ϕ_1 and ϕ_2 at Belle (II)

Yosuke Yusa Niigata University

ϕ_1/ϕ_2 — angles of unitary triangle

Quark transition: Cabibbo-Kobayashi-Maskawa (CKM) Matrix CP violation is induced by complex phase and parameterized as angles of the unitary triangle. -

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

$$\overline{\eta} \qquad V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

$$\psi_{ud} V_{ub}^* \qquad \psi_{1}(\beta) \qquad \psi_{$$

Decay rate is described as difference of decay time between B^0 mesons.

 $\mathcal{A_{CP}} = \frac{\mathcal{P}(\overline{B^0}(\Delta t) \to f_{CP}) - \mathcal{P}(B^0(\Delta t) \to f_{CP})}{\mathcal{P}(\overline{B^0}(\Delta t) \to f_{CP}) + \mathcal{P}(B^0(\Delta t) \to f_{CP})}$ = $S \sin \Delta m \Delta t$ + $A \cos \Delta m \Delta t$ mixing induced CPV direct CPV Δm : mass difference of eigenstates Δt : decay time difference of eigenstates

ϕ_1 measurement

Time-dependent CP violation:

Quantum interference between two diagrams.

$$\phi_1(=\beta) = \arg(V_{cd} \ V_{cb}^*/V_{td} \ V_{tb}^*)$$

 \rightarrow Accessible using CP-eigenstates induced by $b \rightarrow c\bar{cs}$ tree diagram.

 $S = -\xi_f \sin 2\phi_1$

 ξ_f : CP eigenvalue :

-1 for $(c\overline{c})K^{\theta}_{S}$, +1 for $(c\overline{c})K^{\theta}_{L}$

Since contribution from other diagrams are tiny, ϕ_1 measured from these CP-eigenstates are theoretically clean.

 \rightarrow Good reference point of the Standard Model.

 $\sin 2\phi_1 = 0.668 \pm 0.023 \pm 0.013$,

$$A = 0.007 \pm 0.016 \pm 0.013$$

ϕ_1 measurement

 $b \rightarrow ccd$ tree diagram

Ь

I/ 少

 $\pi^{\hat{0}}$

C

 $D^{(*)-}$

D(*)+

 ϕ_1 is also measured using CP-eigenstates induced by $b \rightarrow c\overline{c}d$ tree diagram.

Pollution from penguin diagram can be consdered but effect is expected to be low in SM.

 \rightarrow If large deviation from $b \rightarrow c \overline{c} s$ is seen,

it indicates contribution of new physics.

In $B^0 \rightarrow D^+D^-$, large direct CP violation was seen in Belle (4.0 σ). Tension is relaxed after • update but we need further study using more statistics.

 $B^0 \rightarrow J/\psi \pi^0$ can be used for estimation of possible penguin polution in $B^0 \rightarrow J/\psi K^0$ (PRL 95, 221804 (2005)) \rightarrow Necessary information for large statistic measurement.

Gronau and London, PRL65 3381 (1990) $A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00} \qquad (A^{ij}: \text{Decay amplitudes of } B \to \pi^{i}\pi^{j}/\rho^{i}\rho^{j})$ $\Rightarrow \text{ Using branching fractions and CP violation}$ $\overline{A}^{-0} = \frac{1}{\sqrt{2}}\overline{A}^{+-} + \overline{A}^{00} \qquad \text{parameters, } \Delta \phi_{2} \text{ is determined with four-fold ambiguity.}}$

- Dalitz analysis for $\pi \pi \pi^0$ 3-body system A. Snyder and H. Quinn, PRD 48 2139 (1993) Interference between three $B \rightarrow \rho \pi$ states \Rightarrow Constrain ϕ_2 with a sma Δ t fit with coefficients of Dalitz plot functions theoretical point of view.

<u>1</u>

 $A_{+0} = \overline{A}_{-0}$

6th KEK Flavor Factory Workshop (KEK-FF 2019), February 15 2019, KEK

 $\overline{\mathbf{A}}_{00}$

$sin2\phi_1^{eff}$ measurement in $b \rightarrow sqq$

Same weak phase as $b \rightarrow c \overline{cs}$

if only SM penguin contributes.

