Tau Lepton Physics at Belle II

Petar Rados (DESY)

on behalf of the Belle II collaboration

International Workshop on e⁺e⁻ Collisions from Phi to Psi BINP, Novosibirsk, 1 March 2019

- 1) Overview of SuperKEKB and the Belle II experiment
- 2) First τ lepton physics results using early data
- 3) Prospects for τ lepton physics at Belle II
- 4) Summary and outlook

SuperKEKB Accelerator

- New facility to search for physics beyond the SM by studying B, D meson and τ lepton decays
- Energy asymmetric electron-positron collider (7-4 GeV)
- Higher beam currents compared to KEKB, and can achieve 50 nm vertical beam spot size at IP:

- Unprecedented design luminosity of 8.0×10³⁵ cm⁻²s⁻¹
- First beams and commissioning in 2016, Belle II detector rolled in 2017

Belle II Detector

Belle II as τ -factory, and schedule

- Belle II is not only a *B*-factory, but a next-generation
 T lepton factory
 - $\sigma(e^+e^- \rightarrow \Upsilon(4s)) = 1.05 \text{ nb}, \quad \sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$
- Over its lifetime Belle II aims to record 50 ab⁻¹ of e⁺e⁻ collision data (x50 that of Belle)
 - 4.6×10¹⁰ T-pair events
 - unique environment to study T lepton physics with high precision!

- Data taking in **Phase II** was performed with all subsystems, except full vertex detector
- VXD now installed and ready for Phase III

First collisions

- First collisions recorded by Belle II on 26th April 2018
- During Phase II (April-July) about 500 pb⁻¹ of data was recorded
- Good performance of the subsystems. Clear mass peaks observed from both tracks and photons.
- Tleptons also observed...

Tau leptons in early Belle II data

- Targeting e⁺e⁻ \rightarrow T⁺T⁻ with 3-by-1 prong decay: $\tau_{tag} \rightarrow \ell^{\pm} \nu_{\ell} \overline{\nu}_{\tau} = \tau_{signal} \rightarrow 3\pi^{\pm} \nu_{\tau} + n\pi^{0}$
- Events required to fire CDC track trigger: 291 pb⁻¹ of usable data
- Event topology and kinematic selections tailored to suppress $q\overline{q}$ and $ee\gamma$ backgrounds, driven by: $\vec{r} \cdot \hat{\vec{r}}$
 - thrust value = $\sum_{h} \frac{\vec{p} \cdot \hat{T}}{|p_{h}|}$, large for the signal since both τ leptons are boosted (back-to-back)
 - total visible energy, bellow \sqrt{s} for the signal due to the three undetected neutrinos

Tau leptons in early Belle II data

• After trigger + offline selections, we have agreement between the data and MC

 Clear evidence for e⁺e⁻→T⁺T⁻ in the Phase II data, and a demonstration of the capacity for missing energy analyses with Belle II

e+e-→ T+T- event candidate

Tau lepton mass measurement

 First m_T measurement at Belle II was performed with a pseudomass technique developed by the ARGUS collaboration:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

• M_{min} distribution in the $\tau_{signal} \rightarrow 3\pi^{\pm}\nu_{\tau}$ decay channel is fitted to an empircal edge pdf (where m^* is an estimator for m_{τ}):

$$F(M_{min}; a, b, c, d, m^*) = (aM_{min} + b) \times tan^{-1}[(m^* - M_{min})/c] + dM_{min} + 1$$

• A fit to the pdf in the 1.7-185 GeV region yields an m_{τ} measurement of:

$$m_{\tau} = 1776.4 \pm 4.8 \ (stat) \ MeV$$

which is in good agreement with previous measurements.

эII

Prospects for tau lepton physics

- The Phase III of data taking is expected to start later this month
- The huge amount of data to be delivered (50 ab⁻¹, 2019 2027) will enable a broad program of τ lepton physics:
 - Searches for Lepton Flavour Violation (LFV)
 - CP violation
 - Second class currents
 - and much more...
 (Michel parameters, precision m_T, electric dipole moment, ...)
- A brief overview of the program is provided here. More info can be found in **The Belle II Physics Book**.

