π+ serves as the target decay. I reconstruct and
select the sample according to the requirements reported in Ref. [115] to simulate a realistic
analysis case. In particular, a tight continuum-suppression selection is applied in this
analysis. This suppression is achieved using a boosted decision tree (BDT), where the
output is required to be greater than 0.95. Additionally, the (global) particle-identification
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Figure 3.20: (Top left) Kaon momentum, p(K), (top right) cosine of polar angle cos θ(K),
and (bottom) CDC hits distributions of the (blue) target B0 → K−π+ and (red) control
D0 → K−π+ decays.

variable for the kaon candidate must exceed 0.25. I obtain the detection asymmetry for
the target decay, Atarget

det (K−π+), by counting the yields of truth-matched signal candidates
split by final-state charge (as ACP = 0 in simulation):

Atarget
det (K−π+) = (0.12± 0.15)% . (3.16)

I select the simulated sample of the D0 → K−π+ control decay, as described in
Sect. 3.4.2. On top of those requirements, a requirement on the continuum-suppression
BDT, greater than 0.5, is applied to have a selection closer to that of the target decay. The
value of the detection asymmetry in the control channel is:

Acontrol
det (K−π+) = (−0.76± 0.07)% . (3.17)

As expected, the value differs from that of the target. Indeed, the distributions of p(K),
cos θ(K), and CDC hits differ between target and control decays, as reported in Fig. 3.20.

I apply the weighting procedure explained in the previous section, to verify if the control
sample value can match with the one of the target sample:

1. 7 bins of CDC hits are considered to split the sample. The range of these bins have
been chosen to have approximately the same number of signal events for each bin.

2. For each bin, I weight the two-dimensional (p(K), cos θ(K)) distributions of the
D0 → K−π+ decay to match that the B0 → K−π+ decay (note that I carry out
the weighting by using only the kaon information since Adet(K) >> Adet(π)). The
weights are computed from the ratio of two-dimensional histograms of target and
control samples. An example of the p(K) and cos θ(K) distributions for D0 →
K−π+ and B0 → K−π+ decays, in three different bins of CDC hits, before and after
reweighting, is shown in Fig. 3.21. The p(K) and cos θ(K) distributions of reweighted
D0 → K−π+ channel match the same distributions of B0 → K−π+.
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3. I measure the Adet values in each bins of CDC hits using the weighted control sample.
In Fig. 3.22, the Adet values for the control, target and weighted control channel are
depicted, in each bins of CDC hits. The Adet values of weighted control channel
approach towards Adet values of the target decay in each bin.

4. Finally, I evaluate the integrated value by performing the weighted average of Adet

measurements, using as weights the fraction of candidates in each CDC bin of the
B

0 → K−π+ decays.
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Figure 3.21: (Left) Kaon momentum, p(K), and (right) cosine of polar angle, cos θ(K),
distributions of the (blue) target B0 → K−π+, (red) D0 → K−π+ control and (black
markers) weighted D0 → K−π+ control channels for three different bins of the CDC-
hits distribution, shown as example: (top) bin with 20–43 hits, (middle) 47–49 hits, and
(bottom) greater than 54 hits.
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Figure 3.22: Adet values for the (blue markers) target, (red markers) control and (black
markers) weighted control decay in each CDC bins. The markers are placed at the average
of the CDC-hit values in each bin. The decays considered for the target are: (top-left)
B

0 → K−π+, (bottom-left) B− → K−π0, (top-right) B− → π−π0, and (bottom-right)
B− → ρ−ρ0.

From the weighting procedure, the value obtained from the control sample is

Aweighted
det (K−π+) = (0.27± 0.07)% , (3.18)

That it is in agreement with the target value (see Eq. 3.16).
To check the flexibility of the method, I also perform different closure tests with different

target decays using both the D0 → K−π+ and D− → K0
Sπ

− control decays. I summarise
all results in Tab. 3.5. In Fig. 3.22, I also report, the Adet values for the control, target
and weighted control channels in each bins of CDC hits.

Target Asymmetry Atarget
det [%] Acontrol

det [%] Aweighted
det [%] ∆Adet [%]

B
0 → K−π+ Adet(K

−π+) 0.12± 0.15 −0.76± 0.07 0.27± 0.07 −0.15± 0.17

B− → ρ−ρ0 Adet(π
−) 0.11± 0.14 0.58± 0.16 0.53± 0.16 −0.42± 0.21

B− → π−π0 Adet(π
−) −0.02± 0.13 0.80± 0.27 2.23± 0.27 −2.25± 0.30

B− → K−π0 Adet(K
−) 0.16± 0.13 1.04± 0.07 0.20± 0.27 −0.04± 0.30

Table 3.5: Summary of the closure tests carried out in simulation with different target
decays. The last column reports the value of ∆Adet ≡ Atarget

det −Aweighted
det .

I observe that the weighting method to account for the observed sample-dependence of
Adet allows for a reduction in the differences between control and target decays in obtaining
the value of Adet, as demonstrated by several closure tests performed in simulation, reported
in Tab. 3.5. However, it fails in some cases, where the results depend on the criteria used
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to select the control channel. Additionally, there may be other dependencies that need to
be considered but are currently neglected.

3.4.7 Adet for a target decay

The weighting method outlined in Sect. 3.4.5 accounts for the observed sample dependence
of Adet and reduces the differences between control and target decays when obtaining
the value Adet. However, as explained in the previous section, this method can fail in
some cases. To overcome this limitation and to obtain Adet for a given target decay, I
propose a strategy that involves using the value measured in D control channels from data
and assessing a systematic uncertainty for possible differences between control and target
values of Adet. I outline the proposed strategy in the following operational steps:

1. The control channel to measure Adet is selected with requirements that resemble
those of the target decays.

2. The value of Adet is measured in simulation for the target and the control decay, and
the difference ∆AMC

det = Atarget,MC
det −Acontrol,MC

det is computed.

3. The weighting method (Sect. 3.4.5) is applied to the control channel in simulation,
and the difference ∆Areweighted,MC

det = Atarget,MC
det −Areweighted,MC

det is computed.

4. if ∆Areweighted,MC
det < ∆AMC

det , the weighting method is applied to measure
Areweighted,data

det ± σreweighted,data on the control decay in data, where σreweighted,data is
the statistical uncertainty of the measurement. The value of Adet to be considered
for a target decay is:

Areweighted,data
det ± σreweighted,data ±∆Areweighted,MC

det ,

where ∆Areweighted,MC
det is considered as a systematic uncertainty.

5. if ∆Areweighted,MC
det ≥ ∆AMC

det , the weighting method should not be applied and the
value measured in control channel, Acontrol,data

det ± σcontrol,data (see Eqs. 3.13-3.15),
should be considered. The value of Adet to be considered for a target decay is:

Acontrol,data
det ± σcontrol,data ±∆AMC

det ,

where ∆AMC
det is taken as a systematic uncertainty.

If the systematic uncertainty of Adet limits the precision of the target Adet measurement,
one could revisit the control decay selection in the initial step and iterate the procedure
to possibly reduce the systematic uncertainty on Adet. On the other hand, if the target
ACP asymmetry measurement is statistically limited, one could choose to stop at step 2
and assign ∆AMC

det as a systematic uncertainty to the value of Acontrol,data
det as in step 5.

In step 4, the weights to be used in data are those determined from simulation, although
it is known that simulation does not reproduce well the CDC hits distribution observed
in data. Therefore, a further data-MC correction must be determined, or an additional
systematic uncertainty must be considered. Alternately, one could obtain weights from the
data by using background-subtracted distributions of target and control decays.

64



CHAPTER 3. THE BELLE II EXPERIMENT AT THE SUPERKEKB COLLIDER

3.4.8 Summary

This work improves over a study conducted on early data by using a larger data set,
refining the selection criteria, and correcting for the previously neglected forward-backward
production asymmetry of D mesons. I investigated the dependence of the instrumental
asymmetries on the particle momentum, and polar angle, and the number of CDC hits
associated with each track, observing a significant variation in Adet as a function of CDC
hits.

I developed a method to address the sample dependence resulting from the observed
dependencies of the instrumental asymmetries, with the goal of determining the correction
values necessary for the measurement of ACP asymmetries in various B decays. This
method was tested on several control channels using simulation, revealing that the selection
criteria applied to the control samples can significantly hinder the accurate determination
of the instrumental asymmetries for the target decays. Consequently, this finding indicates
that further investigations are required to identify possible other dependencies that have
not yet been considered. I also proposed a strategy to assess the systematic uncertainty that
accounts for potential discrepancies between the instrumental asymmetry value determined
from control channels and the value needed to correct ACP asymmetries in B decays. This
work has been applied in the analyses of the decays B+ → ρ+ρ0 [116], B → Kπ, and
B → ππ [115], as well as in the analysis of B → K∗γ (submitted to JHEP). For these
analyses, the Adet values were determined using the full Run I data set, corresponding to
an integrated luminosity of 365 fb−1.
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Chapter 4

Data samples and selection

This chapter describes the samples for the analysis. I introduce the experimental and simu-
lated data along with their corrections, provide an overview of the background sources, and
outline the requirements to reconstruct and select the signal. As general principle of the
selection process, I prioritise higher signal purity over greater efficiency, as the precision
on |Vcb| is not expected to be limited by the sample size. I conclude with the calculation of
the signal efficiency and a description of the expected sample composition.

4.1 Experimental and simulated data

The Belle II experiment started data taking in March 2019, accumulating electron-positron
collision data corresponding to an integrated luminosity of about 428 fb−1 until July
2022 [117]. This is referred to as the Run I sample. After approximately 1.5 years of
shutdown to upgrade both SuperKEKB and Belle II, Run II started in February 2024,
with the goal of reaching an instantaneous luminosity of 2 × 1035 cm−2s−1. In this work,
I use Run I data (365 fb−1) collected at the energy of the Υ(4S) resonance to reconstruct
the signal modes, and data (43 fb−1) collected at an energy of 60 MeV below the Υ(4S)
mass to study the continuum background. This latter sample is henceforth referred to as
“off-resonance” data.1

Simulated data are also used in physics analyses and play a key role. These data are
generally used to study event selections, calculate efficiencies, model distributions, and
validate analysis procedures. Simulated samples are based on the Monte Carlo approach.
Monte Carlo samples are produced using event generators, which are computer programs
that use pseudo-random number generators to produce sets of four-vectors reproducing
the final states of e+e− collisions according to theoretical models of particle kinematic
properties and interactions.

Figure 4.1 shows a sketch of the generation sequence for a hadronic event in Belle II.
The properties of virtual photons, created in the electron-positron annihilation, and their
subsequent splitting into a quark-antiquark pair are generated with KKMC [118] followed
by PYTHIA8 [119] to simulate their hadronisation which in turn produces the observed
hadrons. The decay of the heavy hadron (top right corner in Fig. 4.1), like B or D mesons,
is simulated according to the EvtGen model [120] for known decays and using PYTHIA8
for unmeasured decays. The relative proportions among decay modes are based on known
values or upper limits when available [14], and on arbitrary or educated guesses otherwise.

1The remaining part of the Run I sample (20 fb−1) was collected at an energy higher than the Υ(4S)
resonance and it is used for exotic spectroscopy analyses.
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Figure 4.1: Sketch of the various portions of each simulation step of a hadronic event in
Belle II. See the description in the text.

The photon emission by final-state charged particles is simulated using PHOTOS [121]. The
light quark-antiquark (q = u, d, s, c) pairs are generated with PYTHIA8.

Generated data are then subjected to detector simulation, where models of the detector
geometry and material are interfaced with models of interactions of particles with matter
and signal formation to reproduce the expected values of the raw quantities observed in
the detector. These are then processed and subjected to event reconstruction as if they
were collision data. The resulting simulated data contain information about reconstructed
particles and the generated true particles. By matching these sets of information, we can
determine whether particles are reconstructed properly, identify the most frequent misre-
construction occurrences, and ascertain the principal backgrounds. This “truth-matching”
procedure is useful for optimising selection requirements, calculating signal efficiencies,
classifying sample components, and performing many consistency checks.

Regarding beam interactions, the simulation can be either run-dependent or run- inde-
pendent. In run-dependent simulation, the e+e− interactions are modelled based on actual
experimental conditions specific to different periods of data-taking. This approach closely
mirrors the real conditions of the accelerator during the run. In contrast, run-independent
simulation uses an approximation based on the average expected conditions of the exper-
iment, without accounting for variations over time. In my thesis, I use run-dependent
simulation to ensure a more accurate representation of the experimental environment.

I use different types of simulation samples in the analysis.
For background and validation studies, I use centrally produced simulated samples

corresponding to four times the size of the Run I data set. These include: e+e− → qq,
where q = u, d, c, s, and e+e− → BB events. For signal studies, the exclusive samples
are filtered from the e+e− → BB events, with one B meson constrained to decay into the
signal channels B → Dℓνℓ and B → D∗ℓνℓ and while the other B can undergo all possible
decays. These are called signal samples. The different topologies of these two categories of
events are shown in Fig 4.2.

In signal samples, the BGL decay model of EvtGen is used for the signal to mirror the
most up-to-date measurements of the form factors, assuming the BGL parametrisation [45,
122]. The values of the form factors used in the generation are reported in Tab. 4.1. More
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Figure 4.8.: The di�erence in event topology for resonant and non-resonant interactions in
the center-of-mass reference frame. (left) Continuum event. (right) �(4S) event.
In the case of a continuum event, the momenta are distributed back-to-back,
whereas in the case of the �(4S) event the B mesons, created in the decay of
the �(4S), are almost at rest. The momenta of the B meson decay products
are isotropically distributed. The di�erence in these two event topologies can
be quantified with e.g. the Cleo Cones. Figure adapted from [29].

There are several concepts to quantify the di�erence in the event shape of continuum events
and �(4S) decays, which can be used for a topological discrimination of the two. They are
discussed in [3] and briefly summarized in the following. Each event consists of a set of N
particles with momenta pi, with i œ {1, 2, . . . , N}.

Thrust
The thrust T is defined as as

T =
qN

i=1 |T · pi|qN
i=1 |pi|

, (4.5)

with the thrust axis T, which is defined as the unit vector along which the projection of
all momenta is maximal. The thrust takes values between 1/2 and 1 with a continuum
event corresponding to T æ 1 and an �(4S) event corresponding to T æ 1/2.

cos ◊B
The angle between the momentum of the reconstructed B meson and the beam
axis is cos ◊B and 1 ≠ cos2 ◊B distributed. This distribution originates from the spin
1 æ 0 0 decay of the �(4S). For continuum events, the distribution is flat, because
the B-candidate is created from random combinations of tracks.

Cleo Cones
The Cleo Cones are defined along the thrust axis with opening angles of � œ
[◊, ◊ + 10] deg. The value of Cleo Cone i is the total momentum flow of all particles
within given cone i. For continuum events the momentum flow is clustered in the
Cleo Cones with small opening angles.

Fox Wolfram Moments
The Fox Wolfram moments describe the phase-space distribution of energy and

Figure 4.2: Event-shape sketch for the (left) continuum and (right) B-meson events in the
Υ(4S) frame.

details about the nomenclature used for the form factor can be found in Appendix A.
The charm mesons are forced to decay into their Cabibbo favoured modes, D0 → K+π−

and D− → K+π−π−. The D− → K+π−π− decay is generated using the EvtGen model
D_DALITZ, which is designed to simulate three-body decays of D mesons using information
from a Dalitz plot analysis [123]. This model employs amplitudes that describe interme-
diate resonant and non-resonant states which determine the distribution of momenta and
directions of the decay products. The D∗ mesons decays into all final states, i.e., a D0 or
D− with either a pion (charged or neutral) or a photon, with known proportions.

In addition, I use also simplified simulated data (“toy”), which are based on the random
generation of few distributions of interest from histograms (“templates”) obtained with the
full realistic simulation described above. These simplified data are primarily employed for
prototyping the analysis, studying estimator properties, and assessing systematic uncer-
tainties (see Sect. 6.5-7.1).

4.1.1 Corrections to the data

There are two types of corrections that are considered for data. Experimental data can
be corrected for known biases in the measurement of particle kinematics, such as the
correction to adjust the measured momentum, also known as momentum-scale correction,
and the correction to adjust the measured energy of photons, referred to as photon energy
bias. These corrections can be considered data calibrations. At Belle II, the momentum-
energy scale for tracks, energy bias for photons, and bremsstrahlung correction for electrons
are all taken into account.

Another type of corrections concerns the simulation. Differences between simulated
and experimental data are a primary source of systematic uncertainties. For instance,
requirements on particle identification (PID) often lead to a different selection efficiency
between simulated and experimental data due to simulation mismodelling of PID variable
distributions. When this occurs, measurements of branching fractions are biased and must
be corrected, assigning a systematic uncertainty. To minimise these systematic uncertain-
ties, one approach is to adjust the simulated distributions to better match the data or to
directly calculate the efficiencies from the experimental data using control samples. In the
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Process EvtGen model Branching fraction Parameters

B → Dℓνℓ BGL
B(B0 → D−ℓ+νℓ) = 2.14% a

f+
0 = 0.0126 a

f+
1 = −0.094

B(B+ → D
0
ℓ+νℓ) = 2.31% a

f+
2 = 0.34 a

f+
3 = −0.1

B → D∗ℓνℓ BGL
B(B0 → D∗−ℓ+νℓ) = 5.11%,

ag0 = 0.02596 ag1 = −0.06049,

B(B+ → D
∗0
ℓ+νℓ) = 5.49%

af0 = 0.01311 af1 = 0.01713

aF1
1 = 0.00753 aF1

2 = −0.09346

D∗ → DX PHSP
B(D∗− → D

0
X) = 67.7%

–
B(D∗− → D−X) = 32.3%

D
0 → K+π− PHSP B(D0 → K+π−) = 3.95% –

D− → K+π−π− DALITZ B(D− → K+π−π−) = 9.38% –

Table 4.1: Values used in the generation of the signal samples. The ratio of the branching
fractions of the Υ(4S) decaying to charged and neutral B mesons, f+−/f00, is set to
1.066. For the B0 and B+ branching decays, isospin symmetry is assumed: their branching
fractions are linked by the lifetimes ratio τB0/τB+ = 0.929; their form-factor parameters
(last column) for the BGL model are the same.

Belle II simulation, there are known mismodellings that are corrected for with standard
procedures using control channels. These mismodellings pertain to PID, tracking, photon,
and π0 reconstruction efficiencies.

Which data and simulation corrections must be applied and which are negligible de-
pends on each specific analysis. Those relevant in this work are the corrections for track
momentum scale, photon energy bias, electron bremsstrahlung, lepton and hadron PID
and tracking efficiency. They are briefly outlined in what follows. These are applied to the
samples in an early stage and propagated through all the analysis. Uncertainties on the
corrections are propagated as systematic uncertainties (see Chapter 7).

Finally, simulations can also be corrected for outdated (or incorrect) models or input
parameters (such as a branching fraction or a particle lifetime) used in generators. The
resulting biases are independent from experimental effects and can be addressed by cor-
recting the inputs and generating new samples or by employing a weighting technique to
adjust the simulated data. This will be considered for some specific B decay modes in
Chapter 5.

4.1.1.1 Track momentum scale

To correct for any mismodelling in the magnetic field map, run-period-dependent correc-
tions to track momenta are applied. The corrections are determined by the Belle II tracking
group using a control sample of D∗+ → D0[→ K−π+]π+ decays and are applied as a global
scale factor of 0.99987 to the experimental data. The corrections have been validated with
additional channels D+ → K−π+π+, D0 → K−π+π−π+, Λ+

c → p+K−π+, K0
S → π+π−

and J/Ψ → ℓ+ℓ− (ℓ = e, µ).

4.1.1.2 Photon energy bias

Photon energy bias corrections are essential to account for systematic deviations in the
measured energy of photons, ensuring a more accurate representation of their true energy
and improving the agreement between simulation and experimental data. The corrections
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of photon energy resolution and bias that need to be applied to the experimental data are
provided by the Belle II neutral group, using symmetric decays of π0 → γγ and η → γγ,
which cover a photon energy range from 20 MeV to 2 GeV. The latter corrections are
applied centrally during the reconstruction process.

4.1.1.3 Electron bremsstrahlung

Due to their small mass, a significant number of electrons can radiate a bremsstrahlung
photon while traversing the detector. The bremsstrahlung corrections allow for the ad-
justment of the electron momentum by adding the momentum carried by the radiated
photon, which is reconstructed as an ECL cluster nearby the electron track. This is imple-
mented during the decay reconstruction using an analysis module provided by the Belle II
performance group. The corrections are applied to both experimental and simulated data.

While testing their performance, I observe no improvement in the electron energy res-
olution when applying the bremsstrahlung corrections. On the other hand, I found that
these corrections have an impact on two important aspects: (i) it increases the background
fraction of the sample; (ii) it sculpts the shape of a background (specifically the one orig-
inating from real-D mesons, which will be explained in Sect. 5.2) making it more similar
to the signal in some key distributions used to determine the sample composition (through
the fit that will be described in Chapter 6). Therefore, after reporting my findings to the
Collaboration, I have decided not to apply the bremsstrahlung corrections.2

4.1.1.4 Lepton and hadron PID

Corrections to the efficiency of lepton and hadron PID requirements are obtained using
control samples where signal tracks are selected without any PID cuts. From these control
samples, the corrections are derived as a function of track momentum and polar angle. I
use a framework [124] provided by the Belle II PID group, which includes the following
control modes: J/ψ → ℓ±ℓ∓, e+e− → µ+µ−γ, and e+e− → (e+e−)ℓ±ℓ∓ to compute effi-
ciency corrections for lepton PID requirements, and e+e− → τ±[→ 3π±ντ ]τ

∓[→ ℓ∓νℓντ ] for
misidentification rates (colloquially referred to as fake leptons); D∗+ → D0[→ K−π+]π+

for kaon PID requirements, and K0
S → π+π− for misidentification rates (fake pions).3 The

framework has the flexibility to compute the corrections for a given PID requirement and
particle species as a function of the track momentum and polar angle. I apply the correc-
tions to my simulated data through per-candidate weights, shown in Fig. 4.3, computed
from the framework.

4.1.1.5 Tracking efficiency

The corrections for the tracking efficiency are calculated by the Belle II tracking group
using the control decay e+e− → τ+τ− where one tau lepton decays leptonically (τ± →
ℓ±νℓντ , ℓ = e, µ) while the other decays hadronically into three charged pions (τ± →
3π±±ντ+nπ0). The tracking efficiency is measured to be 1.0000±0.0024 in the momentum
range 0.2-3.5GeV/c2. Therefore no correction is applied to the simulated data, while
its uncertainty will be taken into account as systematic uncertainty for each track (see
Chapter 7). The efficiency is considered independent for each track.