 $S \equiv -\xi_f \sin 2\phi_1^{\text{eff}} = -\xi_f \sin 2\phi_1$

Penguin loop is sensitive to the new physics contribution.

 $S = -\xi_f \sin 2\phi_1 \oplus extra CP$ phase from non-SM?

	ΔS	BF (×10 ⁻⁵)
$B^0 \rightarrow \eta \ 'K^0$	0.01±0.01	6.6
$B^0 \rightarrow \phi K^0$	0.02±0.01	0.86
$B^0 \rightarrow \omega K^0_S$	0.13±0.08	0.5
$B^0 \rightarrow \rho \ {}^{_{\theta}}K^{_{\theta}S}$	-0.08 +0.08 -0.12	0.47
$B^0 \rightarrow K^0{}_S \pi^0$	0.07 ^{+0.05} -0.04	0.95

	L	72	BF (×10 ⁻⁵)			
$B^0 \rightarrow K^+ K^- K^0_S$	0.03	+0.02 -0.03	2.47			
$B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$	0.02	+0.02 -0.03	0.62			
Hai-Yang Cheng, hep-ph/0702252						
$\Delta S: S$ shift from theoretically predicted from						
other SM diagrams (mainly from $b \rightarrow u$ tree)						

$sin2\phi_1^{eff}$ measurement in $b \rightarrow sqq$

Same weak phase as $b \rightarrow c\bar{cs}$

if only SM penguin contributes.

 $S \equiv -\xi_f \sin 2\phi_1^{\text{eff}} = -\xi_f \sin 2\phi_1$

Penguin loop is sensitive to the new physics contribution.

 $S = -\xi_f \sin 2\phi_{1 \oplus} extra CP$ phase from non-SM?

Naiive $b \rightarrow s$ penguin average

 $\sin 2\phi_1^{\text{eff}} = 0.655 \pm 0.032$

 $b \rightarrow c$ tree average

 $\sin 2\phi_1 = 0.699 \pm 0.017$

Theoretical shifts below are not considered for "naiive" average.

	ΔS	BF (×10 ⁻⁵)
$B^0 \rightarrow \eta 'K^0$	0.01±0.01	6.6
$B^0 \rightarrow \phi K^0$	0.02±0.01	0.86
$B^0 \rightarrow \omega K^0_S$	0.13±0.08	0.5
$B^0 \rightarrow \rho \ {}^{\scriptscriptstyle 0}K^0{}_S$	-0.08 +0.08 -0.12	0.47
$B^0 \rightarrow K^0{}_S \pi^0$	0.07 +0.05 -0.04	0.95
J 71	ipan hep-ph/0707	7 1323

b→ccs	World Average		:	0.69 ± 0.02
φK ⁰	Average	F	★1	0.74 ^{+0.11} -0.13
η′ K⁰	Average	+ ×		0.63 ± 0.06
K _s K _s K	Average	-		0.72 ± 0.19
$\pi^{0} K^{0}$	Average	- ★	4	0.57 ± 0.17
$\rho^0 K_S$	Average	⊢★		0.54 ^{+0.18} -0.21
ωK _s	Average		—	0.71 ± 0.21
f ₀ K _S	Average	H	-	0.69 ^{+0.10} -0.12
$f_2 K_S$	Average	*		0.48 ± 0.53
f _x K _s	Average 🛏	*	1	0.20 ± 0.53
π ⁰ π ⁹	Average	-		-0.72 ± 0.71
$\phi \pi^0 K_{S}$	Average		*	0.97 +0.03
$\pi^+ \pi^- K_S$	N R verage	+ 1		0.01 ± 0.33
K ⁺ K ⁻ K ⁰	Average		-	0.68 ^{+0.09}
-16 -14	-12 -1 -08 -06 -04 -02	0 02 04 06	0.8 1	1 12 14 16

	L	\S	BF (×10 ⁻⁵)				
$B^0 \rightarrow K^+ K^- K^0_S$	0.03	+0.02 -0.03	2.47				
$B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$	0.02	+0.02 -0.03	0.62				
Hai-Yang Cheng, hep-ph/0702252							
A S. S shift from theoretically predicted from							

other SM diagrams (mainly from $b \rightarrow u$ tree)

$sin2\phi_1^{eff}$ measurement in $b \rightarrow sqq$

Same weak phase as $b \rightarrow c\bar{cs}$

if only SM penguin contributes.

