Belle results on hyperon spectroscopy and future prospects at Belle II

Kiyoshi Tanida <kytanida@gmail.com> (Japan Atomic Energy Agency) Workshop on Hadron Spectroscopy with Strangeness (@Glasgow U.) 3 April 2024

THE BELLE in Glasgow

Flavored Baryons in e⁺e⁻ Collider

 Electron-positron colliders (CLEO, Belle, BaBar, BESIII...) are known to be useful for mesons, especially, quarkonia.

 Today, I will demonstrate they are also good for hyperons by showing some of the recent results by Belle.

Why e⁺e⁻ colliders?

- Small background
 - $-e^+e^- \rightarrow Q\bar{Q}$ production is flavor blind. Only (charge)² matters \rightarrow Good for heavy quarks.
- Missing mass spectroscopy is possible
 - Absolute branching fraction
 - Study of decays with missing particles (n, v, ...)
- Fragmentation+decays from bottom and charm
 - Abundant production of charmed baryons and hyperons.
 - Multi-strange baryons ($\Xi \& \Omega$) are also accessible.

Hyperons from charmed baryon decays

 $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$

 New source for hyperon spectroscopy

 $Entries/(5 MeV/c^2)$

Belle experiment

- Almost 4π, good momentum resolution (Δp/p~0.1%), EM calorimeter, PID & Si Vertex detector
- Finished >10 years ago, still producing ~20 papers/year

Topics of the day

- 1. $\Lambda_c \rightarrow \Lambda \eta \pi^+$ and Λ (1670)[PRD103 (2021) 052005]
- 2. Identification of Threshold cusp in $\Lambda_c \rightarrow pK^-\pi^+$ [PRD108.L031104(2023)]
- 3. Peak at $\overline{K}N$ threshold in $\Lambda_c \rightarrow \Lambda \pi^+ \pi^+ \pi^-$ [PRL130(2023)151903]
- 4. $\Omega_{c} \rightarrow \Omega(2012)\pi^{+}$ [Belle, PRD104 (2021) 052005]
- 5. $\Omega(2012) \rightarrow \Xi(1530)\overline{K}$ [arXiv:2207.03090]
- 6. Belle II Prospects
- 7. Summary

1. $\Lambda_c \rightarrow \Lambda \eta \pi^+$ and $\Lambda(1670)$ [PRD103 (2021) 052005]

Peak structure in $\Lambda_c \rightarrow pK^-\pi^+$

* $M(pK^{-})^{10}$

1D projection -- $M(pK^-)$

What's this?

- The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than $\Lambda,$ Σ resonances in this region
 - $-\Lambda$ (1670): 25-50 MeV
 - $-\Sigma$ (1660): 40-200 MeV
 - $-\Sigma$ (1670): 40-80 MeV
 - Λ(1690): ~60 MeV
- No such narrow states are theoretically predicted in this region – new exotic resonance?

A new Λ resonance around 1670 MeV?

- 2 independent theory groups claim there is a new narrow Λ^* resonance around 1670 MeV with J=3/2
 - Kamano et al. [PRC90.065204, PRC92.025205] $J^{P}=3/2^{+}$ (P₀₃), M=1671+2-8 MeV, Γ=10+22-4 MeV
 - Liu & Xie [PRC85.038201, PRC86.055202] $J^{P}=3/2^{-}$ (D₀₃), M=1668.5±0.5 MeV, $\Gamma=1.5\pm0.5$ MeV
- The reason is the same
 - From $K^-p \rightarrow \Lambda \eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
 - Model independent
 - Might be also seen in the $\Lambda\eta\pi$ final state?

$\Lambda\eta\pi^+$ Invariant mass

Dalitz plot

Resonances: $\Sigma(1385) \& \Lambda(1670)$

• For each M($\Lambda\eta$)/M($\Lambda\pi^+$) bin, count Λ_c in the $\Lambda\eta\pi^+$ mass spectrum

No hint for a new resonance

Results (1) – Branching ratios

Decay modes	$B(\text{Decay Mode})/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$
$\Lambda_c^+ \to \eta \Lambda \pi^+$	$0.293 \pm 0.003 \pm 0.014$
$\Lambda_c^+ ightarrow \eta \Sigma^0 \pi^+$ New	$0.120 \pm 0.006 \pm 0.006$
$\Lambda_c^+ \to \Lambda(1670)\pi^+;$ New	$(5.54 \pm 0.29 \pm 0.72) \times 10^{-2}$
$\Lambda(1670) \rightarrow \eta \Lambda$	$(0.04 \pm 0.23 \pm 0.12) \times 10$
$\Lambda_c^+ \to \eta \Sigma(1385)^+$	$0.192 \pm 0.006 \pm 0.016$