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26 The Belle II Physics Book E. Kou^{74,¶,†}, P. Urquijo^{142,§,†}, W. Altmannshofer^{132,¶}, F. Beaujean^{78,¶}, G. Bell^{119,¶}, M. Beneke^{111,¶}, I. I. Bigi^{145,¶}, F. Bishara^{147,16,¶}, M. Blanke^{49,50,¶}, C. Bobeth^{110,111,¶}. M. Bona^{149,¶}, N. Brambilla^{111,¶}, V. M. Braun^{43,¶}, J. Brod^{109,132,¶}, A. J. Buras^{112,¶}, H. Y. Cheng⁴⁴, C. W. Chiang⁹¹, G. Colangelo¹²⁵, H. Czyz^{153,29}, A. Datta¹⁴³, F. De Fazio⁵², T. Deppisch⁵⁰, M. J. Dolan¹⁴², S. Fajfer^{106,138}, T. Feldmann^{119,¶}, S. Godfrey^{7,¶}, M. Gronau^{61,¶}, Y. Grossman^{15,¶}, F. K. Guo^{41,131,¶}, U. Haisch^{147,11,¶}, C. Hanhart^{21,¶}, S. Hashimoto^{30,26,¶}, S. Hirose^{88,¶}, J. Hisano^{88,89,¶}, L. Hofer^{124,¶}, M. Hoferichter^{165,¶}, W. S. Hou^{91,¶}, T. Huber^{119,¶}, S. Jaeger^{156,¶}, S. Jahn^{82,¶}, M. Jamin^{123,¶}, J. Jones^{102,¶}, M. Jung^{110,¶}, A. L. Kagan^{132,¶}, F. Kahlhoefer^{1,¶}, J. F. Kamenik^{106,138,¶}, T. Kaneko^{30,26,¶}, Y. Kiyo^{63,¶}, A. Kokulu^{111,137,¶}, N. Kosnik^{106,138,¶}, A. S. Kronfeld^{20,¶}, Z. Ligeti^{19,¶}, H. Logan^{7,¶} C. D. $Lu^{41,\P}$, V. $Lubicz^{150,\P}$, F. Mahmoudi^{139,\P}, K. Maltman^{170,122,¶}, M. Misiak^{163,¶}, S. Mishima^{30,¶}, K. Moats^{7,¶}, B. Moussallam^{73,¶}, A. Nefediev^{39,87,76,¶}, U. Nierste^{50,¶},
 D. Nomura^{30,¶}, N. Offen^{43,¶}, S. L. Olsen^{130,¶}, E. Passemar^{37,115,¶}, A. Paul^{16,31,¶},
 G. Paz^{167,¶}, A. A. Petrov^{167,¶}, A. Pich^{161,¶}, A. D. Polosa^{57,¶}, J. Pradler^{40,¶} S. Prelovsek^{106,138,43,¶}, M. Procura^{120,¶}, G. Ricciardi^{53,¶}, D. J. Robinson^{129,19,¶}, P. Roig^{9,¶}, J. Rosiek^{163,¶}, S. Schacht^{15,¶}, K. Schmidt-Hoberg^{16,¶},

arXiv:1808.10567

Searches for charged LFV

- LFV has been established for the neutrinos, but what about their charged partners (e, μ and τ)?
- In the SM, charged LFV decays via neutrino oscillation are highly suppressed and immeasurably small:

$$Br(\ell_1 \to \ell_2 \gamma)_{SM} \propto \left(\frac{\delta m_\nu^2}{m_W^2}\right)^2 \sim 10^{-54} \text{--} 10^{-49}$$

- Br enhanced in many NP models (10-10-10-7)
- SUSY, extended Higgs sector, seesaw, leptoquarks, nonuniversal Z', and many more
- $\mu \rightarrow e$: stringent bounds exist from MEG
- $\tau \rightarrow \mu/e$: weaker bounds (Belle, BaBar and CLEO)
- As heaviest lepton, NP can have preferential τ LFV couplings

Prospects for τ LFV decays

- Due to their large mass, T leptons provide a wide variety of LFV (and LNV) decay modes to study: ٠
 - radiative:
 - leptonic:
 - semileptonic:

 $\tau \rightarrow \ell \ell \ell \ell$

 $\tau \to \ell \gamma$

 $\tau \to \ell h(h)$

"golden channels" for discovery: $\tau \rightarrow \mu \gamma$, $\tau \rightarrow \mu \mu \mu$

complementary: semileptonic modes allow us to test LFV couplings b/w guarks and leptons, and better discriminate b/w NP models

- So far, searches for T LFV decays mostly occurred at last-gen *B* factories
- Upper limits had approached the regime sensitive to NP (10⁻¹⁰-10⁻⁷)

Extrapolating from Belle results (50 ab⁻¹):

Belle II will push the current bounds forward by at least one order of magnitude!

arXiv:1808.10567

CP violation in $\tau \rightarrow K_{s}\pi^{\pm}v_{\tau} + n\pi^{0}$

• Due to CP violation in the kaon sector, $\tau \rightarrow K_s \pi^{\pm} v_{\tau}$ decays in the SM have a nonzero decay-rate asymmetry:

 $A_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K^0_s \bar{\nu_{\tau}}) - \Gamma(\tau^- \to \pi^- K^0_s \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K^0_s \bar{\nu_{\tau}}) + \Gamma(\tau^- \to \pi^- K^0_s \nu_{\tau})}$