2The bremsstrahlung-correction module is now under review by the Collaboration.
3There are additional control channels for protons and pions which are not listed here as I do not impose

PID selection for those particles.
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Figure 4.3: Efficiencies and fake rate corrections for the given hadron PID requirements
are shown in the top and middle. The last rows display only the fake rate corrections for
the lepton PID requirements, but not the efficiencies, as the latter are applied centrally
using the tables provided by the Belle II performance group.

4.1.2 Sample components

Before delving into the selection of the sample, I categorise it into components according to
the possible origin of the reconstructed particles in the final state. This is useful to tailor
possible selections that target a specific background. I have identified five general sample
components:

1. Signal: the reconstructed particles pertain to the signal decays
B0 → D−[→ K+π−π−]ℓ+νℓ, B+ → D

0
[→ K+π−]ℓ+νℓ, B0 → D∗−[→ D−[→

K+π−π−]X]ℓ+νℓ, and B+ → D
∗0/+

[→ D
0
[→ K+π−]X]ℓ+νℓ. The D∗ mesons are
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only partially reconstructed (X indicates the undetected particle) while theD mesons
are properly reconstructed. The lepton is either an electron or a muon.

2. Xℓνℓ background: the reconstructed particles originate from a semileptonic B me-
son decay different from the signal. In this category, I identify:

• excited charm-meson cascade decays to D ground states, i.e., a properly re-
constructed D meson not originate from a parent B but coming from a cas-
cade decay. These are B → D∗∗ℓνℓ decays, where D∗∗ is short-hand for the
D

∗(0,+)
0 (2300), D(0,+)

1 (2420), D′ (0,+)
1 (2430) and D

∗ (0,+)
2 (2460) states, the non-

resonant D(∗)π(π) contribution and the D(∗)η contribution (see Sect. 5.3.1),
unless specified otherwise.

• semitauonic decays, where the τ lepton decays into a muon or an electron. The
D candidates are either coming from a B meson or from a cascade decay.

• semileptonic decays as the signal or as those of the above two items, but where
the lepton is misidentified.

3. Real-D background: combinatorial with a real D meson, i.e., a random combi-
nation of a properly reconstructed D candidate and either a true or a misidentified
lepton. This background is mostly due to the combination of a charm meson and a
lepton from two different B decays and to the combination of a real D meson and a
misidentified lepton, originating from either the same or a different B decay of the
D candidates (see Sect. 5.2).

4. Fake-D background: combinatorial with a fake D meson, i.e., a random combi-
nation of a wrongly reconstructed D candidate and either a true or a misidentified
lepton.

5. Continuum background: particles from e+e− → qq, where q is either a u, d, c or
s quark. The majority of the reconstructed charm candidates comes from e+e− → cc
events, with a small contribution from random combination of tracks. The lepton
originates from a secondary decay of an hadron.

This general classification is sufficient to understand the selection requirements de-
scribed in this chapter; more details on the composition and modelling of the background
categories are provided in Chapter 5.

4.2 Event selection

Semileptonic B decays contribute significantly to the total B decay width: when efficiently
reconstructed, they can yield large data samples. Signal events are easily identified through
the pairing of a lepton and a charm meson. Signal leptons typically carry large momenta on
average, making them distinguishable from leptons originating from secondary semileptonic
decays. Additionally, charm decays exhibit narrow peaks in invariant mass distributions,
which help discriminate them from combinatorial backgrounds.

However, the signal presents a key experimental challenge. The undetected neutrino
leads to incomplete decay kinematics. The only way to access the full kinematics is to
reconstruct both the signal and the decay of the accompanying B meson from Υ(4S) events.
This tagging method, however, has a very low efficiency, generally less than 1% [82]. My
analysis, instead, is untagged : I reconstruct only the signal side to retain a larger sample.
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I access the decay kinematics using proxy variables; this latter point will be explained in
Chapter 6. Here, I focus on the signal selection.

In addition to providing large samples, untagged analyses are well-suited for measure-
ments of branching fractions, and ultimately |Vcb|, for another reason. Calculating the
efficiency of the tagging algorithms is challenging, and the associated uncertainties are
often on the order of a few percent, which can significantly affect the precision of branch-
ing fraction measurements and, consequently, |Vcb|. On the other hand, while untagged
analyses lack powerful discriminating handles, they are more prone to background con-
tamination. Significant background contamination is a concern both for diluting statistical
precision and for introducing systematic uncertainties associated with background mod-
elling. To minimise the latter, which might be especially harmful for the signal with partial
D∗ reconstruction, I opt for a selection strategy that favours signal purity over efficiency.
This principle guides the selection requirements described in the following sections.

4.2.1 Skim selection

In Belle II, numerous physics topics are explored, leading to the repeated analysis of data
by hundreds of collaborators. To streamline the simultaneous analysis of such a vast data
set, several centralised data processing stages are employed.

Initially, raw data undergo central processing to produce summary data, which is more
compact and highlights higher-level information pertinent to physics analysis, such as four-
momenta, vertices, and particle-identification variables.

The next central step involves applying broad selection criteria to the summary data
to create analysis-specific subsets, known as skims, which are further reduced in size, with
typical retention rate of about 5%. This process allows each collaborator to access and
process the data quickly. This is the first selection stage. An optimal skimming is important
because any signal inefficiency that occurs at this stage is laborious to recover. After
skimming, each collaborator can work with a reduced data sample, which can be easily
reprocessed multiple times to refine the selection according to the analysis target.

For my analysis, I devise a skim for untagged B → Dℓνℓ decays. To be considered,
an event must pass at least one of the HLT triggers (see Sect. 3.2.4) designed to select
only hadronic events. I require tracks have a distance of the closest approach to the
interaction point (IP) in the r-ϕ plane of less than 1 cm, an absolute relative distance in
the z direction of less than 3 cm, and to lie within the acceptance range of the central drift
chamber (CDC), 17◦ to 150◦. Tracks that pass these conditions are referred to as “good
tracks”. They have very high chance to originate from e+e− → Y (4S) → B−B+ decays.
A pion-mass hypothesis is assigned to calculate the full four-momentum of these tracks.

Tracks must be associated with final-state particles of the signal, where the lepton can
either be an electron or a muon. To select electrons candidates, a BDT-based particle
identification is used; to select muons, a combination of subdetectors likelihoods; to select
kaons, the binary kaon-vs-pion likelihoods. At this stage, the requirements yield nearly
100% signal efficiency while significantly reducing the background.

The D mesons are reconstructed in the decay modes D0 → K+π− and D− → K+π−π−

from the selected kaons and pions candidates. I require the D meson masses to be be-
tween 1.80 and 1.95GeV/c2. This range is large compared to the mass resolution (about
3 MeV/c2), but it allows to retain regions enriched of continuum and fake-D background to
study those components, as explained in the next chapter 5. The D and lepton candidates
are combined into a composite system labelled Y . A kinematic fit, TreeFitter [125], is
performed on the full Y decay chain using a Belle II fitter module. The fit must converge

74



CHAPTER 4. DATA SAMPLES AND SELECTION

with a χ2 probability larger than 1%.
All other good tracks in the event as well as calorimeter clusters are used to form the rest

of the event (ROE). Finally, I require the total visible energy, the sum of all energies of the
visible particles in the event in the centre-of-mass system, to be grater than 4 GeV and the
ratio R2 between the second and zero-th Fox-Wolfram moments be less than 0.4. The latter
is a quantity that captures the geometric features of the spatial distributions of final-state
particles to distinguish between continuum collimated jets and the isotropically distributed
final-state particles from BB events. It uses information from both signal and ROE. The
skim requirements effectively reduce the data set, allowing the signal reconstruction code
to be run on the selected data from the full Run I sample in approximately two hours on
central processing computers.

4.2.2 Final selection

After the skimming the selection needs to be refined. As the main concern is potential
large systematic uncertainties from background modelling, the primary target of this final
selection is to increase signal purity. Tab. 4.2 summarises all the requirements which are
described as follows.

The lepton momentum is required to be larger than 0.8GeV/c to reduce contamination
from secondary semileptonic decays. I also require the D meson momentum be larger than
0.5 GeV/c to reduce the background from hadronic B decays (Fig. 4.4). I apply tighten
requirements on the PID variables for kaons, electrons and muons, as to further reduce the
amount of misidentified decays. The specific thresholds are reported in Tab. 4.2. These
thresholds correspond to a PID efficiency of approximately 95% for kaons and leptons.

The D candidates exhibit narrow peaks in the invariant mass distribution. To suppress
background from fake-D and continuum events, I select a mass range of approximately
twice the mass resolution around the expected mass value. Specifically, the mass ranges are
1.86–1.87GeV/c2 for m(Kπ) and 1.865–1.874GeV/c2 for m(Kππ) (Fig. 4.4). Additionally,
for the Kππ candidates, I require the momentum of the slower pion, pπ, be grater than
0.35GeV/c, to reduce systematic uncertainty related to the tracking-efficiency correction
for slow tracks. All other tracks have negligible candidates below this momentum threshold,
so no additional requirement is necessary.

I require m(Y ), the invariant mass of the Dℓ system (Y ), to be grater than 3.2GeV/c2.
This selection reduces significantly the fraction of the real-D component in the samples
(Fig. 4.4). Knowledge of initial-state energy enables useful kinematic constraints for the
selection. The cosine of the angle between the three-momentum of the B meson and the
Y system, cos θBY , can be fully determined by assuming only a missing neutrino in the
decay. This variable reads

cos θBY =
2EBEY −m2

B −m2
Y

2|p⃗B||p⃗Y |
(4.1)

where EB is given by half of the measured e+e− energy,
√
s/2, and the magnitude of

the B momentum, |p⃗B|, can be determined by this energy assuming the known value of
the B mass. The momentum and mass of the Y system are fully determined from the
measured four-momenta of the D and lepton candidates. All quantities in Eq. 4.1 are
calculated in the centre-of-mass frame. By construction, for B → Dℓνℓ decays cos θBY

should be constrained to the range between −1 and 1. For B → D∗ℓνℓ decays, the cos θBY

is shifted to lower values, having values that range approximately between −2 and 1 due
to the presence of the unreconstructed particle in D∗ decays. The distribution for Xcℓνℓ
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Figure 4.4: Some requirements applied in the final selection for the (left) D0
e+ and (right)

(D−e+) sample. The plots are shown for N-1 requirements, where all but one requirements
are applied, allowing for the evaluation of each individual impact. The muon samples are
not shown, but exhibit similar features.
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Object Requirement

Signal tracks |dr| < 1 cm
|dz| < 3 cm

polar angle in [17◦, 150◦]

ROE tracks |dr| < 1 cm
|dz| < 3 cm

Hadrons kaon PID > 0.1 (0.6) for the D0 (D−) sample
pπ >0.35 GeV/c for the slowest pion of the D− decay

Leptons muon PID > 0.9

electron PID > 0.9

p∗ > 0.8GeV/c

D mesons p∗ > 0.5GeV/c
m(D

0
) ∈ [1.86, 1.87]GeV/c2

m(D−) ∈ [1.865, 1.874]GeV/c2

Continuum suppression cos θBO < 0.75

R2 < 0.4

Total energy in the event > 4GeV
hso20 > 0.18 for the D− sample

B candidate m(Y ) > 3.2GeV/c2

cos θBY ∈ [−2, 1.1]

kinematic fit χ2 probability > 1%

when multiple, one random candidate selected

Table 4.2: Summary of the selection. See the description in the text for the definition of
the variables.

background is further shifted, as extra particles are missing. Other background components
feature long tails extending outside the range [−2, 1] (Fig 4.4). Therefore, I require cos θBY

be bounded between −2 and 1.1. The limit higher than 1 accounts for a tails of the signal
due to experimental resolution.

To further suppress continuum, I tighten the selection on the cosine of angle between
thrust axis of the signal B meson and ROE thrust axis, cos θBO (Fig. 4.4). For the D+

sample, which has a larger continuum component, I also apply a selection on the modified
Fox-Wolfram moment hso20 [126] to further reduce this background.

After applying these selections, the fraction of events with more than one B candidate
are reported in Tab. 4.3. All multiplicities are below 1%. I restrict the samples to one
candidate per event by randomly selecting one.
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Sample Data Simulation

D
0
e+ 1.003 1.004

D−e+ 1.009 1.007
D

0
µ+ 1.003 1.005

D−µ+ 1.009 1.009

Table 4.3: Candidates multiplicity in data and simulation after the selection.

4.3 Signal efficiency

The signal efficiency is calculated using simulated data and is typically defined as the ratio

εℓi =
N ℓ

i,r

Ni,g
(4.2)

where N ℓ
i,r is the number of reconstructed signal candidates for the decay i and lepton ℓ

passing the selection (including the truth-matching for the signal), and Ni,g is the number
of generated decays of type i. The latter is the same for electron and muon, because lepton
flavour universality is assumed. The number of reconstructed signal candidates is directly
evaluated by counting those that pass the truth-matching and the final selection.

For the signal samples, the number of generated decays is set when producing the
sample (typically, a few million decays). From the sample of generic Υ(4S) → BB decays,
the number of generated decays are

Ni,g = Lσ f j Bi Bi,s , (4.3)

where L is the total luminosity of the simulated sample, 1444 fb−1; σ is the cross section of
the Υ(4S) production, 1.05 nb; f j is either f+− or f00, the decay rates of Υ(4S) into charged
and neutral B-meson pairs, 0.515 and 0.483; Bi is the branching fractions of the signal i;
Bi,s is the (product of the) branching fraction(s) of charm meson decays. All branching
fractions are reported in Tab. 4.1. Note that for the D0

ℓ+νℓ final state, the contributions
to consider come specifically from the B+ → D

0
ℓ+νℓ decays and both B+ → D

∗0
ℓ+νℓ and

B0 → D∗−ℓ+νℓ, since the D∗− can decay both into a D0 and a D− meson. To the D−ℓ+νℓ
final state, from the decays B0 → D−ℓ+νℓ and B0 → D∗−ℓ+νℓ.

The numbers of the generated and reconstructed decays and the signal efficiencies are
reported in Tab. 4.4 for both electron and muon samples. I categories them according to
the final state, hence, I sum the B0 and B+ contributions for the D0

ℓ+νℓ final state.
The difference in efficiency between D0 and D− arises from a combination of selection

requirements and vertex fit probability. Specifically, D− involves three tracks, while D0

has only two, resulting in a lower fit probability for D− and consequently reducing the
number of reconstructed signal events. Additionally, the difference in efficiency between
the electron and muon modes arises because muon tracks are typically easier to identify
and reconstruct. In contrast, electron tracks can radiate bremsstrahlung photons, leading
to energy loss and making their reconstruction and identification more challenging.

4.4 Expected sample composition

After the selection, I obtain samples dominated by signal events, with relative proportions
of approximately 80% and 70% for theD0

ℓ+ andD−ℓ+ samples, respectively. The fractions
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Final state Nf,g N e
f,r Nµ

f,r εef [%] εµf [%]

D
0
ℓ+ 746 408 253 457 266 688 33.96± 0.08 35.73± 0.08

D
∗0
ℓ+ 2 818 431 838 238 945 934 29.74± 0.04 33.56± 0.04

D−ℓ+ 1 540 010 208 147 218 968 13.52± 0.03 14.22± 0.03

D∗−ℓ+ 1 187 773 121 587 135 955 10.24± 0.03 11.45± 0.03

Table 4.4: Number of generated and reconstructed signal decays into the final state f with
lepton ℓ (Nf,g and N ℓ

f,r), and signal efficiencies (εℓf ). The uncertainty on the efficiency is
statistical.

of each component are illustrated in the pie charts of Fig. 4.5. The D0
ℓ+ sample contains

a high proportion of D∗ events. This is due to the mixture of decays from D
∗0 and D∗−.

The analysis involving partially reconstructed D∗ mesons leads to a significant number of
D∗ decays, allowing for the first simultaneous analysis of the D and D∗ samples at Belle II.
Fake-D candidates contribute the largest background fraction in the D−ℓ+ sample. This
is due to a larger number of possible fake combinations with three tracks compared to
two tracks. However, despite the relatively large size, this background can be constrained
directly from data, as explained in Chapter 5. Continuum can be also constrained from
data, as described in the same Chapter. Contribution from real-D candidates represents
a small fraction of the total background, while the dominant or second-dominant back-
ground arises from Xℓνℓ candidates. A dedicated study to model these backgrounds will
be discussed in Chapter 5. The devised selection allows me to work with samples expected
to be rich in signal decays, with backgrounds that either constitute a small fraction of the
signal or can be directly constrained from the data.

Figure 4.5: Composition of all the samples after the selection: B → Dℓνℓ in orange,
B → D∗ℓνℓ in green, continuum processes in light grey, fake-D mesons in dark grey, real-D
mesons in magenta and the Xℓνℓ background in blue.
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Chapter 5

Background modelling

The world’s best measurements of |Vcb| are currently limited by systematic uncertainties,
with background knowledge and modelling being major contributors to these limitations. A
detailed study of the background composition is therefore crucial for developing strategies
to constrain its contribution. In this chapter, I present a comprehensive analysis of each
background component, along with the methods used to constrain them, both through control
regions in the data and from previous measurements.

5.1 Fake-D and continuum backgrounds

The fake-D and continuum backgrounds can be constrained by using specific regions of
the D-mass distribution that lie outside the signal peak, referred to as sidebands. In
these regions, the fake-D background is the dominant component, with the continuum
background being the second most significant. Other components contribute small tails,
leaking from the D peaks.

The sidebands are defined by the ranges 1.810–1.825 GeV/c2 and 1.910–1.940 GeV/c2

for both the D−ℓ+ and D0
ℓ+ samples. These ranges are shown in the D-mass distributions

in Fig. 5.1 for simulated data of the electron channels; the muon samples are not shown,
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Figure 5.1: Distributions of the D mass for the (left) D0
e+ and (right) D−e+ samples.

The dashed red lines indicate the sidebands, which are used to constrain the contributions
from fake-D and continuum backgrounds, following the strategy outlined in the text. The
dashed black lines denote the signal regions, as defined by the requirements detailed in the
previous chapter. Muon samples exhibit very similar distributions.
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Figure 5.2: Distributions of the D mass of the off-resonance data for (left) D0
e+ and (right)

D−e+ sample. The dashed red (black) lines indicate the sidebands (signal regions).

but exhibit very similar distributions. A mixture of the left and right sidebands is used to
mimic the kinematics of the background in the signal region. The left sideband is chosen
to avoid a region polluted by background sources distinct from the fake-D component
in the signal region, primarily due to partially reconstructed D decays. Its range is also
smaller, to minimise contamination from the tail of the D peaks. Sideband data are used to
determine both the yields and the distributions of the fake-D and continuum backgrounds
in the signal region. To this end, certain corrections to the sideband data are applied.

First, the contributions from other components must be subtracted. This primarily
concerns the left sideband of the electron and muon samples, which contains approxi-
mately 13% and 11% of signal B → D(∗)ℓνℓ candidates, respectively, due to the tail from
the D peak. In contrast, the right sideband of both samples contains much smaller signal
contributions, about 1% or less. The tail contributions are subtracted using simulated can-
didates, based on the known B → D(∗)ℓνℓ branching fractions [50]. While this introduces a
potential circularity in the analysis, as the signal branching fractions are among the quan-
tities being measured, the correction is small enough—even considering the uncertainty on
the input branching fractions—to have no significant impact on the final results. Other
contributions, apart from fake-D, continuum backgrounds, and the signal, are sufficiently
small in the sidebands and can therefore be safely neglected.

Second, the number of sideband candidates must be scaled. A scaling factor is cal-
culated from simulation, as the width of the sideband is different from that of the signal
region: 4.5 times larger for m(D

0
) and 5 times larger for m(D−). In addition, the back-

ground is not uniformly distributed: a slight slope is observed when moving from the left
to the right sideband, as shown in Fig. 5.1. To determine the scaling factors for the two
sidebands we use the simulation. We fit the 3D distribution of (cos θBY , p∗ℓ , p

∗
D) of the

signal-region background (fake-D and continuum) with templates built from the sideband
candidates 1. The fit provides the fractions of the two sidebands required to model the
signal region, which we use as scaling factors.

Finally, a missing contribution in the sideband must be accounted for. This is the peak
in the signal region caused by candidates with a real-D meson produced in e+e− → cc
events. To include this component, I use off-resonance data. I define the same sidebands
and signal regions for the off-resonance data. Using the sidebands, I subtract the flat
background contribution from the signal region to isolate the peak (see Fig. 5.2). Then,

1The variables are those used in the nominal fit of the analysis described in Chapter 6.
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Sample Fake-D + continuum

D
0
e+ 26153± 305

D−e+ 25328± 187

D
0
µ+ 33315± 360

D−µ+ 29388± 218

Table 5.1: Expected yields of fake-D and continuum backgrounds in the signal region for
the different samples.

I apply a scaling factor to the peak yield to correct for the different sizes of the on- and
off-resonance samples. Based on their integrated luminosities, this factor is 8.55± 0.06.2

Through these corrections, the expected contributions in the signal region from fake-D
and continuum backgrounds amount to the values reported in Tab. 5.1. These backgrounds
are combined into a single sample component.
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Figure 5.3: Comparisons between the fake-D and continuum backgrounds of (from top to
bottom) p∗D, p∗ℓ and cos θBY for the (left) D0

e+ and (right) D−e+ samples, using (blue line)
the strategy to build the templates explained in the text and (red line) the candidates in the
signal region, all obtained using simulation. The muon samples show similar comparisons.

2Another scaling factor is the ratio of the e+e− → cc cross-sections between the on- and off-resonance
samples, but this factor is much smaller: 0.989.
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To validate the approach, I use simulations of the on- and off-resonance samples, apply
the corrections, and compare the resulting distributions with those from the signal region
for several key variables of the analysis. This comparison is shown in Fig. 5.3. I find a
reasonable agreement; any differences will be accounted for as a systematic uncertainty, as
explained in Chapter 7.

5.2 Real-D background

In several analyses [91, 127], to test the modelling of the combinatorial background from
real-D mesons, unphysical particle combinations are reconstructed. These are candidates
where the lepton charge is intentionally opposite to that expected from the D flavour, i.e.,
D−ℓ− and D

0
ℓ−.3 I refer to these combinations as wrong-charge (WC) samples; in turn,

signal samples are referred to as right-charge (RC) samples. Since WC combinations are
primarily composed of correctly reconstructed D candidates, WC samples should provide
valuable information for studying the real-D component in the RC samples.

I reconstruct WC samples for each lepton and D meson flavour in both experimental
and simulated data, applying the requirements described in Chapter 4. In the simula-
tion, I categorise the candidates using the same components defined in the RC samples
(Sect. 4.1.2). The real-D component is dominant. The p∗D and p∗ℓ distributions of the WC
candidates are shown in Fig. 5.4 for the D0

e− sample; however, the simulation does not re-
produce the experimental data. The D−e− and muon samples exhibit similar distributions
and data-simulation disagreements.

