

Michel Hernández Villanueva DESY

On behalf of the Belle II collaboration.

KMI International Symposium Feb 20, 2023

Why is it interesting?

• The τ is the charged lepton of the third generation.

Why is it interesting?

• The τ is the charged lepton of the third generation.

Why is it interesting?

- The τ is the charged lepton of the third generation.
- It is the only lepton massive enough to decay into hadrons.

Why is it interesting?

- The τ is the charged lepton of the third generation.
- It is the only lepton massive enough to decay into hadrons.
- Allow a clean determination of SM parameters and searches of new physics.

EPTONS

B-Factories

As experiments for precision tau physics

Features of a B-Factory:

- High luminosity.
- Well-defined initial state.
- High vertex resolution.
- Excellent calorimetry.
- Sophisticated particle ID.

B-Factories

As experiments for precision tau physics

Belle Detector Aerogel Cherenkov cnt.

BaBar detector

Features of a B-Factory:

- High luminosity.
- Well-defined initial state.
- High vertex resolution.
- Excellent calorimetry.
- Sophisticated particle ID.

- At Y(4S): $\sigma(e^+e^- --> BB) = 1.05 \text{ nb}$ $\sigma(e^+e^- --> \tau + \tau -) = \mathbf{0.92 \ nb}$
- B-Factories are also τ -factories
- Providing a suitable environment for the study of tau lepton decays.

The Belle II Experiment

In a nutshell

Software:

Open-source sophisticated algorithms for simulation, reconstruction, visualization, and analysis.

Comput. Softw. Big Sci. 3 1 (2019)

EPJ Web Conf., 245 (2020) 11007

How do we reconstruct τ 's at Belle II

Tag and signal

- A τ event is never reconstructed completely (we lose neutrinos), then we use features of the event to identify τ -pair candidates.
- Event is divided in two sides (signal and tag) using a plane defined by a **thrust axis**, build with all the final state particles:

•
$$V_{thrust} = \frac{\sum_{i} |\vec{p_i}^{cm} \cdot \hat{n}_{thrust}|}{\sum_{i} |\vec{p_i}^{cm}|}$$

• Thrust axis: \hat{n}_{thrust} such that V_{thrust} is maximum.

How do we reconstruct τ 's at Belle II

Tag and signal

- A τ event is never reconstructed completely (we lose neutrinos), then we use features of the event to identify τ -pair candidates.
- Event is divided in two sides (signal and tag) using a plane defined by a **thrust axis**, build with all the final state particles:

•
$$V_{thrust} = \frac{\sum_{i} |\vec{p_i}^{cm} \cdot \hat{n}_{thrust}|}{\sum_{i} |\vec{p_i}^{cm}|}$$

• Thrust axis: \hat{n}_{thrust} such that V_{thrust} is maximum.

hadrons

DESY.

Tau decay event in early Belle II data

Integrated Luminosity

Today and future

- Super B-factory performance levels.
 - A unique environment for the study of
 τ physics with high precision.
 - Ultimate goal: reach 50 ab-1 by operating at the instantaneous luminosity of 6x10³⁵ cm-2 s-1
- Challenges at L=6x10³⁵ cm⁻² s⁻¹:
 - Higher beam-induced background
 - Higher trigger rates

Performance

Towards precision measurements in tau lepton physics

• Tau pairs are not only tools for the comprehension of fundamental physics, but also for the understanding of our detector.

Tracking efficiency

Tracking efficiency and fake rates have been measured using $\tau\tau$ events, with one of the leptons decaying to

 $\tau^- \to 3\pi^{\pm}\nu_{\tau} + n\pi^0.$

BELLE2-NOTE-PL-2020-014

Calibrated discrepancy between data/MC:

$$\delta^* = 1 - \epsilon_{\text{data}} / \epsilon_{\text{MC}}$$

Performance

Towards precision measurements in tau lepton physics

Lepton ID performance

 Particle identification is based on the global likelihood ratio from all sub detectors.

$$\ell \text{ ID} = \frac{\mathcal{L}_{\ell}}{\mathcal{L}_{e} + \mathcal{L}_{\mu} + \mathcal{L}_{\pi} + \mathcal{L}_{K} + \mathcal{L}_{p}}$$

• With the same tag-and-probe approach, lepton misidentification rates are calculated with pions from the 3-prong decay $\tau^- \to 3\pi^{\pm} + \nu_{\tau}$

Performance

Towards precision measurements in tau lepton physics

Trigger efficiencies

- The Level 1 trigger efficiency has been studied using $e^+e^- \rightarrow \tau^+\tau^-$ events with 1x1 and 3x1 topologies.
- Full track triggers present low efficiency in endcaps.
- To compensate, the CDC trigger also searches for short tracks, providing a significant gain in efficiency for endcaps/low p_T.
- Additional advantage wrt Belle and BaBar: several low multiplicity triggers based on number of calorimetric clusters.