- $\Lambda(1670)\pi^+$, $\Sigma^0\eta\pi^+$ modes: first measurements
- Ληπ⁺ and Σ(1385)⁺η: consistent with PDG & more precise
 - $\Lambda\eta\pi^+$: (1.84±0.26)%/(6.28±0.32)%
 - $\Sigma(1385)^+\eta$: (0.91±0.20)%/(6.28±0.32)%

Results (2) – Mass & width

Resonances	Mass $[MeV/c^2]$	Width [MeV]
$\Lambda(1670)$ New	$1674.3 \pm 0.8 \pm 4.9$	$36.1 \pm 2.4 \pm 4.8$
$\Sigma(1385)^{+}$	$1384.8 \pm 0.3 \pm 1.4$	$38.1 \pm 1.5 \pm 2.1$

- $\Sigma(1385)^+$: consistent with PDG within uncertainty
- Λ(1670): determined from peaking structure for the first time with a good accuracy.

17

2. Identification of Threshold cusp in $\Lambda_c \rightarrow p K^- \pi^+$ [PRD108.L031104(2023)]

Peak structure in $\Lambda_c \rightarrow pK^-\pi^+$

Fit to Breit-Wigner

 BW fit is not very good especially near the peak.

 Best χ²/DOF: 308/243

> [PRD108.L031104 (2023)]

Fit to Flatte

$$\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$$

f(m): non-relativistic Flatte $\frac{1}{m - m_f + \frac{i}{2} \left(\Gamma' + \bar{g}_{\Lambda \eta} k\right)}$

- Improved near the peak
- Best χ^2 /DOF: 257/243 – Better than BW by 7σ

Threshold cusp

• The fit explains the peak as a threshold cusp with nearby $\Lambda(1670)$

→ First identification of a threshold cusp from the spectrum shape

• Obtained $\Lambda(1670)$ parameters are consistent with those measured in $\Lambda_c \rightarrow \Lambda \eta \pi^+$

	Present result	$\Lambda\eta\pi^+$ mode
Mass (MeV/c ²)	1674.4	$1674.3 \pm 0.8 \pm 4.9$
Width (MeV)	$50.3 \pm 2.9^{+4.2}_{-4.0}$	$36.1 \pm 2.4 \pm 4.8$

How about other near-threshold exotic hadrons?
 – They may be actually threshold cusps! (e.g., X(3872))

Interference?

- Higher partial waves (P,D,...) would not affect the cusp shape because
 - Discontinuity in the higher partial waves appear only in the second or higher derivatives
 - The interference with different L vanishes with an integral over the solid angle
 - S-wave interference is approximately considered with a constant.
- This is confirmed by an amplitude analysis based on the LHCb result [arXiv:2208.03262]
 - Consistent results are obtained between the amplitude analysis & one-dimensional fit.

Amplitude analysis with Flatte

• Fit results projection to $M(pK^{-})$ distribution

 $m_0 = 1671.1 \pm 0.2 \text{ MeV}/c^2$ $\Gamma_0 = 39.2 \pm 0.6 \text{ MeV}$ $\chi^2 = 17,885$ (16,384 bins and 61 free parameters)

 $\bar{g}_{pK} = 0.0437 \pm 0.0009$ corresponds to $\Gamma' = 33.3 \pm 0.4$ MeV $\bar{g}_{\Lambda\eta} = 0.218 \pm 0.003$ $\Gamma_{\text{total}} = 52.8 \pm 0.6$ MeV $\chi^2 = 17,827$ (16,384 bins and 60 free parameters)

- Validation for one-dimensional fit
- Amplitude fit with all parameters of Flatté fixed,

 $m_f = 1674.4 \text{ MeV}/c^2$, $\Gamma_{\text{others}} = 15 \text{ MeV}$, $\bar{g}_{pK} = 0.028$, and $\bar{g}_{\Lambda\eta} = 0.253$

 \rightarrow $\Gamma' = 27.2$ MeV, $\bar{g}_{\Lambda\eta} = 0.253$, and $\Gamma_{\text{total}} = 50.3$ MeV

Validation for one-dimensional fit

Parameter	Fit Results	Difference from the infiltrated value Systematical Uncertainty
Γ'	$27.8\pm0.5~{ m MeV}$	<mark>0.1</mark> σ
$ar{g}_{\Lambda\eta}$	0.291 ± 0.007	<mark>0.6</mark> σ
Γ_{total}	53.9 ± 0.8 MeV	0.9σ

