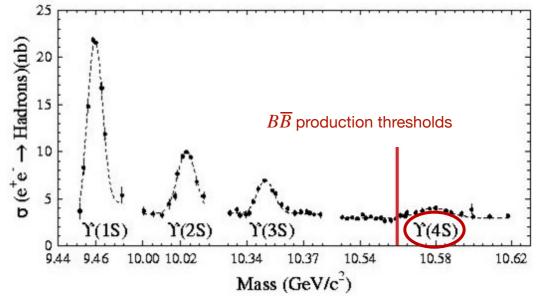
Charm and beauty hadron decays at Belle and Belle II

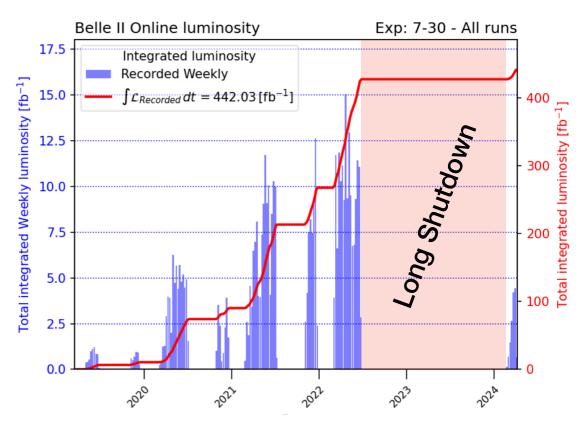
58th Rencontres de Moriond 2024 QCD & High Energy Interactions April 2, 2024

rmanfredi@bnl.gov

Riccardo Manfredi (Brookhaven National Laboratory) on behalf of the Belle II collaboration

Beauty and charm factories

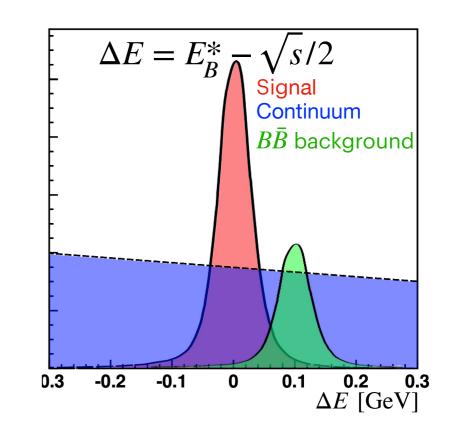

Energy-asymmetric e^+e^- collisions at the $\Upsilon(4S)$, clean $B\overline{B}$ production + large $q\overline{q}$ production, $c\overline{c}$ significant fraction

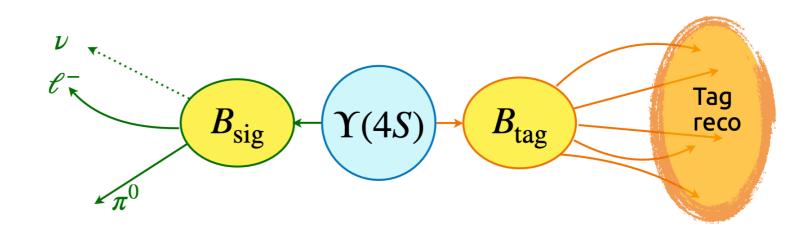

Belle II: ~390M $B\overline{B}$ + ~560M charmed hadron pairs. Data-taking resumed on Feb 15 Belle: additional ~770M $B\overline{B}$ + ~1.3B charmed hadron pairs (data taking ended in 2010)

Belle II compared to Belle

- much improved vertexing
- greater acceptance
- design 30x instantaneous luminosity
- \Rightarrow similar performance with 20x machine bkg

Exploit Belle + Belle II dataset combination




B physics at Belle (II)

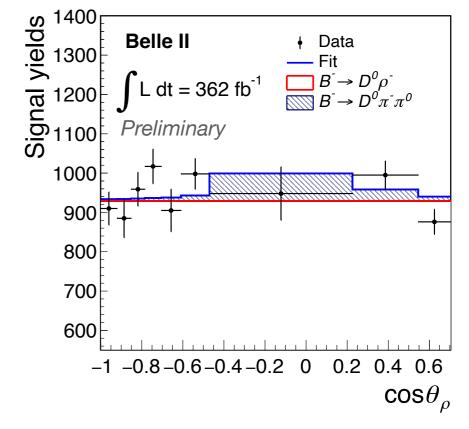
Threshold and coherent production of $B\overline{B}$ meson pairs + precise knowledge of collision energy \rightarrow specific observables