BELLE2-NOTE-PL-2020-015

Single Track Trigger

Neural-net based hardware track trigger

- A neural-net based hardware trigger is now operational, showing great performance.
- It fires if it finds a track within 15 cm from the collision vertex and a momentum larger than 700 MeV.

Tau Physics at Belle II | 20 Feb 2023 | Michel Hernández Villanueva

Single Track Trigger

Neural-net based hardware track trigger

- A neural-net based hardware trigger is now operational, showing great performance.
- It fires if it finds a track within 15 cm from the collision vertex and a momentum larger than 700 MeV.

13

Measurement of tau properties

Mass, lifetime, leptonic decays

- Current flavor anomalies motivate to explore LFU violation in tau decays.
- Inputs:
 - Tau mass (width of the diagonal band).
 - Tau lifetime τ_{τ}
 - Leptonic BR
- Belle II has the potential of provide precise measurements of these parameters.

Input	Uncertainty	Best Result
BR (<i>τ</i> → e νν)	0.179 %	ALEPH
$ au_{ au}$	0.172 %	Belle
$m\tau$	0.007 %	BESIII

$$B_{ au\ell} \propto B_{\mu e} rac{ au_ au}{ au_\mu} rac{m_ au^5}{m_\mu^5}$$

Fig: A. Luisiani, Anomalies and Precision in the Belle II Era - Workshop

Tau Lepton Mass Measurement

Historical overview

• The lepton masses are fundamental parameters of the SM:

$$\begin{split} m_e &= (0.5109989461 \pm 0.0000000031) \text{ MeV,} \\ m_\mu &= (105.6583745 \pm 0.0000024) \text{ MeV,} \\ m_\tau &= (1776.86 \pm 0.12) \text{ MeV.} \end{split}$$

• Precision of m_{τ} have consequences in LFU tests:

$$\frac{\Gamma(\mu \to e \nu \bar{\nu})}{\Gamma(\tau \to e \nu \bar{\nu})} \sim \left(\frac{g_{\mu}}{g_{\tau}}\right)^{2} \frac{m_{\mu}^{5}}{m_{\tau}^{5}}$$

- Two methods for measuring m_τ:
 - Measurement in the production threshold (DELCO, BES, KEDR, BES III).
 - Pseudomass distribution
 (ARGUS, OPAL, BaBar, Belle, Belle II).

Tau Lepton Mass Measurement

Pseudomass distribution

- Measured in the decay mode $\tau \to 3\pi \nu$, using a pseudomass technique developed by the **ARGUS** collaboration.
- The tau mass can be calculated as

$$\begin{split} m_{\tau}^2 &= (p_h + p_{\nu})^2 \\ &= 2E_h(E_{\tau} - E_h) + m_h^2 - 2 |\overrightarrow{p}_h| (E_{\tau} - E_h) \cos(\overrightarrow{p}_h, \overrightarrow{p}_{\nu}) \end{split}$$

• As the direction of the neutrino is not known, the approximation $cos(\overrightarrow{p}_{\nu}, \overrightarrow{p}_{h}) = 1$ is taken, resulting in

$$M_{\min}^2 = 2E_h(E_{\tau} - E_h) + m_h^2 - 2 |\overrightarrow{p}_h| (E_{\tau} - E_h) < m_{\tau}^2$$

 Then, the distribution of the pseudomass is fitted to an empirical edge function, and the position of the cutoff indicates the value of the mass.

Phys. Lett. B 292 (1992) 221-228

Figure: The ARGUS detector at DESY

Tau Lepton Mass Measurement

Performance test @ 8.76 fb⁻¹

- Our latest result: 1777.28 ± 0.75 ± 0.33 MeV/c².
- Main systematic sources:
 - Momentum shift due to imperfections on the B-Field map: 0.29 MeV/c².
 - Bias of the $m\tau$ estimator: 0.12 MeV/c².

