Rare *B* Decays in Belle, Belle II and LHCb

Slavomira Stefkova APS-DPF, Sacramento, USA April 6th, 2024

Karlsruhe Institute of Technology

slavomira.stefkova@kit.edu

B-hadrons decays:

- Light enough to be produced abundantly, but heavy enough to have many decays
- Predictions for SM observables are well-known

One of the main missions of B-factories is to perform searches for new physics (NP) in rare B decays

Rare B decay: branching fraction $\mathscr{B}(B \rightarrow \text{decay products}) < 5 \times 10^{-5}$ \rightarrow only less then 5 in 100000 *B*-hadron decays in this way

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Rare *B* decays:

o GIM suppressed flavour changing neutral currents (FCNC)

 $\rightarrow b \rightarrow s/d(\gamma)$

o forbidden at tree level, allowed at loop level

O electroweak decays, radiative electroweak decays

 $\circ m_{\nu}^2/M_W^2$ suppressed lepton flavour violating decays

• Helicity suppressed purely leptonic decays

Rare B Decays

Rare *B* decays:

o GIM suppressed flavour changing neutral currents (FCNC)

 $\rightarrow b \rightarrow s/d(\gamma)$

o forbidden at tree level, allowed at loop level

O electroweak decays, radiative electroweak decays

• m_{ν}^2/M_W^2 suppressed lepton flavour violating decays

• Helicity suppressed purely leptonic decays

Very sensitive to NP since SM contribution small!

Rare B Decays

Rare *B* decays:

o GIM suppressed flavour changing neutral currents (FCNC)

 $\rightarrow b \rightarrow s/d(\gamma)$

o forbidden at tree level, allowed at loop level

- **O electroweak decays, radiative electroweak decays**
- m_{ν}^2/M_W^2 suppressed lepton flavour violating decays
- Helicity suppressed purely leptonic decays

Very sensitive to NP since SM contribution small!

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Rare B Decays

CP observables

• *pp* collisions at 7,8,13 TeV

- b-quarks produced by gluon fusion
- All *b*-hadron species (*b*-baryons)
- Highly boosted topology
- $\sigma_{bb} = 100 \ \mu b$
- Noise/Signal=1000 0

Accelerators

- e^+e^- energy-asymmetric collisions at $\sqrt{s} = 10.58$ GeV (on-resonance data)
- 60 MeV below to constrain $e^+e^- \rightarrow q\bar{q}$ (continuum) bkgs 0 (off-resonance data)
- $B\bar{B}$ produced via $\Upsilon(4(S))$ 0
- Exclusive $B\bar{B}$ production 0
- Asymmetric beam energy \rightarrow boost
- $\sigma_{bb} = 1.1 \text{ nb}$
- Noise/Signal=4 Ο

- Approximate rule: $1 \, \text{fb}^{-1} = 1 \, ab^{-1}$

Accelerators

7

The Three Beasts

LHCb

- LHC (*pp* collisions at 7,8,13 TeV)
- Forward-looking spectrometer
- Taking data since 2011
- Collected 9 fb^{-1} data so far
 - $4x10^{12} b\bar{b}$ pairs
 - B_{μ} (40%), B_{d} (40%), B_{s} (10%), B_c and b-baryons (10%)

- General purpose detector
- **o** Took data from 1999-2010
- Collected **711** fb^{-1} data

 \circ 770 mil. $B\bar{B}$ pairs

LHCSkiczko266, April 14 • KEKB (8 GeV $e^{-}/3.5$ GeV e^{+})

Belle II

- SuperKEKB (7 GeV $e^-/4$ GeV e^+)
- General purpose detector
- Taking data since 2019
- Collected **362** \mathbf{fb}^{-1} data in Run 1 • 370 mil. $B\bar{B}$ pairs
- Resumed data-taking this year after ~ 1.5y long shut-down

Increasing instantaneous luminosity is the key!

LHCb

- LHC (*pp* collisions at 7,8,13 TeV)
- Forward-looking spectrometer
- Taking data since 2011 0
- Collected 9 fb^{-1} data so far
 - $4x10^{12} b\bar{b}$ pairs
 - B_{μ} (40%), B_{d} (40%), B_{s} (10%),

 B_c and b-baryons (10%)

• Plan: 300 fb^{-1}

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

- KEKB (8 GeV e^{-/} 3.5 GeV e⁺)
- General purpose detector
- **o** Took data from 1999-2010
- Collected **711** fb^{-1} data

• 770 mil. $B\bar{B}$ pairs

Belle

Belle II

- SuperKEKB (7 GeV $e^-/4$ GeV e^+)
- General purpose detector
- Taking data since 2019
- Collected **362 fb**⁻¹ **data in Run 1** • 370 mil. $B\overline{B}$ pairs
- Resumed data-taking this year after ~ 1.5y long shut-down
- Plan: 50 ab^{-1}