 $\mathbf{S} \equiv -\boldsymbol{\xi}_f \sin 2\phi_1^{\text{eff}} = -\boldsymbol{\xi}_f \sin 2\phi_1$

Penguin loop is sensitive to the new physics contribution.

 $S = -\xi_f \sin 2\phi_{1 \oplus} extra CP phase from non-SM?$

Naiive $b \rightarrow s$ penguin average

 $\sin 2\phi_1^{\text{eff}} = 0.655 \pm 0.032$

 $b \rightarrow c$ tree average

 $\sin 2\phi_1 = 0.699 \pm 0.017$

Recently published using Belle full data

Theoretical shifts below are not considered for "naiive" average.

	ΔS	BF (×10 ⁻⁵)
$B^0 \rightarrow \eta 'K^0$	0.01±0.01	6.6
$B^0 \rightarrow \phi K^0$	0.02±0.01	0.86
$B^0 \rightarrow \omega K^0_S$	0.13±0.08	0.5
$B^0 \rightarrow \rho \ {}^{\scriptscriptstyle 0}K^{\scriptscriptstyle 0}{}_S$	-0.08 +0.08 -0.12	0.47
$B^0 \rightarrow K^0{}_S \pi^0$	0.07 +0.05 -0.04	0.95
J. Zı	upan, hep-ph/0707	7.1323

b→ccs	World Averag	le					0.69 ± 0.02
φK ⁰	Average				H	★ -1	0.74 ^{+0.11} -0.13
η′ K⁰	Average				+*		0.63 ± 0.06
K _s K _s K _s	Average				-	 1	0.72 ± 0.19
$\pi^0 K^0$	Average			-	*	4	0.57 ± 0.17
ρ⁰ K _S	Average			—	*		0.54 ^{+0.18} -0.21
ωK _s	Average			I			0.71 ± 0.21
f _o K _S	Average				-	-1	0.69 ^{+0.10} -0.12
$f_2 K_S$	Average	F		*			0.48 ± 0.53
f _y K _s	Average		*			1	0.20 ± 0.53
π ⁰ π ⁹ K _S	Average						-0.72 ± 0.71
φ π° K _S	Average			+		*	0.97 +0.03
$\pi^+ \pi^- K_S$	NAverage	—		-			0.01 ± 0.33
K ⁺ K ⁻ K ⁰	Average				-	-1	0.68 ^{+0.09} -0.10
-16 -14 -	12 -1 -0.8 -0.6 -0	4 -0.2	0 02	0.4	0.6	0.8 1	12 14 16

	L	\S	BF (×10 ⁻⁵)			
$B^0 \rightarrow K^+ K^- K^0_S$	0.03	+0.02 -0.03	2.47			
$B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$	0.02	+0.02 -0.03	0.62			
Hai-Yang Cheng, hep-ph/0702252						

 $\Delta S: S$ shift from theoretically predicted from

other SM diagrams (mainly from $b \rightarrow u$ tree)

Belle detector

Vertex reconstruction and Charged particle tracking Silicon vertex detector: 3/4 layers DSSD Central Drift Chamber: small cell +He/C₂H₆ Superconducting solenoid: 1.5T magnetic field .5 GeV e+ **Particle identification** Aerogel Cherenkov counter: Aerogel radiator + PMT **Time-of-Flight counter** γ /electron measurement CsI(Tl) Electromagnetic calorimeter µ identification/K_L detection

14/15 layers Resistive Plate Counter+Fe

8 GeV e-

Photon detection in Belle

Photon detection efficiency degradation (~10%) due to materials between e^+e^- interaction point and calorimeter.

Photon convert vertex position studied in $B^0 \rightarrow \pi^0 \pi^0 K^0_S$ (MC)

(Calorimeter is located outside region of these plots)

Efficiency to detect $2\pi^{0}$ decays into 4 photons is < $(1-0.1)^{4} = 64\%$. \rightarrow We need large statistics to analyze *B* decays including multi- π^{0} . To solve this issue, Cherenkov counter is replaced to low material devices in Belle II.