Pseudomass distribution, data vs MC

Fit to edge p.d.f. in the cutoff region

$$F(M_{\min}, \overrightarrow{P}) = (P_3 + P_4 M_{\min}) \cdot \tan^{-1}[(M_{\min} - P_1)/P_2] + P_5 M_{\min} + 1$$

17

Tau Mass Measurement at Belle II

Projection for early 2023

- Corrections on momentum reconstruction due to mismodeling of the B-field map are on place and are being used for the next m_{τ} measurement.
- Improved estimator for mτ.
- We expect a significant reduction in the systematics.

Snapshot in the last measurement:

Systematic uncertainty	MeV/c^2
Momentum shift due to the B-field map	0.29
Estimator bias	0.12
Choice of p.d.f.	0.08
Fit window	0.04
Beam energy shifts	0.03
Mass dependence of bias	0.02
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Tracking efficiency	≤ 0.01

Exploiting the nano-beam scheme

- Important SM parameter. Its precision has implications in LFU, α_s (m_τ), etc.
- Previous measurements:
 - Z-peak: LEP (DELPHI, L3, ALEPH, OPAL).
 - Y-peak: CLEO, BaBar, Belle 1.

The world-leading measurement by Belle¹ uses a **3x3 topology**, with both tau leptons decaying to $3\pi v_{\tau}$.

 τ_{τ} = 290.17 ± 0.53(stat) ± 0.33(syst) fs

¹ PRL 112, 031801 (2014), arXiv:1310.8503 [hep-ex]

Exploiting the nano-beam scheme

- Important SM parameter. Its precision has implications in LFU, α_s (m $_\tau$), etc.
- Previous measurements:
 - Z-peak: LEP (DELPHI, L3, ALEPH, OPAL).
 - · Y-peak: CLEO, BaBar, Belle 1.

- The world-leading measurement by Belle¹ uses a **3x3 topology**, with both tau leptons decaying to $3\pi v_{\tau}$.
 - τ_{τ} = 290.17 ± 0.53(stat) ± 0.33(syst) fs

Strategy at Belle II:

- 1. Reconstruct vertex for 3-prong τ . Only one 3-prong = higher statistics.
- 2. Estimate the τ momentum $\overrightarrow{p}_{\tau}$. Hadronic decays in both sides.
- 3. Find the production vertex. Intersection of $\overrightarrow{p}_{\tau}$ with the plane IP_y.

SuperKEKB

¹ PRL 112, 031801 (2014), arXiv:1310.8503 [hep-ex]

Sensitivity at 200 fb⁻¹

• \mathscr{C}_{τ} reconstruction and IP constrain:

Proper decay time distribution $t = \ell_{3-\mathrm{prong}} \frac{m_{\tau}}{|\vec{p}_{3-\mathrm{prong}}|c}$ Belle II 2020 (Simulation) $\vec{q}_{q-c,b}$ $\vec{q}_{q-c,b}$ $\vec{q}_{q-c,b}$ $\vec{q}_{q-c,b}$ $\vec{q}_{q-c,b}$ $\vec{q}_{q-c,b}$ $\vec{q}_{q-c,b}$ $\vec{q}_{q-c,b}$

- · Lifetime extraction:
 - τ_{τ} = 287.2 ± 0.5 (stat) fs
 - Same statistical uncertainty of Belle. (200 fb⁻¹ vs 711 fb⁻¹)

- τ_τ presents ≈ 3 fs bias.
 (Generated lifetime: 290.57 fs)
 - ISR/FSR losses = underestimation of the proper time.
 - And intrinsic bias in the measurement.
- Exploring other methods at Belle II:
 - Monte Carlo re-weighting method.
 - Revisiting the 3x3 topology.

Detector performance

- In MC simulations, the Belle II proper time resolution is ~2x better than Belle.
 - Due to PXD and smaller beam pipe diameter.