- Rather busy environment
- On average 100 tracks
- ${\rm O}$ Longitudinal momentum of the B not known
- Lower trigger efficiency in general

Belle II

- Very clean environment
- On average: 11 tracks
- **o** Known initial state kinematics
- Near 100% efficiency for *B* decays
- Sensitive to lower energy deposits

Neutral Performance

	Belle II	L
γ detection efficiency	99.9%	
$\sigma(E)/E$	$\frac{2.2\%}{\sqrt{E}} \bigoplus 1\%$	$\frac{10\%}{\sqrt{E}}$
π^0 reconstruction	Better mass resolution	Worse m

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Charged Track Performance

Efficiency

.2

0.8

0.6

0.4

0.2

1.4

.2

0.8

0.6

0.4

Efficiency

	Belle II	LHCb
Muon trigger efficiency	100 %	90 %
Muon ID efficiency	95 %	97 %
$\pi ightarrow \mu$ mislD	7 %	1-3%

	Belle II	LHCb
Kaon ID efficiency	90 %	95 %
$K ightarrow \pi$ mislD	5 %	5 %

	Belle II	LHCb
Total $B^+ \to K^+ \mu^+ \mu^-$	30 %	5 %
efficiency		
Total $B^+ \to K^+ e^+ e^-$	30 %	< 5 %
efficiency		

LHCb is very good with muons Belle II has similar sensitivity for e and μ Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

APS April meeting 2024, Sacramento

13

Better with *multiple muons/* charged tracks that can be vertexed

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Better with higher number of γ and ν

APS April meeting 2024, Sacramento

14

 $B^+ \to K^+ \nu \bar{\nu}$

 $\Lambda_b^0 \to p K^- \gamma$ LHC

FCNC $b \rightarrow s\gamma$ transition:

- First radiative penguin to be measured at Belle II
- Branching fractions \mathscr{B} have large theoretical uncertainties (~20%)
- CP (A_{CP}) and isospin (Δ_{+0}) asymmetries theoretically clean (cancellation of form factors)
- Latest Belle measurement found evidence of 3.1σ for the isospin asymmetry [PRL 119, 191802 (2017)]
- Belle II wants to measure in addition to \mathscr{B}

$$A_{CP} = \frac{\Gamma(\bar{B} \to \overline{K^*}\gamma) - \Gamma(B \to K^*\gamma)}{\Gamma(\bar{B} \to \overline{K^*}\gamma) + \Gamma(B \to K^*\gamma)}$$

 $\Delta A_{CP} = A_{CP}(B^0 \to K^{*0}\gamma) + A_{CP}(B^+ \to K^{*+}\gamma)$

$$\Delta_{+0} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - (B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + (B^+ \to K^{*+}\gamma)}$$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

SM prediction: A_{CP} is small (~1%)

SM prediction: $\Delta_{+,0}$ range from 2-8% with an uncertainty ~2%

Selection strategy:

• Based on \mathbb{R}_{K} $\xrightarrow{1}{\to}$ $\overset{\text{Belle II}}{K}$ dataset 362 fb_{K}^{-1} $\overset{\text{Belle II}}{K}$ $\overset{\text{Baset 362 fb}_{K}^{-1}}{\pi}$ $\overset{\text{Belle II}}{K}$ $\overset{\text{Baset 362 fb}_{K}^{-1}}{\pi}$ $\overset{\text{Base 362 fb}_{K}^{-1}}{\pi}$ $\overset{\text{Baset 362 fb}_{K}^{-1}}{\pi}$ $\overset{\text{Base$ i0.0 WeV/c) 2000 W $- D^+ \rightarrow K_S^0 \pi^+$ $B^{+} \rightarrow K^{*+}[K_{s}^{0}\pi^{+}]\gamma$ • Use classifiers to reject backgrounds from $\pi^0 \rightarrow \gamma \gamma$ and Belle II $\pi^0 \eta \rightarrow \gamma \gamma \gamma$, continuith events simulation 0.03 0.02 0.01 0 0.5 2.5 3 3.5 0 1.5 2 4 • Make **2D fit** to ΔE and M_{hc} distributions to extract yields K^0_{ς} momentum [GeV/c] Candidates / (1 cm) $D^+ \rightarrow K^0_S \pi^+$ $- D^+ \rightarrow K_S^0 \pi^+$ 0.1 **Β**⁺→ **Κ**^{*+}[Κ⁰_sπ⁺]γ — B⁺→ K^{*+}[K_c⁰π⁺]γ 0.08 Belle II 0.06 simulation 0.04 0.02 00008 (C²) 70000 4.5 3.5 3 4 distance [cm] Background p [GeV/c] 70000 /erjiciency こ idates / 00009 / 17

Fitting strategy:

$$\Delta E = E_B - E_{beam}$$
Control samples:
• $D^+ \rightarrow K_s^0 \pi^{D^+}$ to study K_s^0 r
• Excellent kinematic cove
• Total systematic uncertai
 K_s^0 flight distance in $p \in$
• $D^0 \rightarrow K^+ \pi^-$ to validate the rest or serection