I conduct a detailed study to investigate the possible causes of this disagreement and
to determine whether it could impact the real-D component in the RC samples. To this
end, I split the real-D background into three categories, in both the WC and RC samples,
based on the origin of the lepton:

• primary lepton: a genuine lepton (referred to as a “true lepton”) originating directly
from a B decay, distinct from the B decay of the D candidate;
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Figure 5.4: Comparison of experimental and simulated data in the WC of the D0
e− sample

for (left) p∗D and (right) p∗ℓ . The disagreement is also observed for the other samples (D−e−,
D

0
µ− and D−µ−).

3There may be physical D
0
ℓ− combinations due to either D0–D0 mixing or the doubly Cabibbo-

suppressed D0 → K+π− decay being reconstructed as the favoured D
0 → K+π− mode; these possibilities

occur at the per mill level and are neglected here.
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Figure 5.5: Distribution of p∗ℓ for the real-D components (primary leptons, secondary
leptons, and fake leptons) for the (left) WC and (right) RC electron samples, with (top)
D

0
e∓ or (bottom) D−e∓ candidates. For primary leptons, I distinguish between the cases

where the D meson originates from a semileptonic or hadronic decay. The WC muon
samples exhibit a composition similar to that of the electron modes, whereas the RC
samples differ between the electron and muon cases, with the latter dominated by fake
leptons, as shown in Tab. 5.2.

• secondary lepton: a true lepton originating from a semileptonic decay of a hadron
(primarily charm mesons) that belongs to the same B decay as the D candidate;

• fake leptons: a misidentified particle, originating from either the same or a different
B decay of the D candidates, that mimics a lepton signature.

Figure 5.5 shows that the three categories exhibit different fractions between the RC and
WC electron samples, as well as different lepton momentum distributions. The fractions
of the categories are reported in Tab. 5.2.

Primary leptons almost saturate the WC samples, while they are less abundant in RC
samples. Their momentum distribution peaks around 1.6GeV/c and 1.7GeV/c for the WC
and RC samples, respectively, with a broader shape for WC candidates.

Secondary leptons make up only a few percent of the WC samples, while they constitute
a significant fraction of the RC samples (see Tab. 5.2). They are mostly distributed at low
momenta. Given the non-negligible contribution of this component in the RC sample, and
since it is primarily driven by decays with large uncertainties in their branching fractions,
a systematic uncertainty will be assigned to the composition assumed for this background,
as detailed in Chapter 7.
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lepton category
D0 sample D− sample

WC [%] RC [%] WC [%] RC [%]

primary electron 94 60 95 68
secondary electron 4 30 4 25

fake electron 2 10 1 7

primary muon 85 26 89 36
secondary muon 3 23 3 20

fake muon 12 51 8 44

Table 5.2: Fractions of the lepton categories in the RC and WC samples.

Fake leptons represent a small fraction in the WC samples for all cases (see Tab. 5.2),
whereas in the RC samples, they account for a minor fraction in the electron samples but
constitute a significant component in the muon samples. They are almost uniformly dis-
tributed across the momentum range. This further highlights the discrepancy in sample
composition between the WC and RC channels. The conclusions discussed next regarding
the primary leptons will remain valid for the muon samples as well. Given the consid-
erable differences in sample composition, there is no guarantee that the data-simulation
discrepancy observed for the WC samples is also present in the RC samples.

Since primary leptons are dominant in the WC samples, I will further investigate this
category. The purpose is to understand whether there is a commonality between primary
leptons in the WC and RC samples in order to constrain the primary-lepton component in
the signal region from the WC data.

Of the two B decays produced in an event with a primary lepton, either both decay
semileptonically or one decays semileptonically while the other decays hadronically. The
former case is less frequent in both WC (about 30%) and RC (about 7%) samples; however,
it is the case where the kinematics are well known and well simulated, consisting mostly of
B → D(∗)ℓνℓ decays. For the second case, I distinguish the three following subcomponents:

• decays with one charm meson (i.e., B → D (n)X) ,

• decays with two charm mesons (i.e., B → D(s)D (m)X),

• decays with no charm mesons (i.e., B → (n)X (m)X),

where X can be pions and kaons, and n and m are integers. The p∗D distribution of the
three subcategories in the WC and RC samples is shown in Fig. 5.6.

Charmless decays constitute a small fraction, while the first two subcomponents are
dominant in both the WC and RC samples. Upon checking the composition in more detail,
I find that the decays of the B → D(s)D (m)X subcomponents are simulated in Belle II
using branching fractions compatible within 10% of known values [14]. Notably, in the
WC samples, there are two different contributions for the B → D(s)D (m)X decays: one
peaks at about 0.8 GeV/c and the other at 1.5 GeV/c. The contribution at lower momenta
includes Ds meson in the final state; these decays almost saturate the B → D(s)D (m)X
subcomponent in the RC samples. For B → D (n)X, many decays have branching fractions
that are either poorly known (because they rely on measurements done with small samples,
such as those of B+ → D

0
π+π+π−π0 decays from CLEO [128] and B− → D

+
π−π−π0

from ARGUS [129]) or unknown altogether; the latter are generated by Pythia. Due to
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Figure 5.6: Distribution of p∗D for the primary leptons of the real-D background, where the
D originates from a hadronic B decay. Plots are for the (left) WC and (right) RC electron
samples with (top) D0

e∓ or (bottom) D−e∓ candidates. For B → D(s)D (m)X decays, I
distinguish two peaking components: at low momenta there are decays with a Ds meson,
i.e., B → DsD decays; at higher momentum, decays without it.

non-negligible uncertainties in the experimental information on B → D(s)D (m)X and
B → D (n)X decays, the discrepancy between data and simulation observed in the WC
samples could be attributed to a mismodelling of these decays.

From this investigation of the real-D background, I conclude that the WC and RC sam-
ples differ significantly in their composition, to the extent that little to no information from
the WC samples can be transferred to the RC samples. This observation was also noted in
previous analyses [91, 127]. Nonetheless, effective corrections for the data-simulation dis-
agreement in the WC samples have been applied to the real-D simulated candidates of the
RC samples to address some of the mismodelling observed in the signal region; systematic
uncertainties associated with these corrections have been considered in those analyses.

My approach is different. I have decided not to apply corrections obtained from the
WC samples to the RC samples. Instead, based on the detailed understanding of the real-
D background composition presented in this section, I consider systematic uncertainties
that reflect the current knowledge of the branching fractions of the decays comprising this
background (see Chapter 7).

It is important to note that the real-D background is the smallest component of the
signal sample. This is done by design to minimise the impact of such systematic uncertain-
ties: the requirement on the invariant mass of the Y system is very effective in reducing
this background component, as shown in Fig. 4.4.
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5.3 Xℓνℓ background

The Xℓνℓ background is composed of semileptonic decays other than those of the signal.
The largest fraction of these, between 65% and 70%, arises from excited charm-meson
cascade decays to the D ground states, i.e., the so-called B → D∗∗ℓνℓ decays introduced
in Sect. 4.1.2. In addition, contributions from non-resonant B → D(∗)π(π)ℓνℓ decays
and other yet-unknown semileptonic B decays with multi-body hadronic states, i.e., B →
D(∗)ηℓνℓ decays must be considered. The latter account for between 25% and 30% of
the Xℓνℓ background according to the latest models. I focus on all these backgrounds in
this section. The remaining part, i.e., semitauonic and semileptonic decays of B with a
misidentified lepton, totals only a few percent and will be further discussed in Chapter 7.

5.3.1 Corrections on the cascade decays background

A clear understanding of the decomposition of the semileptonic decay width of the B
meson is still lacking. The inclusive branching fraction for semileptonic B decays has
been measured by Belle and Babar; the current averages [50] are (10.26 ± 0.16)% and
(11.04 ± 0.17)% for B0 and B+ decays, respectively. Branching fractions of exclusive
decays have also been measured. The B → Dℓνℓ and B → D∗ℓνℓ branching fractions,
which are the focus of this thesis, account for about 70% of the inclusive value. For
B → D∗∗ℓνℓ decays the picture is much less clear, with an additional unknown component
of the inclusive rate for which there is no experimental information available.

The orbitally excited charmed mesons, categorised by their quantum numbers (L = 1),
comprise four primary states: D∗

0(2300), D1(2420), D′
1(2430), and D∗

2(2460) (see Tab. 5.5).
These states are measured by inspecting the D(∗)π invariant-mass distribution in semilep-
tonic decays [49,130,131]. The interpretation of the reconstructed distribution is challeng-
ing due to the small samples available so far. Reconstructed efficiencies are usually low, as
B-tagging is employed to suppress backgrounds, and identifying soft pions from the signal
is difficult. Additionally, the broad widths of two states (D∗

0(2300) and D′
1(2430)), possible

tails from D∗ extending to high Dπ mass values [132], and potential non-resonant D(∗)π(π)
contributions complicate the separation of individual states.

Recently, phenomenological analyses using information from corresponding hadronic B
decays (such as B → Dππ [133]), point out that the observed D∗

0(2300) structure could
be an overlap of two states [134–136]. A recent measurement from Belle [137], found no
evidence of this state in data. In addition, not all branching fractions of D∗∗ decays have
been measured, and some must be deduced from available information, assuming isospin
symmetry [50]. Finally, analyses of the B → D(∗)ππℓνℓ [138] decay have also been carried
out, but uncertainties remain large in this case.

The result of this unclear and evolving picture is that the sum of the measured branching
fractions for exclusive decays does not saturate the inclusive branching fraction. There is
a missing gap. Its value, as well as its significance, depends on the model used to interpret
the measurements. This gap has changed significantly with the addition of the recent Belle
results [137], which are in tension with earlier measurements due to the lack of evidence
found for the D∗

0(2300) resonance. To reduce this gap, so-called gap modes, i.e., yet
unobserved decay channels, are hypothesised based on some educated guesses [139]. An
overview of the models that have been considered so far in Belle II is presented in Tab. 5.4.

Note that poor to none experimental information is also available for the form factors
of the B → D∗∗ℓνℓ decays. The model employed in Belle II is LLSW from EvtGen [120],
which has been recently challenged in Ref. [140]. According to the same reference, the
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Decay HFLAV 2018 [%] HFLAV 2021 [%] HFLAV 2024 [%]
B0 B+ B0 B+ B0 B+

Inclusive 10.10± 0.40 10.80± 0.40 10.26± 0.16 11.04± 0.17 10.27± 0.15 11.05± 0.16

B → Dℓνℓ 2.24± 0.07 2.41± 0.07 2.18± 0.06 2.35± 0.06 2.11± 0.04 2.27± 0.06

B → D∗ℓνℓ 5.11± 0.11 5.50± 0.11 5.03± 0.11 5.41± 0.11 4.90± 0.11 5.27± 0.12

B → D∗
0(2300)ℓνℓ 0.39± 0.07 0.42± 0.08 0.39± 0.07 0.42± 0.08 0.12± 0.18 0.13± 0.19

B → D1(2420)ℓνℓ 0.62± 0.10 0.66± 0.11 0.61± 0.10 0.65± 0.11 0.59± 0.10 0.64± 0.10

B → D′
1(2430)ℓνℓ 0.39± 0.08 0.42± 0.09 0.26± 0.07 0.29± 0.08 0.26± 0.04 0.28± 0.04

B → D∗
2(2460)ℓνℓ 0.27± 0.03 0.29± 0.03 0.27± 0.03 0.29± 0.03 0.30± 0.03 0.32± 0.03

B → Dππℓνℓ 0.06± 0.08 0.06± 0.09 0.06± 0.08 0.07± 0.09 0.07± 0.08 0.07± 0.09

B → D∗ππℓνℓ 0.20± 0.10 0.22± 0.10 0.20± 0.10 0.22± 0.10 0.20± 0.10 0.22± 0.10

B → Dηℓνℓ 0.41± 0.41 0.38± 0.38 0.63± 0.63 0.65± 0.65 0.86± 0.86 0.90± 0.90

B → D∗ηℓνℓ 0.41± 0.41 0.38± 0.38 0.63± 0.63 0.65± 0.65 0.86± 0.86 0.90± 0.90

Table 5.3: Branching fractions assumed in Belle II over time. The values are taken from the
HFLAV Group [46]: for 2018 from Ref. [141]; for 2021 from Ref. [50]; for 2024 from Ref. [71].
Branching-fraction decays for B+ and B0 mesons are linked assuming isospin symmetry.
The gap modes are the decays B → Dηℓνℓ and B → D∗ηℓνℓ . Their branching fractions are
calculated as the difference between the inclusive and the sum of the measured exclusive
modes; the division of the branching fractions between the D and D∗ for gap modes is
arbitrary. An uncertainty of 100% is assumed for the gap branching fraction. Note also
how the branching fraction of B → D∗

0(2300)ℓνℓ changes in the last column; this is mainly
due to the recent results from Belle [137]. The uncertainty for the latter was assessed
to account for the significant difference observed in the branching fraction for D∗

0(2300)
between the Belle and BaBar [142] measurements. It was determined by taking half of the
difference between the branching fraction values obtained when considering only the Belle
or BaBar measurement. The central value of the average is closer to the Belle measurement
due to its higher precision, and an uncertainty of 0.19% covers the BaBar measurement
within 1.5σ.

branching fraction of B → Dηℓνℓ decays (used to fill the gap) is calculated to be less than
10−5.

In the official Belle II simulation, the values and models of exclusive semileptonic B
decays have been assumed based on information available a few years ago. These need
to be updated to reflect the most recent developments in the field. Corrections to the
simulated data must be applied; I explain these corrections below, along with an overview
of the models used.

Branching fraction corrections

Branching fractions of B → D∗∗ℓνℓ decays listed in Tab. 5.4 are those used in the official
Belle II simulation; they have all been updated according to the last (HFLAV 2024) of
Tab. 5.3. Note that, using Tab. 5.3, the B → D(∗)πℓνℓ decays with non-resonant D(∗)π
present in the Belle II simulation have been removed, since their branching fractions are
saturated by production of non-resonant final states via the D∗∗ resonances (see Tab. 5.6).

89



CHAPTER 5. BACKGROUND MODELLING

Decay Bsim
j (B+) [10−3] Bsim

j (B0) [10−3] EvtGen model [120]

B → D1(2420)ℓνℓ 7.57 7.04 LLSW

B → D′
1(2430)ℓνℓ 4.31 4.01 LLSW

B → D∗
0(2300)ℓνℓ 3.89 3.62 LLSW

B → D∗
2(2460)ℓνℓ 3.73 3.47 LLSW

B → Dππℓνℓ 0.53 0.49 PHSP

B → D∗ππℓνℓ 2.63 2.45 PHSP

B → Dπℓνℓ 1.50 1.38 GOITY_ROBERTS

B → D∗πℓνℓ 1.50 1.38 GOITY_ROBERTS

B → Dηℓνℓ 2.01 2.17 PHSP

B → D∗ηℓνℓ 2.01 2.17 PHSP

Table 5.4: Summary of semileptonic D∗∗ branching fractions and decay models used in the
Belle II simulation.

The corrections of the branching fractions are calculated as follows:

Nj = N sim
j

Bnew
j

Bsim
j

, (5.1)

where N sim
j and Nj are the number of candidates before and after the branching-fraction

correction, and Bsim
j and Bnew

j are the old and the updated branching fractions.

Broad D∗∗ modelling

Two of the four D∗∗ mesons, the D∗
0(2300) and the D′

1(2430), have a very large width (see
Tab. 5.5). Due to the non-converging properties of a naive Breit-Wigner curve used to
model these resonances, a significant amount of B → D∗∗ℓνℓ decays is generated with a
D∗∗ mass comparable to that of the B meson (Fig 5.7).

Although these cases are not necessarily forbidden, they should naturally be highly
suppressed due to the available phase space. This situation serves as a good example
where the assumption of a Breit-Wigner curve is overly simplistic and does not accurately
describe the properties of the particles.

To address this issue, I reject D∗
0(2300) meson candidates for which the generated

mass exceeds its central value by more than 3 times the width (about 700 MeV/c2), and
D′

1(2430) candidates for which the mass exceeds 2.5 times the width (about 1GeV/c2).
The remaining events are upscaled to preserve the total number of candidates.

D∗
0(2300) D′

1(2430) D1(2420) D∗
2(2460)

Mass [MeV/c2] 2343 2412 2422 2461
Width [MeV/c2] 229 314 31.3 47.3

Table 5.5: The central mass values and widths of the different D∗∗ states [14].
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Figure 5.7: The mass spread of the different D∗∗ mesons on generator level due to their
intrinsic width. For the two broad D∗∗, their masses spread up to values close to the B
meson mass (top row) which leads to questionable distributions in physics quantities [143].

Non-resonant and gap modes

The decays D(∗)ππℓνℓ and D(∗)ηℓνℓ have been generated with final state particles equally
distributed in phase space, leading to a very soft lepton momentum distribution. However,
a decay kinematics that is completely driven by phase space seems physically less plausible
than one in which the hadronic particles are more correlated to each other. Therefore, the
models are corrected by using BLR [144], in which the final state hadrons are produced via
intermediate broad D∗∗ resonances:

B → [D∗∗ → D(∗)ππ]ℓνℓ, B → [D∗∗ → D(∗)η]ℓνℓ. (5.2)

This approach is used in the Belle simulation as well [145] and it is considered to yield a
more realistic description of the underlying physics. A specific generation of these decays
has been performed according to the parameters reported in Tab. 5.6.

Process Simulated events [106] Luminosity [ab−1] FF model

B → D′
1(2430)[→ Dππ]ℓνℓ 8 B0 : 16, B+ : 14 BLR

B → D′
1(2430)[→ D∗ππ]ℓνℓ 8 B0 : 3.2, B+ : 2.8 BLR

B → D′
1(2430)[→ D∗η]ℓνℓ 8 B0 : 1.8, B+ : 1.8 BLR

B → D∗
0(2300)[→ Dππ]ℓνℓ 8 B0 : 16, B+ : 14 BLR

B → D∗
0(2300)[→ D∗ππ]ℓνℓ 8 B0 : 3.2, B+ : 2.8 BLR

B → D∗
0(2300)[→ Dη]ℓνℓ 8 B0 : 1.8, B+ : 1.8 BLR

Table 5.6: Generated samples with updated models for the D(∗)ππℓνℓ and D(∗)ηℓνℓ decays.
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Due to the intermediate D∗∗ resonances, the lepton momentum distribution becomes
harder, leading to more candidates surpassing the required thresholds in the selection.

5.4 Background control region

The majority of the background, including fake-D and continuum, can be directly con-
strained and modelled from data with minimal input from simulation. On the other hand,
I could not find a suitable control sample for the real-D background, given the dissimilarity
between the WC and RC samples. However, some of its subcomponents are well known,
and for those that are not, this background is sufficiently small that the impact in terms of
biases and systematic uncertainties on the signal should be limited (as discussed further in
Chapter 7). This is not the case for the Xℓνℓ background: it can be as large as 10% of the
signal, and the knowledge of its largest contributors is much less established. Therefore,
any possible information from data is highly valuable.

I identify a control region in data that is contaminated by this background. The control
region is the cos θBY sideband, defined by the range [-12, -3] (see Fig. 5.8). This control re-
gion features a significant contamination from the Xℓνℓ background. The expected amount
of this background is sufficiently large to enhance the information on this component for
the signal region, where this background is smaller. The signal B → Dℓνℓ and B → D∗ℓνℓ
decays are negligible in this region for all samples, except for the D∗ component in the
D

0
e+ sample. Real-D is also present, allowing me to test the simulation’s description of

this component using data from this control region.
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Figure 5.8: Sample composition of the cos θBY control region for the samples (top-left)
D

0
e+, (top-right) D−e+, (bottom-left) D0

µ+, and (bottom-right) D−µ+. These regions
are enriched of Xℓνℓ background.
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I use the control data provided by the cos θBY control region in a simultaneous fit with
the signal region. With this approach, I can constrain the branching fraction of B → D∗∗ℓνℓ
(decays with the four resonance states, non-resonant D(∗)ππ and gap modes), by employing
Gaussian penalties based on inputs from HFLAV 2024 in Tab. 5.3. This allows me to gain
information from the control data to determine the background yields in the signal region
and minimise uncertainties associated with these components. This simultaneous fit is the
core of the analysis, and the next chapter is entirely devoted to its detailed description.
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Chapter 6

Novel approach: the global fit

In this chapter, I present the core of the analysis: a multidimensional χ2 fit, simultaneous
to all Dℓ samples, to measure the model-independent observables and f+−/f00. I introduce
how I access the signal decay rates by means of reconstructed variables which are employed
in the fit. After a general overview, I delve into the details of each fit component, describing
its templates and parameters. Then, I present a fit to the data in the cos θBY control region,
which improves information on the Xℓνℓ background. With the results of this fit, I adjust
the simulation to generate a realistic data set that reproduces the Run I Belle II sample.
I run the fit on this data set to demonstrate the feasibility of the measurement. Finally, I
inspect the fit properties by running it over hundreds of simulated samples.

6.1 Accessing the differential decay rates

To measure the model-independent observables a′n, b′n, c′n and G′
m, defined in Eqs. 2.30–

2.32 and 2.34, I need to analyse the differential decay rates of the signal as a function of
kinematics variables defined in the B rest frame. For B → Dℓνℓ, the key variable is the
recoil energy w (see Eq. 2.33); for B → D∗ℓνℓ, they are both w and the helicity angle cos θℓ
(see Eq. 2.26)1. I refer to these three variables as B-kinematics variables. To reconstruct
them, one needs to know the B-momentum vector.

In semileptonic decays with undetected neutrinos, B-tagging algorithms are crucial
for reconstructing the B-momentum vector but generally have low efficiency (below 1%),
known with insufficient precision for high-accuracy measurements like |Vcb| [82]. Therefore,
untagged analyses are preferred. Without B-tagging, the B-momentum is approximated
using the vector sum of visible particle momenta, excluding those from the signal [91].
Additional constraints can be imposed from the signal kinematics or B meson angular
distributions. Although untagged methods are fully efficient, they yield lower resolution
for B-kinematic measurements, and rely on accurate ROE particle descriptions to obtain
migration matrices to address experimental effects.