How to obtain ϕ_1/ϕ_2 — Fit to Δt and q

• Δt is measured by vertex positions of *B* and \overline{B} .

Vertex reconstruction with Ks

Vertex reconstruction using non-primary tracks is available with constraint on interaction point (IP). Vertex reconstruction usign non-

Standard vertex reconstruction

IP constraint calculated by

every 10000 events average

Ks flight direction

This technique enables timedependent CP violation measurements in CP-eigenstates in which no primary tracks from IP. "Measurement of CP asymmetries in $B^0 \rightarrow K^0 \pi^0$ decays"

primary tracks from Ks decay

(Ksvertexing)

Phys.Rev.D81:011101,2010

In Belle II, constraint from IP is expected to be better due to nano-beam scheme (demonstrated later). \rightarrow Vertex quality should be improved.

^{-0.5}6th KEK Flavor Factory Workshop (KEK-FF 2019), February 15 2019, KEK

Belle II — Where we are now?

2016 Feb. Phase 1 (w/o Belle, w/o final focusing) starts Jun. Phase 1 ends

2017

Apr. Belle II detector roll in

2018 Mar. Phase 2 (partial VXD, w/ final focusing) starts
Apr. First collision
Jul. Phase 2 ends
Integrated luminosity
~500 pb⁻¹

2019

Mar. Phase 3 (almost full VXD) starts

Belle II detector

Benefits of upgrade for ϕ_1/ϕ_2 measurements

Smaller radious of inner layers of PXD contributes to improve vertex resolution. \rightarrow Resolution of tracking improves 40%

More K_{0S}^{0} decay inside of larger radious of outer SVD layer.

 $\rightarrow K^{0}{}_{s}$ finding efficiency imcreses. Efficiency of vertex reconstruction using $K^{0}{}_{s}$ daughter improves.

Improvement of particle identification performance contributes to flavor tagging quality.

Photon detection efficiency increases due to less materal of inner part.

20

0

Belle SVD

of Ks vertex (cm)

Spread of IP estimated using closest approach of tracks in *z*-coordinate is consistent with small beam crossing spot size calculated from phase 2 beam optics.

Using 500 pb⁻¹ of the data collected during phase 2 operation, we confirm many of particles that are included in CP-eigenstates are reconstructed.

Phase2 data analysis

Using 500 pb⁻¹ of the data collected during phase 2 operation, we confirm many of particles that are included in CP eigenstates can be reconstructed.

 $B^0 \rightarrow J/\psi K^0_s$ sign is indicated in reconstructed distributions (orange and magenta).

 $B^{0/+} \rightarrow J/\psi K^{0(*)/+}$

Re-discovery of CP-violation within our reach

Integrated Luminosity[fb-1]

Far milestone — beyond Belle/BABAR results Decay modes in which first observation of

Belle II

 ϕ_1 is expected using a few ab^{-1} data.

 $b \rightarrow c$

Mode	Experiment (# of $B\overline{B}$)	S	significance	A	
$\mathbf{P}(\longrightarrow \mathbf{I}/2h \pi 0)$	BABAR (466M)	-1.23±0.21±0.04	4.0 <i>σ</i>	0.20±0.19±0.03	
$\mathbf{D}^{\circ} \rightarrow \mathbf{J} / \psi / \varepsilon^{\circ}$	Belle (772M)	-0.59±0.19±0.03	3.0 <i>σ</i>	0.08±0.16±0.05	Recently
	BABAR (467M)	-0.63±0.36±0.05		0.07±0.23±0.03	publised
$B^{0} \rightarrow D^{+}D^{-}$	Belle (772M)	-1.06 ^{+0.21} ±0.08	4.2 σ	0.43±0.16±0.05	PRD98,
	LHCb (3 fb ⁻¹)	-0.54 ^{+0.17} ±0.05	4.0 <i>σ</i>	-0.26 ^{+0.18} ±0.05	112008
₽ 0→ ♪ *+ ♪ *-	BABAR (467M)	-0.70±0.16±0.03		-0.05±0.09±0.0	(2018)
$\mathbf{D} \sim \mathbf{D} \sim \mathbf{D}$	Belle (772M)	-0.79±0.13±0.03	5.4 σ	0.15±0.08±0.02	(2010)
$\mathbf{P}^{()} \longrightarrow \mathbf{D}^{*+} \mathbf{D}^{-}$	BABAR (467M)	-0.68±0.15±0.04		-0.04±0.12±0.0	
$B \cup \rightarrow D \neg D^-$	Belle (772M)	-0.78±0.15±0.05	4.0 σ	0.01±0.11±0.04	
1					