Infer flavor of signal B meson from features of the "other" one (tagging)

Reconstruct the decay of the tag B to constrain kinematics of the signal

Branching fraction of $B^- \rightarrow D^0 \rho^-$

One of the dominant hadronic B decays + test of QCD factorization models. WA dominated by 1994 measurement


New for Moriond

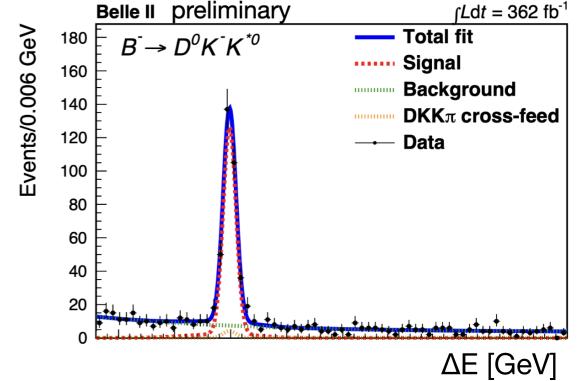
Fit ΔE to subtract background, then fit ρ angular distribution ($\cos \theta_{\rho}$) to separate signal and non-resonant $B^- \rightarrow D^0 \pi^- \pi^0$

$$\mathscr{B}(B^- \to D^0 \rho^-) = (0.939 \pm 0.021 \pm 0.050) \%$$

World best result, more than a factor 2 precision improvement

Branching fractions of $B \rightarrow D^{(*)}K^-K^{(*)0}$

DKK mostly unexplored sector: expect few % of BF, measured only 0.28%

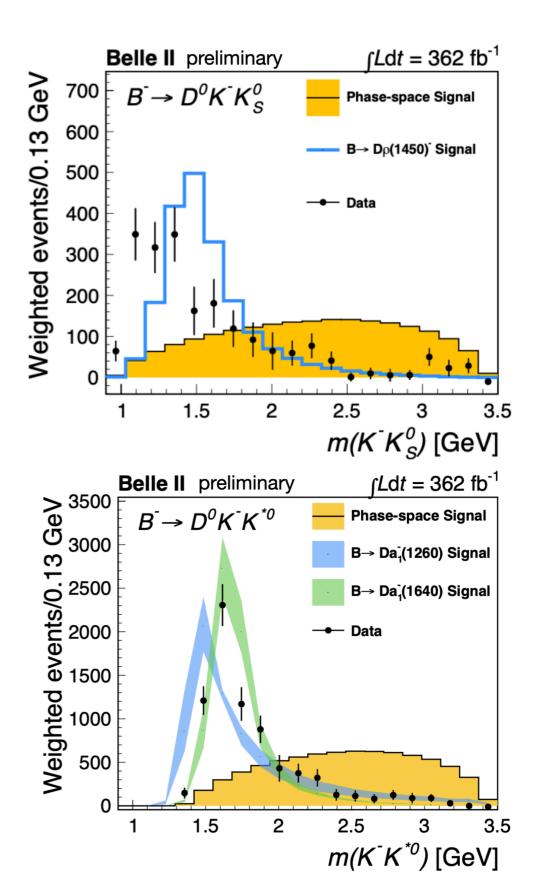

Measure signals in ΔE fits, for final states with a K^* fit $m(K\pi)$ distribution to constrain non-resonant fraction

Observed 3 new DKK_{S}^{0} decay modes, improved precision by a factor 3 in the other *DKK* modes

180 $B^{-} \rightarrow D^{0}K^{-}K^{*0}$ Signal 160 Background 140 **DKK** π cross-feed 120 Data 100 80 60 40 20 n $\Delta E [GeV]$ $\mathscr{B}(B^- \to D^0 K^- K_S^0) = (1.82 \pm 0.16 \pm 0.08) \times 10^{-4}$

 $\mathscr{B}(\overline{B}^0 \to D^+ K^- K_s^0) = (0.82 \pm 0.12 \pm 0.05) \times 10^{-4}$ $\mathscr{B}(B^- \to D^{*0}K^-K_s^0) = (1.47 \pm 0.27 \pm 0.10) \times 10^{-4}$ $\mathscr{B}(\overline{B}^0 \to D^{*+}K^-K^0_S) = (0.91 \pm 0.19 \pm 0.05) \times 10^{-4}$ $\mathscr{B}(B^- \to D^0 K^- K^{*0}) = (7.19 \pm 0.45 \pm 0.33) \times 10^{-4}$ $\mathscr{B}(\overline{B}^0 \to D^+ K^- K^{*0}) = (7.56 \pm 0.45 \pm 0.38) \times 10^{-4}$