For a global analysis of B → Dℓνℓ and B → D∗ℓνℓ decays, there is an additional
complication. In the case of B → D∗ℓνℓ decays, the neutrino is not the only missing
particle, as the D∗ decay is partially reconstructed. This further degrades the resolution
of w and cos θℓ, since only kinematics information and constraints on the D and the lepton
are available. Therefore, to access the differential decay rates, I adopt another approach:
I use proxy variables that are highly correlated with the B-kinematic variables and are

1In the following, I use the notation w to denote both wD and wD∗ when the intended variable is clear
from context; similarly with cos θℓ for cos θDℓ and cos θD

∗
ℓ , and with q2 for q2D and q2

D(∗) .
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Figure 6.1: Two-dimensional distributions from simulation of: (top left) p∗D versus w, (top
right) p∗ℓ versus cos θℓ for B → Dℓνℓ candidates; and (bottom left) p∗D versus w, (bottom
right) p∗ℓ versus cos θℓ for B → D∗ℓνℓ candidates.

reconstructed solely from the visible particles of the signal. This approach has already
been exploited in Ref. [62] and [146] for B and B0

s decays, respectively.
I identify p∗D and p∗ℓ , the momenta of theD meson and that of the lepton, both measured

in the centre-of-mass frame, as proxy variables. In Fig. 6.1, I show the two-dimensional
distributions of (p∗D, w), and (p∗ℓ , cos θℓ) for the signal decays. The distributions are ob-
tained from simulation, where the momenta p∗D and p∗ℓ are those reconstructed, while
the B-kinematics variables (w, cosθℓ) are derived from the true information of the same
candidate. These distributions show that the differential decay rate as a function of the
B-kinematics variables can be accessed through p∗D and p∗ℓ . Some dilution of the infor-
mation on the decay rate occurs, as there is no one-to-one correspondence between the
B-kinematic variables and the proxy variables; however, the proxy variables still capture
sufficient information to assess the decay dynamics.

Since proxy variables give access to the differential decay rates, they preserve informa-
tion on the form factors: the distributions of the proxy variables change depending on the
form factors. For example, using the CLN parametrisation for simplicity, different values
of the parameters ρ2D and ρ2D∗ lead to different shapes of the p∗D distribution of the signal
decays, as depicted in Fig. 6.2.

In turn, these distributions allow the measurement of the form factors and, conse-
quently, of the model-independent variables a′n, b′n, c′n and G′

m. It is important to note
that I do not attempt to reconstruct the B-kinematic variables using the proxy variables.
Therefore, no unfolding of “reconstructed B-kinematic distributions” is required. Instead,
I use the proxy variables directly to obtain the model-independent variables, using the
fitting method explained in the next section.
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Figure 6.2: Impact of form-factor variations on the p∗D distributions for the signal decays.
(Left) Variation of ρ2D for the B → Dℓνℓ decay, and (right) variation of ρ2D∗ for the
B → D∗ℓνℓ decay. The distributions are normalised to a unit integral.

6.2 The χ2 fit

The core of the measurement is a multivariate fit to the binned distribution of the proxy
variables, which are sensitive to the model-independent observables: a′n, b′n, c′n and G′

m. In
addition, I use a third variable, cos θBY , to enhance signal-to-background separation. An
example of the separation of the sample components in the space (cos θBY , p

∗
D) is shown in

Fig. 6.3 for the D0
e+ and D−e+ samples. The components accumulate in different regions,

enabling their statistical discrimination in a fit to the data. Thus, the data are binned in
three dimensions, p∗D, p∗ℓ , and cos θBY , with an histogram.

The fit is based on the method of least squares, with a χ2 function defined as

χ2 =
∑
i

[
Ni −N i

]2
σ2Ni

+ σ2
N i

, (6.1)

where Ni and σNi are the number of candidates and its Poisson uncertainty in the three-
dimensional bin i of the data histogram; N i and σN i

are the predicted number of candidates
and its uncertainty in the same bin.

The predicted number of candidates is calculated as

N i =
∑
k

nkf
k
i (6.2)

where nk is the predicted yield of the sample component k, which has a fraction fki of
candidates in the bin i. These fractions are obtained from the three-dimensional histogram
of the (cos θBY , p

∗
ℓ , p

∗
D) distribution of each component, normalised to unit integral. The

histograms are called templates and are obtained using simulated candidates or control
data.

I fit simultaneously the signal region and the cos θBY control region. The former is
defined by the selection reported in Tab. 4.2, which considers candidates with cos θBY ∈
[−2, 1.1]; the latter has the same selection but with a different cos θBY requirement, as
it considers the candidates with cos θBY ∈ [−12,−3], to constrain the Xℓνℓ background
as explained in Sect. 5.4. In total, the fit is carried out simultaneously on eight samples:
D

0
e+, D0

µ+, D−e+, and D−µ+, for the signal region, and the same four samples for the
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Figure 6.3: The space (cos θBY , p
∗
D) for different sample components of the (left column)

D
0
e+ and (right column) of D−e+ samples: (orange) signal B → Dℓνℓ; (green) signal B →

D∗ℓνℓ; and backgrounds (blue) Xℓνℓ, (magenta) real-D, (grey) fake-D and continuum.
Similar distributions hold for the muon samples.
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control region. Each samples features its own χ2 function; they are all summed into a
global χ2 function.

Note that in the χ2 fit I decided to skip a bin if Ni is less than 30, to prevent calculat-
ing the χ2 with insufficient candidates to assume a Gaussian distribution (an assumption
intrinsic to the χ2 fit). It is key to find an adequate binning scheme that minimises these
skipped bins, but, at the same time, that has enough bins to keep information on the
template shape for discriminating between the components. In the signal region, I split
the three-dimensional space in 90 bins: 3 bins for cos θBY in the range [−2, 1.1]; 6 bins for
p∗ℓ in the range [0.8, 2.2]GeV/c; and 5 bins for p∗D in the range [0.5, 2.5]GeV/c.

In the control region, I use only the two-dimensional distributions of (p∗D, p
∗
ℓ ), as in

this case the cos θBY distributions do not provide any additional separation of the sample
components. Removing one dimension enables to increase the number of bins for the other
two, resulting in a better modelling of the (p∗D, p

∗
ℓ ) distributions. I split the two-dimensional

space into 100 bins: 10 bins for p∗D in the range [0.5, 2]GeV/c for both the electron and
muon samples, and 10 bins for p∗ℓ in the range [0.8, 1.9]GeV/c for the electron sample and
[1.1, 1.9] GeV/c for the muon sample. For the latter, a tighter cut is applied to further
suppress real-D decays and obtain a purer Xℓνℓ sample. For both the signal and control
regions, the bins in a given dimension all have equal width. In the signal region, the fraction
of skipped bins is less than 5% for any sample; in the control region, less than 10%.

The χ2 is a function of a vector of parameters, which are detailed later. The best-fit
parameters are those that minimise the global χ2. I use the numerical minimiser MINUIT
with the algorithm MIGRAD to find them and HESSE to calculate their uncertainties [147].
MIGRAD employs an iterative optimisation technique that estimates the function gradient
and Hessian (second derivatives) to guide the search for the minimum.

Through Eq. 6.2, the data samples are described as the sum of several components.
Each component has a yield, which can be either a fit parameter or fixed, and a template,
which can either depend on fit parameters or have a fixed shape. All components and
their parameters are detailed in the following sections. Their division follows the sample
components introduced in Chapter 4.

6.2.1 Signal

The signal decays B+ → D
0
ℓ+νℓ, B+ → D

∗0
ℓ+νℓ, and B0 → D∗−ℓ+νℓ, contribute the

yields

N
D

0
ℓ+

= NBB

f

1 + f
ε
D

0
ℓ+

B(B+ → D
0
ℓ+νℓ)B(D

0 → K+π−) , (6.3)

ND∗ℓ+ = NBB

[
f

1 + f
ε
D

∗0
ℓ+

B(B+ → D
∗0
ℓ+νℓ) (6.4)

+
1

1 + f
ε′D∗−ℓ+ B(B0 → D∗−ℓ+νℓ)B(D∗− → D

0
X)

]
B(D0 → K+π−) ,

in the D0
ℓ+ samples, while the decays B0 → D−ℓ+νℓ and B0 → D∗−ℓ+νℓ contribute the

yields

ND−ℓ+ = NBB

1

1 + f
εD−ℓ+ B(B0 → D−ℓ+νℓ)B(D− → K+π−π−) , (6.5)

ND∗−ℓ+ = NBB

1

1 + f
εD∗−ℓ+ B(B0 → D∗−ℓ+νℓ)B(D∗− → D−X)B(D− → K+π−π−) ,

(6.6)
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in the D−ℓ+ samples. Here, NBB is the number of BB pairs; f = f+−/f00; εi is the
efficiency for a given signal i with branching fraction B(i). Note that the two efficien-
cies, ε

D
∗0

ℓ+
and ε′D∗−ℓ+ in Eq. 6.4, are nearly identical, allowing the yield ND∗ℓ+ to be

parametrised with a single global efficiency. In addition, the signal decays B+ → D
∗0
(→

D
0
X)ℓ+νℓ and B0 → D∗−(→ D

0
X)ℓ+νℓ have the same (cos θBY , p

∗
ℓ , p

∗
D) distribution,

hence I cannot disentangle them in the D0
ℓ+ sample. By fitting simultaneously the D0

ℓ+

and D−ℓ+ samples, the branching fractions of the four signal decays can be determined.
I can impose a symmetry to link the branching fractions of B+ and B0 decays. By

neglecting the tiny difference in u and d quark masses (isospin symmetry), the semileptonic
decay widths for B+ and B0 decays are the same. Therefore, the branching fractions of
B0 decays are related to those of B+ decays as

B(B0 → D(∗)−ℓ+νℓ) =
τB0

τB+

B(B+ → D
(∗)0

ℓ+νℓ) , (6.7)

where τB0 and τB+ are the B0 and B+ lifetimes.
Considering the number of BB pairs, the efficiencies, and the charm branching fractions

as inputs, and by invoking isospin symmetry, there are three unknowns to be determined
from the four Eqs. 6.3–6.6: two signal branching fractions and f , which can also be obtained
from the fit to data. This, however, comes at the cost of an additional uncertainty due to
possible isospin-breaking contributions. Isospin-breaking arises from the mass difference
between the u and d quarks, as well as potentially different electromagnetic interactions
between final-state particles in B0 and B+ decays (see Sect. 2.1). The former is negligible,
as the difference in the masses of B+ and B0 mesons is much smaller than a fraction of a
per mille. The latter, instead, cannot be neglected.

Decays of a B+ meson result in a neutral charm state and a lepton, which cannot
interact electromagnetically. In contrast, B0 meson decays lead to a charged charm meson,
which can interact electromagnetically with the lepton, introducing contributions to the
B0 decay amplitudes that are absent in B+ decays. These contributions are encapsulated
in the so-called “Coulomb factor” (see for instance Chapter 3 of Ref. [30]), a correction to
the electroweak parameter ηEW (see Sect. 2.1), which is multiplied by a factor

(1 + απ/2) , (6.8)

where α is the electromagnetic coupling constant. This correction affects the B0 branching
fraction, and therefore the extraction of |Vcb|. Finally, the four signal yields of Eqs. 6.3–6.6
are expressed in terms of two signal branching fractions, assuming isospin symmetry while
also accounting for possible isospin-breaking effects through the Coulomb factor.

To parametrise the signal yields as a function of the model-independent observables, I
decompose the signal branching fractions, as

B(B → D(∗)ℓνℓ) =
Γ(B → D(∗)ℓνℓ)

Γtotal
=

Γ(B → D(∗)ℓνℓ) τB
ℏ

, (6.9)

where Γ(B → D(∗)ℓνℓ) is the decay width of the process, Γtotal is the total decay width for a
B meson and ℏ ≃ 65.821×10−14 GeV ·ps is the reduced Planck constant. The B → D(∗)ℓνℓ
decay width is obtained by integrating the differential decay rate. For B → D(∗)ℓνℓ, this
is the two-dimensional decay rate in Eq. 2.26 integrated in w and cos θℓ,

Γ(B → D∗ℓνℓ) =

∫ wmax

1
dw
∫ 1

−1
dcos θℓ

d2Γ(B → D∗ℓνℓ)

dw dcos θℓ
, (6.10)
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while for B → Dℓνℓ, it is the one-dimensional decay rate in Eq. 2.33,

Γ(B → Dℓνℓ) =

∫ wmax

1
dw

dΓ(B → Dℓνℓ)

dw
. (6.11)

The maximum values wmax are obtained at maximum recoil energy (see Eq. 2.3, with q2 = 0
and the mass values of the B, D and D∗ mesons). The two differential decay rates are
functions of the model-independent variables a′n, b′n, c′n and G′

m as shown in Eqs. 2.30–2.32
and 2.34. The signal yield can now be expressed in terms of these variables. However,
the signal templates are still fixed from the simulation; they need to be modified to also
depend on the model-independent observables, as explained in the next section.

In the control region, I parametrise the signal yields in the same way as in the signal
region, by changing only the efficiencies. In the control region, the signal accounts for only
15% of the D0

e+ sample and less than 5% of the other samples.

6.2.1.1 Dynamical signal templates

The signal templates are generated assuming a specific model for the form factors, as
reported in Tab. 4.1, which leads to fixed values of a′n, b′n, c′n and G′

m. I need a method
to adjust the shape according to new values of the model-independent observables, which
should change during the χ2 minimisation to adapt the template (and the signal yield)
to the data. This is achieved through a weighting technique applied at every MINUIT call
during the scan of the parameter space in search for the minimum of the χ2 function.

The weighting acts on the simulated data to change the underlying physics model used
to generate the sample. Let us consider the template for the B → D∗ℓνℓ decays as an
example. The signal template must contain the information on the w and cos θℓ distribu-
tions of the original model. Therefore, the three-dimensional template in (cos θBY , p

∗
ℓ , p

∗
D)

is extended to a five-dimensional template with (cos θBY , p
∗
ℓ , p

∗
D, w, cos θℓ). I then calculate

a weight by evaluating the following quantity

pi =

[
1

Γnew

∫
∆xi

dΓnew

dx
dx
] / [ 1

Γgen

∫
∆xi

dΓgen

dx
dx
]
, (6.12)

where x represents the space (w, cos θℓ); ∆xi is the i-th bin in (w, cos θℓ) of the template
histogram; dΓj/dx and Γj are the differential decay rate and its integral over the full phase
space, with j = gen for the decay model used in the generation of the simulated data, and
j = new for the new decay-model with the parameters a′n, b′n, and c′n to be determined in
the fit.

The five-dimensional histogram, with entries modified by the weights in the (w, cos θℓ)
bins, is marginalised to obtain the three-dimensional template in (cos θBY , p

∗
ℓ , p

∗
D): the

shape of the three-dimensional distribution is altered according to the new underlying
physics model. Note that this weighting method accounts for resolution effects and effi-
ciency variations as a function of the reconstructed variables, which making the template
independent from the form-factor model assumed in the generation of the simulated data.

A similar procedure is adopted for the B → Dℓνℓ decay, with the only difference being
that I need to add only the dimension w to the (cos θBY , p

∗
ℓ , p

∗
D) template and use the

one-dimensional decay rate to compute the weight of Eq. 6.122.
2For the B → Dℓνℓ decay, the weight is calculated using only the information from w and not from

cos θℓ, as the form factor G depends solely on w and cos θℓ does not provide an additional information
about it.
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Figure 6.4: Distributions of w for (left) B → Dℓνℓ and (right) for B → D∗ℓνℓ decays. The
vertical dotted red line indicates the bin edges chosen for this analysis.

Note that the weighting is not dependent on how populated the space of the B-
kinematics variables is in the templates, (i.e., the number of bins defined for the extra
dimensions added to the original template of the reconstructed variables). The weight can
be always computed, and if there are no candidates in a particular bin, the weight will
not modify the (zero) content. By marginalising the distribution to project only onto the
space of reconstructed variables, the weights are summed, and for the χ2 fit, only the bin
content of the template of the reconstructed variables matters.

The number of model-independent observables to fit is determined by the division of
the w range into bins. It ultimately depends on the shapes of the expected distributions of
w, which are shown in Fig. 6.4. I choose a binning scheme that ensures sufficient statistical
precision for each observable by iterating for different schemes a simplified version of the
analysis with simulated data and inspecting the results. For B → Dℓνℓ, I decide to measure
G′

m in 7 bins of w; for D∗ℓνℓ, I measure a′n, b′n and c′n in 5 bins of w. Note that this binning
scheme determines the minimum number of bins to be employed in the weighting of the
templates.

By imposing isospin symmetry, the same form factors for B+ and B0 decays are as-
sumed, and the fit is performed using a single set of 22 model-independent observables.

6.2.2 Xℓνℓ background

The Xℓνℓ background is divided into three subcomponents, as introduced in Sect. 4.1.2, for
both the signal and control regions: D∗∗ℓνℓ decays, semitauonic decays, and semileptonic
decays with misidentified leptons. The latter two subcomponents represent a small contri-
bution (approximately 1-3% of the total Xℓνℓ background), in both the signal and control
regions across all samples.3 For the analysis, I combine these contributions into a single
template with yields fixed based on the simulation, and I assess a systematic uncertainty
for this simplification in Chapter 7.

The D∗∗ℓνℓ subcomponent, which contributes the largest fraction, is addressed sepa-
rately. According to the study in Sect. 5.3.1, it is further divided into more subcomponents:
decays with a D∗∗ resonance, non-resonant D(∗)ππ, and the gap modes. The yield of these

3One exception is the D−µ+ sample in the control region, where the misidentified leptons are about
20% of the Xℓνℓ background. However, this contribution accounts for only 1.6% of the total D−µ+ sample.
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Figure 6.5: Two-dimensional distributions of (p∗D, p∗ℓ ) of the D∗∗ℓνℓ decays for the D0
e+

sample in the control region. Similar distributions are observed in the other samples. For
comparison, the same distributions for the D0

e+ sample in the signal region can be found
in Appendix B.

subcomponents in the samples j = D
0
ℓ+, D−ℓ+ is expressed as

N i
j = NBB ε

i
jBi

[
f

1 + f
K+,i

j +
1

1 + f

τB0

τB+

(1 + απ)K0,j
j

]
Bj(D) , (6.13)

where Bi is the branching fraction of the subcontribution i; εij is its selection efficiency in

the sample j; Bj(D) is the branching fraction of D0 → K+π− and D− → K+π−π− for
j = D

0
ℓ+ and j = D−ℓ+; K+,i

j and K0,i
j are the relative fractions of B+ and B0 decays.

The latter are derived assuming the branching fractions of the D∗∗ decays as used in Belle
II simulation. Note that in Eq. 6.13 I assume isospin symmetry to link B+ and B0 decays
as done for the signal component.

Different yields are obtained for the signal and control regions (according to the cor-
responding efficiencies εij) which are linked through the branching fractions Bi. Thus, the
control region enables constraining the contribution of these subcomponents in the signal
region. Each yield is multiplied by a template. The shapes of the various templates show
small differences, as can be observed in Fig. 6.5 from the two-dimensional distributions of
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(p∗D, p∗ℓ ) in the control region. The statistical discrimination of each subcontribution is chal-
lenging. Thus, I apply Gaussian penalties, using the inputs from HFLAV 2024 in Tab. 5.3,
to incorporate information on the branching fractions from previous measurements.

I lump in a single template the B → Dππℓνℓ and B → D∗ππℓνℓ decays, as well as
the B → Dηℓνℓ and B → D∗ηℓνℓ decays, with constraints on their branching fractions of
(0.30± 0.13)% and (1.80± 1.80)%, respectively, obtained by summing their contributions
in Tab. 5.3. This is because their branching fractions have large uncertainties and for the
D(∗)ηℓνℓ final state, the fraction of D and D∗ decays is arbitrary.

I emphasise that the purpose of using the control region is not to measure the branching
fractions of the decays of the D∗∗ℓνℓ component, but to build confidence in the cocktail
used to model them, given the limited a priori knowledge available. This approach should
reduce the systematic uncertainty on the signal due to the poor information available on
these decays, as detailed in Sect. 5.3.1.

6.2.3 Real-D background

From the study presented in Sect. 5.2, the real-D background cannot be constrained using
the WC sample, as the latter has a very different composition compared to the RC sample.
For this reason, I fit the yield of the real-D background directly from data in the signal
region.

Here, the real-D background is not decomposed into the three subcomponents discussed
in Chapter 5 (primary, secondary, and fake leptons), as their separation is irrelevant given
the small contribution of the real-D background in all samples. The overall templates of
the signal region are built from the two-dimensional distributions of (p∗D, p∗ℓ ) shown in
Fig. 6.3.

In the control region, instead, the separation into the three subcomponents improves
the modelling of the data and enhances the discrimination from the Xℓνℓ background. An
example of the separation in the (p∗D, p

∗
ℓ ) space of the free real-D subcomponents for the

D
0
e+ sample is shown in Fig. 6.6.
Not all subcomponents have free yields, though. The ones that do are: primary leptons

in the D0
e+ and D−e+ samples; secondary leptons in the D0

e+ sample; fake leptons in the
D

0
µ+ sample. For each lepton category, I link the yields in the electron and muon samples

through efficiency ratios and fit them with a single parameter. Other categories have
fixed yields based on simulation, as they contribute very small fractions. These categories
include secondary and fake leptons in both the D−e+ and D−µ+ samples. A systematic
uncertainty for this assumption is accounted for in Chapter 7.

6.2.4 Fake-D and continuum

The fake-D and continuum backgrounds in the signal region are determined using the D-
mass sideband and off-resonance data, as explained in Chapter 5; their yields and templates
are fixed in the fit accordingly. I assess a systematic uncertainty related to this analysis
strategy in Chapter 7.

For the control region, I cannot apply the same procedure described for the signal
region, as the simulation shows significant differences between the (p∗D, p

∗
ℓ ) distributions for

candidates in the D-mass signal region and the sideband. Therefore, I decide to constrain
the two backgrounds using a different approach. I leverage information from the off-
resonance data to set the yields of the continuum background, while the yield of the fake-
D background is determined from data by using the D-mass sideband and subtracting
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Figure 6.6: Two-dimensional distribution of (p∗D, p∗ℓ ) of the real-D subcomponents left free
in the fit in the control region: primary leptons in the (top left) D0

e+ and (top right)
D−e+ samples, secondary leptons (bottom left) in the D

0
e+ sample and fake leptons

(bottom right) in the D0
µ+.

the continuum contribution. The yields are constrained in the fit, and the templates are
derived from simulation. I checked in D-mass sideband that the simulation reproduces
the experimental data distributions, assuming that the same holds for the D-mass signal
region. Continuum and fake-D backgrounds are separated into two different templates to
simplify the evaluation of the systematic uncertainty associated with them, as discussed in
Chapter 7.