 $b \rightarrow s$

Mode	Experiment (# of $B\overline{B}$)	S	significance	
$\mathbf{D} \longrightarrow \mathbf{K} \bigcirc $	BABAR (468M)	$0.94^{+0.21}_{-0.24} \pm 0.06$	3.8 <i>σ</i>	
	Belle (535M)	0.30±0.32±0.08 🔨		
$\mathbf{P} \longrightarrow \pi \cap \mathbf{V} $	BABAR (467M)	0.55±0.20±0.03		
$\mathbf{P}_{\mathbf{Q}} \rightarrow \mathcal{U} \circ \mathbf{V} \circ \mathbf{V}$	Belle (657M)	0.67±0.31±0.08		·
$\mathbf{P}^{0} \rightarrow \mathbf{O}^{0} \mathbf{V}^{0}$	BABAR (383M)	$0.35^{+0.26}_{-0.31} \pm 0.06 \pm 0.03$		I his will be
$\mathbf{p}_{\mathbf{c}} \neq \mathbf{p}_{\mathbf{c}} \mathbf{v}_{\mathbf{c}} \mathbf{v}_{\mathbf{c}}$	Belle (657M)	$0.64^{+0.19}_{-0.25} \pm 0.09 \pm 0.10$		reviced soon
$\mathbf{R}^{0} \rightarrow \boldsymbol{\mu} \mathbf{K}^{0}$	BABAR (467M)	$0.55 \pm +0.26 \pm 0.02$		using tuli data
	Belle (772M)	0.91±0.32±0.05	3.1 <i>σ</i>	Set.

milestone — beyond Belle/BABAR results Hopefully not so far

Decay modes in which first observation of

 ϕ_1 is expected using a few ab⁻¹ data.

$b \rightarrow c$		·		C					
Mode	Exp	periment (# of $B\overline{B}$)		S	signific	ance		A	
$\mathbf{P}^{(1)} \rightarrow \mathbf{I}/2 $ $\pi^{(1)}$	E	BABAR (466M)	-1.2	23±0.21±0.04	4.0	σ	0.20±0).19±0.03	
\mathbf{D}°		Belle (772M)	-0.5	59±0.19±0.03	3.0	σ	0.08±0).16±0.05	←Recentl
	E	BABAR (467M)	-0.6	<u>3±0.36±0.05</u>			0.07±0).23±0.03	publised
$B^{0} \rightarrow D^{+}D^{-}$		Belle (772M)	1.	$06^{+0.21}_{-0.14} \pm 0.08$	4.2	σ	0.43±0).16±0.05	PRD98,
		LHCb (3 fb ⁻¹)	-0.	54 ^{+0.17} _{-0.16} ±0.05	4.0	σ	-0.26	-0.18 -0.17 ±0.05	112008
$\mathbf{R}^{0} \rightarrow \mathbf{D}^{*+} \mathbf{D}^{*-}$	E	BABAR (467M)	-0.7	70±0.16±0.03			-0.05±	-0.09±0.0	(2018)
		Belle (772M)	-0.7	79±0.13±0.03	5.4	σ	0.15±0).08±0.02	
$\mathbf{R}^{0} \rightarrow \mathbf{D}^{*} + \mathbf{D}^{-}$	E	BABAR (467M)	-0.6	8±0.15±0.04			-0.04±	=0.12±0.0	
D ⁺ D ⁺ D		Belle (772M)	-0.7	78±0.15±0.05	4.0	σ	0.01±0).11±0.04	
b→s									
Mode		Experiment (# of	$B\overline{B}$)	S		signif	ficance		
		BABAR (468M)	$0.94^{+0.21}_{-0.24}$ ±	0.06	3.	8σ		