 $\mathscr{B}(B^- \to D^{*0}K^-K^{*0}) = (11.93 \pm 1.14 \pm 0.93) \times 10^{-4}$ $\mathscr{B}(\overline{B}^0 \to D^{*+}K^-K^{*0}) = (13.12 \pm 1.21 \pm 0.71) \times 10^{-4}$



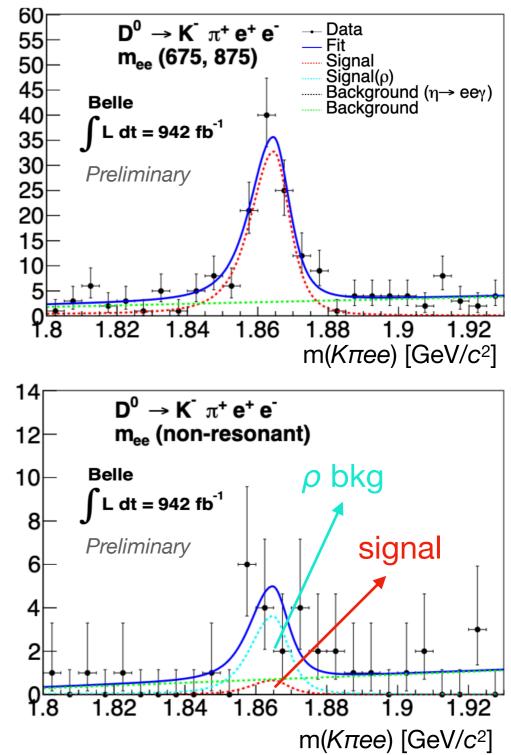
Branching fractions of $B \rightarrow D^{(*)}K^-K^{(*)0}$

Extracted background-subracted and efficiency-corrected invariant mass and angular distributions

Low-mass structures in $m(K^-K_S^0)$ and $m(K^-K^{*0})$ qualitatively compatible with ρ or a_1 intermediate resonances

Recent calculations validate that low-mass region is dominated by $\rho(770,1450)$ [arxiv:2403.07499]

Charmed hadron decays


Search for rare $D^0 \rightarrow h^- h^{(')+} e^+ e^-$ decays

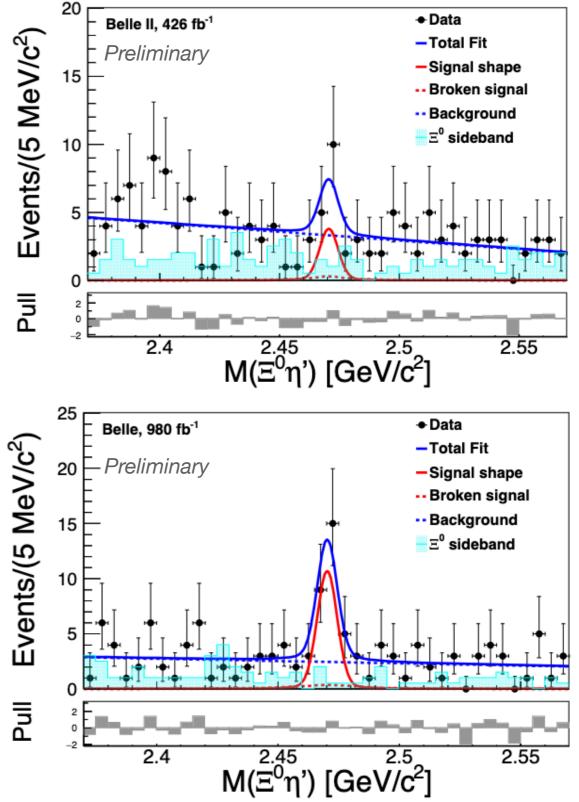
Belle-only data. Sensitive to FCNC in the non-resonant $m(e^+e^-)$ regions

Reconstruct decays with $h^{(')} = K, \pi$ in different $m(e^+e^-)$ regions, each with optimized selection

 $\mathscr{B}(D^0 \to K^- \pi^+ e^+ e^-) = (39.6 \pm 4.5 \pm 2.9) \times 10^{-7}$ in $m_{ee}(675,875)$ MeV

Precision comparable with WA. World's best upper limits on all other regions and on other channels