3. Peak at KN threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$ [PRL130(2023)151903]

Peak at $\overline{K}N$ threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$

• Cusp candidates are observed in $\Lambda \pi^{\pm}$ invariant mass spectra, from Λ_{c} decay K⁰p threshold

2 fitting models

1. Standard Breit-Wigner

$$f_{BW} = \frac{\Gamma/2}{(E - E_{BW})^2 + \Gamma^2/4},$$

2. Dalitz model (cusp) [Czech. J. Phys. B**32**, 1021 (1982)] For $\overline{K}N(I = 1)$ scattering length A=a+ib and decay momentum k/ κ (=|k| below the threshold)

$$f_D = \frac{4\pi b}{(1+kb)^2 + (ka)^2}, E > m_{\bar{K}N}$$
$$= \frac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, E < m_{\bar{K}N},$$

neglecting decay form factor

Fitting results

1. Breit-Wigner

Mode	$E_{BW} [{\rm MeV}/c^2]$	$\Gamma [{ m MeV}/c^2]$	χ^2 / NDF
$\Lambda \pi^+$	1434.3 ± 0.6	11.5 ± 2.8	74.4/68
$\Lambda\pi^{-}$	1438.5 ± 0.9	33.0 ± 7.5	92.3/68

2. Dalitz model (cusp)

Mode	$a[\mathrm{fm}]$	$b[\mathrm{fm}]$	χ^2 / NDF
$\Lambda \pi^+$	0.48 ± 0.32	1.22 ± 0.83	68.9/68
$\Lambda \pi^{-}$	1.24 ± 0.57	0.18 ± 0.13	78.1/68

Dalitz model gives slightly better χ^2 , but the difference is not significant.

Results & discussions

- 1. Breit-Wigner Mass +: $1434.3 \pm 0.6^{+0.9}_{-0.0} \text{ MeV/c}^2$ $-: 1438.5 \pm 0.9^{+0.2}_{-2.5} \text{ MeV/c}^2$ Width +: $11.5 \pm 2.8^{+0.1}_{-5.3} \text{ MeV}$ $-: 33.0 \pm 7.5^{+0.1}_{-23.6} \text{ MeV}$
- Significance 7.5(6.2) σ
- This interpretation implies the existence of an exotic state, $\Sigma(1435)$.

Results & discussions

- 2. Dalitz (cusp) scattering length A=a+ib a K⁰p : $0.48 \pm 0.32^{+0.38}_{-0.01}$ fm K⁻n : $1.24 \pm 0.57^{+1.56}_{-0.16}$ fm b K⁰p : $1.22 \pm 0.83^{+2.54}_{-0.18}$ fm K⁻n : $0.18 \pm 0.13^{+0.00}_{-0.20}$ fm
- Many theories predict a cusp here. [e.g., *Y. Ikeda et al., NPA881.98(2012)]
 - Due to attraction between \overline{K} and N in the I=1 channel
- Obtained center values for a are larger than most theories (e.g., a(K⁻n)=0.3~0.6 fm for [*]), but with large uncertainties. (Also, form factor is ignored.)

4. $\Omega_{c} \rightarrow \Omega(2012)\pi^{+}$ [Belle, PRD104 (2021) 052005]

Ω(2012)

36

- Discovered in $\Upsilon(1-3S)$ decay.
- How about [Belle, PRL121 (2018) 052003] other channels? 160 (a) Combinations/2.5 MeV/c² 14 $\Xi^0 K^-$ 120 – E.g., 100 $\Omega_c \rightarrow \Omega(2012)\pi^+?$ 20 (b) 350 Combinations/2.5 MeV/c² 30 200 $\Xi^{-}K_{s}^{0}$ 150 100 50 0 1.9 1.95 2.05 2.1 2.15 2 2.2 BELLE $M(\Xi K) GeV/c^2$

 $\Omega_{c} \rightarrow \Omega(2012)\pi^{+}$ Decay mode: $\Omega_{c} \rightarrow (\Omega^{*}\pi^{+}) \rightarrow \Xi K \pi^{+}$

[Belle, PRD104 (2021) 052005]

Branching fractions

•
$$R_1 = \frac{BR(\Omega_c \to \pi^+ \Omega(2012))BR(\Omega(2012) \to K^- \Xi^0)}{BR(\Omega_c \to \pi^+ K^- \Xi^0)}$$