$\mathbf{B}^{0} \rightarrow \mathbf{K}^{0} \circ \mathbf{K}^{0} $	BABAR (468M)	$0.94_{-0.24}^{+0.21} \pm 0.06$	3.8 <i>0</i>	
	Belle (535M)	0.30±0.32±0.08 🔨		
$\mathbf{P} \longrightarrow \pi \cap \mathbf{V} \cap \pi$	BABAR (467M)	0.55±0.20±0.03	V	
$\mathbf{D}_{\mathbf{C}} \rightarrow \mathcal{U} \circ \mathbf{K} \circ \mathbf{S}$	Belle (657M)	0.67±0.31±0.08		-
$\mathbf{P}^{0} \rightarrow \mathbf{O}^{0} \mathbf{V}^{0}$	BABAR (383M)	$0.35^{+0.26}_{-0.31}\pm0.06\pm0.03$		I his will be
$\mathbf{D}_{\mathbf{c}} \rightarrow \mathbf{D}_{\mathbf{c}} \mathbf{V}_{\mathbf{c}} \mathbf{X}_{\mathbf{c}} \mathbf{X}_{\mathbf{c}}$	Belle (657M)	$0.64_{-0.25}^{+0.19} \pm 0.09 \pm 0.10$		reviced soon
$\mathbf{P}^{(1)} \rightarrow (\mathbf{u}) \mathbf{K}^{(1)} \mathbf{c}$	BABAR (467M)	$0.55 \pm +0.26 \pm 0.02$		
$\mathbf{D}^{2} \neq 0 \mathbf{K}^{2} \mathbf{S}$	Belle (772M)	0.91±0.32±0.05	3.1 σ	Set.

milestone — beyond Belle/BABAR results Hopefully not so far

Decay modes in which first observation of

 ϕ_1 is expected using a few ab⁻¹ data.

 $h \rightarrow c$

00									
Mode	Exp	periment (# of $B\overline{B}$)		S	signific	ance		A	
$B^{0} \rightarrow J/\psi \pi^{0}$	BABAR (466M)		-1.23±0.21±0.04		4.0 <i>σ</i>		0.20±0.19±0.03		
	Belle (772M)		-0.5	59±0.19±0.03	3.0 <i>σ</i>		0.08±0).16±0.05	←Recently
$B^{0} \rightarrow D^{+}D^{-}$	E	BABAR (467M)		-0.63±0.36±0.05).23±0.03	publised
		Belle (772M)		$-1.06^{+0.21}_{-0.14}\pm0.08$		4.2 σ).16±0.05	PRD98,
		LHCb (3 fb ⁻¹)		$-0.54^{+0.17}_{-0.16}\pm0.05$		4.0 σ		-0.18 -0.17 ±0.05	112008
$B^{0} \rightarrow D^{*+}D^{*-}$	BABAR (467M)		-0.70±0.16±0.03				-0.05±	=0.09±0.0	(2018)
		Belle (772M)		-0.79±0.13±0.03		5.4 σ		0.15±0.08±0.02	
$B^{0} \rightarrow D^{*+}D^{-}$	E	BABAR (467M)		-0.68±0.15±0.04				-0.04±0.12±0.0	
		Belle (772M)	-0.7	78±0.15±0.05	4.0	σ	0.01±0	0.11±0.04	
$b \rightarrow s$									
Mode Experiment (Experiment (# of	BB)	S		significance		Anomaly among	
$B^0 \rightarrow K^0_S K^0_S K^0_S$		BABAR (468M)		$0.94^{+0.21}_{-0.24}$ ±	0.06 3.		8σ	experimen	in future
		Belle (535M)		0.30±0.32±	±0.08 •			De Solveu	in ruture.
$B^0 \rightarrow \pi {}^0 K^0 {}_S$		BABAR (467M)		0.55±0.20±0.03					
		Belle (657M)		0.67±0.31±0.08					
)	BABAR (383M)		$0.35^{+0.26}_{-0.31} \pm 0.06 \pm 0.03$				This will	be
$B_0 \rightarrow 0 \ 0 \ K_0$	'S	Belle (657M)		$0.64^{+0.19}_{-0.25} \pm 0.09 \pm 0.10$				reviced s	soon
		BABAR (467M		$0.55\pm^{+0.26}_{-0.29}\pm$	0.02			using fu	ll data
$ \mathbf{R}_0 \to 0 \mathbf{K}_0 \rangle$	S	Belle (772M)		0.91±0.32±0.05		<u>3.1</u> σ se		set.	
		· · · · · · · · · · · · · · · · · · ·							

milestone — beyond Belle/BABAR results not so far

For ϕ_2 , new input for iso-spin relation analysis :