Measurements of $\Xi_c^0 \to \Xi^0 \pi^0, \Xi^0 \eta, \Xi^0 \eta'$


Belle + Belle II combined analysis

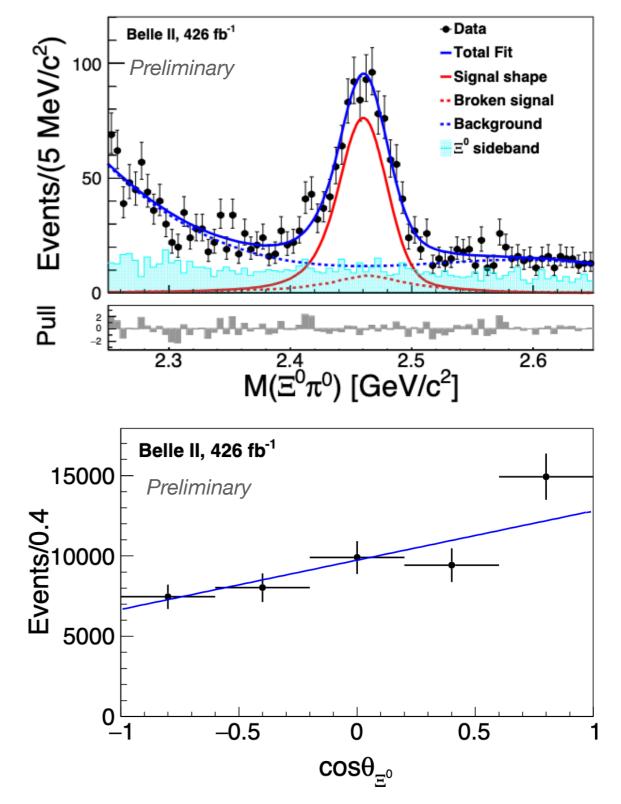
Reconstruct as $\Xi^{+,0} \to \Lambda(\to p\pi)\pi^{+,0}$, $\eta' \to \eta\pi\pi$ and $\pi^0/\eta \to \gamma\gamma$, extract signals fitting the $m(\Xi\pi)$ distributions

$$\mathscr{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (7.2 \pm 0.3 \pm 0.5 \pm 1.6) \times 10^{-3}$$
$$\mathscr{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.7 \pm 0.2 \pm 0.2 \pm 0.4) \times 10^{-3}$$
$$\mathscr{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.3 \pm 0.3 \pm 0.1 \pm 0.3) \times 10^{-3}$$