Slavomira Stetkova, <u>slavomira.stetkova@kit.edu</u>

 $K_{\rm S}^0$ kinematics between signal and control mode in simulation

(Normalized seuditteres) ame area

4.5

 $\Delta A_{CP} = (2.2 \pm 3.8 \pm 0.7)\%$

~ 2.0 *\sigma*

Data

 $B^0 \rightarrow K_c^0 \pi^0 \gamma$

– Fit

 $\Delta_{0\perp} = (5.1 \pm 2.0 \pm 1.0 \pm 1.1) \%$

Belle II

Preliminary

(30 MeV)

SI

FCNC $b \rightarrow d\gamma$ transition:

- Theoretically the \mathscr{B} of this decay mode is expected to be $(1.4^{+1.4}_{-0.8}) \times 10^{-8}$
- Theoretical uncertainty dominated by the uncertainty on λ_b

Previous searches:	Experiment	Integrated Luminosity $(\int \mathcal{L} dt)$	Limit @ 90 C.L.
O <u>PLB 363 (1995) 137-144</u>	L3	73 pb^{-1}	3.9×10^{-5}
O <u>PRD 73, 051107 (2006)</u>	Belle	$104 {\rm ~fb^{-1}}$	6.2×10^{-7}
O PRD 83, 032006 (2011)	Babar	$426 {\rm ~fb^{-1}}$	3.2×10^{-7}

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ected to be $(1.4^{+1.4}_{-0.8}) \times 10^{-8}$ ertainty on λ_b

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ events Adapted from [54]

0.87

ption	$-B^0 \to \gamma \gamma$	
	Belle	Belle II
Sig efficiency	23%	31%
Exp. bkg/fb-1	~ ().8

 ΔE

Remarks:

5 x improvement in limit wrt BaBar (previous best result) • BaBar had upward fluctuation

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

416

 $\overline{\mathcal{B}(B^0 \to \gamma \gamma)}$ (at 90% CL) $< 9.9 \times 10^{-8}$

Estimated⁴²³

Expected 90 C.L. 4.4×10^{-8}

FCNC $b \rightarrow s\gamma$ transition:

- Used Run 1 + Run 2 LHCb data (9 fb^{-1})
- $m_{pK} < 2.5 \text{ GeV}/c^{-2}$ to reduce $\Lambda_b^0 \to pK^-\pi^0$
- Veto m_{KK} around ϕ resonance

Selection strategy:

- Strict particle ID for p and K to reduce
 - $B_s^0 \to K^+ K^- \gamma$ and $B^0 \to K^+ \pi^- \gamma$
- o BDT to suppress backgrounds (combinatorial)

Remaining contributions:

- Partially reconstructed $\Lambda_b^0 \rightarrow p K^- \pi^0 \gamma$
- o Combinatorial background
- o Signal

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Invariant mass (Run 1,2)

APS April meeting 2024, Sacramento

stitute of Technology

arxiv: 2403.03710

Fitting strategy:

$$A_b \to \Lambda^* (\to pK^-)\gamma$$

• Perform amplitude analysis of $\Lambda_h^0 \to \Lambda^* \to (pK^-)\gamma$ for a defined set of helicities λ_i with unbinned fits to

arxiv: 2403.03710

Results:

0

Final results

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Fit and interference fractions between the different components contributing to the final state

Remarks:

0

- Largest contributions stem from $\Lambda(1520), \Lambda(1600), \Lambda(1800), \Lambda(1890)$
- Largest interference stems from $\Lambda(1405) + \Lambda(1800)$
- First $\Lambda_h^0 \to p K^- \gamma$ amplitude analysis based on the helicity formalism

FCNC $b \rightarrow s\gamma$ transition:

- Radiative counterpart to famous $B_s^0 \rightarrow \mu^+ \mu^-$
- Theoretically less clean, experimentally also harder

O Aim: perform measurement of \mathscr{B} in three bins $m(\mu^+\mu^-) = \frac{1}{q^2}$ = invariant dimuon mass squared

• Upper 95 % C.L. limit on $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$ of 2×10^{-9} for $m_{\mu^+ \mu^-} > 4.9 \text{ GeV}/c^2$ by HCb [PRD 105, 012010 (2019)] $B_{c} \rightarrow \mu \mu \mu_{Preliminary}$ LHCb-PAPER-2023-045 In

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Preliminary

CERN-TI

$[\text{GeV}^2/c^4]$	$[4 m_{\mu}^2, 2.89]$	[2.89, 8.29]	$[15.37, m_{B_0^0}^2]$	
$(\mu^+\mu^-) [\text{GeV}/c^2]$	$[2m_{\mu}, 1.70]$	[1.70, 2.88]	$[3.92, m_{B_s^0}]$	
$^{0} \times \mathcal{B}(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}\gamma)$ [8]	82 ± 15	2.54 ± 0.34	9.1 ± 1.1	
ction of $B_s^0 \to \mu^+ \mu^- \gamma$	87%	2.7%	9.8%	