Belle II

 $B^0_{
m tag}$

 $\bar{B}^0_{\rm tag}$

Toy MC of Dalitz decay @50 ab⁻¹

m_{bc} [Gev/c²]

 $B^{0} \rightarrow \pi^{0} \pi^{0}$ time-dependent analysis.

Electromagnetic calorimeter detects hit position of photons.

 \rightarrow In usual analysis, no **B**⁰ decay vertex

information from π^{0} .

If we use a large data sample in Belle II, we can approach " π^0 vertexing" using Dalitz decay ($\pi^{0} \rightarrow e^{+}e^{-}\gamma$) or π^{0} direction from

photon conversion.

Hopefully

Although statistic error is large, $(= \pm 0.28)$,

Systematic error in large statistic analysis

We have already been close to systematic limit.

BELLE

In Belle II, we have to consider this issue in many studies.

Reference point of systematic study

dS	dA
0.012	0.009
0.007	0.004
0.009	0.001
0.005	0.002
0.004	0.003
0.003	0.001
0.001	0.001
0.001	0.001
0.001	0.009
0.019	0.014
dS	dA
0.0072	0.0005
0.0064	0.0021
0.0056	0.0040
0.0050	0.0073
0.0033	0.0060
ng 0.0026	0.0015
	0.0004
0.0002	0.0004
	dS 0.012 0.007 0.009 0.005 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0050 0.0056 0.0056 0.0050 0.0050 0.0033 ng 0.0026

One reference point is systematic error in 2006: dS = 0.019, dA = 0.014At worst, same level with statistical error expected from toy study dS = 0.024, dA = 0.016

My slide in Belle general meeting for ϕ_1 measurement in $B^0 \rightarrow (c\overline{c})K^0$ using full data.

We discussed whether we can set systematic uncertainty enough small comparing to previous analysis and also to expected of statistical error.

Systematic error in large statistic analysis

Systematic is expected to be dominant in ϕ_1 measurement using 50 ab⁻¹

Vertex improvement contributes to reduce systematic error of S.

If we use only high momentum leptons (mainly come from semi-leptonic decay) for flaver tagging, uncertainty from tagside interference on *A* is largely suppressed. Total error becomes small although statistic is sacrificed. Error expectation considering

luminosity scale (Belle II Physics Book)

	No	Vertex	Leptonic	
	improvement	improvement	categories	
$S_{J/\psi K_S^0} (50 \text{ ab}^{-1})$				
stat.	0.0035	0.0035	0.0060	
syst. reducible	0.0012	0.0012	0.0012	
syst. irreducible	0.0082	0.0044	0.0040	
$A_{J/\psi K_S^0}$ (50 ab ⁻¹)				
stat.	0.0025	0.0025	0.0043	
syst. reducible	0.0007	0.0007	0.0007	
syst. irreducible	$+0.043 \\ -0.022$	$+0.042 \\ -0.011$	0.011	

Interference between non-zero two diagram \rightarrow CP violation in tag side: $2r' \sin(2\phi_1 + \phi_3 \pm \delta')$

 \rightarrow We have to try further idea to suppress systematic error. In some case, approach from theoretical side is needed.

Summary

 ϕ_1 and ϕ_2 angles have been measured in Belle through timedependent analysis of **B**⁰ decays.

More sensitivity is expexted in Belle II not only incresing of data but also from detector upgrade.

Decay products of CP-eigenstates have been already observed in phase 2 data.

From phase 3 operation with vertex detectors, measurements of ϕ_1 and ϕ_2 in Belle II are within our reach now.

We expect first observation in many decay modes but have to make effort for systematic estimation for high precision study.