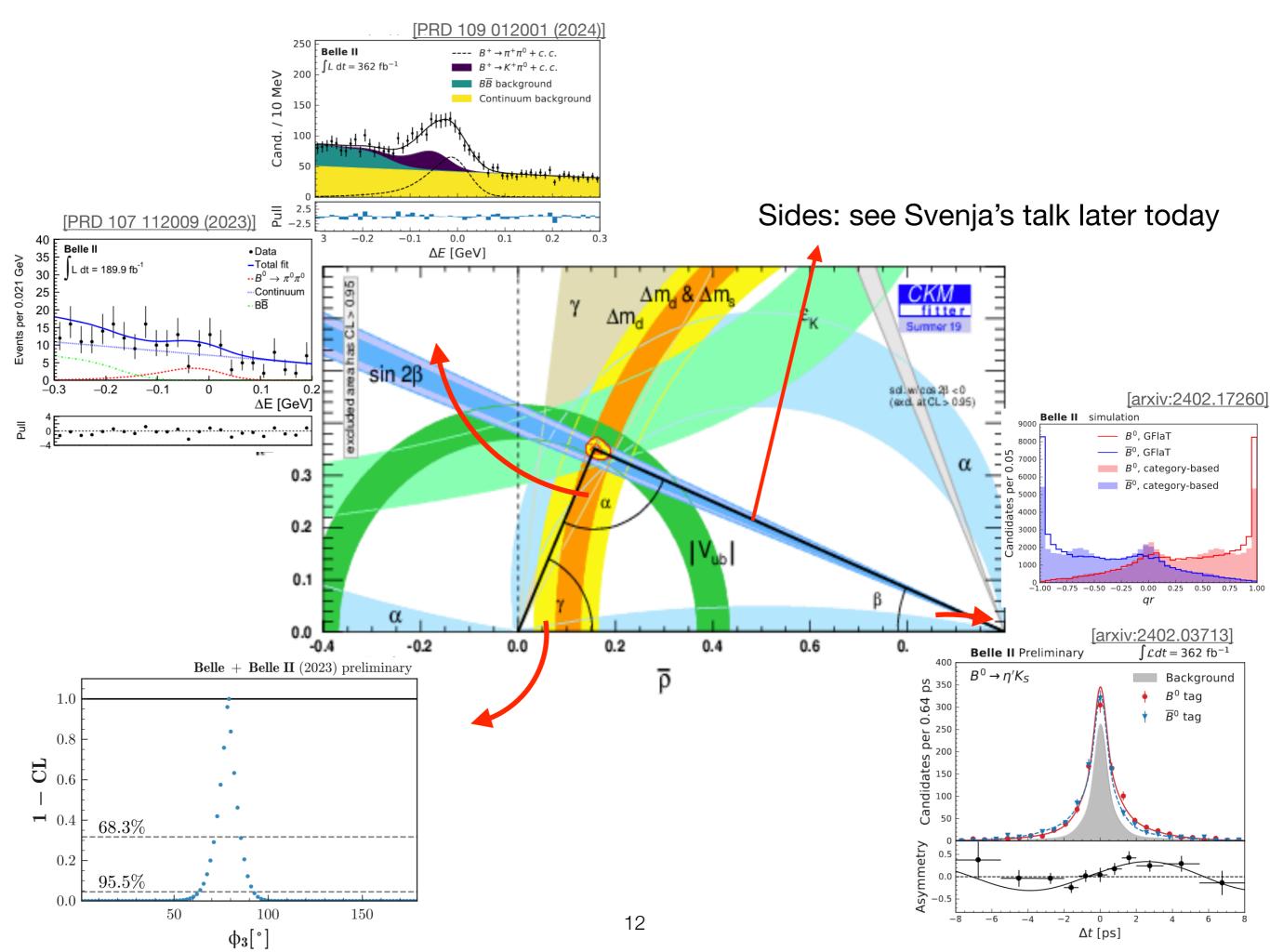
First measurements for all these decays

Comparable with only one of the three theoretical prediction [JHEP 02 (2023) 235]

Measurements of $\Xi_c^0 \to \Xi^0 \pi^0, \Xi^0 \eta, \Xi^0 \eta'$


Differential decay rate is

$$\frac{dN}{d\cos\theta_{\Xi^0}} = 1 + \alpha(\Xi^0\pi^0)\alpha(\Lambda\pi^0)\cos\theta_{\Xi^0}$$

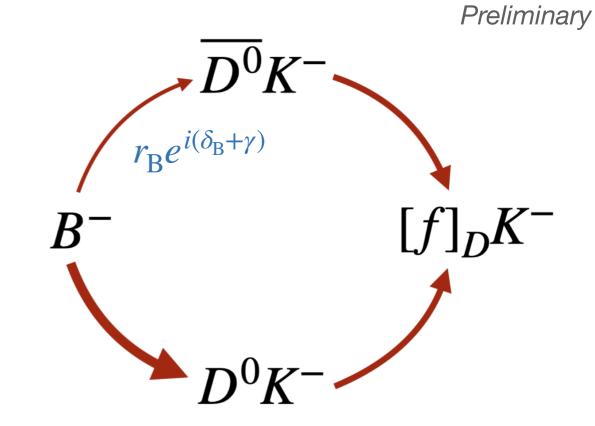

with $\alpha(\Xi^0\pi^0)$ asymmetry parameter related to P-violation

Measure signal yield in bins of helicity angle, extract asymmetry from linear fit simultaneous to Belle and Belle II

$$\alpha(\Xi^0 \pi^0) = -0.91 \pm 0.15 \pm 0.23$$

Testing the Standard Model

Belle + Belle II determination of γ


Phase between $b \rightarrow c$ and $b \rightarrow u$. Tree-dominated: precise SM reference HFLAV: $(66.2^{+3.4}_{-3.6})^{\circ}$

Access with interfering decays to same final states. Many Belle + Belle II results:

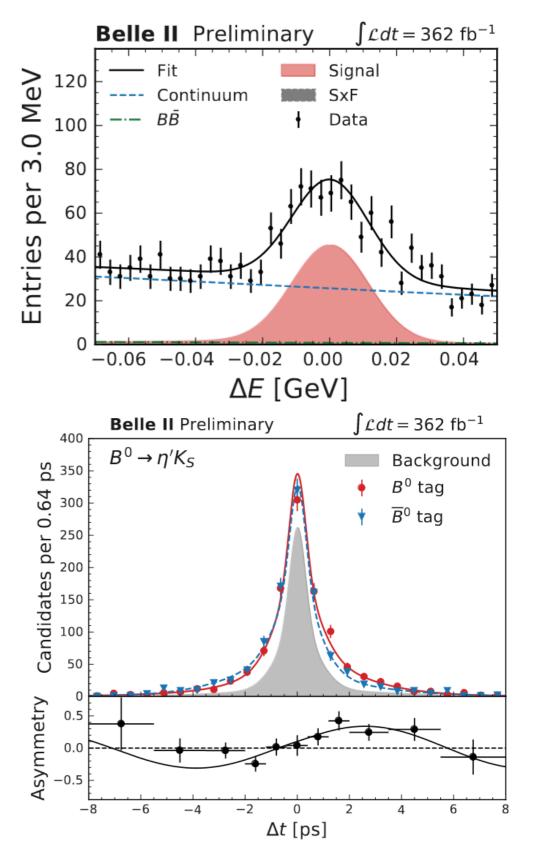
- $D \rightarrow K_S hh$ [JHEP 02 063 (2022)]
- $D \rightarrow K_S K \pi$ [JHEP 09 146] (2023)] - $D \rightarrow K_S \pi^0$, KK [arxiv:2308.05048]

First γ determination using only Belle and Belle II results

$$\gamma = (78.6 \pm 7.3)^{\circ}$$

$$\frac{\mathscr{A}^{\text{suppr.}}\left(B^{-} \to \overline{D}^{0}K^{-}\right)}{\mathscr{A}^{\text{favor.}}\left(B^{-} \to D^{0}K^{-}\right)} = r_{\text{B}}e^{i(\delta_{\text{B}}+\gamma)}$$

Towards β determination


Measurement in penguin-dominated decays, sensitive to BSM physics. $B^0 \rightarrow \eta' K_S^0$ final state unique to Belle II.

Two sub-channels $\eta' \rightarrow \eta_{\gamma\gamma} \pi \pi, \rho \gamma$. Dominant bkg from track combinations, dedicated suppression BDT

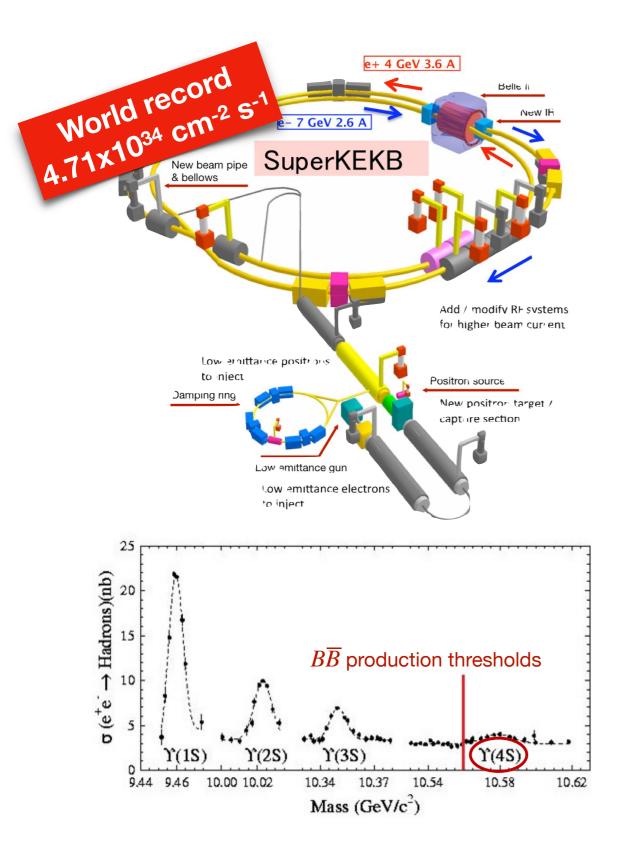
Measure signal with ΔE fit, and then fit the decay time to measure CPV