Selection strategy:

• Use 5.4 fb⁻¹ LHCb data

 $^{\circ}$ Veto region around ϕ resonance

 $\mathscr{B}(B^0_s \to \mu^+ \mu^- \gamma)$

U INO SIGNITICANT SIGNAL WAS ODSERVED • Competitive limits in all of the regions

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I} &< 3.6 \, (4.2) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm II} &< 6.5 \, (7.7) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm III} &< 3.4 \, (4.2) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I, \ \phi \ veto} &< 2.9 \, (3.4) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm comb.} &< 2.5 \, (2.8) \times 10^{-8}, \end{split}$$

at 90% (95%) CL.

$$R^0 \rightarrow \mu^+ \mu^- \gamma$$

FCNC $b \rightarrow s$ transition:

• precise SM prediction: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ [PRD 107, 1324 014511 (2023), PRD 107, 119903 (2023)]

• dominated by form factor uncertainty

• NP scenarios:

- Light : axions [PRD 102, 015023 (2020)], dark scalars [PRD 101, 095006 (2020)], axion-like particles [JHEP 04 (2023) 131]
- Heavy : Z' [PL B 821 (2021) 136607], leptoquarks [PRD 98, 055003 (2018)]

Experimental status:

Previous limits order of magnitude above SM expectation

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ \nu \bar{\nu}$: Reconstruction

Measurement strategy:

- Use Run 1 Belle II (362 fb^{-1}) dataset
- Use inclusive tagging + hadronic tagging (most sensitive) (conventional)

ITA

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct signal kaon
- 3. Identify rest-of-event object (ROE)

$$q_{rec}^2 = \frac{s}{4} + M_K^2 - \sqrt{s}E_K^*$$
 * = c.m frame

HTA

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct hadronic tag (B_{tag})
- 3. Reconstruct signal kaon

Selection Strategy:

- TA: two consecutive BDTs to suppress the continuum and BBbackground → ITA signal efficiency = 8%; purity = 0.9%
- HTA: one BDT to suppress the continuum and BB background → HTA signal efficiency = 0.4%; purity = 3.5%

Fitting Strategy:

Binned maximum likelihood fit to extract parameter of interest signal strength μ

$$\mu = \frac{\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathscr{B}_{SM}(B^+ \to K^+ \nu \bar{\nu})} \text{ with } \mathscr{B}_{SM} = 4.97 \times 10^{-6}$$

- **ITA fit variable:** classifier output $\eta(BDT_2)$ and mass squared of the neutrino pair q_{rec}^2
- **HTA fit variable:** classifier output η (BDTh)

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ \nu \bar{\nu}$: Signal Region

ITA background composition

• 40% $q\bar{q}$ backgrounds \circ 60% $B\bar{B}$ backgrounds

qq decays 40.0% $B^+ \rightarrow \tau^+ \nu, B \rightarrow K^* \nu \bar{\nu}$ 28.0% $B \rightarrow D^{(*)} (\rightarrow KX) l v$ decays Hadronic B decays involving 23.0% Hadronic $B \rightarrow D^{(*)}K^+$ decays

$\frac{1}{2311.14647} B^+ \rightarrow K^+ \nu \bar{\nu}: Validation$

1.Signal efficiency checked with signal embedded $B^+ \rightarrow K^+ J/\psi (\rightarrow \mu^+ \mu^-)$ **events:** remove J/ψ and correct the kaon kinematics to match that of signal

- 2. $q\bar{q}$ background physics modelling validated with off-resonance data
- 3. $B \rightarrow X_c(\rightarrow K_L^0)$ physics modelling validated using pion-enriched sideband: • Scale up the $B \rightarrow X_c(\rightarrow K_L^0)$ simulated decays by 30%
- 4. Modelling the signal-like $B^+ \to K^+ K_L^0 K_L^0$ decays checked with $B^+ \to K^+ K_S^0 K_S^0$ decays [PRD 85 112010] • Similar treatment for $B^+ \to K^+ K_S^0 K_L^0$, $B^+ \to K^+ n\bar{n}$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Belle II $\int \mathcal{L} dt = 362 \, \text{fb}^{-1}$ 6000 Candidates/0.05 3000 2000 2000 Jandidates, 1000 0.51.0 $BDT_2 (BDT_1 > 0.9)$ $B^+ \to K^+ J/\psi$ data 1000 $\rightarrow K^+ J/\psi$ simulation \blacklozenge $B^+ \to K^+ J/\psi$ data $B^+ \to K^+ \nu \bar{\nu}$ simulation 0.20.6 0.80.40.0 BDT_1 $(1 \,{
m GeV^2/c^4})_{9.0}$ **Belle II** $\int \mathcal{L} dt = 362 \, \text{fb}^{-1}$ $\operatorname{Continuum}$ Data //// Sim. stat. unc

0.5

10

 $q^2_{
m rec}~[{
m GeV^2}/c^4]$

5

 $\mu = 4.6 \pm 1.0(\text{stat}) \pm 0.9(\text{syst})$ corresponding to $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$

- Combination improves the 0 ITA-only precision by 10%
- 3.5 σ significance wrt bkg 0
- 2.7 σ significance wrt SM Ο

arxiv: 2311.14647

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

 $B^+ \rightarrow K^+ \nu \bar{\nu}$: Results

Accepted by PRD!