6.2.5 Fit parameters

I provide a summary of the fit parameters in Tab. 6.1. I also report those that are fixed
from simulation in the fit, as previously discussed for each component. Additionally, I
include several nuisance parameters using Gaussian penalties, some of which have already
been introduced. The complete list of Gaussian-constrained parameters is as follows:

• the number of BB pairs, NBB = (387± 6)× 106, as provided by the Belle II perfor-
mance group;

• the correction for the tracking efficiency (see Sect. 4.1.1.5), which is included as a
multiplicative factor on the signal efficiency, (1 + 0.0024 ·K)N , with N the number
of tracks and K a Gaussian-constrained parameter with a normal distribution;4

4I do not include this correction for the background D∗∗ℓνℓ decays, as this is negligible compared to
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Component Decay Parameters Comments

Signal B → Dℓνℓ G′
1, G′

2, G′
3, G′

4, G′
5, G′

6, G′
7 free

εDj,r fixed
B → D∗ℓνℓ a′1, a′2 a′3 a′4 a′5 free

b′1, b′2, b′3, b′4, b′5 free
c′1, c′2, c′3, c′4, c′5 free
εD

∗
j,r fixed

Xℓνℓ B → D1(2420)ℓνℓ B(B → D1(2420)ℓνℓ) constrained
ε
D1(2420)
j,r fixed

B → D′
1(2430)ℓνℓ B(B → D′

1(2430)ℓνℓ) constrained

ε
D′

1(2430)
j,r fixed

B → D∗
0(2300)ℓνℓ B(B → D∗

0(2300)ℓνℓ) constrained
ε
D∗

0(2300)
j,r fixed

B → D∗
2(2460)ℓνℓ B(B → D∗

2(2460)ℓνℓ) constrained
ε
D2(2460)
j,r fixed

B → D(∗)ππℓνℓ B(B → D(∗)ππℓνℓ) constrained

εD
(∗)ππℓνℓ

j,r fixed
B → D(∗)ηℓνℓ B(B → D(∗)ηℓνℓ) constrained

εD
(∗)ηℓνℓ

j,r fixed
Xτντ NXτντ

j,r fixed
mis-ID leptons Nmis-ID leptons

j,r fixed

real-D signal region: N real-D
j free

control region: Nprim.
D

0
e+

, N sec.
D

0
e+

, Nprim.
D−e+

, N fake
D

0
µ+

free

control region: (
ε
D

0
µ+

ε
D

0
e+

)prim., (
ε
D

0
µ+

ε
D

0
e+

)sec., (
εD−µ+

εD−e+
)prim., (

ε
D

0
e+

ε
D

0
µ+

)fake fixed

control region: N sec.
D−e+ ,N sec.

D−µ+ , N fake
D−e+ , N fake

D−µ+ fixed

fake-D + continuum signal region: N fake-D+ cont.
j constrained

control region: N fake-D
j , N cont.

j constrained

common parameters f+−/f00 free
NBB constrained
B(D0 → K+π−), B(D− → K+π−π−), B(D∗− → D

0
X) constrained

lifetime ratio: τB0/τB+ constrained
Coulomb factor: θ constrained
track. eff. correction: K constrained

Table 6.1: Summary of the parameters from the simultaneous fit of the eight samples
(where r indicates either the signal or control regions and j = D

0
e+, D0

µ+, D−e+ and
D−µ+). In total there are: 31 (free) + 25 (Gaussian constrained) + 80 (fixed) parameters.

• the lifetime ratio between B0 and B+ mesons, τB0/τB+ = 0.929± 0.004, taken from
Ref. [14];

• the branching fractions B(D0 → K+π−) = (3.95 ± 0.03)%, B(D− → K+π−π−) =

(9.38± 0.16)% and B(D∗− → D
0
X) = (67.7± 0.5)%5, taken from Ref. [14];

• the branching fractions of the decays in theD∗∗ℓνℓ component described in Sect. 6.2.2,
using the latest HFLAV 2024 averages (see Tab. 5.3);

• the yields of the fake-D and continuum backgrounds in both the signal and control
regions, as estimated in Sect. 6.2.4 using off-resonance data and D-mass sideband;

the uncertainties on their branching fractions.
5The branching fraction B(D∗− → D−X) is parametrised as 1− B(D∗− → D

0
X).
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• an uncertainty on the Coulomb factor of Eq. 6.8. Since there is no consensus on the
exact value of the correction, I assign a 100% uncertainty by modifying the correction
to the lifetime ratio, Eq. 6.7, as (1 +απθ), with θ a Gaussian-constrained parameter
with a normal distribution.

6.3 Fit to the control region

As mentioned in Sect. 5.4, the cos θBY sideband is enriched with the D∗∗ℓνℓ component,
providing an opportunity to gain direct information on this background—the least under-
stood in the sample—directly from data. I fit the control region simultaneously with the
signal region to that purpose. Before analysing the full sample, I perform a fit to the data
in the control region alone, for two reasons: it allows for testing the fit directly on data
without gaining information on the signal and thus violating the blinding protocol; and it
provides an initial test of the background modelling directly on data. Using the results of
this fit, I can also fine-tune the simulated sample to better validate the full analysis with a
background composition closer to what we expect from data. With a more realistic sample,
I can also accurately assess the expected systematic uncertainties of the analysis.

First, I compare data and simulation distributions of the fitting variables; observing a
large discrepancy as shown in Fig. 6.7. The primary cause of this discrepancy could be
a mismodelling of the D∗∗ℓνℓ component, which features the largest uncertainties. This
hypothesis is supported by the fact that the other components are either better known (as
the signal B → D(∗)ℓνℓ contamination in the control region), or already constrained from
data (as for the fake-D mesons and continuum backgrounds).

The configuration of the simultaneous fit between the signal and control region has
been presented in detail in the previous sections. Let me summarise it here for the control
region alone: I fit the two-dimensional distribution of (p∗ℓ , p

∗
D), with the binning discussed

in Sect. 6.2, simultaneously between the D0
ℓ+ and D−ℓ+ samples. The yields of the D∗∗ℓνℓ

component are Gaussian-constrained, as reported in Sect. 6.2.2. The real-D subcompo-
nents (primary, secondary and fake leptons) have free yields, which are linked between
the electron and muon channels through the ratio of efficiencies. The remaining small
subcomponents (semitauonic decays, semileptonic decays with misidentified leptons, and
secondary and fake leptons for the real-D background in the D−e+ and D−µ+ samples)
are fixed in the fit. Only for this fit, the signal yields and templates in the control region
are also fixed based on expectations, their contribution is minimal nonetheless.

The results of the fit are summarised in Tab. 6.2 and fit projections are reported in
Fig. 6.8. The χ2 is 107 with 350 degrees of freedom. The small χ2 value is attributed to
the statistical uncertainties on the templates, which are included in the χ2 calculation (see
Eq. 6.1). Without accounting for these uncertainties, I obtain a χ2 value of 404 for the
same degrees of freedom.

I observe that all the branching fractions of D∗∗ℓνℓ decays are compatible with the
central values of the corresponding Gaussian constraints. However, the D(∗)ηℓνℓ branching
fraction is much smaller than the nominal value (−0.01% versus 1.8%), with an uncertainty
significantly reduced compared to that of the original constrain (0.12% versus 1.8%). Thus,
the data suggest a configuration with a substantially smaller fraction of gap modes. Since
the branching fractions of the other D∗∗ℓνℓ decays are not increased accordingly, this
reduction increases the tension between the inclusive branching fraction and the sum of
the exclusive branching fractions (see Sect. 5.3.1). This remains an open issue, also observed
in other semileptonic-decay analyses in Belle and Belle II [143,148].

I stress that in the main fit, when including also the signal region, I still use the
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Figure 6.7: Data-simulation comparison of the (left column) p∗ℓ and (right column) p∗D
distributions in the control region for: (from top to bottom) D−µ+, D0µ+, D−e+, and
D0e+ samples.
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Figure 6.8: Control-region fit results. Distributions of (left column) p∗ℓ and (right column)
p∗D with fit projections overlaid. From top to bottom: D−µ+, D0

µ+, D−e+, and D
0
e+

samples in the control region.
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Fit parameter Gaussian constrain Fit result

B(B → D1(2420)ℓνℓ) (0.64± 0.10)% (0.79± 0.07)%

B(B → D′
1(2430)ℓνℓ) (0.28± 0.04)% (0.29± 0.04)%

B(B → D∗
0(2300)ℓνℓ) (0.13± 0.19)% (0.16± 0.10)%

B(B → D∗
2(2460)ℓνℓ) (0.32± 0.03)% (0.33± 0.03)%

B(B → D(∗)ππℓνℓ) (0.30± 0.13)% (0.24± 0.08)%

B(B → D(∗)ηℓνℓ) (1.80± 1.80)% (−0.01± 0.12)%

Fit parameter Simulation expectation Fit result

Nprim.

D
0
e+

2900 4770± 470

N sec.

D
0
e+

3820 3000± 550

Nprim.
D−e+

910 1660± 230

N fake

D
0
µ+

6670 7910± 860

Table 6.2: Summary of the results from the fit to the control-region data. The upper
table compares the results on the branching fractions of the decays in D∗∗ℓνℓ component
with the Gaussian constraints used in the fit. The branching fractions shown in the table
pertain to B+ and are related to those of B0 through their lifetimes ratio. The bottom
table compares the fit results of the real-D background yields (free in the fit) with the
expectation from the simulation.

Gaussian penalties with inputs from Tab. 5.3 for the D∗∗ℓνℓ component. The uncertainties
on their branching fractions, which address the inclusive-exclusive gap by assigning a 100%
uncertainty to the D(∗)ηℓνℓ branching fraction, are then propagated to the signal results,
contributing to a systematic uncertainty (see Sect. 7.1). A dedicated study presented in
Appendix D validates this systematic uncertainty, ensuring that the results are robust
against different configurations of the D∗∗ℓνℓ background. In addition, the yields of the
real-D background are significantly different from the expectations from the simulation for
the primary leptons: this is not surprising, as this component features a large fraction of
B-hadronic decays for which we have poor information (see Sect. 5.2).

To build confidence in the control-region fit results, I use them to scale the background
components in simulation and examine the data-simulation agreement for several distri-
butions of sideband data. I observe a good data-simulation agreement. This comparison
can be found in Appendix B. Furthermore, to validate the results on the real-D back-
ground yields, I compare data and simulation distributions of p∗D and p∗ℓ in a region where
these decays are enhanced, selecting candidates with m(Y ) between 3.2–3.4 GeV/c2. The
results are shown in Figs. B.6–B.7 of Appendix B. I also find an improvement in the data-
simulation agreement in this region; however, a few percent discrepancy remains, which
should be covered by the uncertainty on the real-D background yields obtained from the
fit (about 10%).

Therefore, for all next studies, I consider a new composition to generate simulated
realistic samples. I rescale the yields of the decays in the D∗∗ℓνℓ background of the original
simulation, both in the signal and control regions, and I also rescale the yields of the real-D
subcomponent in the control region, all according to the results from the control-region
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fit in Tab. 6.2.6 This new sample is used for validating the final fit configuration and for
assessing the expected systematic uncertainties.

6.4 Fit to a simulated Run I data set

In this section, I carried out the full fit of the signal and control regions and demonstrate
the feasibility of the simultaneous analysis of B → Dℓνℓ and B → D∗ℓνℓ decays. To this
extent, I use a simulated sample of the same size of the Belle II Run I sample.

The data sample is generated using the full Belle II simulation, along with D-mass
sideband and off-resonance data. The signal decays are generated using simulation, with
the branching fractions and BGL models reported in Tab. 4.1. The fake-D and continuum
are described using the D-mass sideband and off-resonance data, as described in Sect. 6.2.4.
For the real-D and Xℓνℓ background, I use the simulated data described in Sect. 6.2.3
and 6.2.2, but I rescale the yields and the branching fraction according to the results of
the fit to the control region, as explained in the previous section.

The sample is fitted using templates built from the very simulated candidates that make
up the data. Therefore, the results of the test are free from any statistical fluctuations: if
the analysis is properly set up, the fit must return exactly the same values of the parameters
used in the generation of the sample. Nonetheless, the parameter uncertainties should
reflect those expected from a fit to the experimental data sample. This test, called “Asimov
fit”, is particularly advantageous as it provides a rapid and efficient mean to assess the
accuracy and sensitivity of the analysis.

As a preliminary check, I run a fit focusing exclusively on the signal region and sig-
nal decays, i.e., without including any backgrounds in the sample. In this test, the fit
parameters are the 22 model-independent observables and f+−/f00. This provides an ini-
tial consistency check of the signal parametrisation: I obtain the generation values for all
parameters. The fit results and projections are shown in Appendix C.

Then, I carry out the fit to the signal and control regions including also the background
components, i.e., in the same expected conditions as for the fit to the experimental data.
The generated distributions for the signal and control regions are shown in Fig. 6.9–6.10
with fit projections overlaid. The Asimov fit returns the generated values for all parameters,
both for the signal and the backgrounds components. The results of the model-independent
observables determined from the Asimov fit are shown in Fig. 6.11 and compared to the
expected functions.

The correlation matrix of the Asimov fit is reported in Fig 6.12. As expected, a high
correlation is observed among the parameters of the model-independent observables, a′n,
b′n, c′n and G′

m, both across different bins of w, and between the observables of B → Dℓνℓ
and B → D∗ℓνℓ decays. In addition, a strong correlation is also observed between f+−/f00

and the Coulomb factor, θ, as well as with the branching ratios of the D mesons: B(D0 →
K+π−), B(D− → K+π−π−) and B(D∗− → D

0
X).

In Fig. 6.13, I also show the pull values of each Gaussian-constrained parameter, θci .
The pull is defined as the uncertainty-weighted residual,

θ̂i − θci
σθci

, (6.14)

where θci is the central value of the Gaussian constraint, σcθi is its uncertainty, and θ̂i is

6As the D(∗)ηℓνℓ branching fraction is negative and compatible with zero, I set this branching fraction
to zero.
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Figure 6.9: Asimov fit results. Distributions of (left column) cos θBY , (middle column) p∗ℓ
and (right column) p∗D with fit projections overlaid. From top to bottom: D−µ+, D0

µ+,
D−e+, and D

0
e+ samples in the signal region. Pulls are flat as expected for an Asimov

fit. The Xℓνℓ backgrounds are shown as a single component.
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Figure 6.10: Asimov fit results. Distributions of (left column) p∗ℓ and (right column) p∗D
with fit projections overlaid. From top to bottom: D−µ+, D0

µ+, D−e+, andD0
e+ samples

in the control region. Pulls are flat as expected for an Asimov fit.
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Figure 6.11: Measurements of the model-independent observables from the Asimov fit:
(from top to bottom, left to right) G′

m, a′n, b′n, and c′n. Black points are the results
obtained from the fit, red points are the expected function from the model used in the
signal generation. The uncertainty associated to the model-independent variables is only
statistical, as the systematic uncertainty is discussed in Chapter 7.

the fit result. In the figure, I show for θ̂i the fit uncertainty normalised to the constraint
uncertainty, σθ̂i/σ

c
θi

, to assess whether the data improve the original uncertainty of the
constraint. Note that the data are generated using the results from the control-region fit,
while the Gaussian constraints have values from Tab. 5.3. For instance, for the gap modes
D(∗)ηℓνℓ, the data are generated assuming branching fraction zero, while the Gaussian
constraint has central value of 1.8%, as it will be for the fit to data.

The pulls indicate that all parameters are correctly estimated, with the expected de-
viation from the original constraints. In addition, the improvement on the constraint
uncertainties is evident for the branching fractions of the D∗∗ℓνℓ decays, and especially
for the gap modes, as also observed in the fit to the control data only (see Tab. 6.2).
Furthermore, the uncertainty on B(D∗− → D

0
X) improves by about 30% in the fit,

due to the simultaneous analysis of the D
0
ℓ+ and D−ℓ+ samples using the constraint

B(D∗− → D−X) = 1− B(D∗− → D
0
X).

Through this Asimov fit, the entire fit is validated in conditions similar to those ex-
pected for experimental data. In the next section, by analysing the results of 1000 different
fits, I also investigate any potential bias on the estimated parameters and the coverage of
their uncertainties.
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Figure 6.12: Correlation matrix of the fit parameters in the simultaneous fit between the
signal and control regions.
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Figure 6.13: Pulls of the Gaussian constraints, described in the Sect. 6.2.5, in the final fit
configuration. See the text for a discussion.

6.5 Check of the fit properties

I generate 1000 samples, called “toys”, each corresponding to the size of the Run I Belle II
data set, by drawing variables from the template of each sample component. The yields
of the components are sampled from Poisson distributions centred at the values expected
either from simulation or control data: the same used to generate the sample for the Asimov
fit described in the previous section.

I fit each toy data set, and calculate the pull of the parameters, defined as

θ̂i − θgi
σ̂θ̂i

, (6.15)

where θgi is the generation value of a fit parameter, θ̂i is its fit value, and σ̂θ̂i is its fit un-
certainty. For an unbiased and asymptotically correct χ2 fit, the pull distribution should
be normal, i.e., a Gaussian distribution centred at zero with a unit standard deviation. If
the mean of the pull distribution deviates from zero, it indicates a fit bias for that param-
eter; a standard deviation smaller than one indicates an overestimation of the parameter
uncertainty, while a standard deviation larger than one indicates an underestimation.

I summarise the results in Fig 6.14, where the mean and the standard deviation of
the pull distribution for each parameter are shown. All pull distributions are reported in
Appendix F. They are generally unbiased normal Gaussian distributions. Some parameters
present pull mean that are significantly different from zero; however, the resulting bias is
only a fraction (smaller than 20%) of the statistical uncertainty and can be accounted for
as a systematic uncertainty.

From the toys analysis, I can also obtain information about the expected statistical
uncertainty. To assess only this contribution, I fix all Gaussian-constrained parameters such
that the uncertainties on the prior-information of these external inputs are not propagated
in the fit (I account as systematic uncertainties). The average statistical uncertainties on
the parameters agree with those obtained from the Asimov fit, when done under the same
condition concerning the Gaussian constraints. The systematic uncertainties are calculated
and discussed in the next chapter.
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Figure 6.14: Summary of the pull analysis for the model-independent observables and
f+−/f00 measured in the fit to 1000 toy samples. The black points are the pull means,
the black bars the uncertainties on the means, and the grey bars are the pull standard
deviations.
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Chapter 7

Systematic uncertainties and final
measurements

A detailed study of the sources of systematic uncertainties is essential to yield an accurate
and solid measurement. In this chapter, I identify and assess those effecting f+−/f00 and
the model-independent observables. Finally, from the measured model-independent observ-
ables, I derive the B → Dℓνℓ and B → D∗ℓνℓ branching fractions and, for B → D∗ℓνℓ
decays, the lepton forward-backward asymmetry and the D∗ longitudinal polarisation, both
as functions of the recoil energy w. The systematic uncertainties affecting these measure-
ments are derived from those of the model-independent observables.

7.1 Systematic uncertainties

Systematic uncertainties are generally a major limitation, and often the primary one, in
precision measurements performed with B → D(∗)ℓνℓ decays. Thus, their accurate as-
sessment is crucial. In this section, I calculate the systematic uncertainties affecting the
measurement of the model-independent observables and f+−/f00 (collectively referred to
as the parameters of interest). These represent the expected uncertainties, assuming the
sample composition used for the Asimov fit in Sect. 6.4, i.e., using a realistic simulated
sample that reproduces the Belle II Run I data set. To assess the uncertainties in the final
measurements, the procedures described in the following should be repeated by replacing
this simulated sample with the experimental data, or by generating toy samples using the
results from the data. This will be done once I receive the permission from the Belle II
Collaboration to unblind.

I categorise the systematic uncertainties into two main types: uncertainties from ex-
ternal inputs and uncertainties from analysis assumptions. In the following sections, I first
outline the methodology to compute the contributions from the two categories. Then, I
show their impact on the measurements. In general, for a given source of systematic uncer-
tainty, I calculate a covariance matrix. The total systematic uncertainties are derived from
the sum of the covariance of the fit and all the covariances of the systematic uncertainties.
For each parameter of interest, the square root of the corresponding diagonal element of
the resulting covariance matrix is taken as the total systematic uncertainty. The total
covariance matrix is then used to derive the uncertainties on all measurements described in
this and next chapter. I also split the total uncertainties in statistical and systematic (each
having its own covariance). The statistical uncertainty encapsulates only the uncertainty
due to the Belle II sample size.
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Before proceeding further, a caveat: at the time of this writing, all uncertainties have
been calculated except for one. The missing uncertainty is that related to the form-factor
model for the decays in the Xℓνℓ background. The calculation for this contribution is
ongoing, but, based on the results in previous similar analyses, I expect a limited impact
on the final uncertainty. Thus, the total expected uncertainty discussed in this thesis
should be marginally affected.

7.1.1 External inputs

The uncertainties from the external inputs constitute the major part of the systematic un-
certainties. External inputs are incorporated in the fit as Gaussian-constrained parameters,
meaning their uncertainties are already included in the fit uncertainties, accounting also for
possible correlations. Here, I aim to separate the contribution of each constraint to better
understand the impact of each source. There is no trivial method for doing this in a cor-
rect way, but only approximations, which neglect, to some extent or another, correlations
among the external inputs. Therefore, the covariance matrix from the nominal fit, which
includes all Gaussian constraints, is used in the analysis to assess the total uncertainty.

Nonetheless, I can gain an understanding on the impact of an external input as follows.
I perform an alternative Asimov fit where I fix the parameter to the value found at the
minimum χ2 of the nominal fit (i.e., where the parameter is Gaussian-constrained). This
approach removes the contribution of this parameter to the uncertainties of all other pa-
rameters without altering the χ2 minimum, thereby preserving the best-fit values. Then,
I calculate the difference between the covariance matrices of the nominal and alternative
fits, restricting the covariances to the parameters of interest. The resulting matrix gives
the contribution of the Gaussian-constrained parameter to the uncertainty of these param-
eters. The systematic uncertainty on a parameter is assigned as the square root of the
corresponding diagonal element of this matrix.

The procedure is iterated for each Gaussian-constrained parameter. Note that, as the
method to derive each contribution neglects part of the correlations between the external
inputs, the sum in quadrature of the resulting uncertainties on a parameter (including its
statistical uncertainty) might be different than the total uncertainty from the nominal fit
with all Gaussian constraints. Although I find this difference small for all parameters, only
the covariance matrix from the nominal fit with all Gaussian-constrained parameters is
used in the following, as already explained before. For illustrating the measurements in
the next sections, I use the covariance from the fit to the simulated Run I sample presented
in Sect. 6.4; once unblinding permission is granted, this is replaced with the covariance from
the fit to data.

The list of all external inputs has been provided in Sect. 6.2.5. There are 25 inputs in
total: 6 for the branching fractions of D∗∗ℓνℓ decays; 12 for the yields of continuum and
fake-D backgrounds in the signal and control regions; 3 for the branching fractions of D
and D∗ decays; one for the number of BB pairs; one for the ratio of B0 and B+ lifetimes;
one for the Coulomb factor; and one for the tracking-efficiency corrections.