- SM prediction: $(3.6 \pm 0.1) \times 10^{-3}$
- BaBar measurement: (-3.6 ± 2.3 ± 1.1) × 10⁻³ (2.8σ)
- An improved A₇ measurement is a priority at Belle II

CP violation in $\tau \rightarrow K_{s}\pi^{\pm}v_{\tau}$

• CP violation could also arise from a charged scalar boson exchange. It would be detected as a difference in the decay angular distributions:

 With 50 ab⁻¹ of data, Belle II is expected to provide a x70 more precise measurement:

(assuming central value $A^{CP} = 0$)

Second class currents in $\tau \rightarrow \eta \pi v$

- Hadronic currents classified as first or second class according to their spin, parity and G-parity quantum numbers
 - Second Class Current (SCC): $J^{PG} = 0^{+-} (a_0), 0^{-+} (\eta), 1^{++} (b_1), 1^{--} (\omega) \Rightarrow yet to be observed!$

Outlook

• SuperKEKB has completed the commissioning phase. Phase II data is available and delivering results.

- The Phase III of data taking with the full Belle II detector installed will start later this month.
- Belle II has a broad program of τ lepton physics planned, and will be a major player in the near future.
- Exciting times ahead!

BACKUP

Tau lepton rediscovery: selections

Tracks

- p_T > 100 MeV
- |dz| < 5 cm, |dr| < 1 cm
- $-0.8660 < \cos(\theta) < 0.9565$
- E/p < 0.8

Photons

- E > 200 MeV
- nHits > 1.5
- $E_9E_{25} > 0.9$
- $-0.8660 < \cos(\theta) < 0.9565$

Trigger

• CDC track trigger bit 3

≥3 tracks @ L1

Event Selections

- 4 tracks per event
- sum charge zero
- two hemispheres wrt thrust axis, 3 tracks on one side and 1 track in opposite
- thrustValue > 0.87
- visibleEnergyCMS < 9.7
- E_{τ} signal at CMS < 5.29
- E₁ tag at CMS < 5.29

- $\pi^0 \le 2$, $N_y \le 5$ on tag side
- *inclusive* decay channel: $\pi^0 \le 1, N_Y \le 3$ on signal side
- exclusive decay channel
 π⁰-veto, N_y ≤ 1 on signal side

Tau mass cross checks

mτ = (1777.3 ± 4.6) MeV

Beam background

Q +

- 40 times higher luminosity comes at the cost of higher beam related backgrounds
 - expect 20 higher than at Belle
- Understanding the beam background is essential for T physics in Belle II!
- Beam bkg is controllable in an event by imposing track selections and using timing information from calorimeter

Touschek

 e^+e^- :

 $\sigma \sim {\cal O}(10^7 \, {\rm nb})$

Beam-gas

2

~~~~~

**Radiative Bhabha** 

2-photon-processes

### **Beam background reduction**

- $\circ\,$  For photon clusters:
  - $E_{\gamma} > 0.100$  (forward endcap), 0.090 (barrel), 0.160 (backwards endcap) GeV;
  - $|\Delta t_{cluster}| < 50$  ns.
- $\circ\,$  For charged particles:
  - Track fit p-value > 0.01;

- arXiv:1808.10567v2
- Beam background rejection mainly coming from two-energy based selections





# Analysis strategy for LFV T decays

• Rare decay search:

 $\Rightarrow$  understand and reduce as much as possible the backgrounds

• Search in various decay modes:



Difficulty of background reduction





# Search for LFV T→Iγ

 $M_{\mu\gamma} = \sqrt{E_{\mu\gamma}^2 - P_{\mu\gamma}^2}$ 

 $\Delta E = E_{\mu\gamma}^{\rm CM} - E_{\rm beam}^{\rm CM}$ 

- Two independent variables are used to evaluate signal yield:
- For signal:  $\Delta E$  close to 0 and  $M_{\mu\gamma}$  close to  $\tau$ -mass
- Feasibility studies were performed, using MC that included the larger beam bkg. They show that the larger bkg should have minimal impact on sensitivity @ Belle II.





# **Michel Parameters**

 $\nu_{\tau}$ 

 $\bar{\nu}_{\ell}$ 

- In SM, T lepton decay is due to the interaction with a charged weak current
- Leptonic decays are of particular interest since absence of strong interaction allows precise study of EW Lorentz structure
- When spin of τ lepton is not determined, only four bilinear combinations of the coupling constants are experimentally accessible:
  - $\rho$ ,  $\eta$ ,  $\xi$  and  $\delta$
  - ▶ in SM: 3/4, 0, 1 and 3/4
- With full dataset (50 ab<sup>-1</sup>), the stat uncertainty is expected to be ~10<sup>-4</sup>
- Systematic uncertainties will be challenging at Belle II (~10-3)