Both LHCb and Belle (II) are producing world-leading results in rare B decays:

- $B \rightarrow K^* \gamma$: measurement consistent with SM and PDG
- $\circ B^0 \rightarrow \gamma \gamma$: best upper limit, rarest decay measured with Belle II data so far, close to SM
- $\Lambda_h^0 \to pK^-\gamma$: first $\Lambda_h^0 \to pK^-\gamma$ amplitude analysis based on the helicity formalism [arxiv: 2403.03710]
- $B_s^0 \rightarrow \mu^+ \mu^- \gamma$: first direct search, and first low q^2 search [LHCb-PAPER-2023-045] • $B^+ \rightarrow K^+ \nu \bar{\nu}$: first evidence for this decay with 2.7 σ compatibility with SM
- [arxiv: 2311.14647, to appear in PRD]

Most of the measurements are statistically limited \rightarrow bigger datasets are of particular interest!

Stay tuned for future :)

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Belle II Physics Book

Observables	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\Delta_{0+}(B \to K^* \gamma)$	0.70%	0.53%
$A_{CP}(B^0 \to K^{*0}\gamma)$	0.58%	0.21%
$A_{CP}(B^+ \to K^{*+}\gamma)$	() 0.81%	0.29%
$\Delta A_{CP}(B \to K^* \gamma)$	0.98%	0.36%

Belle II Physics Book

Observables	Belle II $5 \mathrm{ab}^{-1}$	Belle II 50 a
$\operatorname{Br}(B_d \to \gamma \gamma)$	30%	9.6%
$A_{CP}(B_d \to \gamma \gamma)$	78%	25%
$\operatorname{Br}(B_s \to \gamma \gamma)$	23%	—

$$B_s^0 o \mu\mu\gamma$$

 $B \rightarrow K^* \gamma$

 $B^0 \rightarrow \gamma \gamma$

more data will result in a observation of this decay

 $B^+ \to K^+ \nu \bar{\nu}$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Prospects

 $\Lambda_b^0 \to p K^- \gamma$

Improved knowledge of the different Λ baryons and more data will result in a significant reduction of the uncertainties

 ab^{-1}

<u>Belle II snowmass paper</u> : 2 scenarios baseline (improved*) assuming SM

Decay	$1{ m ab}^{-1}$	$5{ m ab}^{-1}$	$10{ m ab}^{-1}$	$50{ m ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55~(0.37)	0.28(0.19)	$0.21 \ (0.14)$	0.11(0.08)
$B^0 \to K^0_{ m S} \nu \bar{\nu}$	2.06(1.37)	$1.31 \ (0.87)$	1.05~(0.70)	0.59(0.40)
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	$1.06\ (0.75)$	$0.83 \ (0.59)$	0.53(0.38)
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	0.49(0.33)	0.34(0.23)

Backup

General

- Hermetic detector 0
- Sensitive to lower energy/charge deposits
- Known initial state kinematics 0

- Single arm spectrometer
- Longitudinal momentum of the *B* not known

SuperKEKB vs KEKB

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

	KEKB		SuperKEKB (Juni 2022)		SuperKEKB	
	LER	HER	LER	HER	LER	ł
Energie [GeV]	3.5	8	4	7	4	
#Bunches	1584		22	49	18	00
β [*] _x /β [*] _y [mm]	1200/5.9	1200/5.9	80/1.0	60/1.0	32/0.27	2
I [A]	1.64	1.19	1.46	1.15	2.8	
Luminosität [10 ³⁴ cm ⁻² s ⁻¹]	2.1		4.65 (Rekord!)		60	
Int. Luminosität [ab ⁻¹]		1	0.	43	5	0

Belle II stopped taking data in Summer 2022 for a long shutdown replacement of beam-pipe Installation of 2-layered pixel vertex detector Improved data-quality monitoring and alarm system completed transition to new DAQ boards (PCle40) • replacement of aging components

- replacement of photomultipliers of the central PID detector (TOP)
- accelerator improvements: injection, non-linear collimators, monitoring
- additional shielding and increased resilience against beam bckg

Related to $B \rightarrow K^* \gamma$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B \rightarrow K^* \gamma_{\text{Systematic Uncertainties}}$