Proper decay time resolution:

- For comparison, the world-best D meson lifetime measurement by Belle II was recently published.
 - Improvement in resolution is confirmed

$$\tau(D^0) = 410.5 \pm 1.1(\text{stat}) \pm 0.8(\text{syst}) \text{ fs}$$

 $\tau(D^+) = 1030.4 \pm 4.7(\text{stat}) \pm 3.1(\text{syst}) \text{ fs}$

¹ https://doi.org/10.1103/PhysRevLett.127.211801

Lepton Flavor Universality Violation

Tests in tau decays

- Flavor anomalies in the SM:
 - a_{μ} : 4.2 σ
 - $R(D(*)) : > 3\sigma;$
 - Cabibbo angle anomaly: $2 3 \sigma$
 - etc.
- Hints of a new interaction that violates LFU?
- LFU tests in tau decays: compare rates of leptonic decays.

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{BF\left[\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\right]}{BF\left[\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}\right]}} \frac{f\left(m_{e}^{2}/m_{\tau}^{2}\right)}{f\left(m_{\mu}^{2}/m_{\tau}^{2}\right)}$$

$$f(x) = -8x + 8x^3 - x^4 - 12x^2 \log x$$

In the SM: $(g\mu/g_e) = 1$

Latest result from BaBar:

$$R_{\mu} = \frac{BF(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{BF(\tau^- \to e^- \bar{\nu}_{e} \nu_{\tau})}$$

- $R\mu = 0.976 \pm 0.0016 \pm 0.0036$ $(g\mu/g_e) = 1.0036 \pm 0.0020$
- Int luminosity: 467 fb⁻¹.
- Can we improve this at Belle II?
- Yes! Syst is dominated by PID due to limited size of data and MC samples.

	μ	
$\mathbf{N}^{ ext{D}}$	731102	
Purity	97.3%	
Total Efficiency	0.485%	
Particle ID Efficiency	74.5%	
Systematic uncertainties:		
Particle ID	0.32	
Detector response	0.08	
Backgrounds	0.08	
Trigger	0.10	
$\pi^-\pi^-\pi^+$ modelling	0.01	
Radiation	0.04	
$\mathcal{B}(\tau^- \to \pi^- \pi^- \pi^+ \nu_\tau)$	0.05	
$\mathcal{L}\sigma_{e^+e^- o au^+ au^-}$	0.02	
Total [%]	0.36	

Lepton Flavor Universality Violation

e-μ universality tests with 3x1 topology

Cut-based performance

- Matches BaBar stat. uncertainty with 100 fb-1 of data.
 - Achieved with asymmetric p_t thresholds on lead, sublead and third track on tag side.
 - x4 higher efficiency with better purity:

BDT performance

- Training of a XGBoost classifier for combined signal (e or μ in final state).
- 1.7x improvement in efficiency w.r.t. cut-based selection (x7 than BaBar), with a purity of 98%.

Lepton Flavor Universality Violation

$e-\mu$ universality tests with 1x1 topology

- Unexplored topology for LFU at BaBar and Belle (latest result from CLEO: 3.56 fb⁻¹).
- Optimise pre-selection in event-kinematic variables and discriminate using neural network.

Trigger:

- $\epsilon_{\rm trg}$ = **96 100**% for e-channel.
- ϵ_{trg} = **85 99%** for μ -channel.

Charged Lepton Flavor Violation

Clear signature for physics beyond the SM

- Quarks change generations.
- Neutrinos change flavor.
 - Lepton Flavor Violation (LFV) is an established fact, but only in neutrinos.
- What about charged leptons?
 - Neutrinos with mass —> CLFV
 - But extremely suppressed.

Figure: Wikipedia

Charged Lepton Flavor Violation

Clear signature for physics beyond the SM

- Quarks change generations.
- Neutrinos change flavor.
 - Lepton Flavor Violation (LFV) is an established fact, but only in neutrinos.
- What about charged leptons?
 - Neutrinos with mass —> CLFV
 - But extremely suppressed.
- Observation of CLFV is a clear signature of New Physics!

SM case:

Figure: Wikipedia

Charged Lepton Flavor Violation

Clear signature for physics beyond the SM

- Quarks change generations.
- Neutrinos change flavor.
 - Lepton Flavor Violation (LFV) is an established fact, but only in neutrinos.
- What about charged leptons?
 - Neutrinos with mass —> CLFV
 - But extremely suppressed.
- Observation of CLFV is a clear signature of New Physics!