= 9.6 ± 3.2 ± 1.8%
• $R_2 = \frac{BR(\Omega_c \to \pi^+ \Omega(2012))BR(\Omega(2012) \to K^0 \Xi^-)}{BR(\Omega_c \to \pi^+ K^0 \Xi^-)}$
= 5.5 ± 2.8 ± 0.7%
• $R_3 = \frac{BR(\Omega_c \to \pi^+ \Omega(2012))BR(\Omega(2012) \to (K\Xi)^-)}{BR(\Omega_c \to \pi^+ \Omega)}$
= 22.0 ± 5.9 ± 3.5%

5. $\Omega(2012)$ $\rightarrow \Xi(1530)\overline{K}$ [arXiv:2207.03090]

$\Omega(2012) \rightarrow \Xi(1530)\overline{K}$

- Quark model: 1P orbital excited states expected in this mass region: J^P=1/2⁻ and 3/2⁻
- The narrow width favors a J^P=3/2⁻ state, of which decay to ΞK is D-wave and thus suppressed.
- However, there are claims that it could be a E(1530)K hadronic molecule [PRD 98 (2018) 054009, PRD 98 (2018) 056013, ...]
- If this is the case, Ξ(1530)K would be the main decay mode

What's the difference?

• Choice of $\Xi(1530)$

• Additional cut on kaons from $\boldsymbol{\varphi}$

New result

[arXiv:2207.03090] 70 (a)60 Events/3 MeV/c² 50 BELLE 40 30 20 10 0 2.15 2.2 1.95 2.05 2.1 2 $M(\Xi^{-}\pi^{+}K^{-})$ (GeV/c²) Signal seen!

New result (cont.)

• Branching ratio: 3 body ($\Xi K\pi$) vs 2 body (ΞK) $R = 0.97 \pm 0.24 \pm 0.07$

Consistent with molecular model

 Effective coupling=(partial width)/(phase space) ΞKπ: (41.1 ± 35.8 ± 6.0) × 10⁻² ΞK: (1.7 ± 0.3 ± 0.3) × 10⁻² → coupling to ΞKπ is much stronger (assuming no non-resonant contribution)

6. Belle II prospects

SuperKEKB and Belle II

Upgrade for SuperKEKB and Belle II to achieve 30x peak \angle

- Reduction in the beam size by 1/20 at the IP.
- **Doubling** the beam currents.

- ► First turns achieved Feb. 2016
- ► Beam-background studies ongoing

Goal: x50 more statistics than Belle

- Instantaneous luminosity already exceeded Belle
 → New record: 4.7x10³⁴ cm⁻²s⁻¹ in June 2022.
- Integrated luminosity will exceed Belle within a few years
- Goal: 50 ab⁻¹ around 2035.

Belle II detector

Electromagnetic calorimeter

CsI(TI), waveform sampling

Upgraded from Belle

Superconducting solenoid (1.5 T)

K_L and μ detector

Resistive plate chamber (outer barrel)
 Scintillator + MPPC

(inner 2 barrel layers, end-caps)

Particle ID detectors

TOP (Time-of-Propagation) counter (barrel)
 Aerogel RICH (forward end-cap)

Tracking detector

Drift chamber (He + C_2H_6) of small cell, longer lever arm with fast readout electronics

Silicon vertex detecto

- 1→2 layers DEPFET (pixel).
- 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background

Trigger and DAQ Max L1 rate: 0.5→30 kHz Pipeline readout

GRID computing

Some possibilities

- Search for further states
 - Especially Ξ^* and Ω^*
 - Exotic states may be hidden
- Spin-parity determination
 - All the known states, i.e., $\Omega(2012)$, $\Xi(1620/1690)$, ... are within Belle II reach
- Not only hyperons, but also strange mesons are in our scope
 - E.g., in $\tau \rightarrow K\pi\pi\nu_{\tau}$ decay

Summary & prospects

- Belle is not only for quarkonia, but for hyperons, too.
- Topics of the day
 - $-\Lambda_c \rightarrow \Lambda \eta \pi^+$ and Λ (1670)
 - Identification of Threshold cusp in $\Lambda_c \rightarrow p K^- \pi^+$
 - Peak at $\overline{K}N$ threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$
 - $-\Omega_{c} \rightarrow \Omega(2012)\pi^{+}$
 - $\, \Omega(2012) \not \rightarrow \Xi(1530) \overline{K}$
- More results are expected from Belle II
 - Instantaneous luminosity is already higher than Belle
 - Goal: 50 times higher statistics around 2035.

Backup