 \mathscr{B}

Source	$K^{*0}[K^+\pi^-]\gamma$	$\boxed{K^{*0}[K^0_{\rm S}\pi^0]\gamma}$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_{\rm S}\pi^+]\gamma$				
B counting	1.5	1.5	1.5	1.5		A_{a}	D	
f^{\pm}/f^{00}	1.6	1.6	1.6	1.6		^{T}C	P	
γ selection	0.9	0.9	0.9	0.9	Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_{\rm S}$
π^0 veto	0.7	0.7	0.7	0.7	Fit bias	0.1	0.2	0.2
$\eta { m veto}$	0.2	0.2	0.2	0.2	Signal PDF model	0.1	0.1	0.1
Tracking efficiency	0.5	0.5	0.2	0.7	KDE modelling	0.1	0.4	0.2
π^+ selection	0.2			0.2	BCS	0.1	0.5	0.2
K^+ selection	0.4	_	0.4	_	K^+ asymmetry		0.6	_
$K^0_{\rm S}$ reconstruction		1.4		1.4	π^+ asymmetry			0.6
$\pi^{\widetilde{0}}$ reconstruction	_	3.9	3.9		$K^+\pi^-$ asymmetry	0.3		
χ^2 selection	0.2	1.0	0.2	1.0	Total	0.4	0.9	0.7
CSBDT selection	0.3	0.4	0.4	0.3				
Candidate selection	0.1	1.0	0.6	0.2				
Fit bias	0.1	0.9	0.5	0.2				
Signal PDF model	0.1	0.4	0.3	0.2				
KDE PDF model	0.1	0.8	0.6	0.2				
Simulation sample size	0.2	0.8	0.4	0.5				
Misreconstructed signal		1.0	1.0					
Total	2.6	5.4	4.9	3.2				

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Be	

Related to $B^0 \rightarrow \gamma \gamma$

B Systematic Uncertainties

Signal yield

Source	Belle (%)	Belle II (%)
Photon Detection Efficiency	4.0	2.7
Reconstruction Efficiency (ϵ_{rec})	0.6	0.5
Number of $B\overline{B}$	1.3	1.5
f^{00}	2.5	2.5
$C_{\rm BDT}$ requirement	0.4	0.9
π^0/η veto	0.3	0.4
Timing requirement efficiency	2.8	—
Total (sum in quadrature)	5.7	4.1

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Signal efficiencies

Source	Belle	Belle I
	(events)	(events)
Fit bias	+0.16	+0.12
PDF parameterization	$+0.56 \\ -0.48$	$+0.30 \\ -0.32$
Shape Modeling	+0.06	+0.04
Total (sum in quadrature)	$+0.58 \\ -0.48$	$+0.30 \\ -0.32$

Related to $\Lambda_b^0 \to pK^-\gamma$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Table 3: Fit fractions (top) and interference fit fractions (bottom) determined using the amplitude model. The values are given in %. The uncertainties from internal and external sources, determined by the numerical convolution procedure are labelled $\sigma_{\text{syst}}^{\text{internal}}$ and $\sigma_{\text{syst}}^{\text{external}}$.