7.1.2 Analysis assumptions

Analysis assumptions pertain to the modelling of the backgrounds and the accuracy of
the simulation in reproducing experimental effects. Regarding the backgrounds, there is
a number of parameters that are fixed, in order to simplify the fit. Additionally, aside
from the signal components, shape templates are also fixed. These shapes depend on the
subcomposition of each background and/or on the assumed decay model. For instance, in
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the first case, the real-D background template for primary leptons (a component with a
free yield in the fit) depends on the relative amount of the misreconstructed B hadronic
decays making up the template, hence on their assumed branching fractions. In the second
case, an example is the template of the (p∗ℓ , p

∗
D) distribution of the B → D∗∗ℓνℓ decays,

which depends on the form-factor model used in the simulation.
Regarding the simulation, a number of corrections have been applied to fix known mis-

modelling: track momentum scale, photon energy bias, lepton and hadron PID-efficiency
corrections, and tracking-efficiency corrections (see Sect. 4.1.1). Such corrections introduce
uncertainties that must be propagated to the parameters of interest. The uncertainty on
tracking-efficiency corrections has already been included as a Gaussian-constrained param-
eter, and the impact of the track momentum scale and photon energy bias are negligible in
this analysis. Uncertainties on PID-efficiency corrections are evaluated with the procedure
described in the following.1

In general, systematic uncertainties from analysis assumptions are calculated by per-
forming multiple alternative fits to the data, varying the assumptions made in the fit. For
instance, variations may include alternative values for parameters fixed in the nominal fit.
These alternative values are obtained by sampling from a Gaussian distribution, centred
on the value used in the fit and with the uncertainty associated with the fixed parameter
as the standard deviation. I then run the fit using the alternative value. From the results
of hundreds of alternative fits, I calculate a covariance matrix by taking the covariances of
the distributions of the residuals, where the residuals are the difference between the results
of the alternative fits and the nominal fit. The systematic uncertainty on a parameter of
interest is assigned as the square root of the corresponding diagonal element of this matrix.

To obtain a first assessment of the systematic uncertainty, I apply this procedure to the
simulated Run I sample presented in Sect. 6.4; once unblinding permission is granted, this
is replaced with the experimental data sample. With this method, I consider systematic
uncertainties for the following sources.

• Uncertainties on the yields (N sec.
D−e+ , N sec.

D−µ+ , N fake
D−e+ and N fake

D−µ+) and templates of
the real-D subcomponents fixed in the control region. To estimate their contribu-
tions, I check the uncertainties of the branching fractions of the decays inside these
subcomponents, described in detail in Sect. 5.2. I estimate that a 20% uncertainty
of the expected yields of these background reflects the current knowledge on their
branching fractions. I sample 300 variations.

• Uncertainties on the fixed yields of the B → D((∗)∗)τντ decays and of the misidenti-
fied leptons (NXτντ

j and Nmis-ID leptons
j ), combined into a single fixed template in both

the signal and control regions. I assign a generous 30% uncertainty for NXτντ
j , con-

sidering the tensions between the measured and expected values of R(D(∗)) and the
large uncertainties on the unknown rates of the (subdominant) semitauonic decays
involving D∗∗. I assign the same uncertainty to Nmis-ID leptons

j , adopting a conserva-
tive approach. I sample 300 variations. The resulting systematic uncertainties are
subleading given the small fraction of these backgrounds in all samples.

• Uncertainties on the PID-efficiency corrections. The PID-efficiency corrections are
per-candidates weights derived as a function of the momentum and polar angle of the
particle involved, as shown in Fig. 4.3. Each weight is provided with 100 variations

1A note on the efficiency parameters that are fixed in the fit, as shown in Tab. 6.1: the uncertainty
on the efficiency are statistical and arise from the size of the simulation sample used. They are negligible
compared to those on the efficiency corrections, which are included as systematic uncertainties.
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that account for the correction uncertainties. I apply the different weights to the
simulated samples to compute 100 different corrections and generate templates for
each component, and then perform 100 Asimov fits to the data set.

• Uncertainties on the D∗∗ℓνℓ form-factor models are to be calculated. One possible
approach to compute these uncertainties is to consider several variations of the form-
factor models to build templates for these backgrounds and use them in the fit. This
contribution is expected to be subleading compared to that from the uncertainty
on the branching fractions of these decays, which have already been considered as
external inputs.

For the modelling of the fake-D and continuum backgrounds in the signal region, I
calculate an additional systematic uncertainty for the shape of the fit template, to assess
potential biases arising from using the D-mass sideband and off-resonance data to model
the signal region. The data-driven calculation of the templates builds confidence in the
modelling of these backgrounds. However, as these two components together constitute
the dominant background of the sample, analysis assumptions associated with them must
be carefully inspected. Fig. 5.3 shows that differences might be present between the signal-
region background and that modelled with my analysis strategy. Therefore, I generate
1000 toy samples where the template for these two components is taken from simulated
candidates in the signal region, instead of the template build with the strategy described in
Sect. 5.1. Then, I fit the toy samples with the template obtained using the analysis strategy
(applied to simulated data instead of experimental data to avoid introducing differences
due to potential data-simulation discrepancies). I consider the average residuals (i.e.,
the average difference between the fit and generation values of the parameters) as the
systematic uncertainties, and I build the covariance from these uncertainties considering
the correlation between the residuals.

Finally, I include two other systematic uncertainties: that related to the fit biases
discussed in Sect. 6.5 and that related to the size of the samples used to make the templates.
For the former, I take the average residuals as the systematic uncertainties, and build the
covariance considering the correlation between the residuals. For the latter, I run a fit
to the Asimov data where the uncertainties on the templates are set to zero in the χ2 of
Eq. 6.1. I calculate the difference between covariances of the nominal fit and this fit. I
consider as systematic uncertainty on a parameter the square root of the corresponding
diagonal element of this matrix.

7.2 Measurement of f+−/f00

The systematic uncertainties on f+−/f00 are presented in Tab. 7.1. In the table, the
systematic sources are grouped as follows: in the row “B(D)”, I include together the con-
tributions from all D(∗) branching fractions; in the row “D∗∗ℓνℓ”, the contributions from
all branching fractions of the decays in this component; in the row “Backgr. model”, all
uncertainties related to semitauonic decays and misidentified leptons, real-D, fake-D and
continuum backgrounds, and in the row “PID”, both the uncertainties related to hadron
(K) and lepton (e, µ) particle identification. The row “Templates stat.” refers to the
contribution from the uncertainty on the templates in the χ2 of Eq. 6.1. The row “Total
systematic” combines all systematic uncertainties of the previous rows. The contribution
from the Coulomb factor is reported separately, as this is considered as a theoretical un-
certainty. The statistical uncertainty is also reported for a comparison, and finally last row
gives the total uncertainty.

122



CHAPTER 7. SYSTEMATIC UNCERTAINTIES AND FINAL MEASUREMENTS

Source [%]

NBB < 0.1
B(D) 1.9
τB0/τB+ 0.4
Track. efficiency 0.2
D∗∗ℓνℓ 1.1
Backgr. model 0.4
PID < 0.1
Templates stat. 0.3
Fit bias < 0.1

Total systematic 2.3
Coulomb factor 2.3
Statistical 0.7

Total 3.3

Table 7.1: Expected fractional uncertainties on f+−/f00.

In the measurement of f+−/f00, the dominant source of systematic uncertainty is the
Coulomb factor. The knowledge of the D-meson branching fractions contributes the second
largest uncertainty, while the uncertainty arising from the knowledge of the branching
fractions of the D∗∗ℓνℓ decays is the third largest. A detailed study on the validation of
the systematic uncertainty regarding the knowledge of the branching fractions of D∗∗ℓνℓ
decays can be found in Appendix D. In Tab. 7.2, my result is compared with the world’s
best measurement from Belle [67]. The central value of my result is not reported, as the
analysis is still blind. To obtain the expected uncertainties on my result from the fractional
errors reported in Tab. 7.1, I assume the central value of 1.066 used in the simulation (see
Tab. 4.1).

My measurement is expected to be competitive with the Belle measurement. The
statistical precision is improved by a factor of approximately 1.7. This is expected as
semileptonic B decays provide larger samples than those from B → J/ψK decays used in
the Belle measurement. The systematic uncertainty on my result is about 1.3 times larger.
However, the theoretical uncertainty on my result due to possible isospin-breaking effects
is nearly half that of Belle result.

This improvement is attributed to a more robust assumption of isospin symmetry in
semileptonic B decays, where the dominant source of uncertainty is the Coulomb factor,
in contrast to the stronger assumptions required for B → J/ψK decays, involving factori-
sation of hadronic currents in the decay amplitude.
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f+−/f00

My work XXX ± 0.007(stat)± 0.025(syst)± 0.024(th)

Best measurement 1.065± 0.012(stat)± 0.019(syst)± 0.047(th)

Table 7.2: Comparison of my result of f+−/f00 with the current world’s best measure-
ment [67]. The central value of my result is not reported, as the analysis is still blind. I
assume the central value of 1.066 used in the simulation to obtain the uncertainty from the
fractional errors reported in Tab. 7.1. The third uncertainty is related to possible isospin-
breaking effects.

7.3 Measurement of the model-independent observables

The systematic uncertainties on the model-independent observables are summarised in
Tab. 7.3 and their impact is displayed in Fig. 7.1. In the table, the systematic sources are
grouped as explained in the previous section. Figure 7.2 shows the correlation between
the total uncertainties. The main systematic uncertainties arise from the uncertainties
on the templates and the background modelling, mainly from the fake-D and continuum
backgrounds in the signal region.

1 1.1 1.2 1.3 1.4 1.5
0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042
 (simulation)Belle II

∫ L dt  = 365 fb-1

stat. + syst. unc.

stat. unc.

expected

G
'(w

)

w
1 1.1 1.2 1.3 1.4 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 (simulation)Belle II

stat. + syst. unc.

stat. unc.

expected

∫ L dt  = 365 fb-1

a'
(w
)

w

1 1.1 1.2 1.3 1.4 1.5
0.1−

0.05−

0

0.05

0.1

0.15

0.2

0.25

0.3
 (simulation)Belle II

b'
(w
)

w

∫ L dt  = 365 fb-1

stat. + syst. unc.

stat. unc.

expected

1 1.1 1.2 1.3 1.4 1.5
0.7−

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2
 (simulation)Belle II

c'
(w

)

∫ L dt  = 365 fb-1

stat. + syst. unc.

stat. unc.

expected

w

Figure 7.1: Measurements of the model-independent observables from the Asimov fit: (from
top to bottom, left to right): G′

m, a′n, b′n, and c′n. Black points are the results obtained
from the fit with the statistical uncertainty only; red bars are the total uncertainty, from
the sum of all uncertainties; the blue line is the expected function from the model used in
the signal generation.
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Figure 7.2: Correlation matrix of the 22 model-independent observables, from top to bot-
tom, including statistical and systematic uncertainties, only systematic and only statistical.
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Source B(B → Dℓνℓ) B(B → D∗ℓνℓ)

NBB 1.5 1.5
B(D) 1.0 0.7
τB0/τB+ 0.2 0.2
Track. efficiency 0.8 0.8
D∗∗ℓνℓ 1.3 1.2
Backgr. model 0.8 0.9
PID 0.5 0.5
Templates stat. 0.3 0.2
Fit bias < 0.1 0.1

Total systematic 2.6 2.4
Coulomb factor 1.0 1.1
Statistical 0.5 0.4

Total 2.8 2.6

Table 7.4: Expected fractional uncertainties on B(B → Dℓνℓ) and B(B → D∗ℓνℓ).

As explained in Chapter 2, the model-independent observables provide a means to
obtain the following measurements:

• the branching fractions of B → Dℓνℓ and B → D∗ℓνℓ decays;

• the lepton forward-backward asymmetry AFB, defined in Eq. 2.35;

• the D∗ longitudinal polarisation FD∗
L , defined in Eq. 2.36;

I derive these measurements in the following sections.

7.4 Measurement of branching fractions

The signal branching fractions of B → Dℓνℓ and B → D∗ℓνℓ are determined by using
Eqs. 6.10– 6.11, Eqs. 2.30–2.32 and 2.34.

The uncertainties on the branching fractions can be derived from the covariance matrix
of the model-independent observables, using the total uncertainties in Tab. 7.3 and the
correlation in Fig. 7.2. I also provide a breakdown of all sources of uncertainty using
the corresponding covariances of the model-independent observables.2 This breakdown is
reported in Tab. 7.4. The main systematic uncertainties affecting the branching fraction
measurements are those from NBB and from the D∗∗ℓνℓ background, for both B → Dℓνℓ
and B → D∗ℓνℓ decays. I validate, also for the branching fraction measurements, the
systematic uncertainty regarding the knowledge of the branching fractions of D∗∗ℓνℓ decays
(see Appendix D).

My results are compared with the world’s best measurements in Tab. 7.5, where I
consider the branching fractions for both B+ and B0. For the latter case, I use Eq. 6.7
and 6.8; the systematic uncertainties from the B0 and B+ lifetime ratio and from the

2These intermediate covariances are not reported though.
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My work Best measurement

B(B+ → D
0
ℓ+νℓ) [%] XXX ± 0.01(stat)± 0.06(syst) 2.34± 0.03(stat)± 0.13(syst)

B(B+ → D
∗0
ℓ+νℓ) [%] XXX ± 0.02(stat)± 0.13(syst) 5.40± 0.02(stat)± 0.21(syst)

B(B0 → D−ℓ+νℓ) [%] XXX ± 0.01(stat)± 0.05(syst)± 0.02(th.) 2.31± 0.03(stat)± 0.11(syst)

B(B0 → D∗−ℓ+νℓ) [%] XXX ± 0.02(stat)± 0.12(syst)± 0.05(th.) 4.90± 0.02(stat)± 0.16(syst)

Table 7.5: Comparison between the branching fractions from my analysis and the current
world’s best measurements [45, 56, 62]. The central value of my results is not reported, as
the analysis is still blind. I assume the values used in the simulation (see Tab. 4.1) to obtain
the uncertainty from the fractional errors reported in Tab. 7.4. The third uncertainty for
the B0 branching fraction is related to the Coulomb factor.

Coulomb factor in Tab. 7.4 are applied only to the B0 branching fractions. Moreover, the
statistical uncertainty and all other systematic uncertainties in Tab. 7.4 are fully correlated
between B(B+ → D

0
ℓ+νℓ) and B(B0 → D−ℓ+νℓ), and also between B(B+ → D

∗0
ℓ+νℓ) and

B(B0 → D∗−ℓ+νℓ). The best measurements for the B+ branching fractions are obtained
by Babar [62] using a global analysis of B → Dℓνℓ and B → D∗ℓνℓ decays; those for the
B0 branching fractions are from Belle [45,56].

The branching fractions obtained from my analysis are expected to be competitive with
the world’s best. The statistical uncertainties in my measurements are smaller or the same
of the best measurements. Regarding systematic uncertainties, despite the contribution
from the knowledge of the branching fractions of the B → D∗ℓνℓ decays, I have achieved a
better control over several key sources. Specifically, compared to previous measurements,
my analysis features an improvement from measuring f+−/f00, which is a dominant sys-
tematic in previous measurements, exploits better knowledge of tracking efficiency, and get
rid of soft-pion tracking efficiency for D∗ reconstruction. These improvements collectively
result in competitive or higher precision compared to previous measurements.

From these measurements, the ratio of the B → Dℓνℓ and B → D∗ℓνℓ branching
fractions can also be determined, as well as the ratios of the B → D(∗)µ+νµ and B →
D(∗)e+νe branching fractions. The latter serve as tests of flavour universality for light
leptons. I plan to incorporate these two measurements into the analysis during the Belle II
internal review; however, they are not yet available at the time of this writing.

7.5 Measurements of AFB and FD∗

L

For the B → D(∗)ℓνℓ decay, I determine the lepton forward-backward asymmetry AFB and
the D∗ longitudinal polarisation FD∗

L , both as functions of w, as per Eqs. 2.35 and 2.36.
The results are shown in Fig. 7.3. These measurements are expected to be statistically
limited. The main systematic uncertainties arise from the uncertainties on the templates
and the background modelling, mainly from the fake-D and continuum backgrounds in
the signal region. I also obtain AFB and FD∗

L integrated in w. The uncertainties on the
integrated values of AFB and FD∗

L are reported in Tab. 7.6.
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Figure 7.3: Measurements of (left) AFB(w) and (right) FD∗
L (w) from the Asimov fit. Black

points are the results obtained from the fit with the statistical uncertainty only; red bars
are the total uncertainty, from the sum of all uncertainties; the blue line is the expected
function from the model used in the signal generation.

Sources AFB FD∗
L

NBB < 0.01 < 0.01
B(D) 0.01 0.01
τB0/τB+ < 0.01 < 0.01
Track. efficiency < 0.01 < 0.01
D∗∗ℓνℓ 0.03 0.02
Backgr. model 0.22 0.30
PID 0.17 0.29
Templates stat. 0.26 0.35
Fit bias 0.02 0.05

Total systematic 0.38 0.55
Coulomb factor < 0.01 < 0.01
Statistical 0.47 0.70

Total 0.60 0.87

Table 7.6: Expected uncertainties on AFB and FD∗
L in unit of 10−2.

In Tab. 7.7, I compare the expected uncertainties on AFB and FD∗
L from my measure-

ments with the Belle II analysis of B0 → D∗−ℓ+νℓ of Ref. [91]. The expected precision
on AFB improves upon the previous Belle II measurement, combining both the electron
and muon channels. This improvement is due both to a larger data set employed, which
is nearly double in size, and to a reduced systematic uncertainty. On the other hand, the
precision on FD∗

L is lower because I cannot leverage information from the helicity angle
cos θD in the B → D∗ℓνℓ decay, due to the partial reconstruction of the D∗ decay; in
contrast, the Belle II measurement exploits this information.

I can also obtain the differences between measurements from the electron and muon
modes, ∆AFB = Ae

FB − Aµ
FB and ∆FD∗

L = FD∗, e
L − FD∗, µ

L . These enable investigations
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My work Belle II measurement

AFB XXXX ± 0.005(stat)± 0.004(syst)
0.228± 0.012(stat)± 0.018(syst) (e mode)
0.211± 0.011(stat)± 0.021(syst) (µ mode)

FD∗
L XXXX ± 0.007(stat)± 0.006(syst)

0.520± 0.005(stat)± 0.005(syst) (e mode)
0.527± 0.005(stat)± 0.005(syst) (µ mode)

Table 7.7: Comparison between my results of AFB and FD∗
L integrated in w and the

measurements from Belle II from Ref. [91]. The central value of my results is not reported,
as the analysis is still blind.

of flavour universality violation for light leptons. I plan to incorporate also these two
measurements into the analysis during the Belle II internal review; however, they are not
yet available at the time of this writing.

7.6 Summary of the results

I report a summary of the expected measurements derived from the model-independent
observables, including also f+−/f00 for completeness:

B(B+ → D
0
ℓ+νℓ) = (XXX ± 0.01± 0.06)% ,

B(B+ → D
∗0
ℓ+νℓ) = (XXX ± 0.02± 0.13)% ,

B(B0 → D−ℓ+νℓ) = (XXX ± 0.01± 0.05± 0.02)% ,

B(B0 → D∗−ℓ+νℓ) = (XXX ± 0.02± 0.12± 0.05)% ,

AFB = (XXX ± 0.5± 0.4)% ,

FD∗
L = (XXX ± 0.7± 0.6)% ,

f+−/f00 = XXX ± 0.007± 0.025± 0.024 .

where the first uncertainty is statistical, the second systematic, and the third, when present,
is related to theoretical inputs or assumptions. The measurements are expected to be com-
petitive with the world’s best measurements. In addition, Figure 7.4 reports the statistical,
systematic and total correlation matrices between the measurement. Note that the sta-
tistical and systematic uncertainties between the B+ and B0 branching fractions are fully
correlated.

130



CHAPTER 7. SYSTEMATIC UNCERTAINTIES AND FINAL MEASUREMENTS

BR(B
+

D
0

+ )

BR(B
+

D
*0

+ )
f+

/f 00 A FB F
D
*

L

BR(B+ D0 + )

BR(B+ D*0 + )

f+ /f00

AFB

FD*
L

1.00 0.92 -0.58 0.03 0.02

0.92 1.00 -0.47 0.04 0.07

-0.58 -0.47 1.00 -0.08 -0.05

0.03 0.04 -0.08 1.00 0.95

0.02 0.07 -0.05 0.95 1.00

BR(B
+

D
0

+ )

BR(B
+

D
*0

+ )
f+

/f 00 A FB F
D
*

L

BR(B+ D0 + )

BR(B+ D*0 + )

f+ /f00

AFB

FD*
L

1.00 0.86 -0.57 -0.02 0.01

0.86 1.00 -0.46 -0.24 -0.21

-0.57 -0.46 1.00 -0.04 -0.02

-0.02 -0.24 -0.04 1.00 0.94

0.01 -0.21 -0.02 0.94 1.00

BR(B
+

D
0

+ )

BR(B
+

D
*0

+ )
f+

/f 00 A FB F
D
*

L

BR(B+ D0 + )

BR(B+ D*0 + )

f+ /f00

AFB

FD*
L

1.00 0.84 -0.56 -0.06 -0.05

0.84 1.00 -0.47 -0.22 -0.19

-0.56 -0.47 1.00 -0.02 -0.00

-0.06 -0.22 -0.02 1.00 0.95

-0.05 -0.19 -0.00 0.95 1.00

Figure 7.4: Correlation matrix between the measurements. From top to bottom: statistical,
systematic and total.
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Chapter 8

Measurement of |Vcb|

In this chapter, I finally obtain |Vcb| by interpreting with a form-factor parametrisation the
measurement of the model-independent observables. This is the first experimental analysis
where |Vcb| is measured simultaneously from both B → Dℓνℓ and B → D∗ℓνℓ decays.

8.1 Fit to the model-independent observables

I determine |Vcb| using a parametrisation of the form factors from which I calculate the
model-independent observables and compare them with the measured values. This is
achieved by a fit that minimises the χ2 function

χ2 =

22∑
i,j

(xi − xmodel
i )C−1

ij (xj − xmodel
j ) , (8.1)

where xi and xj are the measured values of the model-independent observables, Cij is their
covariance matrix, and xmodel

i and xmodel
j are the predicted values, which depend on |Vcb|

and the form-factor parameters of the model. Once a form-factor model is chosen, the
model-independent observables for B → Dℓνℓ are calculated through Eq. 2.34, and for
B → D∗ℓνℓ using Eqs. 2.30–2.32.