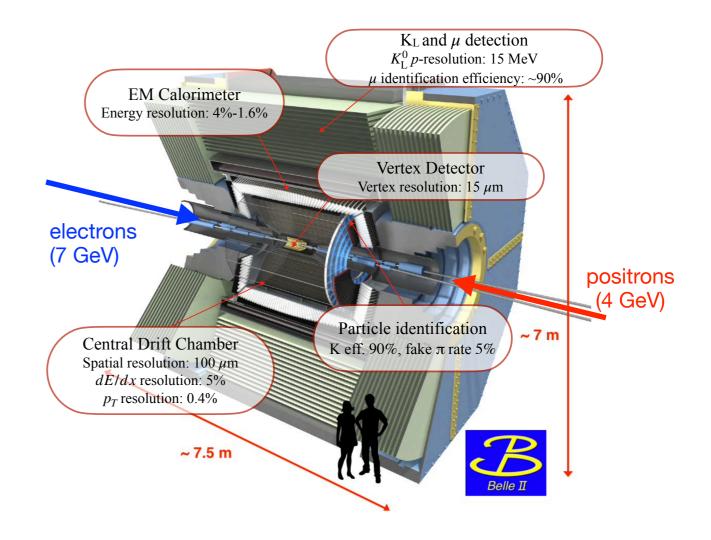
$$C_{\eta'K_S^0} = -0.19 \pm 0.08 \pm 0.03$$
$$S_{\eta'K_S^0} = +0.67 \pm 0.10 \pm 0.04$$

Competitive with current bests even with smaller sample

[arxiv:2402.03713] preliminary

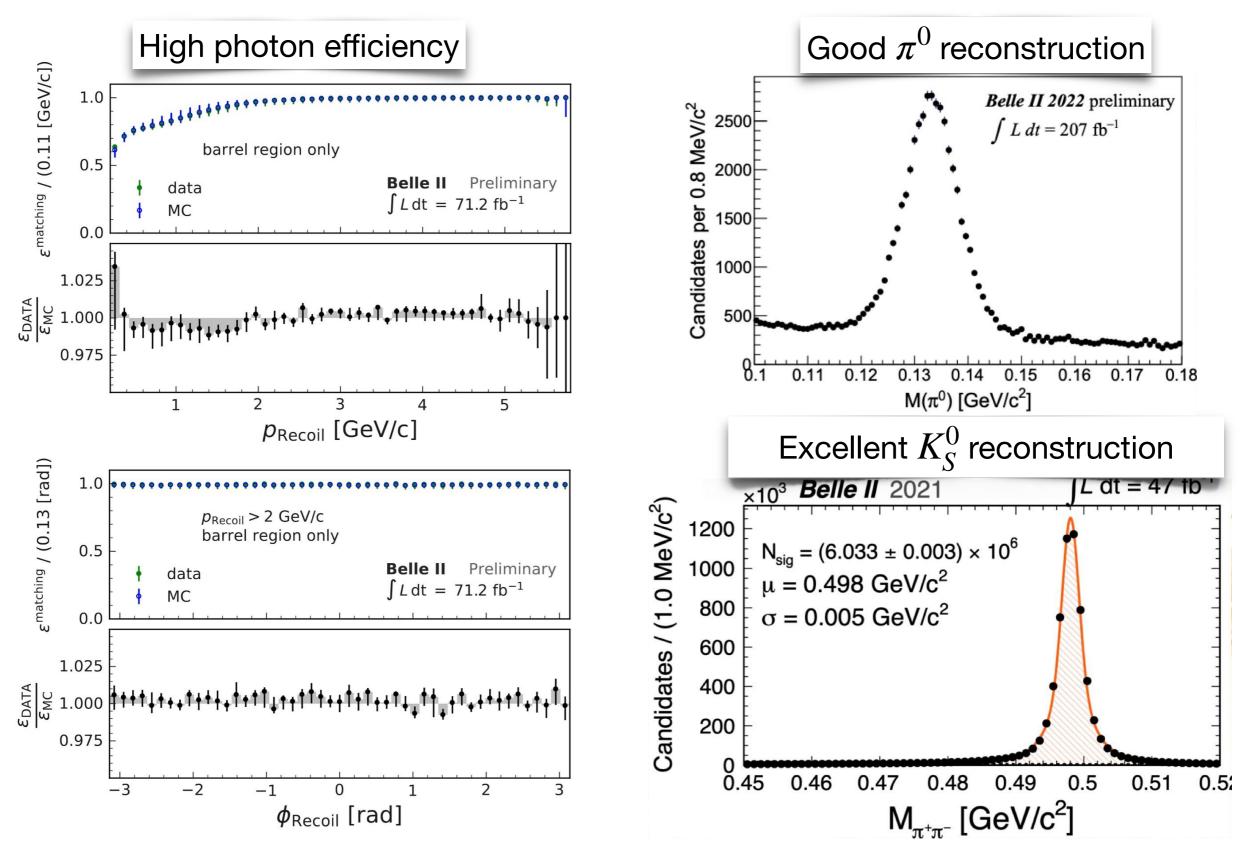
Summary


Belle II aims at testing the Standard Model and improving the precision on flavor-physics parameters