Observable	Value	$\sigma_{ m stat}$	$\sigma_{ m syst}^{ m internal}$	$\sigma_{ m syst}^{ m external}$	$\sigma_{ m syst}$
$\Lambda(1405)$	3.5	$^{+0.3}_{-0.4}$	$+0.9 \\ -0.0$	$^{+1.3}_{-0.6}$	$+1.9 \\ -0.3$
$\Lambda(1520)$	10.4	$^{+0.4}_{-0.2}$	$^{+0.7}_{-0.0}$	$^{+1.7}_{-1.6}$	$^{+2.2}_{-1.2}$
$\Lambda(1600)$	15.6	$^{+0.6}_{-0.9}$	$^{+0.8}_{-0.2}$	$^{+3.9}_{-5.0}$	$+4.3 \\ -4.6$
$\Lambda(1670)$	1.3	$^{+0.2}_{-0.2}$	$^{+0.3}_{-0.2}$	$^{+1.2}_{-0.3}$	$^{+1.3}_{-0.2}$
$\Lambda(1690)$	7.7	$^{+0.4}_{-0.8}$	$^{+1.8}_{-0.1}$	$^{+5.1}_{-1.0}$	$+6.2 \\ -0.2$
$\Lambda(1800)$	18.3	$^{+1.3}_{-1.6}$	$+1.4 \\ -1.1$	$^{+3.2}_{-6.0}$	$+3.2 \\ -6.2$
$\Lambda(1810)$	0.1	$^{+0.9}_{-0.4}$	$^{+1.7}_{-0.4}$	$^{+4.0}_{-0.7}$	$+4.8 \\ -0.7$
$\Lambda(1820)$	8.3	$^{+0.4}_{-0.7}$	$-0.2 \\ -1.4$	$^{+1.9}_{-4.8}$	$^{+1.0}_{-5.7}$
$\Lambda(1830)$	0.3	$^{+0.4}_{-0.4}$	$^{+0.6}_{-0.5}$	$^{+1.5}_{-0.9}$	$^{+1.6}_{-0.9}$
$\Lambda(1890)$	11.2	$^{+0.7}_{-0.6}$	$^{+0.5}_{-0.6}$	$+4.3 \\ -5.1$	$^{+4.6}_{-4.9}$
$\Lambda(2100)$	7.3	$^{+0.5}_{-0.5}$	$^{+1.1}_{-0.6}$	$^{+1.1}_{-2.8}$	$^{+1.4}_{-2.9}$
$\Lambda(2110)$	6.5	$^{+0.6}_{-0.7}$	$^{+1.7}_{-0.0}$	$+5.4 \\ -0.9$	$+6.3 \\ -0.2$
$\Lambda(2350)$	1.0	$^{+0.2}_{-0.1}$	$^{+0.8}_{-0.0}$	$^{+0.0}_{-0.2}$	$^{+0.8}_{-0.1}$
$NR(3/2^{-})$	2.8	$+0.5 \\ -0.4$	$+0.2 \\ -1.9$	$^{+3.0}_{+0.3}$	$+2.4 \\ -1.3$
$\Lambda(1405), \Lambda(1670)$	-0.7	$^{+0.1}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.5}_{-0.8}$	$^{+0.5}_{-0.9}$
$\Lambda(1405), \Lambda(1800)$	7.6	$^{+0.7}_{-0.8}$	$^{+1.2}_{-2.0}$	$^{+0.6}_{-3.5}$	$^{+0.9}_{-4.6}$
$\Lambda(1520), \Lambda(1690)$	0.5	$^{+0.5}_{-0.3}$	$^{+0.3}_{-0.9}$	$^{+0.6}_{-2.6}$	$+0.5 \\ -3.0$
$\Lambda(1520), NR(3/2^{-})$	-0.6	$^{+0.4}_{-0.4}$	$^{+1.0}_{-0.6}$	$^{+1.6}_{-3.2}$	$^{+2.1}_{-3.0}$
$\Lambda(1600), \Lambda(1810)$	-1.9	$^{+1.5}_{-1.0}$	$^{+1.3}_{-1.5}$	$^{+4.1}_{-2.9}$	$+3.9 \\ -3.6$
$\Lambda(1670), \Lambda(1800)$	-4.8	$^{+0.5}_{-0.4}$	$^{+0.4}_{-0.6}$	$^{+1.5}_{-2.0}$	$^{+1.5}_{-2.1}$
$\Lambda(1690), NR(3/2^{-})$	3.9	$^{+0.4}_{-0.4}$	$^{+0.1}_{-3.0}$	$^{+1.2}_{-2.7}$	$^{+0.3}_{-4.7}$
$\Lambda(1820), \Lambda(2110)$	1.1	$^{+0.7}_{-0.5}$	$^{+0.2}_{-2.1}$	$^{+2.5}_{-3.9}$	$^{+1.9}_{-4.8}$

- The uncertainties for most observables are dominated by external inputs: specifically the masses and widths of the Λ states. A future measurement including improved knowledge of the different Λ baryons and more data will result in a significant reduction of the uncertainties.
- $\mathscr{B}(\Lambda_{h}^{0} \to \Lambda^{*0}\gamma) \sim 3 \times 10^{-5}$

Related to $B_s^0 \rightarrow \mu^+ \mu^- \gamma$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

- O Use two MLP classifiers to reduce backgrounds (optimised for each q^2 region)
- Double mis-ID, partially reconstructed, $B \rightarrow \mu\mu\pi^0$, $B \rightarrow \mu\mu\eta$ • Control channel: $B_s^0 \to \phi(\to K^+K^-)\gamma$
- Normalisation channel: $B_s^0 \to J/\psi(\to \mu^+\mu^-)\eta(\to\gamma\gamma)$

Irene Bachiller - Rare and Semileptonic decays at LHCb Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

- Indirect search in $B_s^0 \rightarrow \mu^+ \mu^- =$ no photon
- reconstruction LHCb-PAPER-2023-045
 Only sensitive to high grad giontion

Phys.Rev.D105(2022)012010

Related to $B^+ \to K^+ \nu \bar{\nu}$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Seven major backgrounds categories:

ITA discriminating variables: signal kinematics, two/threetrack vertices, general event topology (e.g sphericity)

HTA discriminating variables: signal kinematics, B_{tag} , other track and cluster information

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Reconstruction Techniques

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Efficiency

 $\epsilon \sim 1 - 100\%$ $\epsilon \sim 1 - 3\%$ Inclusive (ITA) Exclusive semileptonic $B^{-}_{\mathrm sig}$ $\Upsilon(4S)$ $\Upsilon(4S)$ e^+ e^{-} e^+