Backup

5000 All combined Data 4000 Fit result

 $B^0 \rightarrow (c\overline{c}) K^0_S (CP \text{-odd: } \xi_f = -1)$

 $B^{0} \rightarrow (c\overline{c})K^{0}S$: Very clean signal, selected by loose criteria. ex.

 $B^0 \rightarrow I/\psi K^0_L$: Only K⁰ flight direction is detected as hadron cluster

in KLM (Cluster energy can not obtained)

 $B^0 \rightarrow J/\psi K^0_L (CP\text{-even: } \xi_f = +1)$

6th KEK Flavor Factory Workshop (KEK-FF 2019), February 15 2019, KEK

q and Δt change due to imperfectness of the measurement.

 Δt :

- Detector resolution
- Non-primary track effect
 D lifetime ≠ 0
- Kinematic approximation $\Delta t \equiv \Delta z / c \beta \gamma = \Delta t_{\text{true}}$

q :

- PID failure
- Ambiguity of flavor determination algorithm

Those effects is estimated using a large number of control sample of $B^0 \rightarrow D^* \ell^+ v$, $B^{0/+} \rightarrow D^{(*)} \pi / \rho$ and $B^+ \rightarrow J / \psi K^+$

 \Rightarrow Observed time-dependent decay rate

$$P_{sig} (\Delta t, q) = \frac{1}{4\tau} \frac{|\Delta t|}{e^{\tau_{B}}} \frac{|\Delta t|}{(1-2w)q} (A\cos\Delta m\Delta t + S\sin\Delta m\Delta t) \otimes R(\Delta t)$$

dilution factor Resolution function

$B^0 \rightarrow J/\psi \pi^0$

ϕ_2 measurement using isospin relation

BELLE

 $B^{0} \rightarrow \pi^{+}\pi^{-}$ 772M BB PRD 88 092003 (2013) $\mathcal{A}_{CP}(B^{0} \rightarrow \pi^{+}\pi^{-}) = +0.33 \pm 0.06(\text{stat}) \pm 0.03(\text{syst})$ $\mathcal{S}_{CP}(B^{0} \rightarrow \pi^{+}\pi^{-}) = -0.64 \pm 0.08(\text{stat}) \pm 0.03(\text{syst})$ $\mathcal{B}(B^{0} \rightarrow \pi^{+}\pi^{-}) = (5.04 \pm 0.21 \pm 0.18) \times 10^{-6}$

 $B^{+} \rightarrow \pi^{+} \pi^{0}$ 772M BB PRD 87 031103(R) (2013) $\mathcal{A}_{CP}(B^{+} \rightarrow \pi^{+} \pi^{0}) = 0.025 \pm 0.043 \pm 0.007$ $\mathcal{B}(B^{+} \rightarrow \pi^{+} \pi^{0}) = (5.86 \pm 0.26 \pm 0.38) \times 10^{-6}$

Large uncertainty of ϕ_2 is due to measurements in $B^0 \rightarrow \pi^0 \pi^0$ decay

- Low branching fraction
- \cdot Photon detection efficiency
- (No S_{CP} due to lack of vertex in signal side \rightarrow eight-fold ambiguity)

 $B^{0} \rightarrow \pi^{0} \pi^{0}$ 275M BB PRL 94 181803 (2005) $\mathcal{A}_{CP} = 0.44^{+0.53}_{-0.52} \pm 0.17$ $\mathcal{B}(B^{0} \rightarrow \pi^{0} \pi^{0}) = (2.3^{+0.4+0.2}_{-0.5-0.3}) \times 10^{-6}$

$B^0 \rightarrow \pi^0 \pi^0$ measurement

$B^0 \rightarrow \pi^0 \pi^0$ measurement

$$A_{CP} = +0.14 \pm 0.36 \pm 0.10$$
$$\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.31 \pm 0.19 \pm 0.19) \times 10^{-6}$$
(6.4 σ significance)

 ϕ_2 confidence level scan including new observables from $B^0 \rightarrow \pi^0 \pi^0 \pi^0$ Excluded region: 9.5° < ϕ_2 < 81.6° (68% C.L.) , 15.5° < ϕ_2 < 75.0° (95% C.L.)