In the following I use the BGL parametrisation, expanded in Appendix A, which gives
the more general model recommended for phenomenological analyses, as explained in Chap-
ter 2. I show the feasibility of the analysis by using the model-independent observables
obtained in Sect. 7.3 from the simulated Run I data set. I also show that unbiased results
can be obtained with other parametrisations, by using a CLN model. This other analysis
is reported in Appendix E.

To obtain |Vcb|, the form factors must be known at least in one value of w. The best
precision is given by lattice-QCD calculations, as explained in Sect. 2.4, which provides
form-factors values for both B → Dℓνℓ and B → D∗ℓνℓ either at w = 1 and also for a
number of points at w > 1. To have a better understanding of the expected sensitivity
from Belle II data, I use the minimal set of required inputs from lattice-QCD, i.e., the
point at w = 1:

G(1) = 1.029± 0.009 , (8.2)
hA1(1) = 0.904± 0.013 , (8.3)

for B → Dℓνℓ and B → D∗ℓνℓ, respectively (see Appendix A for their relations with
the BGL parameters). These numbers are determined from the generation values of the
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BGL parameters and branching fractions used in the Belle II simulation (see Tab. 4.1).
Their uncertainty reflects those from the latest FLAG averages [63], in order to represent
a realistic scenario. I will not employ points at w > 1 in the analysis presented here,
although these can be certainly considered when the analysis is applied to experimental
data.

8.1.1 BGL fit

An arbitrary assumption of the BGL parametrisation, which might generate some model-
dependence in the results, is the choice of the truncation order of the series to calculate
the form factors. The truncation orders determines the fit parameters, which are the series
coefficients. Different solutions have been proposed to address this issue [38,39,43,79,80],
but there is not full consensus on the criteria to adopt. Ultimately, the choice also depends
on the very data at hand, both from the experimental side and from the lattice-QCD
calculations, which determine the sensitivity to a certain set of coefficients, and the use or
not of unitarity constraints on the coefficients.

The analysis I present here has only the illustrative scope to show how my measurement
of the model-independent observables can be used. I conduct a limited study to select
the possible truncation orders, inspecting the configuration that minimises the Akaike
Information Criterion (AIC), defined as AIC=2N + χ2, where N is the number of fit
parameters. This approach allows for an efficient choice of parameters while balancing
model complexity and goodness of fit. A more detailed study will be conducted once I
have permission from the Collaboration to fit the real data, in which I will also include
lattice-QCD points at w > 1.

Parameter Generator values Configuration 1) Configuration 2) Configuration 3)

a
f+
1 −0.094 −0.069± 0.002 −0.094± 0.009 −0.095± 0.026

a
f+
2 0.340 truncated 0.33± 0.11 0.37± 0.87

a
f+
3 −0.100 truncated truncated −0.34± 7.99

af1 0.01713 0.052± 0.013 0.017± 0.022 0.017± 0.022

ag0 0.02596 0.025± 0.002 0.026± 0.003 0.026± 0.003

ag1 −0.06049 −0.142± 0.051 −0.061± 0.060 −0.061± 0.061

aF1
1 0.00753 0.0028± 0.0007 0.0077± 0.0042 0.0077± 0.0042

aF1
2 −0.09346 truncated −0.095± 0.071 −0.095± 0.071

hA1(1) 0.9038 0.924± 0.011 0.904± 0.012 0.904± 0.013

G(1) 1.0294 1.021± 0.008 1.029± 0.009 1.029± 0.009

|Vcb| [10−3] 38.72 37.29± 0.68 38.58± 0.85 38.59± 0.90

χ2 – 12.4 4.7 · 10−3 2.8 · 10−3

AIC – 24.4 16.0 18.0

Table 8.1: Different configurations of the fit for various assumptions regarding the trun-
cation of the series of the BGL form factors. The uncertainties include both statistical,
systematic and lattice contributions. I also reported the χ2 and Akaike Information Crite-
rion (AIC) values for the three configurations. The two lattice points G(1) and hA1(1) are
constrained with Gaussian penalties in the fit.
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Figure 8.1: Measurements of the product of |Vcb| and form-factor parameters (black points)
for both B → Dℓνℓ and B → D∗ℓνℓ, using configuration 2 in Tab. 8.1. The statistical (black
lines) and total uncertainties (red lines) are obtained by propagating the uncertainties of
the model-independent observables. The green points represent the lattice data used in
the measurement multiplied by |Vcb|. The error bands corresponding to 1, 2, and 3σ are
obtained using the total covariance matrix of the a posteriori fit.

I fit the series of the form factors using three different configurations, varying the series
truncation for both B → Dℓνℓ and B → D∗ℓνℓ decays (see Tab. 4.1). The fit parameters
are: a

f+
1 , af+1 , af+2 , af+3 and G(1) for the B → Dℓνℓ decay; and af1 , a

g
0, a

g
1, a

F1
1 , aF1

2

and hA1(1) for the B → D∗ℓνℓ decay; and |Vcb|, which is shared between the two decay
channels.1 For this test, I use the full covariance matrix included both statistical and
systematic uncertainties and both the G(1) and hA1(1) are constrained to the values in
Eqs. 8.2 and 8.3 using Gaussian penalties in the fit.

For all the configurations analysed, I would expect χ2 ∼ 0, as these are Asimov fits.
Table 8.1 reports the results from the three configurations. Configuration 1 exhibits sig-
nificant biases, along with a higher than expected χ2. In contrast, configurations 2 and 3
show no noticeable biases. Since configuration 2 has the lowest AIC value, I choose it for
the following studies and to provide a realistic estimate of the uncertainties on |Vcb| and
form factors.

I show the form factor parameters obtained from the model-observables in configuration

1Note that af
0 and aF1

0 are related to hA1(1) through Eqs. A.17 and A.18, and a
f+
0 to G(1) through

Eq. A.24.
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Parameter Generator values Fit scenario 1) Fit scenario 2) Fit scenario 3)

a
f+
1 −0.094 −0.094± 0.007 −0.094± 0.010 −0.094± 0.010

a
f+
2 0.340 0.33± 0.08 0.33± 0.12 0.33± 0.12

af1 0.01713 0.017± 0.016 0.017± 0.016 0.017± 0.016

ag0 0.02596 0.026± 0.002 0.026± 0.002 0.026± 0.002

ag1 −0.06049 −0.061± 0.043 −0.061± 0.044 −0.061± 0.045

aF1
1 0.00753 0.0075± 0.0028 0.0075± 0.0028 0.0075± 0.0028

aF1
2 −0.09346 −0.093± 0.011 −0.093± 0.048 −0.093± 0.048

hA1(1) 0.9038 0.904± 0.011 0.904± 0.022 0.904± 0.013

G(1) 1.0294 1.029± 0.009 1.029± 0.009 1.029± 0.028

|Vcb| [10−3] 38.72 38.72± 0.51 38.71± 0.88 38.72± 0.64

Table 8.2: Comparison of the generator values of |Vcb| and BGL parameters with the results
obtained from the fit of the model-independent observables in the three scenarios of the
configuration 2 described in the text.

2 in Fig. 8.1. The error bands corresponding to 1, 2, and 3σ are obtained using the total
covariance matrix of the a posteriori fit. Note that, through Eq. 2.5 and Eqs. 2.9-2.11,
I can directly convert the model-independent observables in a direct measurement of the
form factors f+, f , g and F1, all multiplied by |Vcb|, in bins of w. These data are also
shown Fig. 8.1: they would enable a determination of |Vcb| from the direct ratio of the
experimental measurements and the lattice-QCD calculations performed in the same bins
of w; i.e., through a parametrisation-free analysis. The different values of |Vcb| can be
averaged using the methods discussed in Ref. [149].

Using configuration 2, I conducted a study involving different assumptions for the lattice
points at w = 1. Three scenarios are explored:

• scenario 1: constrain G(1) and hA1(1) to the values in Eqs. 8.2 and 8.3 using Gaussian
penalties in the fit, enabling a better precision on |Vcb|;

• scenario 2: leave hA1(1) completely free in the fit and constrain only G(1);

• scenario 3: leave G(1) completely free in the fit and constrain only hA1(1).

For this study, I use only the information from the statistical covariance matrix for the
different scenarios. The first scenario is the “nominal” configuration; the other two allow
to understand how much information can be leverage from data by using only the external
inputs from one channel or the other. Results of the fit in the three scenarios are reported
in Tab. 8.2.

In all scenarios, I obtain values consistent with those generated. In scenario 1, I observe
that the uncertainty on the Gaussian-constrained parameter hA1(1) decreases from 0.013
to 0.011, while the uncertainty on G(1) remains the same (0.009). This indicates that the
data provide additional information on hA1(1).

In scenario 2, hA1(1) is determined with an uncertainty of about 0.022, which is worse
than that of the external input 0.013, and also the uncertainty on |Vcb| increases (from
0.51× 10−3 to 0.88× 10−3). In the simultaneous analysis, |Vcb| is sufficiently constrained
by the B → Dℓνℓ data and the external input on G(1), allowing hA1(1) to be determined
in the product |Vcb|hA1(1). Similar considerations hold also in scenario 3, where G(1) can
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Figure 8.2: Summary of the pull analysis for |Vcb| and the BGL parameters in the fit
configuration 2 to 1000 toy samples of the model-independent observables: (left) scenario
1, (middle) 2, and (right) 3. The black points are the pull means, the black bars the
uncertainties on the means, and the grey bars are the pull standard deviations. Pull
distributions can be found in Appendix F.

be determined, although with an uncertainty (0.028) much worse than that of the external
input (0.009).

Scenario 2 is particularly interesting, as it could potentially lead to a first determination
of the B → D∗ℓνℓ form factors directly from data, relying on external inputs from lattice
calculations on B → Dℓνℓ only, thereby providing an interesting term of comparison for the
lattice-QCD form-factor calculations from different collaborations [31–33], which currently
feature some tensions as explained in Chapter 2.

As the measurement of the model-independent observables shows some small biases
in Sect. 6.5, I test how these propagate to |Vcb| and the BGL parameters. I therefore
run the full analysis from the measurements of the model-independent observables on
1000 toy samples. The fit a posteriori is then performed for each scenario over the 1000
results, including their covariances, of the model-independent observables. I inspect the
pull distributions of |Vcb| and the BGL parameters (defined as per Eq. 6.15) and observed
that they are generally unbiased normal Gaussian. Pulls distributions are reported in
Appendix F and a summary plot is shown in Fig. 8.2.

Finally, I also analyse the original distributions of (cos θBY , p
∗
ℓ , p

∗
D) with a 3-dimensional

fit, where I use directly the BGL parametrisation in the weighting technique of the signal
templates (presented in Sect. 6.2.1.1). Hence, this fit is referred to as the direct approach,
in contrast to the a posteriori fit employing the measured model-independent observables.
This is done to compare the sensitivity to |Vcb| and the form-factor parameters between
the a posteriori and direct approaches, to check if there is any loss of information in the
use of the model-independent observables. This study is presented in Appendix E.1.

To summarise, I demonstrated the reliability of the extraction of |Vcb| and the BGL
parameters using the model-independent observables (showing different scenarios to use
the two lattice points G(1) and hA1(1)). I also carry out a similar analysis using the CLN
parametrisation, presented in Appendix E obtaining similar conclusions as reported here.
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8.1.2 Expected uncertainties

To gain an idea on the uncertainty sources that limit the measurement, I calculate the
expected uncertainties on |Vcb| and the BGL parameters in the configuration 2 (scenario
1) splitting between the statistical and systematic contributions; the latter is further split
according to the different systematic sources as done for the other measurements described
in the previous chapter. The uncertainties are reported in Tab. 8.3, while correlation
matrices are shown in Fig. 8.3.

As expected, the uncertainty of |Vcb| is dominated by the systematic uncertainty. The
sources that contribute the most are the background modelling, the number of BB pairs,
and the D∗∗ℓνℓ branching fractions. For the BGL parameters, the largest systematic
uncertainty is due to the background modelling, which has size similar to the statistical
uncertainty for all parameters.

The expected total uncertainty on |Vcb| from my analysis is expected to be competitive
with current world’s best measurements [85, 91]. As an example, I compare in Tab. 8.4
the expected uncertainties on |Vcb| from my analysis with that from a Belle II analysis of
the B0 → D∗−ℓ+νℓ decay [91]. Note that the analyses are based on different assumptions,
such as the truncation of the BGL series and the use of lattice-QCD data. In particular,
I reported my result in the configuration 2 and including only two lattice-QCD points at
w = 1; in Ref. [91], additional orders are included, but lattice-QCD data for w > 1 are also
employed.

Source |Vcb| [%] a
f+
1 [10−2] a

f+
2 [10−2] ag0[10

−2] ag1[10
−2] af1 [10

−2] aF1
1 [10−2] aF1

2 [10−2]

NBB 0.7 < 0.01 < 0.1 < 0.01 < 0.1 < 0.1 < 0.01 < 0.1
B(D) 0.4 0.10 1.1 < 0.01 0.2 < 0.1 < 0.01 0.1
τB0/τB+ 0.1 < 0.01 < 0.1 < 0.01 < 0.1 < 0.1 < 0.01 < 0.1
Track. efficiency 0.4 0.01 0.1 < 0.01 < 0.1 < 0.1 < 0.01 < 0.1
D∗∗ℓνℓ 0.6 0.05 0.7 0.02 0.3 0.1 0.02 0.3
Backgr. model 1.0 0.43 5.5 0.16 2.5 1.0 0.22 3.5
PID 0.5 0.11 1.0 0.05 1.3 0.8 0.09 1.8
Templates stat. 0.5 0.24 3.2 0.12 2.5 1.0 0.19 3.2
Fit bias 0.2 0.07 1.0 0.03 0.7 0.2 0.03 0.5

Total systematic 1.6 0.49 6.3 0.19 3.6 1.5 0.28 4.6
Coulomb factor 0.5 < 0.01 < 0.1 < 0.01 < 0.1 < 0.1 < 0.01 < 0.1
Statistical 0.7 0.39 5.5 0.18 4.2 1.5 0.27 4.6
Lattice points 1.2 0.57 6.5 0.03 0.5 0.2 0.01 0.2

Total 2.2 0.87 11.0 0.29 6.0 2.2 0.42 7.1

Table 8.3: Expected uncertainties on |Vcb| and the BGL parameters for configuration 2 in
scenario 1. The uncertainties on |Vcb| are fractional.
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|Vcb| [10−3]

My work XXX ± 0.29(stat.)± 0.64(syst.)± 0.45(latt.)

Belle II (2023) 40.57± 0.31(stat.)± 0.95(syst.)± 0.58(latt.)

Table 8.4: Comparison between the result of |Vcb| from my analysis and the Belle II mea-
surement of Ref. [91]. The central value of my results is not reported, as the analysis is still
blind. I assume the values used in the simulation (38.72× 10−3) to obtain the uncertainty
from the fractional errors reported in Tab. 8.3. The uncertainty from the Coulomb factor
is included in the systematic uncertainty of my measurement; the third uncertainty is that
propagated from the lattice data used.
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Figure 8.3: Correlation matrix between the uncertainties of |Vcb|, BGL parameters and
lattice points at w = 1 for the configuration 2 in scenario 1. From left to right: statistical,
systematic and total.
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Summary

I presented an experimental particle-physics thesis that reports on the first simultaneous
analysis of the B → Dℓνℓ and B → D∗ℓνℓ decays at Belle II experiment, using data
collected between 2019 and 2022. The data set consists of about 387 million bottom-
antibottom meson pairs from decays of the Υ(4S) resonance, produced in asymmetric-
energy electron-positron collisions at the SuperKEKB accelerator.

The simultaneous analysis offers a unique opportunity to explore new avenues by in-
troducing innovative methods. I analysed the decay dynamics using a novel method that
provides several key measurements, the most significant being a precise determination of
the strength of the weak-interaction coupling between beauty and charm quarks, |Vcb|.

The core of the analysis is a multidimensional fit to measure model-independent observ-
ables sensitive to the decay dynamics, defined for the first time in this thesis. From these
observables, |Vcb| and form-factor parameters can be determined a posteriori assuming any
form-factor model. These observables facilitate improved determination of |Vcb| using any
future advancement on the theoretical side, either in the calculation or modelling of the
form factors. From the global analysis, |Vcb| can be determined by using minimal input from
lattice-QCD calculations for the two decays. In particular, a determination based solely
on calculations for the B → Dℓνℓ decay is possible, offering an intriguing comparison term
for the B → D∗ℓνℓ form factors, which currently exhibit some tensions in lattice-QCD
calculation by different collaborations.

From the same observables, I also derive measurements of the B → Dℓνℓ and B →
D∗ℓνℓ branching fractions, as well as the lepton forward-backward asymmetry AFB, and
the D∗ longitudinal polarisation FD∗

L , for B → D∗ℓνℓ decays. Additionally, by assuming
isospin symmetry, I obtain a new determination of f+−/f00, the ratio of the branching
fractions of Υ(4S) decays into charged and neutral B mesons pairs.

A primary challenge of the analysis has been to thoroughly investigate all potential
background sources and to develop strategies for reducing or constraining them as much as
possible, utilising dedicated selections and control regions in data. Specifically, I identified
a control region enriched of a challenging background due to feed-down from semileptonic
decays different from the signal, whose production rates and decay modelling are affected
by large uncertainties. By analysing this control region along with the signal sample, I
managed to bound this background from data and reduce its impact on the measurement.

The entire analysis has been fully developed using simulated and control-data samples
and is currently under internal review within the Collaboration. The full analysis will be
applied to the experimental data of the signal region after passing the review and defining an
unblinding procedure. An in-depth study with realistic simulated samples proved unbiased
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results and allowed to estimated the expected uncertainties. From this study, I obtain:

|Vcb| = (XXX ± 0.29± 0.64± 0.45)× 10−3 ,

B(B+ → D
0
ℓ+νℓ) = (XXX ± 0.01± 0.06)% ,

B(B+ → D
∗0
ℓ+νℓ) = (XXX ± 0.02± 0.13)% ,

B(B0 → D−ℓ+νℓ) = (XXX ± 0.01± 0.05± 0.02)% ,

B(B0 → D∗−ℓ+νℓ) = (XXX ± 0.02± 0.12± 0.05)% ,

AFB = (XXX ± 0.5± 0.4)% ,

FD∗
L = (XXX ± 0.7± 0.6)% , (8.4)

f+−/f00 = XXX ± 0.007± 0.025± 0.024 .

where the first uncertainty is statistical, the second systematic, and the third, when present,
is related to theoretical inputs or assumptions. The measurements are expected to be com-
petitive with the world’s best and have the potential to significantly advance the precision
and reliability of these quantities. This, in turn, enhances the overall understanding of
semileptonic B decays for providing a more robust determination of |Vcb|.
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Appendix A

Form-factor parametrisations

In this appendix, I provide a more detailed theoretical description of the form factors using
the CLN and BGL parametrisations for both the B → Dℓνℓ and B → D∗ℓνℓ decays, in
the limit of negligible lepton masses.

A.1 B → D∗ℓνℓ

As explained in Chapter 2, the form factors needed to describe the hadronic part of the de-
cay rate can be expressed using different parametrisations. Using the CLN parametrisation
the three form factors of B → D∗ℓνℓ decays are written as:

hA1(w) = hA1(1)
[
1− 8ρ2D∗z + (53ρ2D∗ − 15)z2 − (231ρ2D∗ − 91)z3

]
, (A.1)

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 , (A.2)

R2(w) = R2(1)− 0.11(w − 1)− 0.06(w − 1)2 , (A.3)

where the conformal variable z is defined as

z ≡
√
w + 1−

√
2

√
w + 1 +

√
2
, (A.4)

The form factors depend on four parameters: ρ2D∗ , R1(1), R2(1) and hA1(1).
While using the BGL parametrisation, which relies only on QCD dispersion relations,

the three form factors are written in terms of three functions, f(w), g(w) and F1(w), as
follows

hA1(w) =
f(w)

√
mBmD∗(1 + w)

, (A.5)

R1(w) = (w + 1)mBmD∗
g(w)

f(w)
, (A.6)

R2(w) =
w − r

w − 1
− F1(w)

mB(w − 1)f(w)
. (A.7)
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These functions are expanded as convergent power series of z as

f(z) =
1

P1+(z)ϕf (z)

∞∑
n=0

afnz
n , (A.8)

g(z) =
1

P1−(z)ϕg(z)

∞∑
n=0

agnz
n , (A.9)

F1(z) =
1

P1+(z)ϕF1(z)

∞∑
n=0

aF1
n zn . (A.10)

Here, the P1±(z) functions are known as Blaschke factors for the JP = 1± resonances,
and ϕf,g,F1(z) are the so-called outer functions. Adopting the formalism of Ref. [43], the
Blaschke factors take the form

P1±(z) = C1±

poles∏
k=1

z − zk
1− z zk

, (A.11)

where the constants C1± = 1 and

zk =

√
t+ −m2

k −
√
t+ − t−√

t+ −m2
k +

√
t+ − t−

, (A.12)

t± = (mB ±mD∗)2, and mk denotes the pole masses of the k-th excited B+
c states. The

outer functions are defined as

ϕf (z) =
4r

m2
B

√
nI

3πχ̃1+(0)

(1 + z)
√
(1− z)3

[(1 + r)(1− z) + 2
√
r(1 + z)]4

, (A.13)

ϕg(z) = 16r2
√

nI
3πχ̃1−(0)

(1 + z)2√
(1− z)[(1 + r)(1− z) + 2

√
r(1 + z)]4

, (A.14)

ϕF1(z) =
4r

m3
B

√
nI

6πχ̃1+(0)

(1 + z)
√
(1− z)5

[(1 + r)(1− z) + 2
√
r(1 + z)]5

, (A.15)

where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
effects [41]. The B+

c resonances used in the computation of the Blaschke factors and the
χ̃1±(0) coefficients of the outer functions are reported in Tab. A.1.

The coefficients of the series in Eqs. A.8–A.10 are bound by the unitarity constraints
∞∑
n=0

agn
2 ⩽ 1 ,

∞∑
n=0

(afn
2
+ aF1

n
2
) ⩽ 1 . (A.16)

The first coefficient of f(z), af0 , is related to hA1(1) by the expression

af0 = 2
√
mBmD P1+(0)ϕf (0)hA1(1), (A.17)

while aF1
0 is fixed from af0 through

aF1
0 = (mB −mD)

ϕF1(0)

ϕf (0)
af0 . (A.18)

One of the actual problem of the BGL parametrisation is related to the truncation of
the series in Eqs. A.8–A.10 to get an unbiased |Vcb| measurement [38,39,43,79,80].
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Table A.1: Pole masses for the B+
c resonances considered in the BGL parametrisation,

with the χ̃JP (0) constants of the outer functions.