Purity, Resolution

Different reconstruction techniques lead to nearly orthogonal data samples

q² distribution

- Default signal model \rightarrow PHSP model with SM form factor reweighting [arXiv:1409.4557]
- At low q^2 maximum signal efficiency of 13%
- No sensitivity for $q^2 > 16 \text{ GeV}^2/c^2$

Selection Efficiency as a fn. q^2

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

HTA much lower efficiency w.r.t. ITA analysis, but a smaller variation in q^2

Source	Uncertainty size	Impact on σ_{μ}	
Normalization of $B\bar{B}$ background	50%	0.88	1
Normalization of continuum background	50%	0.10	
Leading B -decays branching fractions	O(1%)	0.22	
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	20%	0.49	3.
<i>p</i> -wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	30%	0.02	
Branching fraction for $B \to D^{(**)}$	50%	0.42	
Branching fraction for $B^+ \to n\bar{n}K^+$	100%	0.20	
Branching fraction for $D \to K_L X$	10%	0.14	
Continuum background modeling, BDT_c	100% of correction	0.01	
Integrated luminosity	1%	< 0.01	
Number of $B\bar{B}$	1.5%	0.02	
Off-resonance sample normalization	5%	0.05	
Track finding efficiency	0.3%	0.20	
Signal kaon PID	O(1%)	0.07	
Photon energy scale	0.5%	0.08	
Hadronic energy scale	10%	0.36	
$K_{\rm L}^0$ efficiency in ECL	8%	0.21	
Signal SM form factors	O(1%)	0.02	
Global signal efficiency	3%	0.03	
MC statistics	O(1%)	0.52	2.

Systematic Uncertainties

Source	Uncertainty size	Impact on σ_{μ}	-
Normalization $B\overline{B}$ background	30%	0.91	1
Normalization continuum background	50%	0.58	1.
Leading B -decays branching fractions	O(1%)	0.10	
Branching fraction for $B^+ \to K^+ K_L^0 K_L^0$	20%	0.20	
Branching fraction for $B \to D^{(**)}$	50%	< 0.01	
Branching fraction for $B^+ \to K^+ n \bar{n}$	100%	0.05	
Branching fraction for $D \to K_L X$	10%	0.03	
Continuum background modeling, BDT_c	100% of correction	0.29	
Number of $B\bar{B}$	1.5%	0.07	
Track finding efficiency	0.3%	0.01	
Signal kaon PID	O(1%)	< 0.01	
Extra photon multiplicity	O(20%)	0.61	2.
K_L^0 efficiency	17%	0.31	
Signal SM form factors	O(1%)	0.06	
Signal efficiency	16%	0.42	
Simulated sample size	O(1%)	0.60	3.

Systematic Uncertainties

 C 	
B	6

statistical uncertainty on $\mu = 2.3$

ITA Results: Post-fit distributions

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

0.92

 \wedge

 $\mu(BDT_2)$

0.92 \wedge $\eta(BDT_2)$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

HTA Results: Post-fit distributions

HTA Signal region $\eta(BDTh) > 0.4$

 $n_{
m tracks\ extra}$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

HTA Results: Post-fit distributions

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

*The "improved" scenario assumes a 50% increase in signal efficiency for the same background level 3σ (5σ) for SM $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with 5 ab⁻¹

Uncertainty on the Signal Strength µ Belle II Snowmass paper : 2 scenarios baseline (improved*)

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Other Avenues with Invisibles

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Transition $b \rightarrow s\mu^+\mu^-$ Observable P_5' , \mathscr{B} Significance Above 2.5 σ

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Flavour Anomalies

Anomalies observed in exclusive $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow cl\nu$ transitions

$\mathcal{B}(B \to D^{(*)}\tau\nu)$ $\mathcal{B}(B \to D^{(*)}l\nu) \ (l = e, \mu)$ $R(D^{(*)}) =$ Around 3.0σ

 $b \rightarrow s \nu \bar{\nu}$ transitions are correlated to flavour anomalies

Presented for the first time @ Moriond QCD on 2.4.2024

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

N 1 /

observables and the differential decay rate

- ✓ **Unbinned** amplitude analysis to the whole $q^2 \equiv m^2(\mu^+\mu^-)$ region
- First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data \checkmark

C. Cornella, G. Isidori, M. König, S. Liechti, P. Owen, N. Serra [Eur.Phys.J.C 80 (2020) 12, 1095]

Angular analysis preformed in the three decay angles and q^2

From Simulation

Acceptance model

From Data

- Resolution •
- S-wave parameters
- Background model ٠

From Theory

Local $B \rightarrow K^*$ Form factors

Gaussian constrained GRvDV [JHEP 09, 133 (2022)]

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Fit determines 150 parameters:

- $\Re(C_9), \Re(C_{10}), \Re(C_9), \Re(C_{10}), \Re(C_9)$
- Mag. and Phase of 1-particle resonances
- Real+Imag $D^{(*)}\overline{D}^{(*)}$ per helicity
- ΔC_7 per helicity
- Form factors \bullet

Results

Results II

