

Search for New Physics in the $B \to K \ell^+ \ell^-$ Processes at Belle II

Alejandro Mora

February 20 - 27 of 2019

Moscow, Russia

- Search for New Physics in
- the $B \to K\ell^+\ell^-$ Processes
- 3 at Belle II

The $B \to K \ell^+ \ell^-$ decays

- A flavor changing neutral current $(b \to s \ell^+ \ell^-)$
- Interplay between strong and electroweak interactions
- Forbidden at tree level in the SM. Appears only in diagrams with one or more loops
- W^{\pm} and t masses are much bigger than B mass, so highly supressed ($\mathcal{B} \sim 10^{-7}$)

NP contributions can be of the same order as SM ones!

- Solid line + blue bands: SM range (±35%), Ali et al. form factors [PRD 66 (2002) 034002]
- Dotted line: SUGRA model ($R_7 = -1.2, R_9 = 1.03, R_{10} = 1$)
- Long-short dashed line: SUSY model ($R_7 = -0.83, R_9 = 0.92, R_{10} = 1.61$)
- $R_i = C_i/C_i^{SM}$

Where to Look for New Physics

DECAY RATE RATIOS

$$R_K = \frac{\Gamma(B \to K \,\mu^+ \,\mu^-)}{\Gamma(B \to K \,e^+ \,e^-)} \, {}^{2.0}$$

 $1 \pm \mathcal{O}(10^{-3})$ in the SM!

Where to Look for New Physics

ANGULAR ANALYSIS

$$A_{FB}^{\ell} = \frac{N_F^{\ell} - N_B^{\ell}}{N_F^{\ell} + N_B^{\ell}}$$

 N_F : Number of decays with $0 < |\theta_\ell| < \pi/2$

 N_B : Number of decays with $\pi > |\theta_{\ell}| > \pi/2$

THE ACCELERATOR

THE DETECTOR

The reconstruction process

- particle id > 0.1 (pid = $\mathcal{L}_p / \sum_i \mathcal{L}_i$)
- Good track fit $(\chi^2 > 0.001)$
- Near the IP $(d_0 < 0.5 \text{ and } |z_0| < 2)$

- vertex fit
- cuts in position according to \boldsymbol{p}
- 0.468 GeV < M < 0.528 GeV

- 5.22 GeV < m_{bc} < 5.29 GeV $m_{bc} = \sqrt{E_{\rm beam} - p_{B, \rm reco}^2}$
- -0.1 GeV < ΔE < 0.05 GeV e ch. -0.05 GeV < ΔE < 0.05 GeV μ ch. $\Delta E = E_{B, \rm reco} - E_{\rm beam}$

Preliminary: MC efficiencies

Conclusions

- The $B \to K\ell\ell$ constitutes an excellent probe for new physics
 - Tests contributions from different NP scenarios
 - Possible to construct observables with low systematic uncertainties
- The Super KEK B-Factory and the Belle II experiment are the perfect environment for this searches
 - World record luminosity
 - ullet Similar efficiencies for both electron and muon channels over the whole q^2 range
 - Current efficiencies similar to those from Belle, with plenty of room for improvement!

BACKUP

Measurements

R_K :

Belle: $1.03 \pm 0.19(\text{stat}) \pm 0.06(\text{sys})$ (full range) [PRL 103 (2009) 171801]

BaBar: $1.00^{+0.31}_{-0.25}$ (stat) ± 0.07 (sys) (full range)

[PRD 86 (2012) 032012]

LHCb: $0.745^{+0.090}_{-0.074}$ (stat) ± 0.04 (sys) (1 < q^2 < 6GeV²)

[PRL 113 (2014) 151601]

A_{FB} :

Belle: $0.10 \pm 0.14(\text{stat}) \pm 0.01(\text{sys})$ ($B^+ \to K^+ \ell^+ \ell^-$) [PRL 96 (2006) 251801]

BaBar: $0.15^{+0.21}_{-0.23}(\text{stat}) \pm 0.08(\text{sys})$ (all channels)

[PRD 73 (2006) 092001]

LHCb: $0.02^{+0.05}_{-0.03}(\text{stat})^{+0.02}_{-0.01}(\text{sys}) (B^+ \to K^+ \mu \mu)$

[JHEP 1302 (2013) 105]

Other observables

$$A_I^{\ell} = \frac{\mathcal{B}(B^0 \to K^0 \ell \ell) - \mathcal{B}(B^+ \to K^+ \ell \ell)}{\mathcal{B}(B^0 \to K^0 \ell \ell) + \mathcal{B}(B^+ \to K^+ \ell \ell)}$$

$$A_{CP}^{\ell} = \frac{B\left(\overline{B} \rightarrow \overline{K}\ell\ell\right) - B(B \rightarrow K\ell\ell)}{B\left(\overline{B} \rightarrow \overline{K}\ell\ell\right) + B(B \rightarrow K\ell\ell)}$$

Effect of luminosity in δR_K

Similar events in Belle and LHCb

First events topologies

Physics Backgrounds

Charmonium decays: $B \to K + J/\psi(\ell^+\ell^-)$ and $B \to K + \psi(2S)(\ell^+\ell^-)$

Solution: veto regions

Physics Backgrounds

Continuum events: $ee \rightarrow qq$

Solution: MVA classifier

Background rejected: 91.66%. Signal kept: 92.88% (on testing dataset)

MVA specs

fastBDT

Training/testing samples with 1:1 signal to background ratio 48572 examples after reconstruction cuts (80% of data for training, 20% for testing)

18 variables

- KSFWM (13)
- Cosine of the angle between signal thrust and beam axis (1)
- Cosine of the angle between signal thrust and ROE thrust (1)
- R2 (1)
- Magnitude of the ROE and the signal thrust axis (2)

Preliminar: efficiencies

Angular

Preliminar: efficiencies

 $\ln q^2$ bins

Angular distributions

$cosθ_ℓ$ distribution for μμ channels (norm)

Correlations between q^2 and $\cos\theta_{\ell}$

Preliminar: sources of background from generic B^0 decays (1.2 ab⁻¹)