- At Belle II an increase in the signal efficiency will be achieved thanks to:
 - Higher trigger efficiencies.
 - Improvements in the reconstruction.
- In addition to a better understanding of background channels.

$$oldsymbol{ au} o \ell\ell\ell$$
 Can be competitive with early Belle II data $au o \ell K_S$, Λh $au o \ell V_0 (o hh')$ $au o \ell P^0 (o \gamma \gamma)$ $au o \ell hh'$ Stronger backgrounds, hard to control.

LFV $\tau^+ \to \ell^+ \ell^- \ell^+$

Selection and analysis strategy are established.

- Optimization with kinematic cuts to constraint the phase space of the signal.
- After cuts:
 - Efficiency: 15.79% (vs 7.6% @ Belle)
- Potential to be competitive with current dataset.
- TO-DO:
 - Data vs MC comparisons.
 - Systematics evaluation.
- Exploring inclusive tagging strategies.
- Increase on efficiency. Potential improvements on limits.

27

Upper limits on CLFV tau decays

Current bounds and projection of expected ULs

- Neutrinoless 2-body or 3-body decays to 52 final states.
- In some SM extensions, cLFV decays are expected at rates only one order of magnitude below present bounds.

Figure: CLFV @ Snowmass 2021 arXiv:2203.14919 (2022)

LFV $\tau^- \to \ell^- + \alpha$

Search for an invisible boson

- It probes the existence of a long-lived invisible gauge boson boson α .
 - Possible DM candidate.
- Peaking signal in a two-body decay spectrum in the τ lepton rest frame (TRF).
- Since we cannot access to the TRF due to the missing neutrino, a pseudo-TRF is built with the following assumptions:
 - $E_{\tau} = E_{\text{cms}}/2$, $\hat{p}_{\tau} \approx \overrightarrow{p}_{\text{tag}}/|\overrightarrow{p}_{\text{tag}}|$

- Fit full spectrum with:
 - SM expectation
 - SM + NP expectation and compare likelihood of the two models
- Large smearing due to imprecise boost direction (undetected ν).

Main sources of syst uncertainties:

- Lepton ID efficiency&fake rate
- Trigger efficiency
- Pi0 reconstruction efficiency (for veto)

LFV $\tau^- \to \ell^- + \alpha$

Results (preliminary)

- No signal observed.
 - $\tau \to \ell + \alpha$ MC channels shown with a BR of 5%.

- Upper limits at 95% C.L. are imposed for $BR(\tau \to \ell \alpha)/BR(\tau \to \ell \bar{\nu} \nu)$
- Best limits to the date.

arxiv:2212.03634

Summary

- Since its discovery, the tau lepton has been studied at every e^+e^- collider in operation, improving the measurements with every upgrade.
 - In Belle II we are motivated, and ready to reach new limits in the precision.
- Tau mass studies with the early data show potential for an update in the measurement of m_{τ} using the pseudomass technique. Updated measurement with reduced systematics in preparation.
- First studies of tau lifetime measurements very promising, with an update in the measurement feasible in the coming months. Several methods explored.
- Tests of **lepton flavor universality** with both 3x1 and 1x1 topologies show high efficiency in reconstruction. Working on the estimation of systematic uncertainties.
- First searches of **lepton flavor violation** at Belle II in preparation. Significant improvements in reconstruction efficiency with respect to previous B-Factories observed.
- Stay tuned! Results are coming.

Thank you

Backup

SuperKEKB

A B factory of next generation

DESY. Tau Physics at Belle II | 20 Feb 2023 | Michel Hernández Villanueva 34

SuperKEKB

A B factory of next generation

- Challenges at L=6x10³⁵ cm⁻² s⁻¹:
 - Higher background (Radiative Bhabha, Touschek, beam-gas scattering, etc.).
 - Higher trigger rates (High performance DAQ, computing).

$\tau^+ \to \ell^+ \gamma$

Highest non-SM branching ratio

- Considered the golden modes for search of CLFV.
 - τ 's rate production (10¹⁰/yr) is much lower w.r.t. μ 's in dedicated facilities (10¹¹/sec).
 - However, BSM branching ratios can be orders of magnitude larger than in associated muon decays.
- Searching for signal events in a 2D region.
- Searches at Belle II in progress.

Irreducible background

Mis-id tagging

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Michel Hernandez Villanueva

michel.hernandez.villanueva@desy.de

Orcid: <u>0000-0002-6322-5587</u>