JP Pole mass χ̃JP (0)

[GeV/c2] [10−4GeV−2c4]

1−

6.337

5.28
6.899
7.012
7.280

1+

6.730

3.07
6.736
7.135
7.142

A.2 B → Dℓνℓ

For the B → Dℓνℓ decays, the form factor G(z), using the conformal variable z(w) defined
in Eq. A.4, is expressed in the CLN parametrisation in terms of its value at zero recoil,
G(1), and a slope parameter, ρ2D, as

G(z) = G(1)
[
1− 8ρ2Dz + (51ρ2D − 10)z2 − (252ρ2D − 84)z3

]
. (A.19)

While using the BGL parametrisation, it is expressed as

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (A.20)

with r = mD/mB and

f+(z) =
1

P1−(z)ϕ(z)

∞∑
n=0

af+n zn . (A.21)

The outer function ϕ(z) is defined as

ϕ(z) =
8r2

mB

√
8nI

3πχ̃1−(0)

(1 + z)2
√
1− z

[(1 + r)(1− z) + 2
√
r(1 + z)]5

. (A.22)

The coefficients of the series in Eq. A.21 are bound by unitarity,

∞∑
n=0

af+n
2 ≤ 1 , (A.23)

with the coefficient af+0 being related to G(1) through

a
f+
0 =

1 + r

2
√
r
G(1)P1−(0)ϕ(0) . (A.24)
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Appendix B

Control region checks

Additional material regarding the fit performed on the cos θBY control region can be found
in this appendix. Further data-simulation comparisons of the distributions, both before
and after rescaling the real-D and D∗∗ subcomponents according to the fit results (see
Tab. 6.2), are shown in Figs. B.2-B.5. The validation of the fit results for the real-D
background yields in the region of m(Y ) between 3.2–3.4 GeV/c2, where these decays
are enhanced, are shown in Figs. B.6–B.7. A significant improvement in data-simulation
comparison is also observed for the other distributions after rescaling these subcomponents.

Additionally, the shapes of the two-dimensional distributions (p∗D, p∗ℓ ) for theD∗∗ decays
in the signal region are shown in Fig. B.1 (see Sect. 6.2.2 in Chapter 6).
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Figure B.1: Two-dimensional distributions of (p∗D, p∗ℓ ) of the D∗∗ℓνℓ decays for the D0
e+

sample in the signal region. Similar distributions are observed in the other samples.
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Figure B.2: Data-simulation comparison of the cos θD distributions, from top to bottom, for
D−µ+, D0

µ+, D−e+, D0
e+ samples in the control region (left side) before and (right side)

after scaling the D∗∗ and real-D subcomponents according to the fit results in Tab. 6.2.
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Figure B.3: Data-simulation comparison of the cos θℓ distributions, from top to bottom, for
D−µ+, D0

µ+, D−e+, D0
e+ samples in the control region (left side) before and (right side)

after scaling the D∗∗ and real-D subcomponents according to the fit results in Tab. 6.2.

151



APPENDIX B. CONTROL REGION CHECKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

500

1000

1500

2000

2500

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary) ∫ L dt  = 365 fb-1

C
an

di
da

te
s 

pe
r 0

.0
3

cosθBO

ππlν
(*)

D
ηlν

(*)
D
Signal:Dlν
Signal:D*lν
stat.unc.

Continuum 
Fake D 
Real D (fake) 
Real D (sec.) 
RealD (prim.)

Data 
D1lν
D2*lν
D1'lν
D0* lν
Xτν + misID lepton

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

500

1000

1500

2000

2500

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary)

C
an

di
da

te
s 

pe
r 0

.0
3

cosθBO

∫ L dt  = 365 fb-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

2500

3000

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary) ∫ L dt  = 365 fb-1

C
an

di
da

te
s 

pe
r 0

.0
3

cosθBO
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

500

1000

1500

2000

2500

3000

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary) ∫ L dt  = 365 fb-1

C
an

di
da

te
s 

pe
r 0

.0
3

cosθBO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1000

1200

1400

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary) ∫ L dt  = 365 fb-1

C
an

di
da

te
s 

pe
r 0

.0
3

cosθBO
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

200

400

600

800

1000

1200

1400

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary) ∫ L dt  = 365 fb-1

C
an

di
da

te
s 

pe
r 0

.0
3

cosθBO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

2500

3000

3500

4000

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary)

C
an

di
da

te
s 

pe
r 0

.0
3

∫ L dt  = 365 fb-1

cosθBO
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

500

1000

1500

2000

2500

3000

3500

4000

0.9
0.95

1
1.05

1.1

da
ta

/M
C

Belle II (Preliminary)

C
an

di
da

te
s 

pe
r 0

.0
3

∫ L dt  = 365 fb-1

cosθBO

Figure B.4: Data-simulation comparison of the cos θBO distributions, from top to bottom,
for D−µ+, D0

µ+, D−e+, D0
e+ samples in the control region (left side) before and (right

side) after scaling theD∗∗ and real-D subcomponents according to the fit results in Tab. 6.2.
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Figure B.5: Data-simulation comparison of the m(Y ) distributions, from top to bottom, for
D−µ+, D0

µ+, D−e+, D0
e+ samples in the control region (left side) before and (right side)

after scaling the D∗∗ and real-D subcomponents according to the fit results in Tab. 6.2.
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Figure B.6: Data-simulation comparison of the p∗D distributions in them(Y ) region between
3.2–3.4 GeV/c2, from top to bottom, for D−µ+, D0

µ+, D−e+, D0
e+ samples in the control

region (left side) before and (right side) after scaling the D∗∗ and real-D subcomponents
according to the fit results in Tab. 6.2.
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Figure B.7: Data-simulation comparison of the p∗ℓ distributions in the m(Y ) region between
3.2–3.4GeV/c2, from top to bottom, for D−µ+, D0

µ+, D−e+, D0
e+ samples in the control

region (left side) before and (right side) after scaling the D∗∗ and real-D subcomponents
according to the fit results in Tab. 6.2.
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Appendix C

Signal-only Asimov fit

I report the results of the Asimov fit for measuring the 22 model-independent observables,
defined in Sect. 2.5, simultaneously for the B → Dℓνℓ and B → D∗ℓνℓ decays. This
first test involves performing the χ2 fit, described in Sect. 6.2, focusing exclusively on the
signal region and signal decays, without including any backgrounds. In this test, the fit
parameters are the 22 model-independent observables and f+−/f00. I obtain the same
generator values. A comparison between the generated values of the 22 model-independent
observables and the results of the Asimov fit is shown in Fig. C.1. The fit projections are
shown in Fig. C.2.
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Figure C.1: (Top left) Measurements of G′
m in 7 bin of w and (top right, bottom) of a′n,

b′n, c′n in 5 bin of w obtained in the fit configuration of signal only. Black points are
the results obtained from the Asimov fit, red points are the expected one from the BGL
parametrisation.
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Figure C.2: Fit projections from top to bottom of D−µ+, D0
µ+ D−e+ and D0

e+ samples
obtained in the fit configuration of signal only. Pulls are flat as expected for an Asimov fit.
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Appendix D

Validation of the systematic
uncertainty on the D∗∗ decays

From the fit conducted in the control region, I obtain results on the branching fractions
of the D∗∗ decays, using Gaussian penalties, which are in agreement with the latest mea-
surements reported in Tab. 5.3, except for the branching fraction of B → D(∗)ηℓνℓ decays,
which shows a large discrepancy from the expected result (see Sect. 6.3 in Chapter 6).
Given this discrepancy, it is crucial to properly account for the corresponding systematic
uncertainty. To address this, I perform a simultaneous fit to both the signal and con-
trol regions on three different Asimov data sets, exploring various configurations of the
constraints on the D∗∗ branching fractions. This allows me to assess the impact of these
variations on the fit parameters and to determine whether the evaluated systematic uncer-
tainty in the knowledge of the D∗∗ decays adequately covers potential fluctuations in the
fit parameters. The three configurations are reported in Tab. D.1.

Each Asimov data set is fitted using the HFLAV 2024 configuration (first column in
Tab. D.1). This is done to verify whether the current constraints can accurately describe
different configurations of these decays. I then analyse the results of each fit and present
in Fig. D.1 the nominal values of the pulls, defined in Eq. 6.14, for the model-independent
observables, f = f+−/f00, and the signal branching ratios. The red bands correspond to
the 1-2σ of the systematic uncertainty in the knowledge of the D∗∗ decays evaluated in
Chapter 7 for each fit observable. As can be seen, the assessed systematic uncertainty

Decay Default [%] Conf. 1) [%] Conf. 2) [%] Conf. 3) [%]

B(B → D1(2420)ℓνℓ) 0.64± 0.10 0.75 0.55 0.80
B(B → D′

1(2430)ℓνℓ) 0.28± 0.04 0.30 0.40 0.40
B(B → D∗

0(2300)ℓνℓ) 0.13± 0.19 0.42 0.30 0.60
B(B → D∗

2(2460)ℓνℓ) 0.32± 0.03 0.40 0.50 0.60
B(B → D(∗)ππℓνℓ) 0.30± 0.13 0.20 0.40 0.30
B(B → D(∗)ηℓνℓ) 1.80± 1.80 1.00 0.50 0.10

Table D.1: Configurations with different assumptions for the branching fractions of the
D∗∗ decays used to generate the Asimov data sets. The latter are fitted using the default
constraints presented in the first column of the table. The branching fractions shown in
the table pertain to B+ and are related to those of B0 through their lifetimes ratio.
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Figure D.1: Nominal values of the pulls for G′
m, a′n, b′n, c′n, f , and the signal branching

fractions from the three configurations in Tab. D.1. The red bands correspond to the 1-2σ
of the systematic uncertainty in the knowledge of the D∗∗ decays evaluated in Chapter 7
for each fit observable.

adequately covers the potential effects of variations in these decays on the fit parameters.
Only a few pulls fall outside the 2σ range; however, given the additional statistical uncer-
tainty, this is not a cause for concern. I do not report the pulls for AFB and FD∗

L because
as observed in the breakdown of the their uncertainties in Tab. 7.6, these observables are
dominated by purely statistical effects and by the systematic uncertainties arising from the
statistical uncertainties on the templates and the background modelling. The uncertainty
in the knowledge of the branching fractions of the D∗∗ decays is negligible as it cancels
out in the ratio of the model-independent observables used to evaluate AFB and FD∗

L (see
Eqs. 2.35-2.36). This study demonstrates that potential variations in the knowledge of the
constraints for the D∗∗ decays are included in the evaluated systematic uncertainty for this
source.

160



Appendix E

Interpretation with the BGL and
CLN parametrisations

I report the comparison between the a posteriori analysis of the model-independent ob-
servables, described in Chapter 8, using a BGL parametrisation, and the direct approach,
in which the form-factor parameters are directly fitted. For this study, the comparison is
made by fitting all terms of the BGL series for the B → Dℓνℓ and B → D∗ℓνℓ decays, while
the higher-order terms remain fixed at their generated values, with no loss of generality in
the conclusions. I demonstrate that I am able to extract the form-factor parameters and
|Vcb| without any loss of precision compared to the direct approach.

I also present the a posteriori analysis of the model-independent observables, described
in Chapter 8 and the comparison with the direct approach shown in Sect. E.1, using a CLN
parametrisation obtaining similar conclusions to those of the BGL analysis.

E.1 Form factors and |Vcb| using the BGL parametrisation

I also analyse the original distributions of (cos θBY , p
∗
ℓ , p

∗
D) with a three-dimensional fit,

where I use directly the BGL parametrisation in the weighting technique of the signal
templates (presented in Sect. 6.2.1.1). This allows to obtain |Vcb| and the BGL param-
eters directly from this fit, i.e., without passing through the measurement of the model-
independent observables. Hence, this fit is referred to as the direct approach, in contrast to
the a posteriori fit employing the measured model-independent observables. This is done
to compare the sensitivity to |Vcb| and the form-factor parameters between the a posteriori
and direct approaches, to check if there is any loss of information in the use of the model-
independent observables. I run the two approaches over 1000 toy samples. The average
uncertainty between the direct and a posteriori approaches is the same in all the possible
scenarios (see Tab. E.1).

I inspect for both the two approaches the pull distributions of |Vcb| and the BGL pa-
rameters; they are generally unbiased normal Gaussian. Pulls distributions are reported in
Appendix F (see Figs. F.5-F.7 and Figs. F.9-F.11). This proves that the model-independent
observables encode all information necessary for the determination of |Vcb| and the form-
factor parameters.

To summarise, I demonstrated the reliability of the extraction of |Vcb| and the BGL
parameters using the model-independent observables. I also carry out a similar analysis
using the CLN parametrisation, presented in Sect. E.2: I obtain the similar conclusions as
reported here.
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APPENDIX E. INTERPRETATION WITH THE BGL AND CLN
PARAMETRISATIONS

Fit type σ(a
f+
1 ) σ(af1) σ(ag0) σ(ag1) σ(aF1

1 ) σ(hA1(1)) σ(G(1)) σ(Vcb)[10
−3]

direct 1) 0.001 0.011 0.001 0.041 0.0004 0.009 0.008 0.37
a posteriori 1) 0.001 0.010 0.001 0.038 0.0004 0.009 0.008 0.36
direct 2) 0.001 0.011 0.001 0.043 0.0004 0.013 0.009 0.45
a posteriori 2) 0.001 0.011 0.001 0.040 0.0004 0.013 0.009 0.44
direct 3) 0.001 0.011 0.001 0.044 0.0004 0.013 0.019 0.66
a posteriori 3) 0.001 0.011 0.001 0.041 0.0004 0.013 0.019 0.64

Table E.1: Comparison of the average uncertainties of |Vcb| and the BGL parameters
between the direct and a posteriori approaches from 1000 toy samples. The results in
the table are shown for all the scenarios. The sensitivity to the parameters are the same
between the two approaches.

E.2 Form factors and |Vcb| using the CLN parametrisation

I repeat the analysis of the form factors and |Vcb|, described in Sect. 8.1, using the CLN
parametrisation, reaching similar conclusions as those presented for the BGL analysis. I
generate the signal samples using the CLN form-factor parameters reported in Tab. E.2
and I construct an Asimov data set in the same configuration of that explained in the
Sect. 6.4. The CLN form-factor parameters are: ρ2D and G(1) for B → Dℓνℓ; and ρ2D∗ ,
hA1(1), R1(1), R2(1) for B → D∗ℓνℓ.

CLN ρ2D ρ2D∗ R1(1) R2(1) G(1) hA1(1) |Vcb| [10−3]

Generator values 1.128 1.23 1.34 0.83 1.054 0.902 41.4

Table E.2: Generator values of |Vcb| and CLN form-factor parameters used in the generation
of the signal sample.

I perform a χ2 fit on the 22 model-independent observables obtained from the Asimov
fit using the Eq. 8.1 assuming the CLN model for the form factors. This allows to extract
|Vcb| and the CLN form-factor parameters. For this test, I use the covariance matrix that
includes only the statistical uncertainties.

The form factors values at zero recoil used in the generation of the sample are:
G(1) = 1.054 ± 0.009 and hA1(1) = 0.902 ± 0.013. These values are included as nui-
sance parameters, constrained by Gaussian penalties in the fits across the various scenarios
explained in Sect. 8.1. In all scenarios, I obtain values consistent with those generated.

In scenario 1, I observe that the uncertainties on the Gaussian-constrained parameters,
hA1(1) and G(1), are reduced when fitting the model-independent observables. Specifically,
the uncertainty on hA1(1) decreases from 0.013 to about 0.009, while the uncertainty on
G(1) decreases from 0.009 to 0.008. In this study, using the CLN parametrisation, the
data provide more information on the lattice points, particularly on hA1(1), due to the
smaller number of parameters employed compared to the BGL parametrisation (described
in the Sect. 8.1) and the absence of assumptions regarding the truncation of the series. In
particular, |Vcb| is sufficiently constrained by the B → Dℓνℓ observables and the external
input G(1), allowing for the hA1(1) determination from the product |Vcb|hA1(1) with an
uncertainty of about 0.012.

To test for any possible biases, I run the full analysis from the measurements of the
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APPENDIX E. INTERPRETATION WITH THE BGL AND CLN
PARAMETRISATIONS

Fit scenario σ(ρ2D) σ(ρ2D∗) σ(R1(1)) σ(R2(1)) σ(hA1(1)) σ(G(1)) σ(Vcb)[10
−3]

direct 1) 0.013 0.037 0.054 0.037 0.009 0.008 0.37
a posteriori 1) 0.013 0.035 0.054 0.036 0.009 0.008 0.36
direct 2) 0.015 0.037 0.056 0.037 0.012 0.009 0.48
a posteriori 2) 0.015 0.036 0.055 0.036 0.012 0.009 0.47
direct 3) 0.015 0.037 0.056 0.037 0.013 0.019 0.63
a posteriori 3) 0.015 0.036 0.055 0.036 0.013 0.018 0.62

Table E.3: Comparison of the average uncertainties of |Vcb| and the BGL parameters
between the direct and a posteriori approaches from 1000 toy samples. The results in
the table are shown for all the scenarios. The sensitivity to the parameters are the same
between the two approaches.

model-independent observables on 1000 toy samples. The a posteriori fit is then per-
formed for each scenario using the 1000 results, including their covariances, of the model-
independent observables.

To compare the sensitivity of |Vcb| and the CLN form-factor parameters, I also run
the direct fit and across 1000 toy samples for the three scenarios. The average uncertainty
between the two approaches is the same in the three possible scenarios as shown in Tab. E.3.
I also inspect the pull (defined in Eq. 6.15) distributions of |Vcb| and the CLN form-factor
parameters for both the two apporaches and observed that they are generally unbiased
normal Gaussian. Pulls distributions are reported in Appendix F (see Figs. F.16-F.18 and
Figs. F.20-F.22).

With this study, I validate the conclusions obtained in the Sect. 8.1.1 and Appendix E.1,
using a different form-factor parametrisation.
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Appendix F

Pull distributions

This appendix summarises all the pull distributions obtained from the toy studies con-
ducted in this thesis, starting with those for the Asimov fit, followed by those for the direct
and a posteriori fits using both the CLN and BGL parametrisations.

F.1 Asimov fit
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Figure F.1: Summary of the pull analysis for the model-independent observables and
f+−/f00 measured in the fit configuration of signal only to 1000 toy samples. The black
points are the pull means, the black bars the uncertainties on the means, and the grey
bars are the pull standard deviations. Each individual pull distribution can be found in
the Fig. F.2.
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Figure F.2: Pull distributions of the model-independent observables and f+−/f00 from
1000 toy samples in the fit configuration of signal only. Summary of the pull distributions
can be found in Fig. F.1
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Figure F.3: Pull distributions of the model-independent observables and f+−/f00 from
1000 toy samples in the configuration of the simultaneous fit between the signal and control
regions. Summary of the pull distributions can be found in Fig. 6.14.
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F.2 Direct fit (BGL parametrisation)
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Figure F.4: Summary of the pull analysis for |Vcb| and the BGL parameters in the direct fit
to 1000 toy samples of the model-independent observables: (top left) scenario 1, (top right)
2, and (bottom) 3. The black points are the pull means, the black bars the uncertainties
on the means, and the grey bars are the pull standard deviations. Each pull distribution
of the three scenarios can be found in Fig. F.5-F.7.
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Figure F.5: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the direct fit in scenario 1. Summary of the pull distributions can be
found in Fig. F.4.
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Figure F.6: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the direct fit in scenario 2. Summary of the pull distributions can be
found in Fig. F.4.
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Figure F.7: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the direct fit in scenario 3. Summary of the pull distributions can be
found in Fig. F.4.
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F.3 A posteriori fit (BGL parametrisation)
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Figure F.8: Summary of the pull analysis for |Vcb| and the BGL parameters in the a
posteriori fit to 1000 toy samples of the model-independent observables: (top left) scenario
1, (top right) 2, and (bottom) 3. The black points are the pull means, the black bars the
uncertainties on the means, and the grey bars are the pull standard deviations. Each pull
distribution of the three scenarios can be found in Fig. F.9-F.11.
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Figure F.9: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in scenario 1. Summary of the pull distributions
can be found in Fig. F.8.
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Figure F.10: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in scenario 2. Summary of the pull distributions
can be found in Fig. F.8.
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Figure F.11: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in scenario 3. Summary of the pull distributions
can be found in Fig. F.8.
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F.4 A posteriori fit (BGL parametrisation): configuration 2
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Figure F.12: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in configuration 2 (scenario 1). Summary of the
pull distributions can be found in Fig. 8.2 in Chapter 8.
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Figure F.13: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in configuration 2 (scenario 2). Summary of the
pull distributions can be found in Fig. 8.2 in Chapter 8.
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Figure F.14: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in configuration 2 (scenario 3). Summary of the
pull distributions can be found in Fig. 8.2 in Chapter 8.
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F.5 Direct fit (CLN parametrisation)
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Figure F.15: Summary of the pull analysis for |Vcb| and the CLN parameters in the direct fit
to 1000 toy samples of the model-independent observables: (top left) scenario 1, (top right)
2, and (bottom) 3. The black points are the pull means, the black bars the uncertainties
on the means, and the grey bars are the pull standard deviations. Each pull distribution
of the three scenarios can be found in Fig. F.16-F.18.
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Figure F.16: Pull distributions of |Vcb| and the CLN form-factor parameters from 1000 toy
samples obtained for the direct fit in scenario 1. Summary of the pull distributions can be
found in Fig. F.15.
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Figure F.17: Pull distributions of |Vcb| and the CLN form-factor parameters from 1000 toy
samples obtained for the direct fit in scenario 2. Summary of the pull distributions can be
found in Fig. F.15.
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Figure F.18: Pull distributions of |Vcb| and the CLN form-factor parameters from 1000 toy
samples obtained for the direct fit in scenario 3. Summary of the pull distributions can be
found in Fig. F.15.
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Figure F.19: Summary of the pull analysis for |Vcb| and the CLN parameters in the a
posteriori fit to 1000 toy samples of the model-independent observables: (top left) scenario
1, (top right) 2, and (bottom) 3. The black points are the pull means, the black bars the
uncertainties on the means, and the grey bars are the pull standard deviations. Each pull
distribution of the three scenarios can be found in Fig. F.20-F.22.
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Figure F.20: Pull distributions of |Vcb| and the CLN form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in scenario 1. Summary of the pull distributions
can be found in Fig. F.19.
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Figure F.21: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in scenario 2. Summary of the pull distributions
can be found in Fig. F.19.
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Figure F.22: Pull distributions of |Vcb| and the BGL form-factor parameters from 1000 toy
samples obtained for the a posteriori fit in scenario 3. Summary of the pull distributions
can be found in Fig. F.19.
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