Today showed new branching fraction measurements, competitive with current best even with less statistics. Additional precision by exploiting also the Belle dataset

Data-taking just resumed, aim to reach 1 ab⁻¹ of integrated luminosity by 2024 and test the Standard Model with competitive data sample

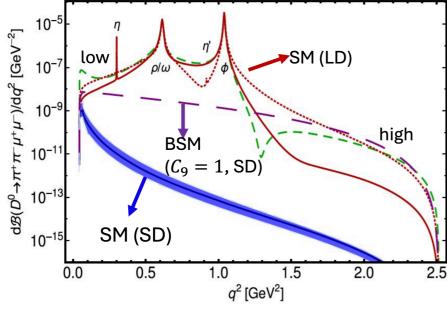
backup


Belle II at SuperKEKB

- ~100% of $\Upsilon(4S)$ decay to $B\overline{B}$ pairs
- Low-background production of ~30 pairs/s
- Precisely known collision energy
- Coherent evolution of B and \overline{B}
- Currently ~390 M pairs

Performance overview

Isospin test in $B^- \rightarrow D^0 \rho^-$


Branching fraction measurements on $\overline{B}{}^0 \to D^0 \rho^0$, $D^+ \rho^-$ and $B^- \to D^0 \rho^$ provide tests of calculations of hadronic decay rates based on heavy-quark limit and factorization models. The ratio *R* and strong-phase difference δ between those amplitudes are related to the branching fractions of the three decays and the ratio of the *B*⁺ and *B*⁻ lifetimes

$$R = \left(\frac{3}{2}\frac{\tau_{+}}{\tau_{0}}\frac{\mathscr{B}(D^{0}\rho^{0}) + \mathscr{B}(D^{+}\rho^{-})}{\mathscr{B}(D^{0}\rho^{-})} - \frac{1}{2}\right)^{\frac{1}{2}} \qquad \cos\delta = \frac{1}{2R}\left(\frac{3}{2}\frac{\tau_{+}}{\tau_{0}}\frac{\mathscr{B}(D^{0}\rho^{0}) - 2\mathscr{B}(D^{+}\rho^{-})}{\mathscr{B}(D^{0}\rho^{-})} + \frac{1}{2}\right)$$

Results reported by LHCb: $R = 0.69 \pm 0.15$ and $\cos \delta = 0.984^{+0.113}_{-0.048}$ [PRD 92 032002 (2015)]

Update with Belle II $D^0 \rho^-$ result : $R = 0.93^{+0.11}_{-0.12}$ and $\cos \delta = 0.919^{+0.012}_{-0.009}$

Search for rare $D^0 \rightarrow h^- h^{(')+} e^+ e^-$ decays

[PRD 98 035041 (2018)]

m_{ee} region	$[MeV/c^2]$	Yield	Significance	B	UL @ 90% CL
$K^{-}K^{+}e^{+}e^{-}$					
η	520 - 560	-	$< 0.1\sigma$	-	< 2.3
$ ho^0/\omega$	> 675	2.6 ± 1.8	2.0σ	$1.2\pm0.9\pm0.1$	< 3.0
non-resonant	> 200	3.5 ± 3.3	1.5σ	$3.1 \pm 3.0 \pm 0.4$	< 7.7
$\pi^-\pi^+e^+e^-$					
η	520 - 560	0.6 ± 2.3	0.3σ	$0.4\pm1.4\pm0.2$	< 3.2
$ ho^0/\omega$	675-875	3.7 ± 4.1	0.9σ	$2.0 \pm 2.2 \pm 0.8$	< 6.1
ϕ	995 - 1035	3.6 ± 3.2	1.1σ	$1.1\pm1.1\pm0.2$	< 3.1
non-resonant	> 200	-0.2 ± 4.1	$< 0.1\sigma$	$-0.2 \pm 3.4 \pm 0.9$	< 7.2
$K^-\pi^+e^+e^-$					
η	520 - 560	4.0 ± 2.7	1.6σ	$2.2\pm1.5\pm0.5$	< 5.6
$ ho^0/\omega$	675-875	110 ± 13	11.8σ	$39.6 \pm 4.5 \pm 2.9$	-
ϕ	990 - 1034	4.6 ± 2.4	2.5σ	$1.4\pm0.8\pm0.3$	< 2.9
non-resonant	> 560	2.2 ± 4.2	0.4σ	$1.3\pm2.4\pm0.6$	< 6.5

^a Excluding resonance regions, which is same for all three modes.